EP0000701B1 - Verfahren zur Entfernung von Siliciumdioxidrückständen von einer Halbleiteroberfläche - Google Patents

Verfahren zur Entfernung von Siliciumdioxidrückständen von einer Halbleiteroberfläche Download PDF

Info

Publication number
EP0000701B1
EP0000701B1 EP78100336A EP78100336A EP0000701B1 EP 0000701 B1 EP0000701 B1 EP 0000701B1 EP 78100336 A EP78100336 A EP 78100336A EP 78100336 A EP78100336 A EP 78100336A EP 0000701 B1 EP0000701 B1 EP 0000701B1
Authority
EP
European Patent Office
Prior art keywords
silicon dioxide
semiconductor surface
phosphoric acid
aqueous
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100336A
Other languages
English (en)
French (fr)
Other versions
EP0000701A3 (en
EP0000701A2 (de
Inventor
Jagtar Singh Basi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of EP0000701A2 publication Critical patent/EP0000701A2/de
Publication of EP0000701A3 publication Critical patent/EP0000701A3/xx
Application granted granted Critical
Publication of EP0000701B1 publication Critical patent/EP0000701B1/de
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts

Definitions

  • the invention relates to a method for removing silicon dioxide residues from a semiconductor surface after polishing with a silicon dioxide-containing polishing agent.
  • polishing slurry Polishing with silica Ahren an example of a typical Polierver f.
  • a polishing slurry containing an abrasive colloidal silicon dioxide, sodium dichloroisocyanurate as an oxidizing agent and sodium carbonate as a basic component are used.
  • the pH of the polishing slurry is below 10. After polishing, it is necessary to clean the polished surface to remove the polishing slurry and other surface contaminants with a minimum of chemical or mechanical surface damage.
  • the object of the invention is to provide an environmentally friendly, safe and effective method for removing silicon dioxide polishing materials while maintaining a clean, hydrophilic, undamaged semiconductor surface.
  • the object of the invention is achieved by a method of the type mentioned at the outset, which is characterized in that the semiconductor surface is treated with an aqueous phosphoric acid solution and then rinsed with water and an aqueous ammonium hydroxide solution.
  • the semiconductor surface is additionally treated with an aqueous sulfuric acid solution and then rinsed.
  • the aqueous silica-based slurry used to polish semiconductor surfaces contains colloidal silica as the abrasive material, an oxidizing agent such as sodium dichloroisocyanurate and a base such as sodium carbonate.
  • the surface After polishing the semiconductor surface with the silicon dioxide slurry, the surface is contaminated with a residue of colloidal silicon dioxide, amorphous silicon dioxide, sodium carbonate and residues of the polishing cloth. Rinsing with water alone is not enough to remove the impurities.
  • the hydrophobic nature of the surface is converted to a hydrophilic one, which is probably due to the hydrolysis of the siloxane groups on the silicon surface taking place in an acid medium.
  • Surface hydrolysis and dissolution are accelerated by a sulfuric acid treatment as shown in Example 1.
  • the method allows the semiconductors to be stored prior to cleaning by placing them in a dilute aqueous solution of phosphoric acid without water stains or fog on the semiconductor surface after cleaning.
  • Suitable phosphoric acid concentrations in Water is in the range of 10 to 50% by weight, preferably in the range of 20 to 30% by weight.
  • the semiconductor substrates are removed from the polishing machine without being allowed to dry. They can then be cleaned immediately or stored in a phosphoric acid cleaning solution for a prolonged period (for example 24 hours) and then easily and effectively cleaned by the process according to the invention to obtain a haze-free surface.
  • a phosphoric acid cleaning solution for about 5 to 10 minutes at ambient temperatures (20 to 30 ° C) and then rinsed in water to remove the loosely adhering particles and the phosphoric acid solution.
  • the substrates are then preferably treated with a dilute (20 to 30% by weight) aqueous sulfuric acid solution, which brings about the dissolution of any silicon phosphates and favors the surface hydrolysis.
  • the sulfuric acid solution can be added to the phosphoric acid solution.
  • the water-rinsed substrates are rinsed (immersed or sprayed) with dilute aqueous ammonium hydroxide solution which is about 3 to 5% by weight.
  • a complexing agent can also be added to the ammonium hydroxide solution to promote ion removal.
  • the semiconductor body is then rinsed in water and cleaned by brushing in water.
  • the concentrations are in parts by weight, unless stated otherwise.
  • Freshly polished and rinsed silicon wafers are placed in an aqueous 21% phosphoric acid solution for 10 minutes and then removed and rinsed in running deionized water for two minutes.
  • the wafers are placed in 20% by weight aqueous sulfuric acid for five minutes, rinsed with deionized water for two minutes, and then rinsed with a 3% aqueous ammonium hydroxide solution for 30 seconds. They are then sprayed with deionized water and spun dry in a hot nitrogen atmosphere. This process is carried out in an automatic rinsing-drying device.
  • the wafers are cleaned by brushing or with a felt with deionized water. Examination of the surface under a bright lamp showed that there was no silica or other particulate contaminants.
  • the above-mentioned method can be modified in such a way that two steps are eliminated when using an aqueous solution containing 21% by weight phosphoric acid and 20% by weight sulfuric acid in one step. This eliminates the need for separate use of sulfuric acid and the second water rinse.
  • Silicon wafers that have been polished with a silicon dioxide polishing slurry and then rinsed with water are removed from the polishing machine. removed and placed in a 20% by weight aqueous phosphoric acid solution at room temperature for five minutes without prior drying.
  • the wafers are removed from the solution and rinsed with deionized water for three minutes and then sprayed with an aqueous 3% by weight ammonium hydroxide solution and then with deionized water in a sprayer for 30 seconds and then spun in a hot nitrogen atmosphere.
  • the entire rinsing process is carried out in an automatic spray drying machine and takes approximately 10 minutes.
  • the wafers are hydrophilic (i.e. water wets the surface). The wafer surfaces are clean and without fog.
  • An emission spectrographic analysis on the cleaned wafers shows negligible amounts of Al, Ca, Cr, Cu, Fe, Mg, Na and Ti.
  • the described method leads to polished semiconductor surfaces which are clean, hydrophilic and without fog.
  • the surfaces are not degraded by the cleaning process and only environmentally friendly and hygienic materials are used in the process.
  • the semiconductor materials can be stored in dilute phosphoric acid solution for up to 24 hours before cleaning, without the surface being damaged in any way. Only a light brush cleaning is required to remove any particles from the cleaned surfaces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Weting (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Entfemung von Siliciumdioxidrückständen von einer Halbleiteroberfläche nach dem Polieren mit einem siliciumdioxidhaltigen Poliermittel.
  • Im Zuge der Mikrominiaturisierung elektronischer Schaltkreise hat das Bedürfnis nach glatten und reinen Halbleiteroberflächen ohne Beschädigungen erhebliche Bedeutung erlangt. Glatte polierte Oberflächen werden durch Anwendung eines Polierschlamms erhalten. Das Polieren mit Siliciumdioxid ist ein Beispiel für ein typisches Polierverfahren. Bei diesem Verfahren wird ein Polierschlamm mit einem Gehalt an einem abtragenden kolloidalen Siliciumdioxid, Natriumdichlorisocyanurat als Oxidationsmittel un Natriumcarbonat als basischem Bestandteil verwendet. Der pH-Wert des Polierschlamms liegt unterhalb 10. Nach dem Polieren ist es erforderlich, die polierte Oberfläche zu reinigen, um den Polierschlamm und andere Oberflächenverunreinigungen bei einem Minimum an chemischer oder mechanischer Oberflächenbeschädigung zu entfernen.
  • Nach der Beendigung des Polierverfahrens mit Siliciumdioxid, sind folgende Materialien von der Halbleiteroberfläche zu entfernen, um eine reine Oberfläche zu erhalten:
    • 1. kolloidales Siliciumdioxid;
    • 2. Natriumdichlorisocyanurat und dessen Reaktionsprodukte mit Natriumcarbonat;
    • 3. Natriumcarbonat;
    • 4. amorphes Siliciumdioxid;
    • 5. andere metallische Verunreinigungen, die sich aus den Komponenten des Polierschlamms auf der Halbleiteroberfläche abgeschieden haben.
  • Bisher wurden verschiedene mechanische und chemische Verfahren angewendet, um die mit Siliciumdioxid oder einem metalloxidhal= tigen Schlamm polierten Wafer zu reinigen. Diese Verfahren verursachen mechanische Beschädigungen, beachtliche Änderungen der Oberflächencharakteristika oder werden unter Anwendung von Chemikalien durchgeführt, die nicht unweltfreundlich und/oder aus hygienischen Gründen nicht brauchbar sind.
  • In dem in der deutschen Offenlegungsschrift 27 06 519 beschriebenen Verfahren wird zur Reinigung der Halbleiteroberfläche eine Behandlung mit einem Oxidationsmittel, beispielsweise NaCIO, gefolgt von einer Spülung mit Ammoniumhydroxid durchgeführt. In einem anderen Verfahren werden quaternäre Ammoniumsalze angewendet, um reine hydro-, phobe Halbleiteroberflächen ohne Beschädi-' gung der Oberfläche zu erhalten.
  • Aufgabe der Erfindung ist die Bereitstetiung eines umweltfreundlichen, sicheren und effektiven Verfahrens zur Entfernung von Siliciumdioxid-Poliermaterialien unter Erhalt einer reinen, hydrophilen, nicht beschädigten Halbleiteroberfläche.
  • Die Aufgabe der Erfindung wird gelöst durch ein Verfahren der eingangs genannten Art, das dadurch gekennzeichnet ist, daß die Halbleiteroberfläche mit einer wässrigen Phosphorsäurelösung behandelt und dann mit Wasser und einer wässrigen Ammoniumhydroxidlösung gespült wird.
  • In einer vorteilhaften Ausgestaltung der Erfindung wird die Halbleiteroberfläche nach der Behandlung mit Phosphorsäure zusätzlich mit einer wässrigen Schwefelsäurelösung behandelt und dann gespült.
  • Die Erfindung wird anhand der nachtolgenden speziellen Beschreibung und der Ausführungsbeispiele näher erläutert.
  • Der wässrige Schlamm auf Siliciumdioxidbasis, der zum Polieren von Halbleiteroberflächen verwendet wird, enthält kolloidales Siliciumdioxid als abtragendes Material, ein Oxidationsmittel wie Natriumdichlorisocyanurat und eines Base wie Natriumcarbonat.
  • Nach dem Polieren der Halbleiteroberfläche mit dem Siliciumdioxidschlamm ist die Oberfläche mit einem Rückstand aus kolloidalem Siliciumdioxid, amorphem Siliciumdioxid, Natriumcarbonat und Rückständen des Poliertuchs verunreinigt. Eine Spülung mit Wasser allein genügt nicht zur Entfernung der Verunreinigungen.
  • Es ist bekannt, daß Siliciumdioxid mit Phosphorsäure bei hohen Temperaturen (über 200°C) reagiert unter Ausbildung verschiedener Siliciumphosphate je nach den Reaktionsbedingungen (s. H. R. Levi et al; Z. Krist 92, 191 1935). Es ist auch bekannt, daß festes Silicagel mit verdünnter Phosphorsäure reagiert unter Ausbildung eines Oberflächenfilms, welcher die Löslichkeit des Siliciumdioxids sowohl in Wasser wie auch in Phosphorsäure verzögert (s. B. M. Mitsynk, Zh. Neorg Khim, 17 903 (1972)). Überraschend im Hinblick auf diese Veröffentlichungen wurde nunmehr gefunden, daß kolloidales Siliciumdioxid anders als festes Siliciumdioxid sich schnell in verdünnter Phosphorsäure bei Zimmertemperatur löst, so daß die Wafer leicht und ohne Beschädigung gereinigt werden können. Die hydrophobe Natur der Oberfläche wird in eine hydrophile umgewandelt, was wahrscheinlich auf die in saurem Medium stattfindende Hydrolyse der Siloxangruppen an der Siliciumoberfläche zurückzuführen ist. Die Hydrolyse an der Oberfläche und das Auflösen werden durch eine Schwefelsäurebehandlung, wie in Beispiel 1 dargestellt ist, beschleunigt. Das Verfahren gestattet die Aufbewahrung der Halbleiter vor der Reinigung, indem sie in eine verdünnte wässrige Phosphorsäurelösung gebracht werden, ohne daß Wasserflecken oder Schleier auf der Halbleiteroberfläche im Anschluß an die Reinigung gebildet werden.
  • Geeignete Phosphorsäurekonzentrationen in Wasser liegen im Bereich von 10 bis 50 Gew.%, vorzugsweise im Bereich von 20 bis 30 Gew.% Nachdem der Poliervorgang beendigt ist, werden die Halbleitersubstrate aus der Poliermaschine entfernt, ohne daß man sie trocknen läßt. Sie können dann unmittelbar gereinigt oder in einer Phosphorsäurereinigungslösung für längere Zeit (beispielsweise 24 Stunden) aufbewahrt und danach leicht und wirkungsvoll nach dem erfindungsgemäßen Verfahren gereinigt werden unter Erhalt einer schleierfreien Oberfläche. Zur Reinigung der Substrate werden diese zuerst besprüht oder etwa 5 bis 10 Minuten lang bei Umgebungstemperaturen (20 bis 30°C) in eine wässrige Phosphorsäurelösung getaucht und dann in Wasser gespült, um die lose anhaftenden Teilchen und die Phosphorsäurelösung zu entfernen. Danach werden die Substrate vorzugsweise mit einer verdünnten (20 bis 30 gew.%igen) wässrigen Schwefelsäurelösung behandelt, welche die Auflösung irgendwelcher Siliciumphosphate bewirkt und die Oberflächenhydrolyse begünstigt. Alternativ hierzu kann die Schwefelsäurelösung zu der Phosphorsäurelösung zugegeben werden. Für den Fall, daß Schwermetallverunreinigungen vorhanden sind, werden die mit Wasser gespülten Substrate mit verdünnter wässriger Ammoniumhydroxidlösung, die etwa 3 bis 5 gew.%gig ist, gespült (getaucht oder besprüht). Ein Komplexbildner kann auch zu der Ammoniumhydroxidlösung zugegeben werden, um die Entfernung der Ionen zu begünstigen. Der Halbleiterkörper wird dann in Wasser gespült und durch Bürsten in Wasser gereinigt.
  • In den nachfolgenden Ausführungsbeispielen sind die Konzentrationen, wenn nicht anders angegeben, in Gewichtsteilen.
  • Beispiel 1
  • Frisch polierte und gespülte Siliciumwafer werden 10 Minuten lang in eine wässrige, 21 %ige Phosphorsäurelösung gegeben und dann entfernt und zwei Minuten lang in fliessendem deionisiertem Wasser gespült. Die Wafer werden fünf Minuten lang in 20 gew.%ige wässrige Schwefelsäure gegeben, zwei Minuten lang mit deionisiertem Wasser und anschließend 30 Sekunden lang mit einer 3 %igen wässrigen Ammoniumhydroxidlösung gespült. Sie werden dann mit deionisiertem Wasser besprüht und in heißer Stickstoffatmosphäre trockengeschleudert. Dieser Vorgang wird in einer automatischen Spül-Trocknungsvorrichtung durchgeführt. Die Wafer werden durch Bürsten oder mit einem Filz mit deionisiertem Wasser gereinigt. Die Prüfung der Oberfläche unter einer hellen Lampe ergab, daß kein Siliciumdioxid oder andere teilchenförmige Verunreinigungen vorhanden waren.
  • Das zuvor angegebene Verfahren kann dahingehend modifiziert werden, daß zwei Schritte eliminiert werden bei Anwendung einer wässrigen Lösung mit einem Gehalt an 21 Gew.% Phosphorsäure und 20 Gew.% Schwefelsäure in einem Schritt. Dies macht die separate Anwendung der Schwefelsäure und die zweite Wasserspülung überflüssig.
  • Beispiel 2
  • Siliciumwafer, die mit einem Siliciumdioxidpolierschlamm poliert und dann mit Wasser gespült wurden, werden von der Poliermaschine. entfernt und ohne vorherige Trocknung fünf Minuten lang bei Zimmertemperatur in eine 20 gew.%ige wässrige Phosphorsäurelösung gegeben. Die Wafer werden aus der Lösung entfernt und drei Minuten lang mit deionisiertem Wasser gespült und dann 30 Sekunden lang in einer Sprühvorrichtung mit einer wässrigen 3 gew.%igen Ammoniumhydroxidlösung und anschließend mit deionisiertem Wasser besprüht und dann in heißer Stickstoffatmosphäre durch Schleudern getrocknet. Der gesamte Spülprozeß wird in einem Sprühtrocknungsautomaten durchgeführt und dauert ungefähr 10 Minuten. Die Wafer sind nach dem Reinigungsprozeß hydrophil (d.h. Wasser benetzt die Oberfläche). Die Waferoberflächen sind rein und ohne Schleier. Eine emissionsspektrographische Analyse an den gereinigten Wafern zeigt vernachlässigbare Mengen von Al, Ca, Cr, Cu, Fe, Mg, Na und Ti.
  • Der zuvor angegebene Reinigungsprozeß wurde an Wafern wiederholt, welche 24 Stunden lang in der Reinigungslösung aufbewahrt worden waren. Er führte zu reinen Oberflächen ohne Spuren von Wasser und Flecken auf den Wafern.
  • Das beschreibene Verfahren führt zu polierten Halbleiteroberflächen, welche sauber, hydrophil und ohne Schleier sind. Die Oberflächen werden durch den Reinigungsprozeß nicht abgebaut, und in dem Verfahren werden nur umweltfreundliche und hygienische Materialien verwendet. Die Halbleitermaterialien können vor der Reinigung bis zu 24 Stunden in verdünnter Phosphorsäurelösung aufbewahrt werden, ohne daß die Oberfläche in irgendeiner Weise beschädigt wird. Es ist nur eine leichte Bürstenreinigung erforderlich, um irgendwelche Partikel von den gereinigten Oberflächen zu entfernen.

Claims (6)

1. Verfahren zur Enfernung von Siliciumdioxidrückständen von einer Halbleiteroberfläche nach dem Polieren mit einem siliciumdioxidhaltigen Poliermittel, dadurch gekennzeichnet, daß die Halbleiteroberfläche mit einer wässrigen Phosphorsäurelösung behandelt und dann mit Wasser und einer wässrigen Ammoniumhydroxidlösung gespült wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Halbleiteroberfläche nach der Behandlung mit Phosphorsäure zusätzlich mit einer wässrigen Schwefelsäurelösung behandelt wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Halbleiteroberfläche mit einer Lösung mit einem Gehalt an Phosphorsäure und Schwefelsäure behandelt wird.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß Säurelösungen mit einem Gehalt an 20 bis 30 Gew.% der jeweiligen Säure verwendet werden.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine 3 gew.%ige Ammoniumhydroxidlösung verwendet wird.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß kolloidale oder amorphe Siliciumdioxidrückstände von der Halbleiteroberfläche entfernt werden.
EP78100336A 1977-08-15 1978-07-10 Verfahren zur Entfernung von Siliciumdioxidrückständen von einer Halbleiteroberfläche Expired EP0000701B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US824382 1977-08-15
US05/824,382 US4116714A (en) 1977-08-15 1977-08-15 Post-polishing semiconductor surface cleaning process

Publications (3)

Publication Number Publication Date
EP0000701A2 EP0000701A2 (de) 1979-02-21
EP0000701A3 EP0000701A3 (en) 1979-03-07
EP0000701B1 true EP0000701B1 (de) 1981-09-16

Family

ID=25241258

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100336A Expired EP0000701B1 (de) 1977-08-15 1978-07-10 Verfahren zur Entfernung von Siliciumdioxidrückständen von einer Halbleiteroberfläche

Country Status (4)

Country Link
US (1) US4116714A (de)
EP (1) EP0000701B1 (de)
JP (1) JPS5432262A (de)
DE (1) DE2861075D1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713119A (en) * 1986-03-20 1987-12-15 Stauffer Chemical Company Process for removing alkali metal aluminum silicate scale deposits from surfaces of chemical process equipment
US4828660A (en) * 1986-10-06 1989-05-09 Athens Corporation Method and apparatus for the continuous on-site chemical reprocessing of ultrapure liquids
US5320706A (en) * 1991-10-15 1994-06-14 Texas Instruments Incorporated Removing slurry residue from semiconductor wafer planarization
DE69217838T2 (de) * 1991-11-19 1997-08-21 Philips Electronics Nv Herstellungsverfahren für eine Halbleitervorrichtung mit durch eine Aluminiumverbindung seitlich voneinander isolierten Aluminiumspuren
US5209816A (en) * 1992-06-04 1993-05-11 Micron Technology, Inc. Method of chemical mechanical polishing aluminum containing metal layers and slurry for chemical mechanical polishing
US5389194A (en) * 1993-02-05 1995-02-14 Lsi Logic Corporation Methods of cleaning semiconductor substrates after polishing
JP3326642B2 (ja) * 1993-11-09 2002-09-24 ソニー株式会社 基板の研磨後処理方法およびこれに用いる研磨装置
JP2570166B2 (ja) * 1994-04-22 1997-01-08 日本電気株式会社 半導体装置の製造方法
US5853491A (en) * 1994-06-27 1998-12-29 Siemens Aktiengesellschaft Method for reducing metal contamination of silicon wafers during semiconductor manufacturing
US5637151A (en) * 1994-06-27 1997-06-10 Siemens Components, Inc. Method for reducing metal contamination of silicon wafers during semiconductor manufacturing
US5597443A (en) * 1994-08-31 1997-01-28 Texas Instruments Incorporated Method and system for chemical mechanical polishing of semiconductor wafer
JP3119289B2 (ja) * 1994-10-21 2000-12-18 信越半導体株式会社 半導体ウェーハの洗浄方法
US5571041A (en) * 1995-04-21 1996-11-05 Leikam; Josh K. Refinishing compact disks
US5693148A (en) * 1995-11-08 1997-12-02 Ontrak Systems, Incorporated Process for brush cleaning
US5896870A (en) * 1997-03-11 1999-04-27 International Business Machines Corporation Method of removing slurry particles
US5837662A (en) * 1997-12-12 1998-11-17 Memc Electronic Materials, Inc. Post-lapping cleaning process for silicon wafers
US6087191A (en) * 1998-01-22 2000-07-11 International Business Machines Corporation Method for repairing surface defects
JP3701126B2 (ja) * 1998-09-01 2005-09-28 株式会社荏原製作所 基板の洗浄方法及び研磨装置
TW200419687A (en) * 2003-03-31 2004-10-01 Powerchip Semiconductor Corp Ion sampling system for wafer and method thereof
EP1647045B1 (de) * 2003-07-11 2009-11-11 Nxp B.V. Verfahren für das herstellen eines halbleiterbauelements
US7193295B2 (en) * 2004-08-20 2007-03-20 Semitool, Inc. Process and apparatus for thinning a semiconductor workpiece
US10515820B2 (en) * 2016-03-30 2019-12-24 Tokyo Electron Limited Process and apparatus for processing a nitride structure without silica deposition
US10325779B2 (en) * 2016-03-30 2019-06-18 Tokyo Electron Limited Colloidal silica growth inhibitor and associated method and system
KR20220149666A (ko) 2020-02-28 2022-11-08 닛뽄 가야쿠 가부시키가이샤 축합 다환 방향족 화합물

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE966879C (de) * 1953-02-21 1957-09-12 Standard Elektrik Ag Verfahren zur Reinigung und/oder Abtragung von Halbleitermaterial, insbesondere von Germanium- und Siliziumsubstanz
FR1335652A (fr) * 1962-07-13 1963-08-23 Agent de nettoyage de surfaces métalliques rouillées ou recouvertes de calamine
DE1614103A1 (de) * 1967-12-06 1970-05-06 Licentia Gmbh Verfahren zur Stabilisierung diffundierter Siliciumgleichrichterschreiben
US3728267A (en) * 1970-01-14 1973-04-17 Mitsubishi Heavy Ind Ltd Peeling type pickling compositions
US3728154A (en) * 1970-09-14 1973-04-17 Maagdenberg R Semiconductor wafer cleaning
US3715249A (en) * 1971-09-03 1973-02-06 Bell Telephone Labor Inc Etching si3n4
GB1423448A (en) * 1973-07-18 1976-02-04 Plessey Co Ltd Method of selectively etching silicon nitride
US4050954A (en) * 1976-03-25 1977-09-27 International Business Machines Corporation Surface treatment of semiconductor substrates

Also Published As

Publication number Publication date
US4116714A (en) 1978-09-26
EP0000701A3 (en) 1979-03-07
DE2861075D1 (en) 1981-12-03
JPS6214938B2 (de) 1987-04-04
JPS5432262A (en) 1979-03-09
EP0000701A2 (de) 1979-02-21

Similar Documents

Publication Publication Date Title
EP0000701B1 (de) Verfahren zur Entfernung von Siliciumdioxidrückständen von einer Halbleiteroberfläche
DE2706519C2 (de) Verfahren zum Reinigen der Oberfläche von polierten Siliciumplättchen
DE69636618T2 (de) Verfahren zur behandlung einer substratoberfläche und behandlungsmittel hierfür
DE69829675T2 (de) Fluorometrieverfahren zur spüleffizienzerhöhung und wasserrückgewinnungsprozess in der halbleiterchipsherstellung
DE69733102T2 (de) Reinigungsmittel
DE69816219T2 (de) Reinigungsnachbehandlung
DE69916728T2 (de) Verfahren zur Reinigung eines Halbleitersubstrats
DE2822901C2 (de) Verfahren zum Herstellen von Halbleiterbauelementen
DE69823283T2 (de) Reinigungszusammensetzung
DE3035020A1 (de) Verfahren zum reinigen einer halbleiterscheibe
DE69507567T2 (de) Verfahren zur Reinigung von halbleitenden Scheiben
DE2820608A1 (de) Reinigungsverfahren fuer polierte halbleiteroberflaechen
EP0698917A1 (de) Reinigungsmittel und Verfahren zum Reinigen von Halbleiterscheiben
EP0702399A1 (de) Verfahren zum nasschemischen Entfernen von Kontaminationen auf Halbleiterkristalloberflächen
US3150007A (en) Process for cleaning stone
DE69635427T2 (de) Verfahren zum Trocknen von Substraten
DE2526052C2 (de) Verfahren zum Reinigen polierter Halbleiterscheiben
DE60036601T2 (de) Verfahren zum polieren und reinigen eines wafers mit verwendung einer schutzschicht
EP0230903B1 (de) Verfahren zur Reinigung von Aluminiumbehältern
DE19631363C1 (de) Wässrige Reinigungslösung für ein Halbleitersubstrat
DE102007044787A1 (de) Verfahren zum Reinigen einer Halbleiterscheibe
DE10328845A1 (de) Verfahren zur nasschemischen Oberflächenbehandlung einer Halbleiterscheibe
DE4101843C1 (en) Hard tool coating for economy - by stripping using tetra:sodium di:phosphate soln. and hydrogen peroxide
EP1176632A1 (de) Verfahren zur chemischen Behandlung von Halbleiterscheiben
DE1290789B (de) Reinigungsverfahren fuer eine Halbleiterkoerper-Oberflaeche

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB

AK Designated contracting states

Designated state(s): DE FR GB

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 2861075

Country of ref document: DE

Date of ref document: 19811203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840704

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840718

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890630

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900403

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900710

GBPC Gb: european patent ceased through non-payment of renewal fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT