EP0000929B1 - Zu Elastomeren vernetzende Massen auf Basis von Polysiloxanen - Google Patents

Zu Elastomeren vernetzende Massen auf Basis von Polysiloxanen Download PDF

Info

Publication number
EP0000929B1
EP0000929B1 EP78100691A EP78100691A EP0000929B1 EP 0000929 B1 EP0000929 B1 EP 0000929B1 EP 78100691 A EP78100691 A EP 78100691A EP 78100691 A EP78100691 A EP 78100691A EP 0000929 B1 EP0000929 B1 EP 0000929B1
Authority
EP
European Patent Office
Prior art keywords
denotes
radicals
silicon
bonded
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100691A
Other languages
English (en)
French (fr)
Other versions
EP0000929A1 (de
Inventor
Erhard Dr. Bosch
Karl Braunsperger
August Dr. Schiller
Eckhart Dr. Louis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of EP0000929A1 publication Critical patent/EP0000929A1/de
Application granted granted Critical
Publication of EP0000929B1 publication Critical patent/EP0000929B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S528/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S528/901Room temperature curable silicon-containing polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31609Particulate metal or metal compound-containing
    • Y10T428/31612As silicone, silane or siloxane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • constituent (3) is at least one silane, that is to say a monomeric silicon compound, this silane, in addition to at least one amino group bonded to silicon via carbon, at least one monovalent hydrocarbon radical which is bonded to silicon via oxygen and is optionally substituted by an amino or alkoxy group contains.
  • the compositions according to the invention have the particular advantage that they crosslink completely even in thicker layers.
  • the compositions according to the invention are completely crosslinked in thicker layers even if they do not contain any condensation catalysts, such as dibutyltin dilaurate.
  • the invention relates to the exclusion of water-storable masses of (1) diorganopolysiloxane having end groups capable of condensation when water is admitted at room temperature, (2) a total of at least three amino groups bonded to silicon via nitrogen and / or oxime groups bonded to silicon via oxygen per molecule of silicon compound and at least one (3) organosilicon compound with at least one amino group bonded to silicon via carbon as at least one further constituent, characterized in that at least part of organosilicon compound (3) contains at least one siloxane oxygen atom and in amounts of 0.1 to 20 percent by weight, based on the total weight of the mass, is included.
  • compositions according to the invention can be prepared from the same diorganopolysiloxanes (1) which have end groups capable of condensation and from which the hitherto known compositions of diorganopolysiloxane which have condensable end groups and which crosslink under the exclusion of water and which adhere to water when exposed to water at room temperature, and a total of at least three amino groups bonded to silicon via nitrogen and / or oxime groups bonded to silicon via oxygen could be prepared per silicon compound having a molecule.
  • the diorganopolysiloxanes (1) which are mostly used for the production of such compositions and which are also preferably used in the context of the invention have diorganopolysiloxanes (1) by the general formula are reproduced.
  • R 3 means identical or different, monovalent, optionally substituted and / or polymeric hydrocarbon radicals and x is an integer with a value of at least 10.
  • siloxane units in addition to the diorganosiloxane units (SiR30).
  • examples of such other siloxane units, which are usually only present as impurities, are those of the formulas R 3 SiO 3/2 , R 3 3 SiO 1/2 and Si0 4 , z , where R 3 has the meaning given above for each.
  • the amount of such siloxane units as diorganosiloxane units is preferably at most 10 mol percent, in particular at most 1 mol percent, in each case based on the weight of the diorganopolysiloxanes (1).
  • the hydroxyl groups in the above-mentioned diorganopolysiloxane group having condensable end groups can, if desired, be completely or partially replaced by condensable groups other than Si-bonded hydroxyl groups.
  • Examples of such other groups capable of condensation are connected in particular via nitrogen to silicon bonded amino groups, as will be explained in more detail below, through oxygen to silicon-bonded oxime groups, as will also be discussed in more detail below, alkoxy groups having 1 to 5 carbon atoms and Alkoxyalkylenoxy phenomenon 1 to 5 carbon atoms, like the rest of the formula CH 3 0CH Z CH z O-.
  • hydrocarbon radicals R 3 are alkyl radicals, such as the methyl, ethyl, n-propyl and isopropyl radical and octadecyl radicals; Alkenyl groups such as the vinyl and allyl groups; cycloaliphatic hydrocarbon radicals, such as the cyclopentyl and cyclohexyl radical and methylcyclohexyl and cyclohexenyl radicals; Aryl groups such as phenyl groups and xenyl groups; Aralkyl radicals, such as the benzyl, beta-phenylethyl and beta-phenylpropyl radicals; and alkaryl radicals, such as tolyl radicals.
  • alkyl radicals such as the methyl, ethyl, n-propyl and isopropyl radical and octadecyl radicals
  • Alkenyl groups such as the vinyl and allyl groups
  • Substituted hydrocarbon radicals R 3 are haloaryl radicals, such as chlorophenyl and bromophenyl radicals; and cyanalkyl radicals, such as the beta-cyanoethyl radical, are preferred.
  • substituted polymeric and unsubstituted polymeric hydrocarbon radicals R 3 where such polymeric hydrocarbon radicals can also be referred to as modifying hydrocarbon radicals are, in particular, those which, when polymerizable compounds are polymerized by means of free radicals in the presence of diorganopolysiloxanes of the general formula where x has the meaning given above and R is the same or different, monovalent, optionally substituted hydrocarbon radicals are formed.
  • Examples of polymerizable compounds which can be used in such a polymerization carried out in the presence of diorganopolysiloxane are vinyl acetate, ethylene, styrene, acrylic acid, methacrylic acid, acrylic acid esters such as n-butyl acrylate, methacrylic acid esters such as n-butyl methacrylate, acrylonitrile and methacrylonitrile, and Mixtures of at least two of the monomers mentioned, such as mixtures of vinyl acetate and ethylene.
  • At least 50% of the number of SiC-bonded residues in diorganopolysiloxane (1) and thus the residues R 3 in the formulas given above are preferably methyl residues.
  • the diorganopolysiloxanes (1) which have condensable end groups can be homopolymers or copolymers. Mixtures of different diorganopolysiloxanes with condensable end groups can be used.
  • the viscosity of the diorganopolysiloxanes having condensable end groups is advantageously 100 to 500,000 mPa.s at 25 ° C.
  • a total of at least three amino groups bonded to silicon via nitrogen and / or oxime groups bonded via silicon to oxygen per molecule can also contain the same silicon compounds with a total of at least three amino groups bonded to silicon via nitrogen and / or Oxime groups bonded to silicon via oxygen are used per molecule, which have also been used hitherto for the preparation of compositions which can be stored in the absence of water and which crosslink to form elastomers when water is admitted at room temperature by mixing such a silicon compound with diorganopolysiloxane having condensable end groups.
  • silicon compounds (2) which can be used in the context of the invention are thus aminosilanes of the general formula wherein R has the meaning given above for it, R 1 is hydrogen or a monovalent, optionally substituted hydrocarbon radical and a is 0 or 1, and their partial hydrolysates containing at most 10 silicon atoms per molecule.
  • substituted and unsubstituted hydrocarbon radicals R also apply in full to the substituted and unsubstituted hydrocarbon radicals R 1 .
  • Further examples of hydrocarbon radicals R 1 are the n-butyl, sec-butyl and the tert-butyl radical.
  • Preferred radicals R 1 are the sec-butyl and the cyclohexyl radical.
  • examples of silicon compounds (2) are also silanes of the general formula wherein R, R 'and X each have the meaning given above and c is on average at least 0.1, preferably at least 0.5 and at most 2.9, the sum of a + c being at most 3.
  • silicon compounds (2) are methyltris (n-butylamino) silane, methyltris (sec.butylamino) silane, methyltris (cyclohexylamino) silane, methyltris (methylethylketoxirn) silane, methylbis (methylethylketoxime) -cyclohexylaminosilane and methyltris (acetone oxime) -silane.
  • Mixtures of different silicon compounds (2) e.g. a mixture of 1 mol of methyl tris (cyclohexylamino) silane and 2 mol of methyl tris (methyl ethyl ketoxime) silane can be used.
  • the total of at least three amino groups per molecule bonded to silicon via nitrogen and / or oxime groups bonded to silicon via oxygen (2) is preferably used in amounts such that there are a total of at least three amino groups bonded to silicon via nitrogen and / or oxime groups bonded to silicon via oxygen per end group capable of condensation in the diorganopolysiloxane (1).
  • 0.2 to 15 percent by weight, usually 1 to 8 percent by weight, based in each case on the total weight of the particular mass, of silicon compound (2) is used.
  • organosilicon compound (3) with at least one amino group bonded to silicon via carbon and at least one siloxane oxygen atom it is also possible, for example, to use compounds of the general formula where R and a each have the meaning given above, are used. Particularly because of the easy accessibility, organosilicon compounds (3) are those of the general formula prefers.
  • R has the meaning given above for it, A means identical or different radicals of the formula where R 1 and a each have the meaning given above, Q is oxygen or the grouping -NR 'and p is an integer from 1 to 10, Y are identical or different radicals of the formula where A, R and a each have the meaning given above, R I is hydrogen or the same or different monovalent hydrocarbon radicals which are optionally interrupted by at least one ether oxygen atom, b O, 1, 2 or 3 and the sum of a + b is at most 3, m means 0 or an integer from 1 to 2,000 and n O or an integer from 1 to 1,000, with the proviso that at least one radical A is present per organopolysiloxane (3).
  • R is also preferably the methyl radical in the organosilicon compound (3).
  • radicals A are those of the following formulas:
  • R 1 in group A preferably denotes hydrogen. However, R 1 does not always have to be hydrogen, as is the case with the grouping is illustrated. As can also be seen from the above formulas, the values p in one and the same grouping A and thus also in different groupings A can be the same or different.
  • radicals A are those of the general formula where Q has the meaning given above, preferred.
  • the radicals R 2 preferably have 1 to 18 carbon atoms, but the methyl and ethyl radicals are particularly preferred.
  • the most important example of a hydrocarbon radical R 2 interrupted by an ether oxygen atom is the methoxyethylene radical.
  • M is preferably an integer from 3 to 1,000. It is further preferred that in the compounds of the general formula Y (OSiR 2 ) m (OSiAR) n OY at most 100 units of the formula R z SiO there are a for each grouping.
  • organosilicon compounds (3) of the preferred type are those of the general formula where R, A and n each have the meaning given above and m 'is an integer with a value of at least 3.
  • the preparation of such organopolysiloxanes is known, for example from FR-PS 11 84 097, published: July 16, 1959, applicant: Union Carbide Corporation, and FR-PS 12 97 045, published by "Bulletin founded de la Propriete industrial" No. 25 1962, applicant: Union Carbide Corporation.
  • organosilicon compounds (3) of the preferred type are those of the general formula where R, R 2 , A, m 'and n each have the meaning given above.
  • organopolysiloxanes can, for example, by reacting at least one compound of the general formula where A, R and R 2 each have the meaning given above, with at least one organopolysiloxane of the general formula where R and m 'each have the meaning given above, optionally in the presence of a condensation catalyst, such as sodium hydroxide or dibutyltin dilaurate, with elimination of a compound of the general formula getting produced.
  • a condensation catalyst such as sodium hydroxide or dibutyltin dilaurate
  • organosilicon compounds (3) of the preferred type are also those of the general formula wherein R, R 2 , A, b, m 'and n each have the meaning given above, with the proviso that there is at least one group A per molecule.
  • the preparation of such organopolysiloxanes is also known, for example from DE-OS 23 39 761, published February 21, 1974, applicant: Stauffer Chemical Co., and FR-PS 12 94 235, published by "Bulletin founded de la Propriete industrial no. 21 of 1962, applicant: Dow Corning Corporation.
  • siloxane units SiR 2 O and SiARO can also be present within or along the siloxane chains of the formulas given above for organosilicon compounds (3).
  • examples of such other siloxane units are those of the formulas RSi0 3 , 2 , R 3 SiO 1/2 and Si0 "2, where R in each case has the meaning given above.
  • the amounts of such siloxane units as diorganosiloxane units are also in the organosilicon compounds (3 ) preferably at most 10 mole percent.
  • the organosilicon compounds (3) are used in amounts of 0.1 to 20 percent by weight, in particular 0.1 to 5 percent by weight, in each case based on the total weight of the composition.
  • At least one siloxane oxygen atom can also be used in the preparation of the compositions according to the invention which have also been used up to now in the preparation of compositions from the silicon compounds (1) and (2) which can be stored in the absence of water and which crosslink to form elastomers when water enters at room temperature could.
  • Examples of such additionally usable substances are reinforced fillers, non-reinforcing fillers, pigments, soluble dyes, fragrances, organopolysiloxane resins, including those made from (CH 3 ) 3 SiO 1/2 and SiO 4/2 units, organic resins, such as polyvinyl chloride powder, corrosion inhibitors , Oxidation inhibitors, heat stabilizers, solvents, other agents for improving the adhesion of the elastomers produced from the compositions to the substrates on which the elastomers were produced, such as the compound of the formula CH 3 Si [O (CH 2 ) 2 NH 2 ] 2 ( CH 2 ) 3 O (CH 2 ) 2 NH 2 , condensation catalysts, such as tin salts or organotin salts of carboxylic acids, for example dibutyltin dilaurate or aliphatic basic nitrogen compounds, for example 3-ethoxypropylamine-1 or n-hexylamine, plasticizers, such as dimethylpolys
  • reinforcing fillers that is to say fillers with a surface area of at least 50 m 2 / g
  • fillers with a surface area of at least 50 m 2 / g are, in particular, pyrogenically produced silicon dioxide, silica hydrogels dehydrated while maintaining the structure and other types of precipitated silicon dioxide with a surface area of at least 50 ml / g.
  • other fillers with a surface area of at least 50 m 2 / g can be used instead of the named types of silicon dioxide or together with these types of silicon dioxide.
  • examples of such other fillers are metal oxides, such as titanium dioxide, ferric oxide, aluminum oxide and zinc oxide, provided that they each have a surface area of at least 50 m 2 / g.
  • non-reinforcing fillers that is to say fillers with a surface area of less than 50 ml / g
  • quartz powder diatomaceous earth, pebble chalk, Neuburg chalk, calcium silicate, zirconium silicate, calcium carbonate, for example in the form of ground chalk, and calcined aluminum silicate and powdered sodium aluminum silicate with molecular sieve properties.
  • the reinforcing and the non-reinforcing fillers can be made hydrophobic, for example by treatment with trimethylethoxysilane or stearic acid. If desired, such treatment may have been carried out, for example, in a ball mill.
  • Fibrous fillers such as asbestos and glass fibers, in particular those with an average length of at most 0.5 mm, and / or organic fibers can also be used.
  • compositions according to the invention all constituents of the particular composition can be mixed together in any order. This mixing is expediently carried out at room temperature and with the exclusion of water. If desired, this mixing can also take place at higher temperatures, e.g. at a temperature in the range of 35 ° C to 150 ° C.
  • the normal water content of the air is sufficient for the crosslinking of the compositions according to the invention. If desired, however, the crosslinking can also be carried out at temperatures higher than room temperature or lower temperatures than room temperature, e.g. at 5 ° to 10 ° C, and / or by means of concentrations of water exceeding the normal water content of the air.
  • compositions according to the invention adhere to these substrates very good even without the use of the usual primers.
  • substrates such as glass, porcelain, earthenware, mortar, aluminum, brass, stainless steel, galvanized sheet metal, wood, paper or plastics, such as polyvinyl chloride, polyester, polystyrene or polymethyl methacrylate, adhere to these substrates very good even without the use of the usual primers.
  • the compositions according to the invention are therefore not only suitable for sealing joints, including vertically running joints, and similar empty spaces with clear widths of, for example 1 mm to 50 mm, for example of land, water or aircraft as well as of buildings, including those made of lightweight building blocks or prefabricated components.
  • compositions of the invention are also excellent as adhesives or putties, as well as for producing electrical conductor insulations and for producing coatings on a wide variety of substrates, such as the adhesive-repellent finishing of paper and other coatings, such as those of metals, artificial and natural stones or non-woven textiles.
  • Example 2 The procedure described in Example 1 is repeated with the modification that 2 parts of an organosilicon compound are used as the organosilicon compound with amino groups bonded to silicon via carbon and siloxane oxygen atoms, which are obtained by reaction of the silane of the formula with a dimethylpolysiloxane each having an Si-bonded hydroxyl group in the terminal units, the amount of Si-bonded hydroxyl groups being 3.7%.
  • this organosilicon compound consisted of 0.6 mol percent Si-bonded C 2 H 5 O groups, 95.4% dimethylsiloxane units and 4 mol percent groupings of the formula
  • Example 1 The procedure described in Example 1 is repeated with the modification that no organosilicon compound with amino groups bonded to silicon via carbon and siloxane oxygen atoms is used.
  • Example 3 The procedure described in Example 3 is repeated with the modification that no organosilicon compound with amino groups bonded to silicon via carbon and siloxane oxygen atoms is used.
  • the masses prepared according to Examples 1 to 3 and also the masses prepared according to Comparative Experiment V 1 and V 2 can be stored in the absence of water and cure to give elastomers under the action of the water vapor contained in the air.
  • Example 3 The procedure described in Example 3 is repeated with the modification that 2 parts of the silane of the formula instead of the 2 parts of the organosilicon compound described in Example 1 with amino groups bonded to silicon via carbon and siloxane oxygen atoms.
  • the mass produced in this way can be stored in the absence of water. However, under the influence of the water vapor contained in the air, the mass only forms a skin on the surface and does not harden into an elastomer.
  • compositions according to the invention would cure even in the absence of a condensation catalyst, because the organosilicon compounds (3) used according to the invention, the organosilicon compounds used according to DE-OS 19 64 502 with an amino group bonded via carbon to silicon, essentially only by the additional Distinguish the presence of siloxane oxygen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Paper (AREA)

Description

  • Aus US-PS 36 78 003, W. Kaiser et al., assignor to Wacker-Chemie GmbH, ausgegeben: 18. Juli 1972, wobei diese US-PS der FR-PS 20 74 144 entspricht, sind bereits unter Ausschluß von Wasser lagerfähige, bei Zutritt von Wasser bei Raumtemperatur zu Elastomeren vernetzende Massen aus (1) kondensationsfähige Endgruppen aufweisendem Diorganopolysiloxan, (2) insgesamt mindestens drei über Stickstoff an Silicium gebundene Aminogruppen und/oder über Sauerstoff an Silicium gebundene Oximgruppen je Molekül aufweisender Siliciumverbindung und mindestens einem weiteren Bestandteil (3), der zur Verbesserung der Haftfestigkeit der aus diesen Massen auf Unterlagen erzeugten Elastomeren auf diesen Unterlagen dient und aus mindestens einer Organosiliciumverbindung mit mindestens einer über Kohlenstoff an Silicium gebundener Aminogruppe besteht, bekannt. Bei diesen Massen ist der Bestandteil (3) mindestens ein Silan, also eine monomere Siliciumverbindung, wobei dieses Silan zusätzlich zu mindestens einer über Kohlenstoff an Silicium gebundener Aminogruppe mindestens einen über Sauerstoff an Silicium gebundenen, einwertigen, gegebenenfalls durch eine Amino- oder Alkoxygruppe substituierten Kohlenwasserstoffrest enthält. Gegenüber diesen bekannten Massen haben die erfindungsgemäßen Massen insbesondere den Vorteil, daß sie auch in dickeren Schichten vollständig vernetzen. Die vollständige Vernetzung der erfindungsgemäßen Massen erfolgt in dickeren Schichten auch dann, wenn sie keine Kondensationskatalysatoren, wie Dibutylzinndilaurat, enthalten.
  • Gegenstand der Erfindung sind unter Ausschluß von Wasser lagerfähige, bei Zutritt von Wasser bei Raumtemperatur zu Elastomeren vernetzende Massen aus (1) kondensationsfähige Endgruppen aufweisendem Diorganopolysiloxan, (2) insgesamt mindestens drei über Stickstoff an Silicium gebundene Aminogruppen und/oder über Sauerstoff an Silicium gebundene Oximgruppen je Molekül aufweisender Siliciumverbindung und mindestens einer (3) Organosiliciumverbindung mit mindestens einer über Kohlenstoff an Silicium gebundenen Aminogruppe als mindestens einem weiteren Bestandteil, dadurch gekennzeichnet, daß mindestens ein Teil von Organosiliciumverbindung (3) mindestens ein Siloxansauerstoffatom enthält und in Mengen von 0,1 bis 20 Gewichtsprozent, bezogen auf das Gesamtgewicht der Masse, enthalten ist.
  • Die erfindungsgemäßen Massen können aus den gleichen, kondensationsfähige Endgruppen aufweisenden Diorganopolysiloxanen (1) bereitet werden, aus denen auch die bisher bekannten, unter Ausschluß von Wasser lagerfähigen, bei Zutritt von Wasser bei Raumtemperatur zu Elastomeren vernetzenden Massen aus kondensationsfähige Endgruppen aufweisendem Diorganopolysiloxan und insgesamt mindestens drei über Stickstoff an Silicium gebundene Aminogruppen und/oder über Sauerstoff an Silicium gebundene Oximgruppen je Molekül aufweisender Siliciumverbindung bereitet werden konnten. Die zur Herstellung solcher Massen meist verwendeten und auch im Rahmen der Erfindung bevorzugt eingesetzten kondensationsfähige Endgruppen aufweisenden Diorganopolysiloxane (1) können z.B. durch die allgemeine Formel
    Figure imgb0001
    wiedergegeben werden. In dieser Formel bedeutet R3 gleiche oder verschiedene, einwertige, gegebenenfalls substituierte und/oder polymere Kohlenwasserstoffreste und x ist eine ganze Zahl im Wert von mindestens 10. Innerhalb der bzw. entlang den Siloxanketten der vorstehend angegebenen Formel können, was bei 'derartigen Formeln üblicherweise nicht dargestellt wird, zusätzlich zu den Diorganosiloxaneinheiten (SiR30) noch andere Siloxaneinheiten vorliegen. Beispiele für solche anderen, meist lediglich als Verunreinigungen vorliegenden Siloxaneinheiten sind solche der Formeln R3SiO3/2, R3 3SiO1/2 und Si04,z, wobei R3 jeweils die oben dafür angegebene Bedeutung hat. Die Menge an solchen anderen Siloxaneinheiten als Diorganosiloxaneinheiten beträgt jedoch vorzugsweise höchstens 10 Molprozent, insbesondere höchstens 1 Molprozent, jeweils bezogen auf das Gewicht der Diorganopolysiloxane (1). Die Hydroxylgruppen in der oben angegebenen Formel der kondensationsfähige Endgruppen aufweisenden Diorganopolysiloxane können, falls erwünscht, vollständig oder teilweise durch andere kondensationsfähige Gruppen als Si-gebundene Hydroxylgruppen ersetzt sein. Beispiele für solche anderen kondensationsfähige Gruppen sind insbesondere über Stickstoff an Silicium gebundene Aminogruppen, wie sie weiter unten näher erläutert werden, über Sauerstoff an Silicium ge- bundene Oximgruppen, wie sie ebenfalls weiter unten näher erläutert werden, Alkoxygruppen mit 1 bis 5 Kohlenstoffatomen und Alkoxyalkylenoxygruppen mit 1 bis 5 Kohlenstoffatomen, wie der Rest der Formel CH30CHZCHzO-.
  • Beispiele für Kohlenwasserstoffreste R3 sind Alkylreste, wie der Methyl-, Äthyl-, n-Propyl- und Isopropylrest sowie Octadecylreste; Alkenylreste, wie der Vinyl- und Allylrest; cycloaliphatische Kohlenwasserstoffreste, wie der Cyclopentyl- und Cyclohexylrest sowie Methylcyclohexyl- und Cyclohexenylreste; Arylreste, wie der Phenylreste und Xenylreste; Aralkylreste, wie der Benzyl-, beta-Phenyläthyl- und der beta-Phenylpropylrest; sowie Alkarylreste, wie Tolylreste.
  • Als substituierte Kohlenwasserstoffreste R3 sind Halogenarylreste, wie Chlorphenyl- und Bromphenylreste; und Cyanalkylreste, wie der beta-Cyanäthylrest, bevorzugt.
  • Beispiele für substituierte polymere und unsubstituierte polymere Kohlenwasserstoffreste R3, wobei solche polymeren Kohlenwasserstoffreste auch als modifizierende Kohlenwasserstoffreste bezeichnet werden können, sind insbesondere solche, die bei einer Polymerisation von polymerisierbaren Verbindungen mittels freier Radikale in Gegenwart von Diorganopolysiloxanen der allgemeinen Formel
    Figure imgb0002
    worin x die oben dafür angegebene Bedeutung hat und R gleiche oder verschiedene, einwertige, gegebenenfalls substituierte Kohlenwasserstoffreste bedeutet, gebildet werden. Beispiele für polymerisierbare Verbindungen, die bei einer derartigen, in Gegenwart von Diorganopolysiloxan durchgeführten Polymerisation eingesetzt werden können, sind Vinylacetat, Äthylen, Styrol, Acrylsäure, Methacrylsäure, Acrylsäureester, wie n-Butylacrylat, Methacrylsäureester, wie n-Butylmethacrylat, Acrylnitril und Methacrylnitril, sowie Gemische aus mindestens zwei der genannten Monomeren, wie Gemische aus Vinylacetat und Äthylen.
  • Insbesondere wegen der leichten Zugänglichkeit sind vorzugsweise mindestens 50% der Anzahl der SiC-gebundenen Reste im Diorganopolysiloxan (1) und damit der Reste R3 in den oben angegebenen Formeln Methylreste.
  • Bei den kondensationsfähige Endgruppen aufweisenden Diorganopolysiloxanen (1) kann es sich um Homo- oder Mischpolymerisate handeln. Es können Gemische aus verschiedenen, kondensationsfähige Endgruppen aufweisenden Diorganopolysiloxanen verwendet werden.
  • Die Viskosität der kondensationsfähige Endgruppen aufweisenden Diorganopolysiloxane beträgt zweckmäßig 100 bis 500000 mPa.s bei 25°C.
  • Bei der Bereitung der erfindungsgemäßen Massen können als insgesamt mindestens drei über Stickstoff an Silicium gebundene Aminogruppen und/oder über Sauerstoff an Silicium gebundene Oximgruppen je Molekül aufweisende Siliciumverbindungen (2) ebenfalls die gleichen Siliciumverbindungen mit insgesamt mindestens drei über Stickstoff an Silicium gebundenen Aminogruppen und/oder über Sauerstoff an Silicium gebundenen Oximgruppen je Molekül verwendet werden, die auch bisher zur Herstellung von unter Ausschluß von Wasser lagerfähigen, bei Zutritt von Wasser bei Raumtemperatur zu Elastomeren vernetzenden Massen durch Vermischen einer derartigen Siliciumverbindung mit kondensationsfähige Endgruppen aufweisendem Diorganopolysiloxan verwendet werden konnten.
  • Beispiele für im Rahmen der Erfindung verwendbare Siliciumverbindungen (2) sind somit Aminosilane der allgemeinen Formel
    Figure imgb0003
    worin R die oben dafür angegebene Bedeutung hat, R1 Wasserstoff oder ein einwertiger, gegebenenfalls substituierter Kohlenwasserstoffrest und a 0 oder 1 ist, und deren höchstens 10 Siliciumatome je Molekül aufweisende Teilhydrolysate.
  • Die oben angegebenen Beispiele für substituierte und unsubstituierte Kohlenwasserstoffreste R gelten mit Ausnahme das Vinylrests im vollen Umfang auch für die substituierten und unsubstituierten Kohlenwasserstoffreste R1. Weitere Beispiele für Kohlenwasserstoffreste R1 sind der n-Butyl-, sec.-Butyl- und der tert.-Butylrest. Bevorzugt als Reste R1 sind der sec.-Butyl- und der Cyclohexylrest.
  • Weitere Beispiele für Siliciumverbindungen (2) sind Oximsilane der allgemeinen Formel
    Figure imgb0004
    worin R und a jeweils die oben dafür angegebene Bedeutung haben und X eine R'RC=Gruppe (R und R1 haben jeweils die oben dafür angegebene Bedeutung) oder R4C=Gruppe (R4 bedeutet einen zweiwertigen, gegebenenfalls substituierten Kohlenwasserstoffrest) ist, und deren höchstens 10 Siliciumatome je Molekül aufweisende Teilhydrolysate.
  • Schließlich sind Beispiele für Siliciumverbindungen (2) auch Silane der allgemeinen Formel
    Figure imgb0005
    worin R, R' und X jeweils die oben dafür angegebene Bedeutung haben und c durchschnittlich mindestens 0,1, vorzugsweise mindestens 0,5 und höchstens 2,9 ist, wobei die Summe aus a + c höchstens 3 ist.
  • Einzelne Beispiele für Siliciumverbindungen (2) sind Methyltris-(n-butylamino)-silan, Methyltris-(sec.-butylamino)-silan, Methyltris-(cyclohexylamino)-silan, Methyltris-(methyläthylketoxirn)-silan, Methylbis-(methyläthylketoxim)-cyclohexylaminosilan und Methyltris-(acetonoxim)-silan.
  • Es können Gemische aus verschiedenen Siliciumverbindungen (2), z.B. ein Gemisch aus 1 Mol Methyltris-(cyclohexylamino)-silan und 2 Mol Methyltris-(methyläthylketoxim)-silan, verwendet werden.
  • Die insgesamt mindestens drei über Stickstoff an Silicium gebundene Aminogruppen und/oder über Sauerstoff an Silicium gebundene Oximgruppen je Molekül aufweisende Siliciumverbindung (2) wird vorzugsweise in solchen Mengen verwendet, daß insgesamt mindestens drei über Stickstoff an Silicium gebundene Aminogruppen und/oder über Sauerstoff an Silicium gebundene Oximgruppen je kondensationsfähige Endgruppe im Diorganopolysiloxan (1) vorliegen. In der Praxis werden häufig 0,2 bis 15 Gewichtsprozent, meist 1 bis 8 Gewichsprozent, jeweils bezogen auf das Gesamtgewicht der jeweiligen Masse, an Siliciumverbindung (2) eingesetzt.
  • Als Organosiliciumverbindung (3) mit mindestens einer über Kohlenstoff an Silicium gebundener Aminogruppe und mindestens einem Siloxansauerstoffatom können z.B. auch Verbindungen der allgemeinen Formel
    Figure imgb0006
    worin R und a jeweils die oben dafür angegebene Bedeutung haben, eingesetzt werden. Insbesondere wegen der leichten Zugänglichkeit sind jedoch als Organosiliciumverbindungen (3) solche der allgemeinen Formel
    Figure imgb0007
    bevorzugt. In dieser Formel hat R die oben dafür angegebene Bedeutung, A bedeutet gleiche oder verschiedene Reste der Formel
    Figure imgb0008
    wobei R1 und a jeweils die oben dafür angegebene Bedeutung haben, Q Sauerstoff oder die Gruppierung -NR' und p eine ganze Zahl im Wert von 1 bis 10 ist, Y gleiche oder verschiedene Reste der Formel
    Figure imgb0009
    wobei A, R und a jeweils die oben angegebene Bedeutung haben, RI Wasserstoff oder gleiche oder verschiedene, gegebenenfalls durch mindestens ein Äthersauerstoffatom unterbrochene, einwertige Kohlenwasserstoffreste, b O, 1, 2 oder 3 und die Summe von a + b höchstens 3 ist, m 0 oder eine ganze Zahl im Wert von 1 bis 2 000 und n O oder eine ganze Zahl im Wert von 1 bis 1 000 bedeutet, mit der Maßgabe, daß mindestens ein Rest A je Organopolysiloxan (3) vorliegt.
  • Vorzugsweise ist R auch in der Organosiliciumverbindung (3) der Methylrest.
  • Bevorzugte Beispiele für Reste A sind solche der folgenden Formeln:
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012
    Figure imgb0013
    Figure imgb0014
  • Wie aus den vorstehenden Formeln ersichtlich, bedeutet R1 in der Gruppierung A vorzugsweise Wasserstoff. R1 muß aber nicht immer Wasserstoff sein, wie durch die Gruppierung
    Figure imgb0015
    veranschaulicht sei. Wie weiterhin aus den vorstehenden Formeln ersichtlich, können die Werte p in ein und derselben Gruppierung A und damit auch in verschiedenen Gruppierungen A gleich oder verschieden sein.
  • Grundsätzlich sind als Reste A solche der allgemeinen Formel
    Figure imgb0016
    worin Q die oben dafür angegebene Bedeutung hat, bevorzugt.
  • Vorzugsweise haben die Reste R2 1 bis 18 Kohlenstoffatome, wobei jedoch der Methyl- und der Äthylrest besonders bevorzugt sind. Das wichtigste Beispiel für einen durch ein Äthersauerstoffatom unterbrochenen Kohlenwasserstoffrest R2 ist der Methoxyäthylenrest.
  • Vorzugsweise ist m eine ganze Zahl im Wert von 3 bis 1 000. Weiterhin ist bevorzugt, daß in den Verbindungen der allgemeinen formel Y(OSiR2)m(OSiAR)nOY höchstens 100 Einheiten der Formel RzSiO je Gruppierung a vorliegen.
  • Beispiele für Organosiliciumverbindungen (3) der bevorzugten Art sind solche der allgemeinen Formel
    Figure imgb0017
    wobei R, A und n jeweils die oben dafür angegebene Bedeutung haben und m' eine ganze Zahl im Wert von mindestens 3 ist. Die Herstellung solcher Organopolysiloxane ist bekannt, z.B. aus FR-PS 11 84 097, veröffentlicht: 16. Juli 1959, Anmelder: Union Carbide Corporation, und FR-PS 12 97 045, veröffentlicht durch "Bulletin officiel de la Propriete industrielle" Nr. 25 von 1962, Anmelder: Union Carbide Corporation.
  • Weitere Beispiele für Organosiliciumverbindungen (3) der bevorzugten Art sind solche der allgemeinen Formel
    Figure imgb0018
    wobei R, R2, A, m' und n jeweils die oben angegebene Bedeutung haben. Solche Organopolysiloxane können z.B. durch Umsetzung von mindestens einer Verbindung der allgemeinen Formel
    Figure imgb0019
    wobei A, R und R2 jeweils die oben dafür angegebene Bedeutung haben, mit mindestens einem Organopolysiloxan der allgemeinen Formel
    Figure imgb0020
    wobei R und m' jeweils die oben dafür angegebene Bedeutung haben, gegebenenfalls in Gegenwart eines Kondensationskatalysators, wie Natriumhydroxyd oder Dibutylzinndilaurat, unter Abspaltung einer Verbindung der allgemeinen Formel
    Figure imgb0021
    hergestellt werden.
  • Beispiele für Organosiliciumverbindungen (3) der bevorzugten Art sind weiterhin solche der allgemeinen Formel
    Figure imgb0022
    worin R, R2, A, b, m' und n jeweils die oben dafür angegebene Bedeutung haben, mit der Maßgabe, daß mindestens eine Gruppierung A je Molekül vorliegt. Auch die Herstellung solcher Organopolysiloxane ist bekannt, z.B. aus DE-OS 23 39 761 , offengelegt: 21. Februar 1974, Anmelder: Stauffer Chemical Co., und FR-PS 12 94 235, veröffentlicht durch "Bulletin officiel de la Propriete industrielle Nr. 21 von 1962, Anmelder: Dow Corning Corporation.
  • Selbstverständlich können auch innerhalb der bzw. entlang den Siloxanketten der oben angegebenen Formeln für Organosiliciumverbindungen (3) zusätzlich zu den Diorganosiloxaneinheiten SiR20 und SiARO noch andere Siloxaneinheiten vorliegen. Beispiele für solche anderen Siloxaneinheiten sind solche der Formeln RSi03,2, R3SiO1/2 und Si0"2, wobei R jeweils die oben dafür angegebene Bedeutung hat. Die Mengen an solchen anderen Siloxaneinheiten als Diorganosiloxaneinheiten beträgt auch in den Organosiliciumverbindungen (3) vorzugsweiss höchstens 10 Molprozent.
  • Die Organosiliciumverbindungen (3) werden in Mengen von 0,1 bis 20 Gewichtsprozent, insbesondere 0,1 bis 5 Gewichtsprozent, jeweils bezogen auf das Gesamtgewicht der Masse, eingesetzt.
  • Zusätzlich zu kondensationsfähige Endgruppen aufweisendem Diorganopolysiloxan (1), insgesamt mindestens drei über Stickstoff an Silicium gebundene Aminogruppen und/oder über Sauerstoff an Silicium gebundene Oximgruppen je Molekül aufweisender Siliciumverbindung (2) und Organosiliciumverbindung (3) mit mindestens einer über Kohlenstoff an Silicium gebundener Aminogruppe und mindestens einem Siloxansauerstoffatom können auch bei der Bereitung der erfindungsgemäßen Massen Stoffe mitverwendet werden, die auch bisher bei der Herstellung von unter Ausschluß von Wasser lagerfähigen, bei Zutritt von Wasser bei Raumtemperatur zu Elastomeren vernetzenden Massen aus den Siliciumverbindungen (1) und (2) mitverwendet werden konnten. Beispiele für solche zusätzlich mitverwendbaren Stoffe sind verstärkene Füllstoffe, nicht verstärkende Füllstoffe, Pigmente, lösliche Farbstoffe, Riechstoffe, Organopolysiloxanharze, einschließlich solcher aus (CH3)3SiO1/2 und SiO4/2― Einheiten, organische Harze, wie Polyvinylchloridpulver, Korrosionsinhibitoren, Oxidationsinhibitoren, Hitzestabilisatoren, Lösungsmittel, weitere Mittel zur Verbesserung der Haftung der aus den Massen hergestellten Elastomeren auf den Unterlagen, auf denen die Elastomeren erzeugt wurden, wie die Verbindung der Formel CH3Si[O(CH2)2NH2]2(CH2)3O(CH2)2NH2, Kondensationskatalkysatoren, wie Zinnsalze oder Organozinnsalze von Carbonsäuren, z.B. Dibutylzinndilaurat oder aliphatische basische Stickstoffverbindungen, z.B. 3-Äthoxypropylamin-1 oder n-Hexylamin, Weichmacher, wie bei Raumtemperatur flüssige, durch Trimethylsiloxygruppen endblockierte Dimethylpolysiloxane oder Phosphorsäureester, wie Trioleylphosphat, schließlich Polyglykole, die veräthert und/oder verestert sein können, einschließlich Organosiloxan-Oxyalkylen-Blockmischpolymerisaten.
  • Beispiele für verstärkende Füllstoffe, also für Füllstoffe mit einer Oberfläche von mindestens 50 m2/g, sind insbesondere pyrogen erzeugte Siliciumdioxyde, unter Erhaltung der Struktur entwässerte Kieselsäure-Hydrogele und andere Arten von gefälltem Siliciumdioxyd mit einer Oberfläche von mindestens 50 ml/g. Falls erwünscht, können jedoch auch andere Füllstoffe mit einer Oberfläche von mindestens 50 m2/g anstelle der genannten Siliciumdioxydarten oder gemeinsam mit diesen Siliciumdioxydarten eingesetzt werden. Beispiele für solche anderen Füllstoffe sind Metalloxyde, wie Titandioxyd, Ferrioxyd, Aluminiumoxyd und Zinkoxyd, soweit sie jeweils eine Oberfläche von mindestens 50 m 2/g aufweisen.
  • Beispiele für nicht verstärkende Füllstoffe, also für Füllstoffe mit einer Oberfläche von weniger als 50 ml/g, sind bzw. können sein Quarzmehl, Diatomeenerde, Kieselkreide, Neuburger Kreide (englisch: Neuburg Chalk), Calciumsilikat, Zirkoniumsilikat, Calciumcarbonat, z.B. in Form von gemahlener Kreide, und calciniertes Aluminiumsilikat sowie pulverförmiges Natriumaluminiumsilikat mit Molekularsiebeigenschaften. Die verstärkenden und die nicht verstärkenden Füllstoffe können hydrophobiert sein, beispielsweise durch Behandlung mit Trimethyläthoxysilan oder Stearinsäure. Falls erwünscht, kann eine solche Behandlung z.B. in einer Kugelmühle durchgeführt worden sein.
  • Auch faserige Füllstoffe, wie Asbeste und Glasfasern, insbesondere solche mit einer durchschnittlichen Länge von höchstens 0,5 mm, und/oder organische Fasern können mitverwendet werden.
  • Es können Gemische aus verschiedenen verstärkenden und/oder nicht verstärkenden Füllstoffen verwendet werden.
  • Zur Bereitung der erfindungsgemäßen Massen können alle Bestandteile der jeweiligen Masse in beliebiger Reihenfolge miteinander vermischt werden. Dieses Vermischen erfolgt zweckmäßig bei Raumtemperatur und unter Ausschluß von Wasser. Falls erwünscht, kann dieses Vermischen aber auch bei höheren Temperaturen erfolgen, z.B. bei einer Temperatur im Bereich von 35°C bis 150°C.
  • Für die Vernetzung der erfindungsgemäßen Massen reicht der normale Wassergehalt der Luft aus. Die Vernetzung kann, falls erwünscht, jedoch auch bei höheren Temperaturen als Raumtemperatur oder niedrigeren Temperaturen als Raumtemperatur, z.B. bei 5° bis 10°C, und/oder mittels den normalen Wassergehalt der Luft übersteigenden Konzentrationen von Wasser durcheführt werden.
  • Die aus den erfindungsgemäßen Massen auf den verschiedensten Unterlagen, wie Glas, Porzellan, Steingut, Mörtel, Aluminium, Messing, rostfreiem Stahl, verzinktem Blech, Holz, Papier oder Kunstoffen, wie Polyvinylchlorid, Polyester, Polystyrol oder Polymethylmethacrylat, erzeugten Elastomeren haften auf diesen Unterlagen sehr gut auch ohne Mitverwendung der üblichen Grundiermittel, Die erfindungsgemäßen Massen eignen sich deshalb nicht nur zum Abdichten von Fugen, einschließlich senkrecht verlaufender Fugen, und ähnlichen Leerräumen mit lichten Weiten von z.B. 1 mm bis 50 mm, beispielsweise von Land-, Wasser- oder Luftfahrzeugen sowie von Gebäuden, einschließlich solcher aus Leichtbausteinen oder vorgefertigten Bauteilen. Die erfindungsgemäßen Massen eignen sich vielmehr auch auzgezeichnet als Klebstoffe oder Verkittungsmassen sowie zum Herstellen von Isolierungen elektrischer Leiter und zum Herstellen von Überzügen auf den veschiedensten Unterlagen, wie der klebstoffabweisenden Ausrüstung von Papier und anderen Beschichtungen, wie denjenigen von Metallen, Kunst- und Natursteinen, gewebten oder ungewebten Textilien.
  • In den folgenden Beispielen beziehen sich alle Angaben von Teilen und Prozentsätzen auf das Gewicht, soweit nichts anderes angegeben ist.
  • Beispiel 1
  • Ein Gemisch aus 30 Teilen eines durch Trimethylsiloxygruppen enblockierten Dimethylpolysiloxans mit einer Viskosität von 35 mPa.s bei 25°C, 22 Teilen eines in den endständigen Einheiten je eine Si-gebundene Hydroxylgruppe aufweisenden Dimethylpolysiloxans mit einer Viskosität von 20000 mPa.s bei 25°C und 36 Gewichtsteilen eines in den endständigen Einheiten je eine Si-gebundene Hydroxylgruppe aufweisenden Dimethylpolysiloxans mit einer Viskosität von 80 000 mPa.s bei 25°C wird mit 8,7 Teilen pyrogen in der Gasphase erzeugtem Siliciumdioxyd (englisch: fume silica) mit einer Oberfläche von 150 m2/g, 4,4 Teilen Methyltris-(cyclohexylamino)-silan und 2 Teilen einer Organosiliciumverbindung mit über Kohlenstoff an Silicium gebundenen Aminogruppen und Siloxansauerstoffatomen vermischt. Die letztgenannte Organosiliciumverbindung wurde durch Umsetzung des Silans der Formel
    Figure imgb0023
    mit einem in den endständigen Einheiten je eine Si-gebundene Hydroxylgruppe aufweisenden Dimethylpolysiloxan mit einer Viskosität von 80 mPa.s bei 25°C hergestellt. Sie bestand gemäß dem NMR-Spektrum aus 16,4 Molprozent Si-gebundenen CH30-Gruppen, 71 Molprozent Dimethylsiloxan-Einheiten und 12,6 Molprozent Gruppierungen der Formel
    Figure imgb0024
  • Beispiel 2
  • Die in Beispiel 1 beschriebene Arbeitsweise wird wiederholt mit der Abänderung, daß als Organosiliciumverbindung mit über Kohlenstoff an Silicium gebundenen Aminogruppen und Siloxansauerstoffatomen 2 Teile einer Organosilicumverbindung verwendet werden, die durch Umsetzung des Silans der Formel
    Figure imgb0025
    mit einem in den endständigen Einheiten je eine Si-gebunden Hydroxylgruppe aufweisenden Dimethylpolysiloxan, wobei die Menge der Si-gebundenen Hydroxylgruppen 3,7% betrug, hergestellt wurde. Diese Organosiliciumverbindung bestand gemäß dem NMR-Spektrum aus 0,6 Molprozent Si-gebundenen C2H5O-Gruppen, 95,4% Dimethylsiloxan-Einheiten und 4 Molprozent Gruppierungen der Formel
    Figure imgb0026
  • Beispiel 3
  • Ein Gemisch aus 32,7 Teilen des in den endständigen Einheiten je eine Si-gebundene Hydroxylgruppe aufweisenden Dimethylpolysiloxans mit einer Viskosität von 80 000 mPa.s bei 25°C, 16,3 Teilen des in den endständigen Einheiten je eine Si-gebundene Hydroxylgruppe aufweisenden Dimethylpolysiloxans mit einer Viskosität von 20 000 mPa.s und 19,6 Teilen des durch Trimethylsiloxygruppen endblockierten Dimethylpolysiloxans mit einer Viskosität von 35 mPa·s bei 25°C wird mit 19,6 Teilen calciniertem Aluminiumsilikat, 6,5 Teilen pyrogen in der Gasphase erzeugtem Siliciumdioxyd mit einer Oberfläche von 150 mZ/g, 1 Teil pulverförmigem Natriumaluminiumsilikat mit Molekularsiebeigenschaften, 4,2 Teilen Methyltris-(cyclohexylamino)-silan und 2 Teilen der in Beispiel 1 beschriebenen Organosiliciumverbindung mit über Kohlenstoff an Silicium gebundenen Aminogruppen und Siloxansauerstoffatomen vermischt.
  • Vergleichsversuch V1
  • Die in Beispiel 1 beschriebene Arbeitsweise wird wiederholt mit der Abänderung, daß keine Organosiliciumverbindung mit über Kohlenstoff an Silicium gebundenen Aminogruppen und Siloxansauerstoffatomen mitverwendet wird.
  • Vergleichsversuch V2
  • Die in Beispiel 3 beschriebene Arbeitsweise wird wiederholt mit der Abänderung, daß keine Organosiliciumverbindung mit über Kohlenstoff an Silicium gebundenen Aminogruppen und Siloxansauerstoffatomen mitverwendet wird.
  • Die gemäß Beispiel 1 bis 3 und auch die gemäß Vergleichsversuch V1 und V2 hergestellten Massen sind unter Ausschluß von Wasser lagerfähig und härten unter der Einwirkung des in der Luft enthaltenen Wasserdampfs zu Elastomeren.
  • Zur Bestimmung der Haftfestigkeit der Elastomeren auf Unterlagen werden je zwei Stücke der in der folgenden Tabelle angebenen Werkstoffe mittels der Massen miteinander verklebt und die so erhaltenen Verbundstoffe nach der methode ASA (American Standards Association) 116,1-1960 in einer Zerreißmaschine geprüft. Es werden folgende Ergebnisse erhalten:
    Figure imgb0027
  • Vergleichsversuch V3
  • Die in Beispiel 3 beschriebene Arbeitsweise wird wiederholt mit der Abänderung, daß 2 Teile des Silans der formel
    Figure imgb0028
    anstelle der 2 Teile der in Beispiel 1 beschriebenen Organosiliciumverbindung mit über Kohlenstoff an Silicium gebundenen Aminogruppen und Siloxansauerstoffatomen eingesetzt werden. Die so hergestellte Masse ist unter Ausschluß von Wasser lagerfähig. Unter der Einwirkung des in der Luft enthaltenem Wasserdampfs bildet die Masse jedoch nur eine Haut an der Oberfläche und härtet nicht zu einem Elastomeren. Es war nicht zu erwarten, daß die erfindungsgemäßen Massen auch Abwesenheit von Kondensationskatalysator durchhärten würden, weil sich die erfindungsgemäß verwendeten Organosiliciumverbindungen (3) ven den gemäß DE-OS 19 64 502 verwendeten Organosiliciumverbindungen mit über Kohlenstoff an Silicium gebundener Aminogruppe im wesentlichen nur durch die zusätzliche Anwesenheit von Siloxansauerstoff unterscheiden.

Claims (3)

1. Unter Ausschluß von Wasser lagerfähige, bei Zutritt von Wasser bei Raumtemperatur zu Elastomeren vernetzende Massen aus (1) kondensationsfähige Endgruppen aufweisendem Diorganopolysiloxan, (2) insgesamt mindestens drei über Stickstoff an Silicium gebundene Aminogruppen und/oder über Sauerstoff an Silicium gebundene Oximgruppen je Molekül aufweisender Siliciumverbindung und mindestens einer (3) Organosiliciumverbindung mit mindestens einer über Kohlenstoff an Silicium gebundenen Aminogruppe als mindestens einem weiteren Bestandteil, dadurch gekennzeichnet, daß mindestens ein Teil von Organosiliciumverbindung (3) mindestens ein Siloxansauerstoffatom enthält und in Mengen von 0,1 bis 20 Gewichtsprozent, bezogen auf das Gesamtgewicht der Masse, enthalten ist.
2. Massen nach Anspruch 1, dadurch gekennzeichnet, daß sie als Organosiliciumverbindung (3) mindestens ein Organopolysiloxan der allgemeinen Formel
Figure imgb0029
enthalten, worin R gleiche oder verschiedene, einwertige, gegebenenfalls substituierte Kohlenwasserstoffreste, A gleiche oder verschiedene Reste der Formel
Figure imgb0030
wobei R1 Wasserstoff oder ein einwertiger, gegebenenfalls substituierter Kohlenwasserstoffrest, Q Sauerstoff oder die Gruppierung -NR', a 0 oder 1 und p eine ganze Zahl im Wert von 1 bis 10 ist, Y gleiche oder verschiedene Reste der Formel
Figure imgb0031
wobei A, R und a jeweils die vorstehend dafür angegebene Bedeutung haben, R2 Wasserstoff oder gleiche oder verschiedene, gegebenenfalls durch mindestens ein Äthersauerstoffatom unterbrochene, einwertige Kohlenwasserstoffreste, b 0, 1, 2 oder 3 und die Summe von a + b höchstens 3 ist, m 0 oder eine ganze Zahl im Wert von 1 bis 2 000 und n 0 oder eine ganze Zahl im Wert von 1 bis 1 000 bedeutet, mit der Maßgabe, daß mindestens ein Rest A je Organopolysiloxan (3) vorliegt.
3. Massen nach Anspruch 2 dadurch gekennzeichnet, daß A gleiche oder verschiedene Reste der Formel
Figure imgb0032
bedeutet, worin Q die oben dafür angegebene Bedeutung hat.
EP78100691A 1977-08-18 1978-08-17 Zu Elastomeren vernetzende Massen auf Basis von Polysiloxanen Expired EP0000929B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2737303A DE2737303C3 (de) 1977-08-18 1977-08-18 Unter Ausschluß von Wasser lagerfähige, bei Zutritt von Wasser bei Raumtemperatur zu Elastomeren vernetzende Formmassen
DE2737303 1977-08-18

Publications (2)

Publication Number Publication Date
EP0000929A1 EP0000929A1 (de) 1979-03-07
EP0000929B1 true EP0000929B1 (de) 1981-03-18

Family

ID=6016749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100691A Expired EP0000929B1 (de) 1977-08-18 1978-08-17 Zu Elastomeren vernetzende Massen auf Basis von Polysiloxanen

Country Status (11)

Country Link
US (1) US4191817A (de)
EP (1) EP0000929B1 (de)
JP (1) JPS5443261A (de)
AT (1) AT383608B (de)
AU (1) AU521250B2 (de)
BR (1) BR7805201A (de)
CA (1) CA1124429A (de)
DE (2) DE2737303C3 (de)
IT (1) IT1106889B (de)
NO (1) NO149697C (de)
SE (1) SE443989B (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267297A (en) * 1979-10-19 1981-05-12 Toray Silicone Company, Ltd. Room temperature curable silicone resins
US4420578A (en) * 1980-11-10 1983-12-13 Diversey Corporation Surface treatment of glass containers
DE3133564A1 (de) * 1981-08-25 1983-03-10 Wacker-Chemie GmbH, 8000 München "silikonkautschuk mit verzoegerter hautbildung"
DE3212008A1 (de) * 1982-03-31 1983-10-06 Wacker Chemie Gmbh Unter ausschluss von wasser lagerfaehige, bei zutritt von wasser bei raumtemperatur zu elastomeren vernetzende massen
DE3303649A1 (de) * 1983-02-03 1984-08-09 Wacker-Chemie GmbH, 8000 München Unter ausschluss von wasser lagerfaehige, bei zutritt von wasser bei raumtemperatur zu elastomeren vernetzende massen
US4551516A (en) * 1983-05-17 1985-11-05 Toray Industries, Inc. Coating composition and the use thereof
DE3323911A1 (de) * 1983-07-02 1985-01-03 Bayer Ag, 5090 Leverkusen Bei raumtemperatur zu elastomeren haertende polyorganosiloxanmassen
US4530882A (en) * 1984-03-02 1985-07-23 Dow Corning Corporation Coating method and silicone composition for PSA release coating
US4525566A (en) * 1984-03-02 1985-06-25 Dow Corning Corporation Coating method and silicone composition for PSA release coating
EP0234720B1 (de) * 1986-01-21 1991-09-18 General Electric Company Polysiloxankautschukzusammensetzungen
JPS62276090A (ja) * 1986-05-22 1987-11-30 信越化学工業株式会社 合成繊維用処理剤
JPH0830181B2 (ja) * 1986-08-25 1996-03-27 東レ・ダウコ−ニング・シリコ−ン株式会社 ガスケツト・パツキング材組成物
US4814230A (en) * 1988-01-28 1989-03-21 Vockler Larry D Silicone-coated opaque glass
DE3808200A1 (de) * 1988-03-11 1989-09-21 Wacker Chemie Gmbh Bei raumtemperatur zu anstrichvertraeglichen bis ueberstreichbaren elastomeren vernetzende organopolysiloxanmassen
US5088179A (en) * 1990-10-12 1992-02-18 Jmk International, Inc. Method of forming a microwaveable container
DE4137698A1 (de) * 1991-11-15 1993-05-19 Wacker Chemie Gmbh Zinnverbindung enthaltende massen als eine der beiden komponenten von bei raumtemperatur zu organopolysiloxanelastomeren vernetzenden zweikomponentensystemen
US5302671A (en) * 1993-06-11 1994-04-12 Dow Corning Corporation Moisture-curable compositions containing aminoalkoxy-functional silicone
US5352491A (en) * 1993-06-11 1994-10-04 Dow Corning Corporation Method for coating using molten organosiloxane compositions
FR2724661B1 (fr) * 1994-09-16 1997-10-24 Rhone Poulenc Chimie Dispersion silicone aqueuse, reticulable en un elastomere adherent, selon un mecanisme reactionnel de condensation
US6471820B1 (en) 1995-01-05 2002-10-29 3M Innovative Properties Moisture-curable silicone composition
KR100790025B1 (ko) * 2000-04-04 2007-12-31 엔엑스피 비 브이 디지털-아날로그 변환기
DE10156918A1 (de) * 2001-11-21 2003-06-05 Ge Bayer Silicones Gmbh & Co Anstrichverträgliche bis überstreichbare Polyorganosiloxan-Zusammensetzungen
GB0302840D0 (en) * 2003-02-07 2003-03-12 Dow Corning Process for making silicone emulsions
FR2887552B1 (fr) * 2005-06-24 2007-10-12 Rhodia Chimie Sa Utilisation d'une composition organopolysiloxanique vulcanisable des la temperature ambiante pour former un elastomere auto adherent
KR102036627B1 (ko) 2019-04-24 2019-10-25 주식회사 청호엔텍 플랩형 파이프 스컴 스키머

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3519600A (en) * 1966-02-03 1970-07-07 Stauffer Wacker Silicone Corp Room temperature curing organopolysiloxane elastomers
GB1171848A (en) * 1966-10-20 1969-11-26 Gen Electric Room Temperature Vulcanizing Silicone Compositions
DE1910014C3 (de) * 1969-02-27 1973-11-15 Wacker-Chemie Gmbh, 8000 Muenchen Unter Ausschluß von Wasser lager fähige, nach Zutritt desselben bei Raumtemperatur zu Elastomeren hartende Organopolysiloxanformmassen
BE754740A (fr) * 1969-08-13 1971-02-12 Wacker Chemie Gmbh Procede de preparation de matieres a base d'organopolysiloxanes
DE1964502C3 (de) * 1969-12-23 1973-11-22 Wacker Chemie Gmbh Verbesserung der Haftfestigkeit von zu Elastomerer ?rtbaren Organopolysiloxanmassen
US3758441A (en) * 1970-08-13 1973-09-11 Wacker Chemie Gmbh Room temperature vulcanizable silicone rubber stocks
GB1394206A (en) * 1971-09-13 1975-05-14 Gen Electric Self-bonding two-package room temperature vulcanizable silicone rubber compositions
JPS5238862B2 (de) * 1974-04-22 1977-10-01
DE2423531C3 (de) * 1974-05-15 1979-03-08 Wacker-Chemie Gmbh, 8000 Muenchen Verfahren zur Herstellung von zu Elastomeren härtbaren Organopolysiloxanmassen
DE2615078C2 (de) * 1976-04-07 1983-01-27 Wacker-Chemie GmbH, 8000 München Verfahren zur Behandlung von organischen Fasern und dabei verwendete Organopolysiloxanzusammensetzungen

Also Published As

Publication number Publication date
SE7808733L (sv) 1979-02-19
NO149697C (no) 1984-06-06
DE2737303B2 (de) 1979-10-18
BR7805201A (pt) 1979-05-02
NO782794L (no) 1979-02-20
IT7850743A0 (it) 1978-08-16
DE2860547D1 (en) 1981-04-16
DE2737303C3 (de) 1980-07-17
JPS5525228B2 (de) 1980-07-04
EP0000929A1 (de) 1979-03-07
SE443989B (sv) 1986-03-17
AT383608B (de) 1987-07-27
CA1124429A (en) 1982-05-25
AU3869278A (en) 1980-02-14
IT1106889B (it) 1985-11-18
AU521250B2 (en) 1982-03-25
NO149697B (no) 1984-02-27
DE2737303A1 (de) 1979-03-01
US4191817A (en) 1980-03-04
JPS5443261A (en) 1979-04-05
ATA595678A (de) 1986-12-15

Similar Documents

Publication Publication Date Title
EP0000929B1 (de) Zu Elastomeren vernetzende Massen auf Basis von Polysiloxanen
EP0327847B1 (de) Stabilisieren von unter Abspaltung von Alkoholen zu Elastomeren vernetzaren Organopolysiloxanmassen.
EP1580224B1 (de) Vernetzbare Massen auf der Basis von Organosiliciumverbindungen
DE1964502B2 (de) Verbesserung der haftfestigkeit von zu elastomeren haertbare organopolysiloxanmassen
EP0242798A2 (de) Wässerige Emulsionen von Organopolysiloxan und Verwendung solcher Emulsionen
EP0040750B1 (de) Zu flammabweisenden Elastomeren, gegebenenfalls nach Zusatz von Vernetzungsmittel, vernetzbare Massen auf Grundlage von Organopolysiloxan
CH631729A5 (de) Zu elastomeren vernetzende masse.
EP1000121A1 (de) Unter abspaltung von alkoholen zu elastomeren vernetzbare organopolysiloxanmassen
EP1006146A1 (de) Unter Abspaltung von Alkoholen zu Elastomeren vernetzbare Organopolysiloxanmassen
EP0018634B1 (de) Zu Elastomeren vernetzbare Massen
EP0333021B1 (de) Bei Raumtemperatur zu anstrichverträglichen bis überstreichbaren Elastomeren vernetzende Organopolysiloxanmassen
EP1042400B1 (de) Unter abspaltung von alkoholen zu elastomeren vernetzbare organopolysiloxanmassen
DE1255924B (de) Bei Raumtemperatur unter Zutritt von Wasser zu Elastomeren haertende Organopolysiloxanformmassen
DE1941285A1 (de) Verfahren zur Herstellung von bei Raumtemperatur zu Elastomeren haertenden Organopolysiloxanmassen
DE3624206C1 (de) Unter Ausschluss von Wasser lagerfaehige,bei Zutritt von Wasser bei Raumtemperatur zu Elastomeren vernetzende Massen
EP0073446B1 (de) Silikonkautschuk mit verzögerter Hautbildung
EP0316669B1 (de) Unter Ausschluss von Wasser lagerfähige, bei Zutritt von Wasser bei Raumtemperatur zu Elastomeren vernetzende Massen
DE2911301C2 (de) Bei Raumtemperatur zu Elastomeren vernetzbare Formmassen
EP0005786B1 (de) Zu Elastomeren vernetzbare Massen
DE838830C (de) Verfahren zur Herstellung gemischter Polysiloxane
EP0066286B1 (de) Zu Elastomeren vernetzbare Massen
DE2007002A1 (de) Verfahren zur Herstellung von bei Raumtemperatur zu Elastomeren hartenden Organopolysiloxanmassen
DE2653498A1 (de) Zu elastomeren vernetzende massen
EP0814120A1 (de) Unter Abspaltung von Alkoholen zu Elastomeren vernetzbare Organopolysiloxanmassen
DE2112522B2 (de) Unter ausschluss von wasser lagerfaehige, bei zutritt von wasser bei raumtemperatur zu elastomeren haertenden organopolysiloxanformmassen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed
AK Designated contracting states

Designated state(s): BE CH DE FR GB NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB NL

REF Corresponds to:

Ref document number: 2860547

Country of ref document: DE

Date of ref document: 19810416

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960715

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960716

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960719

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960724

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960726

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960905

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

BERE Be: lapsed

Owner name: WACKER-CHEMIE G.M.B.H.

Effective date: 19970831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970817

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT