EP0000381A1 - Verfahren zur Herstellung von seitenständige Hydroxylgruppen aufweisenden Isocyanat-Polyadditionsprodukten und die nach diesem Verfahren erhaltenen Produkte. - Google Patents

Verfahren zur Herstellung von seitenständige Hydroxylgruppen aufweisenden Isocyanat-Polyadditionsprodukten und die nach diesem Verfahren erhaltenen Produkte. Download PDF

Info

Publication number
EP0000381A1
EP0000381A1 EP78100323A EP78100323A EP0000381A1 EP 0000381 A1 EP0000381 A1 EP 0000381A1 EP 78100323 A EP78100323 A EP 78100323A EP 78100323 A EP78100323 A EP 78100323A EP 0000381 A1 EP0000381 A1 EP 0000381A1
Authority
EP
European Patent Office
Prior art keywords
groups
water
parts
prepolymers
oxazolidine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP78100323A
Other languages
English (en)
French (fr)
Other versions
EP0000381B1 (de
Inventor
Klaus Dr. Noll
Klaus Dr. Nachtkamp
Josef Dr. Pedain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0000381A1 publication Critical patent/EP0000381A1/de
Application granted granted Critical
Publication of EP0000381B1 publication Critical patent/EP0000381B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S528/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S528/904Isocyanate polymer having stated hydrophilic or hydrophobic property

Definitions

  • the present invention relates to a new process for the preparation of new isocyanate polyaddition products having pendant hydroxyl groups and to the compounds obtainable by this process.
  • the process according to the invention is based on the principle of reacting reactive systems containing isocyanate groups and oxazolidine groups with water, the chain extension reaction essentially taking place with formation of urea groups from the isocyanate groups and the amino groups released hydrolytically from the oxazolidines, while the hydrolytic cleavage of the oxazolidine groups also takes place comparatively inert hydroxyl groups do not participate in the reaction and are present laterally in the process products.
  • the present invention in particular also relates to an embodiment of this process in which chemically incorporated hydrophilic groups and / or prepolymers containing external emulsifiers are used as prepolymers and the water is used in such an excess that immediately aqueous dispersions or solutions of the polyadducts are formed .
  • the present invention finally also relates to the isocyanate polyaddition products obtainable by the process according to the invention.
  • the process according to the invention for the first time opens up a possibility of producing predominantly linear polyurethanes which are therefore soluble in common solvents and which have pendant hydroxyl groups and are therefore accessible to a subsequent crosslinking reaction, for example with organic polyisocyanates. Because of their linear structure, the process products according to the invention, with the simultaneous incorporation of hydrophilic groups and / or the use of external emulsifiers, can also be converted without difficulty into aqueous dispersions or solutions, from which simple, crosslinkable fabrics can then also be subsequently produced.
  • Starting materials for the process according to the invention are essentially linear prepolymers, which have a statistical average of 1.8 to 2.2, preferably 2, terminal isocyanate groups and generally have an average molecular weight of 500 to 10,000, preferably 800 to 4000.
  • the NCO prepolymers are prepared by known methods in polyurethane chemistry by reacting excess amounts of organic polyisocyanates, preferably diisocyanates, with suitable, preferably difunctional, compounds having groups which are reactive toward isocyanate groups. Starting materials for the preparation of the NCO prepolymers are accordingly
  • any organic polyisocyanates preferably diisocyanates of the formula where Q represents an aliphatic hydrocarbon radical having 4 to 12 carbon atoms, a cycloaliphatic hydrocarbon radical having 6 to 15 carbon atoms, an aromatic hydrocarbon radical having 6 to 15 carbon atoms or an araliphatic hydrocarbon radical having 7 to 15 carbon atoms.
  • diisocyanates examples include tetramethyl diisocyanate, liexamethylene diisocyanate, dodecamethylene diisocyanate, 1,4-diisocyanato-cyclohexane, 1-isoyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane, 4,4'-diisocyanatodicyclohexylmethane, 4,4'-diisocyanate dicyclohexylpropane- (2,2), 1,4-diisocyanatobenzene, 2,4-diiaocyanatotoluene, 2,6-diisocyanatotoluene, 4,4'-diisocyanatodiphenylmethane, 4,4'-diiaocyanato-diphenylpropane- (2,2), p- Xylylene diiaocyanate or ⁇ , ⁇ , ⁇ ', ⁇ '-t
  • polyfunctional polyisocyanates known per se in polyurethane chemistry, or else modified polyisocyanates containing, for example, carbodiimide groups, allophanate groups, isocyanurate groups, urethane groups and / or biuret groups.
  • Any organic compounds with at least two groups which are reactive towards isocyanate groups in particular a total of two amino compounds, thiol groups, carboxyl groups and / or hydroxyl groups containing organic compounds of the molecular weight range 62-10,000, preferably 1,000 to 6,000.
  • the corresponding dihydroxy compounds are preferably used.
  • trifunctional or higher-functional compounds in the sense of the isocyanate rolyaddition reaction in small proportions to achieve a certain degree of branching is possible, as is the possible use of trifunctional or higher-functional rolyisocyanates mentioned above for the same purpose.
  • the polyethers which are preferred according to the invention and preferably have two hydroxyl groups are those of the type known per se and are obtained, for example, by polymerization of epoxides such as ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, styrene oxide or epichlorohydrin with themselves, for example in the presence of BF 3 , or by adding these epoxides, optionally in a mixture or in succession, to starting components with reactive water atoms such as alcohols and amines, for example water, ethylene glycol, (1,3) or - (1,2), 4,4'-dihydroxy-diphenylpropane, Aniline.
  • epoxides such as ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, styrene oxide or epichlorohydrin
  • reactive water atoms such as alcohols and amines
  • Polyethers modified by vinyl polymers e.g. by polymerization of styrene or acrylonitrile in the presence of polyethers (American patents 3,383,351, 3,304,273, 3,523,093, 3,110,695, German patent 1,152,536) are also suitable.
  • the proportionally higher-functionality polyethers to be used, if appropriate, are formed in an analogous manner by known alkoxylation of higher-functionality starter molecules, e.g. Ammonia, ethanolamine, ethylenediamine or sucrose.
  • the condensation products of thiodiglycol with itself and / or with other glycols, dicarboxylic acids, formaldehyde, aminocarboxylic acids or amiroalcohols should be mentioned in particular.
  • Je nacl. the CO components, the products are polythio ether, tolythio ether, polythio ether anude.
  • polyacetals e.g. the compounds which can be prepared from glycols, such as diethylene glycol, triethylene glycol, 4,4'-diethoxy-diphenyldimethylmethane, hexanediol and formaldehyde.
  • glycols such as diethylene glycol, triethylene glycol, 4,4'-diethoxy-diphenyldimethylmethane, hexanediol and formaldehyde.
  • Polyacetals suitable according to the invention can also be prepared by polymerizing cyclic acetals.
  • Suitable polycarbonates having hydroxyl groups are those of the type known per se. e.g. by reacting diols such as propanediol (1,3), butanediol (1.4) and / or hexanediol (1,6), diethylene glycol, triethylene glycol, tetraethylene glycol with diaryloarbonates, e.g. Diphenyl carbonate, or phosgene, can be produced.
  • diols such as propanediol (1,3), butanediol (1.4) and / or hexanediol (1,6)
  • diethylene glycol triethylene glycol
  • tetraethylene glycol e.g. Diphenyl carbonate, or phosgene
  • polyester amides and polyamides include e.g. the predominantly linear condensates obtained from polyvalent saturated and unsaturated carboxylic acids or their anhydrides and polyvalent saturated and unsaturated amino alcohols, diamines, polyamines and their mixtures. Polyhydroxyl compounds already containing urethane or urea groups can also be used.
  • Low molecular weight polyols can also be used, e.g. Ethanediol, rropanediol-1,2 and -1,3, butanediol-1,4 and -1,3, pentanediols, hexardiols, trimethylolpropane, hexanetriols, glycerol and fentaerythritol.
  • Representatives of the poly (cyanate) and hydroxyl compounds to be used in the process according to the invention are e.g. in High Polymers, Vol. XVI, "Polyurethanes, Chemistry and Technology", written by Saunders-Frisch, Interacience Méahers, New York, London, Volume I, 1962, pages 32-42 and pages 44-54 and Volume II, 1964, Pages 5-6 and 198-199, as well as in the plastics manual, volume VII, Vieweg-Höchtlen, Carl-Hanser-Verlag, Kunststoff, 1966, e.g. on pages 45 to 71.
  • hydrophilically modified prepolymers are to be used in the process according to the invention in accordance with the above-mentioned special embodiment, their preparation takes place according to known processes of the prior art, for example according to those in DT-OSs 1 495 745, 1 495 847, 2 446 440, 2 340 512, U S-PS 3 479 310, GB-PS'en 1 158 088 or 1 076 688 described methods.
  • the preferred hydrophilically modified structural components include in particular the sulfonate group-containing aliphatic diols according to DT - O S 2 446 440, the cationic or also anionic internal emulsifiers which can be incorporated according to German patent application P 26 51 506.0 and also the monofunctional incorporable polyethers described in this patent application.
  • the reactants are generally used in such proportions that a ratio of isocyanate groups to hydrogen atoms reactive towards NCO, preferably from hydroxyl groups, from 1.05 to 10, preferably from 1.1 to 3 correspond.
  • the order in which the individual reaction partners are added is largely arbitrary. You can either mix the hydroxyl compounds and add the polyisocyanate, or you can gradually add the mixture of hydroxyl compounds or the individual hydroxyl compounds to the polyisocyanate component.
  • the NCO prepolymers are preferably produced in the melt at 30 to 190 ° C., preferably at 50 to 120 ° C.
  • the prepolymers could also be produced in the presence of organic solvents.
  • Suitable solvents e.g. in an amount up to 25% by weight, based on the solid, could be used e.g. Acetone, methyl ethyl ketone, ethyl acetate, dimethylformamide or cyclohexanone.
  • NCO prepolymers in the process according to the invention, in the production of which none of the hydrophilic structural components mentioned under 3, were used, in which the content of the groups mentioned under b) or c) is therefore 0.
  • NCO prepolymers which moreover have the properties mentioned under a) and d) above, the preparation of aqueous dispersions or solutions of the process products according to the invention is only possible when carrying out the process according to the invention if external emulsifiers are also used .
  • Suitable such emulsifiers are described, for example, by R. Heusch in "Emulsions", Ullmann, Volume 10, pages 449-473, Weinheim 1975.
  • ionic emulsifiers such as e.g. Alkali and ammonium salts of long-chain pet acids or long-chain aryl (alkyl) sulfonic acids, as well as non-ionic emulsifiers such as e.g. ethoxylated alkylbenzenes with an average molecular weight of 500 to 10,000.
  • These external emulsifiers are thoroughly mixed with the NCO-Pril polymers before the process according to the invention is carried out. They are generally used in amounts of 1 to 30, preferably 5 to 20 parts by weight, based on the weight of the NCO prepolymer. It is also possible to increase the hydrophilicity of the hydrophilic modified NCO prepolymers by using such external emulsifiers, although this is generally not necessary.
  • the reactant partners are preferably used in proportions such that 0.37-0.53, preferably 0.4-0.51 mol, hydroxyl groups of the hydroxyoxyzolidine are accounted for per mole of isocyanate groups of the NCO prepolymer.
  • the reaction products are therefore also just like the NCO prepolymers used as starting materials essentially linear connections.
  • hydroxyoxazolidines and the bisoxazolidines mentioned are compounds known from the literature (see, for example, the references mentioned at the beginning with regard to the moisture-curing oxazolidine compositions of the prior art).
  • Bisoxazolidines or hydroxyoxazolidines to be used with particular preference are the corresponding compounds mentioned in US Pat. No. 4,002,601 or DT-OS 2,446,438.
  • N-hydroxyalkyl oxazolidines are prepared by methods known from the literature, a ketone or an aldehyde being condensed with a bis- (hydroxyalkyl) amine with cyclizing dehydration and the water of reaction being removed azeotropically by an inert entrainer or by the excess carbonyl compound becomes.
  • Bis- (2-hydroxyethyl) amine and bis- (2-hydroxypropyl) amine are particularly suitable. In principle, however, bis- (2-hydroxybutyl) amine, bis (2-hydroxyhexyl) amine, bis (3-hydroxyhexyl) amine, or N- (2-hydroxypropyl) -N- ( 6-hydroxyhexyl) amine.
  • the bisoxazolidines to be used according to the invention can be reacted with diisocyanates of the formula (in which Z has the meaning given above), for example hexamethylene diisocyanate, 3,3,5-trimethyl-5-isocyanatomethylcyclohexyl isocyanate (IPDI), 4,4'-diisocyanatodicyclohexylmethane, 2,4- and 2,6-diisocyanatotoluene or Prepare 4,4'-diisocyanatodiphenylmethane.
  • diisocyanates of the formula for example hexamethylene diisocyanate, 3,3,5-trimethyl-5-isocyanatomethylcyclohexyl isocyanate (IPDI), 4,4'-diisocyanatodicyclohexylmethane, 2,4- and 2,6-diisocyanatotoluene or Prepare 4,4'-diisocyanatodiphenylme
  • dicarboxylic acids their bischlorides can also be used with the elimination of HCl or the bisesters with the elimination of alcohol.
  • OH- To implement group with stoichiometric amounts of hydroxycarboxylic acids or the corresponding lactones.
  • a decisive advantage over the previously known methods of the prior art for the solvent-free or low-solvent production of aqueous polyurethane dispersions is that intimate mixing with the chain extender takes place before the prepolymers are brought into contact with the water, or even before they are brought into contact with water
  • the chain-extending group (oxazolidine group) is chemically fixed, so that the chain extension leads to particularly homogeneous products.
  • the process according to the invention is particularly suitable for the production of aqueous dispersions or solutions which have a solids content of 10 to 70, preferably 30 to 65,% by weight.
  • the particles of the discontinuous phase in the dispersions generally have a diameter of 50 to 1000 nm.
  • the production of sols with an average particle diameter of the discontinuous phase of about 1-50 nm or clear, aqueous solutions in which the solid is present in molecularly disperse form or at most in the form of associates is also possible according to the invention.
  • solutions or dispersions of the polyurethanes in water are obtained in the process according to the invention depends above all on the molecular weight and the hydrophilicity of the dissolved or dispersed particles, which in turn depends on the suitable choice of type and quantitative ratios of the starting materials, in particular in the preparation of the NCO prepolymers , can be adjusted according to the known principles of polyurethane chemistry.
  • the use of an NCO prepolymer with a mean NCO functionality slightly below 2 leads to the polyaddition reaction being terminated before excessively high molecular weights are reached.
  • polyurethanes produced by the process according to the invention and present in aqueous dispersion or solution are on a par with the known polyurethanes produced in organic solvents. Films made from them have excellent mechanical strength and hydrolysis resistance and can be used for a wide variety of applications.
  • pendant hydroxyl groups built into the process products according to the invention can be shaped after shaping, for example by evaporation of the solvent or water after the solution or the dispersion a chemically or thermally activated crosslinking agent was added to cross-link l.
  • Suitable crosslinking agents are, for example, polyisocyanates with blocked isocyanate groups or melamine resins which are reactive towards hydroxyl groups. Even if the process products according to the invention are not chemically crosslinked via the pendant hydroxyl groups, these can be advantageous since they often increase the physical affinity of the process products according to the invention for substrates which are coated with the compounds according to the invention
  • the film was not sticky after moistening with toluene and acetone and did not dissolve in hot DMF.
  • the NCO prepolymer from Example 1 was at 60 ° C with 361.8 parts of a bisoxazolidine of the formula transferred. 5100 parts of deionized water were added with vigorous stirring. The resulting dispersion had a solids content of 30% and a viscosity of 18 seconds. den (Ford cup, 4 mm). It showed a Tyndall effect in the translucent light.
  • the dispersion dries to a clear, colorless and tack-free film which, after the water has been completely removed, has a Shore A hardness of 78. After heating to 130 ° C. for 20 minutes, the hardness had risen to 85 (Shore-A) and the film was only swellable in hot DMF, but no longer soluble.
  • the resulting aqueous dispersion had a solids content of 30% and a viscosity of 15 seconds (Ford cup, 4 mm).
  • the dispersion showed a Tyndall effect in the translucent light.
  • the dispersion After pouring, the dispersion dried into a clear, hard film, which was easy to scratch with a fingernail.
  • the pencil hardness was HB-H. After heating at 130 ° C. for 20 minutes, the temperature had risen to 3 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Die vorliegende Erfindung betrifft ein neues Verfahren zur Herstellung von im wesentlichen linearen Isocyanat-Polyadditionsprodukten mit seitenständigen Hydroxylgruppen, bei welchem man im wesentlichen lineare Präpolymere, welche endständig sowohl Isocyanatgruppen als auch Oxazolidingruppen aufweisen, oder ein im wesentlichen lineare NCO-Präpolymere und Bisoxazolidine aufweisendes Gemisch durch Vermischen mit mindestens einem Mol Wasser pro Mol an im Reaktionsgemisch vorliegenden Oxazolidingruppen kettenverlängert.

Description

  • Die vorliegende Erfindung betrifft ein neues Verfahren zur Herstellung von neuen, seitenständige Hydroxylgruppen aufweisenden Isocyanat-Polyadditionsprodukten sowie die nach diesem Verfahren erhältlichen Verbindungen.
  • Das erfindungsgemäße Verfahren beruht auf dem Prinzip der Umsetzung von Isocyanatgruppen und Oxazolidingruppen aufweisenden Reaktivsystemen mit Wasser, wobei die Kettenverlängerungsreaktion im wesentlichen unter Ausbildung von Harnstoffgruppen aus den Isocyanatgruppen und den aus den Oxazolidinen hydrolytisch freigesetzten Aminogruppen erfolgt, während die bei der hydrolytischen Spaltung der Oxazolidingruppen sich ebenfalls bildenden vergleichsweise reaktionsträgen Hydroxylgruppen an der Rekation nicht teilhaben und seitenständig in den Verfahrensprodukten vorliegen.
  • Das Prinzip der Vernetzung von Isocyanatgruppen und Oxazolidingruppen aufweisender Reaktivsysteme unter dem Einfluß von Feuchtigkeit ist bereits aus zahlreichen Veröffentlichungen bekannt (vgl. z.B. DT-OS'en 1 952 091, 1 952 092, 2 018 233, 2 446 438, 2 458 588 bzw. US-PS'en 3 661 923, 3 743 626, 3 864 335 oder 4 002 601). Bei den Kompositionen dieser Veröffentlichungen handelt es sich im allgemeinen um in Abwesenheit von Feuchtigkeit lagerstabile Oxazolidine und Isocyanate aufweisende Systeme, die unter dem Einfluß von Luftfeuchtigkeit, d.h. unter dem Einfluß von Wasserspuren zu hochmolekularen vernetzten Gebilden reagieren. Durch den langsamen Zutritt des Wassers in Form von Luftfeuchtigkeit bedingt reagieren dabei sowohl die Aminogruppen als auch die Hydroxylgruppen des hydrolytisch gespaltenen Oxazolidins mit den Isocyanatgruppen ab. Dies führt daher auch weniger zu Kettenverlängerungsreaktionen als zu echten Vernetzungen der Polyisocyanatkomponente, wobei in den entstehenden Verfahrensprodukten praktisch keine seitenständigen Hydroxylgruppen mehr vorliegen. Irgendwelche Hinweise auf das nachstehend beschriebene erfindungsgemäße Verfahren sind den genannten Veröffentlichungen nicht zu entnehmen.
  • Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von im wesentlichen linearen Isocyanat-Polyadditionsprodukten mit seitenständigen Hydroxylgruppen durch Umsetzung von freie Isocyanatgruppen und Oxazolidingruppen aufweisenden Reaktivsystemen mit Wasser, dadurch gekennzeichnet, daß man
    • a) im wesentlichen lineare Präpolymere, welche endständig sowohl Isocyanatgruppen als auch Oxazolidingruppen oder
    • b) ein im wesentlichen lineare NCO-Präpolymere und Bisoxazolidine aufweisendes Gemisch

    durch Vermischen mit Wasser kettenverlängert, wobei die Wassermenge so bemessen wird, daß pro Mol an im Rekationsgemisch vorliegenden Oxazolidingruppen mindestens 1 Mol Wasser vorliegt.
  • Gegenstand der vorliegenden Erfindung ist insbesondere auch eine Ausführungsform dieses Verfahrens, bei welcher als Präpolymere chemisch eingebaute hydrophile Gruppierungen und/ oder externe Emulgatoren enthaltende Präpolymere verwendet werden und das Wasser in einem solchen überschuß zum Einsatz gelangt, daß unmittelbar wäßrige Dispersionen bzw. Lösungen der Polyadditionsprodukte entstehen.
  • Gegenstand der vorliegenden Erfindung sind schließlich auch die nach dem erfindungsgemäßen Verfahren erhältlichen Isocyanat-Polyadditionsprodukte.
  • Durch das erfindungsgemäße Verfahren wird erstmals eine Möglichkeit eröffnet, gezielt vorwiegend lineare und daher in gängigen Lösungsmitteln lösliche Polyurethane herzustellen, welche seitenständige Hydroxylgruppen aufweisen und daher einer nachträglichen Vernetzungsreaktion beispielsweise mit organischen Polyisocyanaten zugänglich sind. Wegen ihrer linearen Struktur sind die erfindungsgemäßen Verfahrensprodukte bei gleichzeitigem Einbau von hydrophilen Gruppen und/oder bei Mitverwendung von externen Emulgatoren auch ohne Schwierigkeit in wäßrige Dispersionen oder Lösungen überführbar, aus denen dann ebenfalls nachträglich einfach vernetzbare Flächengebilde hergestellt werden können.
  • Ausgangsmaterialien für das erfindungsgemäße Verfahren sind im wesentlichen lineare, im statistischen Mittel 1,8 bis 2,2, vorzugsweise 2, endständige Isocyanatgruppen aufweisende Präpolymere, welche im allgemeinen ein mittleres Molekulargewicht von 500 bis 10 000, vorzugsweise 800 bis 4000, aufweisen.
  • Die Herstellung der NCO-Präpolymeren erfolgt nach bekannten Methoden der Polyurethanchemie durch Umsetzung überschüssiger Mengen an organischen Polyisocyanaten, vorzugsweise Diisocyanaten, mit geeigneten, vorzugsweise difunktionellen, Verbindungen mit gegenüber Isocyanatgruppen reaktionsfähigen Gruppen. Ausgangsmaterialien zur Herstellung der NCO-Präpolymeren sind demzufolge
  • 1. beliebige organische Polyisocyanate, vorzugsweise Diisocyanate der Formel
    Figure imgb0001
    wobei Q für einen aliphatischen Kohlenwasserstoffrest mit 4 bis 12 Kohlenstoffatomen,einen cycloaliphatiachen Kohlenwasserstoffrest mit 6 bis 15 Kohlenatoffatomen, einen aromatischen Kohlenwasserstoffrest mit 6 bis 15 Kohlenstoffatomen oder einen araliphatischen Kohlenwasserstoffrest mit 7 bis 15 Kohlenstoffatomen bedeutet. Beispiele derartiger bevorzugt einzusetzender Diisocyanate sind Tetramethyhdiisocyanat, liexametliylendiisocyanat, Dodecamethylendiisocyanat, 1,4-Diisocyanato-cyclohexan, 1-Isoyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexan, 4,4'-Diisocyanatodicyclohexylmethan, 4,4'-Diisocyanato-dicyclohexylpropan-(2,2), 1,4-Diisocyanatobenzol, 2,4-Diiaocyanatotoluol, 2,6-Diisocyanatotoluol, 4,4'-Diisocyanatodiphenylmethan, 4,4'-Diiaocyanato-diphenylpropan-(2,2), p-Xylylen-diiaocyanat oder α,α,α',α'-Tetramethyl-m- oder p-xylylen-diisocyanat, sowie aus diesen Verbindungen bestehende Gemische.
  • Es ist selbstverständlich auch möglich, die in der Polyurethan-Chemie an sich bekannten höherfunktionellen Polyisocyanate oder auch an sich bekannte modifizierte, beispielsweise Carbodiimidgruppen, Allophanatgruppen, Isocyanuratgruppen, Urethangruppen und/oder Biuretgruppen aufweisende Polyisocyanate (mit)zuverwenden.
  • 2. Beliebige organische Verbindungen mit mindestens zwei Gegenüber Isocyanatgruppen reaktionsfähigen Gruppen, insbesondere insgesamt zwei Aminogruppen, Thiolgruppen, Carboxylgruppen und/oder Hydroxylgrunpen aufweisende organische Verbindungen des Molekulargewichtsbereichs 62 - 10.000, vorzugsweise 1.000 bis 6.000. Bevorzugt werden die entsprechenden Dihydroxyverbindungen eingesetzt. Die Mitverwendung von im Sinne der Isocyanat-rolyadditionsreaktion tri- oder höherfunktionellen Verbindungen in geringen Anteilen zur Erzielung eines gewissen Verzweigungsgrades ist ebenso möglich wie die bereits erwähnte mögliche Mitverwendung von tri- oder höherfunktionellen rolyisocyanaten zum gleichen Zweck.
  • Vorzugsweise einzusetzende Hydroxylverbindungen sind die in der Polyurethan-Chemie an sich bekannten Hydroxypolyester, Hydroxypolyäther, Hydroxypolythioäther, Hydroxypolyacetale, Hydroxypolycarbonate und/oder Hydroxypolyesteramide. Die in Frage kommenden Hydroxylgruppen aufweisenden Polyester sind z.B. Umsetzungsprodukte von mehrwertigen, vorzugsweise zweiwertigen und gegebenenfalls zusätzlich dreiwertigen Alkoholen mit mehrwertigen, vorzugsweise zweiwertigen, Carbonsäuren.Anstelle der freien Polycarbonsäuren können auch die entsprechenden Polycarbonsäureanhydride oder entsprechende Polycarbonaäureester von niedrigen Alkoholen oder deren Gemische zur Herstellung der Polyester verwendet werden. Die Polycarbonsäuren können aliphatischer, cycloaliphatischer, aromatischer und/oder heterocyclischer Natur sein und gegebenenfalls, z.B. durch Halogenatome, substituiert und/oder ungesättigt sein. Als Beispiele hierfür seien genannt:
    • Bernsteinsäure, Adipinsäure, Korksäure, Azelainsäure, Sebacinsäure, Phthalsäure. Isophthalsäure, Trimellitëäure, Phthalsäureanhydrid, Tetrahydrophthalsäureanhydrid, Hexahydrophthalsäureanhydrid, Tetrachlorphthalsäureanhydrid, Endomethylentetrahydrophthalsäureanhydrid, Glutaraäureanhydrid, Maleinsäure, Maleineäureanhydrid, Fumarsäure, dimere und trimere Fettsäuren wie Ölsäure, gegebenenfalls in Mischung mit monomeren Fettsäuren, Terephthalsäuredimethylester, Terephthalsäure-bis-glykolester. Als mehrwertige Alkohole kommen z.B. Äthylenglykol, JPropylenglykol-(1,2) und -(1,3), Butylenclykol-(1,4) und -(2,3), Hexandiol-(1,6), Octandiol-(1,8), Neopentylglykol-Cyclohexandimethanol-(1,4-Bis-hydroxymethylcyclohexan), 2-Methyl-1,3-propandiol, Glycerin, Trimethylolpropan, Hexantriol-(1,2,6), Butantriol-(1,2,4), Trimethyloläthan, Pentaerythrit, Chinit, Mannit und Sorbit, Methylglykosid, ferner Diäthylenglykol, Triäthylenglykol, Tetraäthylenglykol, Polyäthylenglykole, Dipropylenglykol, rolypropylenglykole, Dibutylenglykol und Polybutylenglykole in Frage. Die Polyester können anteilig endständige Carboxylgruppen aufweisen. Auch Polyester aus Lactonen, z.H.ε-Caprolacton oder Hydroxycarbonsäuren, z.B.ω-Hydroxycapronsäure, sind einsetzbar.
  • Auch die erfindungagemäß in Frage kommenden, vorzugsweise zwei Hydroxylgruppen aufweisenden Polyäther aind solche der an sich bekannten Art und werden z.B. durch Polymerisation von Epoxiden wie Äthylenoxid, Propylenoxid, Butylenoxid, Tetrahydrofuran, Styroloxid oder Epichlorhydrin mit sich selbst, z.B. in Gegenwart von BF3, oder durch Anlagerung dieser Epoxide, gegebenenfalls im Gemisch oder nacheinander, an Startkongonenten mit reaktionsfähigen Wasseratoffatomen wie Alkohole und Amine, z.B. Wasser, Äthylenglykol, Propylenglykol-(1,3) oder -(1,2), 4,4'-Dihydroxy-diphenylpropan, Anilin, hergestellt.
  • Auch durch Vinylpolymerisate modifizierte Polyäther, wie sie z.B. durch Polymerisation von Styrol, Acrylnitril in Gegenwart von Polyäthern entstehen (amerikanische Patentschriften 3 383 351, 3 304 273, 3 523 093, 3 110 695, deutsche Patentschrift 1 152 536), sind ebenfalls geeignet. Die anteilig gegebenenfalls mitzuverwendenden höherfunktionellen Polyäther entstehen in analoger Weise durch an sich bekannte Alkoxylierung von höherfunktionellen Startermolekülen z.B. Ammoniak Äthanolamin, Äthylendiamin oder Sukrose.
  • Unter den Polythioäthern seien insbesondere die Kondensationsprodukte von Thiodiglykol mit sich selbst und/oder mit anderen Glykole.., Dicarbonsäuren, Formaldehyd, Aminocarbonsäuren oder Amiroalkoholen angeführt. Je nacl. den CO-Kotrponenten handelt es sicl bei den Trodukten um Polythiomischäther, Tolythioäthereater, Polythioätheresteranude.
  • Als Polyacetale kommen z.B. die aus Glykolen, wie Diäthylenglykol, Triäthylenglykol, 4,4'-Diäthoxy-diphenyldimethylmethan, Hexandiol und Formaldehyd herstellbaren Verbindungen in Frage. Auch durch Dolymerisation cyclischer Acetale lassen sich erfindungsgemäß geeignete Polyacetale herstellen.
  • Als HydroxylGruppen aufweisende Polycarbonate kommen solche der an sich bekannten Art in Betracht. die z.B. durch Umsetzung von Diolen wie Propandiol-(1,3), Butandiol-(1.4) und/oder Hexandiol-(1,6), Diäthylenglykol, Triäthylenglykol, Tetraäthylenglykol mit Diaryloarbonaten, z.B. Diphenylcarbonat, oder Phosgen, hergestellt werden können.
  • Zu den Polyesteramiden und Polyamiden zählen z.B. die aus mehrwertigen gesättigten und ungesättigten Carbonsäuren bzw. deren Anhydriden und mehrwertigen gesättigten und ungesättigten Aminoalkoholen, Diaminen, Polyaminen und ihren Mischungen gewonnener, vorwiegend linearen Kondensate. Auch bereits Urethan- oder Harnstoffgruppen enthaltende Polyhydroxylverbindungen sind verwendbar.
  • Auch niedermolekulare Polyole können (mit)verwendet werden, wie z.B. Äthandiol, rropandiol-1,2 und -1,3, Butandiol-1,4 und -1,3, pentandiole, Hexardiole, Trimethylolpropan, Hexantriole, Glycerin und Fentaerythrit.
  • Vertreter der genannten im erfindungsgemäßen Verfahren zu verwendenden Polyieccyanat- und Hydroxyl-Verbindungen sind z.B. in High Polymers, Vol. XVI, "Polyurethanes, Chemistry and Technology", verfaßt von Saunders-Frisch, Interacience Publiahers, New York, London, Band I, 1962, Seiten 32-42 und Seiten 44-54 und Band II, 1964, Seiten 5-6 und 198-199, sowie im Kunststoff-Handbuch, Band VII, Vieweg-Höchtlen, Carl-Hanser-Verlag, München, 1966, z.B. auf den Seiten 45 bis 71, beschrieben.
  • Falls beim erfindungsgemäßen Verfahren gemäß der o.g. besonderen Ausführungsform hydrophil modifizierte Präpolymere zum Einsatz gelangen sollen, erfolgt deren Herstellung nach bekannten Verfahren des Standes der Technik beispielsweise gemäß den in DT-OS'en 1 495 745, 1 495 847, 2 446 440, 2 340 512, US-PS 3 479 310, GB-PS'en 1 158 088 oder 1 076 688 beschriebenen Methoden. Dies bedeutet, daß bei der Herstellung der Präpolymeren neben den bereits beispielhaft genannten Ausgangsmaterialien chemisch fixierte hydrophile Gruppen aufweisende, vorzugsweise im Sinne der Isocyanatadditinsreaktion mono- und insbesondere difunktionelle Aufbaukomponenten der beispielhaft in den o.g. Literaturstellen bezüglich der Herstellung von wäßrigen Polyurethandispersionen oder -lösungen beschriebenen Art, d.h. beispielsweise ionische bzw. potentielle ionische Gruppen aufweisende Diisocyanate, Diamine oder Dihydroxyverbindungen bzw. Polyäthylenoxideinheiten aufweisende Diisocyanate oder Glykole mitverwerdet werden.
  • Zu den bevorzugten hydrophil modifizierten Aufbaukomponenten gehören insbesondere die Sulfonatgruppen aufweisenden aliphatischen Diole gemäß DT-OS 2 446 440, die kationischen oder auch anionischen einbaufähigen inneren Emulgatoren gemäß deutscher Patentanmeldung P 26 51 506.0 und auch die in dieser Patentanmeldung beschriebenen, monofunktionellen einbaufähigen Polyäther.
  • Bei der Herstellung der NCO-Präpolymeren nach an sich bekannten Prinzipien des Standes der Technik werden die Reaktionspartner im allgemeinen in solchen Mengenverhältnissen eingesetzt, die einem Verhältnis von Isocyanatgruppen zu gegenüber NCO reaktiven Wasserstoffatomen, vorzugsweise aus Hydroxylgruppen, von 1,05 bis 10, vorzugsweise von 1,1 bis 3 entsprechen.
  • Die Reihenfolge der Zugabe der einzelnen Reaktionapartner ist hierbei weitgehend beliebig. Man kann sowohl die Hydroxylverbindungen abmischen und dazu das Polyisocyanat zufügen oder auch zur Polyisocyanatkomponente das Gemisch der Hydroxylverbindungen oder die einzelnen Hydroxylverbindungen nach und nach eintragen.
  • Die Herstellung der NCO-Präpolymere erfolgt vorzugsweise in der Schmelze bei 30 bis 190oC, vorzugsweise bei 50 bis 120oC. Die Herstellung der Präpolymere könnte selbstverständlich auch in Gegenwart von organischen Lösungsmitteln erfolgen.
  • Geeignete Lösungsmittel, die z.B. in einer Menge bis zu 25 Gew.-%, bezogen auf den Feststoff, eingesetzt werden können, wären z.B. Aceton, Methyläthylketon, Essigsäureäthylester, Dimethylformamid oder Cyclohexanon.
  • Die Art und Mengenverhältnisse der bei der Herstellung der NCO-Präpolymeren eingesetzten Ausgangsmaterialien werden im übrigen vorzugsweise so gewählt, daß die NCO-Präpolymeren
    • a) eine mittlere NCO-Funktionalität von 1,8 bis 2,2, vorzugsweise 2,
    • b) einen Gehalt an kationischen oder anioniachen eingebauten Gruppen von 0 bis 100, vorzugsweise 0,1 bis 100 und insbesondere 0,5 bis 50 Milli-Äquivalent pro 100 g Feststoff,
    • c) einen Gehalt an seitenständig, endständig und/oder innerhalb der Hauptkette eingebauten, innerhalb eines Polyäthersegments vorliegenden Äthylenoxid-Einheiten von 0 bis 30, vorzugsweise 0,5 bis 30 und insbesondere 1 bis 20 Gew.-%, bezogen auf das Gesamtgewicht des Präpolymeren und
    • d) ein mittleres Molekulargewicht von 500 bis 10.000, vorzugsweise 800 bis 4.000 aufweisen.
  • Zu den bevorzugten NCO-Präpolymeren gehören, wie bereits dargelegt, solche, welche entweder ionische Gruppen der unter b) genannten Art, d.h. insbesondere -COO-, -SO3 - oder = N+ =, oder nichtionische Gruppen der unter c) genannten Art oder sowohl ionische als auch nichtionische Gruppen der genannten Art aufweisen. Es ist jedoch auch möglich, beim erfindungsgemäßen Verfahren NCO-Präpolymere einzusetzen, bei deren Herstellung keine der unter 3, genannten hydrophilen Aufbaukomponenten mitverwendet wurden, bei denen der Gehalt der oben unter b) bzw. c) genannten Gruppen somit 0 beträgt.
  • Im Falle der Verwendung derartiger NCO-Präpolymerer, die im übrigen die oben unter a) und d) genannten Eigenschaften aufweisen, ist die Herstellung von wäßrigen Dispersionen bzw. Lösungen der erfindungsgemäßen Verfahrensprodukte bei der Durchführung des erfindungsgemäßen Verfahrens nur möglich, falls externe Emulgatoren mitverwendet werden. Geeignete derartige Emulgatoren sind beispielsweise von R. Heusch in "Emulsionen", Ullmann, Band 10, Seiten 449-473, Weinheim 1975, beschrieben. Geeignet sind sowohl ionische Emulgatoren wie z.B. Alkali- und Ammoniumsalze von langkettigen Pettsäuren oder langkettigen Aryl(Alkyl)sulfonsäuren, als auch nichtionische Emulgatoren wie z.B. äthoxylierte Alkylbenzole mit einem mittleren Molgewicht von 500 bis 10 000.
  • Diese externen Emulgatoren werden vor der Durchführung des erfindungsgemäßen Verfahrens mit den NCO-Prilpolymeren innig durchmischt. Sie gelangen im allgemeinen in Mengen von 1 bis 30 , vorzugaweiae 5 bia 20 Gew.-5, bezogen auf das Gewicht des NCO-Präpolymeren zum Einsatz. Es ist durchaus möglich, auch bei Verwendung von hydrophil modifizierten NCO-Präpolymeren deren Hydrophilie durch zusätzliche Mitverwendung derartiger externer Emulgatoren zu erhöhen, obwohl dies im allgemeinen nicht erforderlich ist.
  • Wie bereits dargelegt, ist der Einbau hydrophiler Gruppen bzw. die Mitverwendung externer Emulgatoren bei der Durchführung des erfindungsgemäßen Verfahrens nicht unbedingt erforderlich, sondern erfolgt im allgemeinen nur dann, wenn die erfindungsgemäßen Verfahrensprodukte in Form wäßriger Dispersionen bzw. Lösungen erhalten werden sollen. Es ist somit durchaus denkbar, das erfindungsgemäße Verfahren beispielsweise in dem oben beispielhaft genannten Lösungsmittel durchzuführen, wobei dann Lösungen der erfindungsgemäßen Verfahrensprodukte in diesen Lösungsmitteln erhalten werden.
  • Die oben beispielhaft genannten NCO-Präpolymeren mit 1,8-2,2, vorzugsweise 2, endständigen Isocyanatgruppen kommen beim erfindungsgemäßen Verfahren vorzugsweise im Gemisch mit Bisoxazolidinen zum Einsatz. Unter "Bisoxazolidinen" sind hierbei beliebige organische Verbindungen zu verstehen, die 2, unter dem Einfluß von Wasser eine Hydroxyl- und eine sekundäre Aminogruppe bildende, Oxazolidingruppen aufweisen und ansonsten unter den Bedingungen des erfindungsgemäßen Verfahrens inert sind. Zu den bevorzugten Bisoxazolidinen gehören solche, welche 2 Gruppen der Formel
    Figure imgb0002
    aufweisen, wobei
    • R1 und R2 für gleiche oder verschiedene Reste stehen und Wasserstoff, aliphatische Kohlenwasserstoffreste mit 1-4 Kohlenstoffatomen, cycloaliphatische Kohlenwasserstoffreste mit 5-7 Kohlenstoffatomen oder aromatische Kohlenwasserstoffreste mit 6-10 Kohlenstoffatomen bedeuten bzw. zusammen mit dem Ring-Kohlenstoffatom gemeinsam einen 5- oder 6- gliedrigen cycloaliphatischen KohlenwasserstoffRing bilden können,
    • X für einen Rest der Formel
      Figure imgb0003
      steht, wobei R3 und R4 für gleiche oder verschiedene Reste stehen und C1-C4-Alkylreste, vorzugsweise jedoch Wasserstoff bedeuten und m 2 oder 3 bedeuten,
    • Y für einen Rest der Formel
      Figure imgb0004
      steht, in welcher R3 und R4 die bereits genannte Bedeutung haben und n für eine ganze Zahl von 2 bis 6 steht.
  • Zu den besonders bevorzugten Bisoxazolidinen gehören solche in welchen 2 Reste der o.g. Formel über einen zweiwertigen Rest der Formel
    Figure imgb0005
    verknüpft sind, wobei
    • A und A' für gleiche oder verschiedene Reste stehen und -COO- oder -OCO-NH- bedeuten und
    • Z für einen zweiwertigen aliphatischen Kohlenwasserstoffrest mit 2-14 Kohlenstoffatomen, einen zweiwertigen cycloaliphatischen Kohlenwasserstoffrest mit 5-14 Kohlenstoffatomen oder einen Arylenrest mit 6-15 Kohlenstoffatomen steht.
  • Beim erfindungsgemäßen Verfahren werden entweder Gemische der beispielhaft genannten NCO-Präpolymeren mit den beispielhaft genannten Bisoxazolidinen oder aber überwiegend lineare Isocanatgruppen und Oxazolidingruppen aufweisende Präpolymere eingesetzt.
  • Diese letztgenannten Präpolymeren können auf einfache Weise durch Umsetzung der oben beispielhaft genannten vorwiegend difunktionellen NCO-Präpolymeren mit Hydroxylgruppen aufweisendenden Oxazolidinen der Formel
    Figure imgb0006
    in welcher
    • R1, R2, X und Y die bereits genannte Bedeutung haben,hergestellt werden.
  • Bei dieser Herstellung der Isocyanatgruppen und Oxazolidine aufweisenden Präpolymeren gelangen die Reaktonspartner vorzugsweise in solchen Mengenverhältnissen zum Einsatz, daß auf jedes Mol Isocyanatgruppen des NCO-Präpolymeren 0,37-0,53, vorzugsweise 0,4-0,51 Mol Hydroxylgruppen des Hydroxyoxyzolidins entfallen. Auf diese werden Reaktionsgemische erhalten, welche pro verbleibender Isocyanatgruppe ca.0,6-1,1, vorzugsweise ca. 0,65-1,05 Oxazolidingruppen aufweisen. Da es sich bei den Monohydroxyoxazolidinen um monofunktionelle Verbindungen handelt, tritt bei dieser Umsetzung keine Mole- külvergrö8erung spürbaren Ausmaßes ein. Auch bei den Umsetzungsprodukten handelt es sich somit ebenso wie bei den als Ausgangsmaterialien eingesetzten NCO-Präpolymeren um im wesentlichen lineare Verbindungen.
  • Sowohl bei den Hydroxyoxazolidinen als auch bei den genannten Bisoxazolidinen handelt es sich um literaturbekannte Verbindungen (vgl. z.B. die eingangs bezüglich der feuchtigkeitshärtenden Oxazolidin-Kompositionen des Standes der Technik genannten Literaturstellen). Besonders bevorzugt einzusetzende Bisoxazolidine bzw. Hydroxyoxazolidine sind die entsprechenden in US-PS 4 002 601 bzw. DT-OS 2 446 438 genannten Verbindungen.
  • Die N-Hydroxyalkyl-oxazolidine werden nach literaturbekannten Methoden hergestellt, wobei ein Keton oder ein Aldehyd unter cyclisierender Dehydratisierung mit einem Bis-(hydroxyalkyl)-amin kondensiert wird und das Reaktionswasser üblicherweise durch ein inertes Schleppmittel bzw. durch die im Uberschuß eingesetzte Carbonylverbindung azeotrop entfernt wird.
  • Als Carbonylverbindungen
    Figure imgb0007
    eignen sich insbesondere nachstehend aufgeführte Aldehyde und Ketone:
    • Formaldehyd, Acetaldehyd, Propionaldehyd, Butyraldehyd, Isobutyraldehyd, Benzaldehyd, Tetrahydrobenzaldehyd, Aceton, Methyläthylketon, Methylpropylketon, Methylisopropylketon, Diäthylketon, Methylbutylketon, Methylisobutylketon, Methylt-butylketon, Diisobutylketon, Cyclopentanon und Cyclohexanon. Bevorzugt einzusetzende Carbonylverbindungen sind entsprechend der vorstehenden Definition der bevorzugten Reste R, und R2 Formaldehyd sowie die genannten aliphatischen Aldehyde bzw. Ketone.
  • Als Bis-(hydroxyalkyl)-amine
    Figure imgb0008
    eignen sich besonders Bis-(2-hydroxyäthyl)-amin und Bis-(2-hydroxypropyl)-amin. Im Prinzip ebenso geeignet sind jedoch auch beispielsweise Bis-(2-hydroxybutyl)-amin, Bis-(2-hydroxyhexyl)-amin, Bis-(3-hydroxyhexyl)-amin, oder N-(2-hydroxypropyl)-N-(6-hydroxyhexyl)-amin.
  • Ausgehend von den oben beschriebenen Hydroxyoxazolidinen lassen sich die erfindungsgemäß zu verwendenden, vorzugsweise Urethangruppen aufweisenden, Bisoxazolidine durch Umsetzung mit Diisocyanaten der Formel
    Figure imgb0009
    (in der Z die oben angegebene Bedeutung besitzt) z.B. Hexamethylendiisocyanat, 3,3,5-Trimethyl-5-isocyanatomethyl- cyclohexylisocyanat (IPDI), 4,4'-Diisocyanato-dicyclohexylmethan, 2,4- und 2,6-Diisocyanatotoluol oder 4,4'-Diisocyanatodiphenylmethan herstellen. Auch die Umsetzung mit Dicarbonsäuren, aliphatischer, cycloaliphatischer oder aromatischer Natur der Formel
    Figure imgb0010
    führt zu erfindungsgemäß einsetzbaren, Estergruppen aufweisenden Bisoxazolidinen.
  • Außer den Dicarbonsäuren können unter HCI-Abspaltung auch deren Bischloride oder unter Alkoholabspaltung deren Bisester eingesetzt werden. Darüber hinaus ist es möglich, vor diesen angeführten Dimerisierungsreaktionen die OH-Gruppe mit stöchiometrischen Mengen von Hydroxycarbonsäuren oder den entsprechenden Lactonen umzusetzen. Hier kommt der Einsatz von z.B. Hydroxypropionsäure, Hydroxybuttersäure, Hydroxycapronsäure usw., bzw. deren Lactonen in Frage. Diese zusätzliche Modifizierung ist jedoch weniger bevorzugt.
  • Bei der Durchführung des erfindungsgemäßen Verfahrens werden nun
    • a) die beispielhaft genannten Oxazolidin- und Isocyanatgruppen aufweisenden Präpolymeren oder
    • b) Gemische der beispielhaft genannten NCO-Präpolymeren mit den beispielhaft genannten Bisoxazolidinen, in welchen die Mengenverhältnisse der Komponenten im allgemeinen so gewählt sind, daß für jedes Mol Isocyanatgruppen 0,6 bis 1,1, vorzugsweise 0,65 bis 1,05, Mol Oxazolidingruppen vorliegen,

    mit Wasser vermischt. Hierbei wird das Wasser nicht wie in den eingangs genannten Vorveröffentlichungen in Form von Luftfeuchtigkeit sondern in flüssiger Form eingesetzt. Wesentlich ist hierbei, daß die Wassermenge so bemessen wird, daß sie mindestens zur Hydrolyse der Oxazolidingruppen ausreicht, d.h. daß pro Mol Oxazolidingruppen mindestens 1 Mol Wasser zum Einsatz gelangt. Im allgemeinen wird man jedoch stets einen mindestens 100 %igen Überschuß über diese Menge an Wasser einsetzen, selbst wenn nicht die Herstellung von wäßrigen Dispersionen oder Lösungen der erfindungsgemäßen Verfahrensprodukte sondern beispielsweise deren Lösungen in organischen Lösungsmitteln hergestellt werden sollen. Durch den Zusatz des Wassers in flüssiger Form und durch die genannte Wassermenge wird eine Additionsreaktion zwischen den Isocyanatgruppen und den aus den Oxazolidingruppen hydrolytisch gebildeten Hydroxylgruppen weitgehend ausgeschlossen, da selbst bei Verwendung eines Oxazolidin-Unterschusses bezogen auf Isocyanatgruppen dann stets eine Kettenverlängerungsreaktion zwischen den Isocyanatgruppen und dem überschüssig vorliegenden Wasser im Vergleich zur Additionsreaktion zwischen Isocyanatgruppen und Hydroxylgruppen vorrangig abläuft. Bei der Herstellung von wäßrigen Lösungen bzw. Dispersionen bei der Durchführung des erfindungsgemäßen Verfahrens wird das Wasser im allgemeinen in Mengen von 40 bis 300 , vorzugsweise 55 bis 230 Gew.%, bezogen auf Oxazolidin- und Isocyanatgruppen aufweisendes Reaktivsystem eingesetzt.
  • Bei der Herstellung von Lösungen der erfindungsgemäßen Verfahrensprodukte in organischen Lösungsmitteln wird bei der Durchführung des erfindungsgemäßen Verfahrens im allgemeinen wie folgt verfahren:
    • Das Isocyanatgruppen und Oxazolidingruppen aufweisende Reaktivgemisch wird in einem geeigneten Lösungsmittel, welches vorzugsweise mit Wasser mischbar sein sollte, zu einer 5 bis 95 , vorzugsweise 20 bis 70 gew.-%igen Lösung gelöst. Zu dieser Lösung wird dann unter Rühren das Wasser als solches oder im Gemisch mit mit Wasser mischbarem Lösungsmittel zugesetzt. Die Temperatur hierbei liegt im allgemeinen zwischen O und 80°c. Es bildet sich dann sofort eine Lösung des erfindungsgemäßen Verfahrensprodukts in dem Lösungsmittel bzw. Lösungsmittel/Wasser-Gemisch. Geeignete Lösungsmittel sind beispielsweise Dimethylformamid, Dimethylsulfoxid, Aceton, Methyläthylketon oder aber auch Gemische von beispielsweise tertiären Alkoholen wie tert.-Butanol mit aromatischen Lösungsmitteln wie z.B. Toluol.
  • Bei der besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens unter gleichzeitiger Herstellung von wäßrigen Dispersionen bzw. Lösungen der erfindungsgemaßen Verfahrensprodukte in Wasser wird entweder das wie dargelegt hydrophil modifizierte oder einen externen Emulgator enthaltende Reaktivsystem, insbesondere falls es sich hier um eine Flüssigkeit handelt, direkt mit dem Wasser verrührt, oder man verfährt nach dem oben dargelegten Prinzip unter Mitverwendung eines Hilfslösungsmittels, wobei als Hilfslösungsmittel zweckmäßigerweise ein mit Wasser mischbares Lösungsmittel eines unter 100°C liegenden Siedepunktes verwendet wird, welches nach erfolgter erfindungsgemäßer Umsetzung destillativ entfernt werden kann. Bei dieser Herstellung von wäßrigen Dispersionen oder Lösungen erfolgt die Dispergierung bzw. Lösung der Präpolymeren und deren Kettenverlängerung praktisch simultan. Von entscheidendem Vorteil gegenüber den vorbekannten Verfahren des Standes der Technik zur lösunggmittelfreien bzw. -armen Herstellung von wäßrigen Folyurethandispersionen ist hierbei, daß bereits vor dem Zusammenbringen der Präpolymeren mit dem Wasser eine innige Durchmischung mit dem Kettenverlängerer erfolgt, bzw. bereits vor dem Zusammenbringen mit Wasser eine chemische Fixierung der kettenverlängernden Gruppe (Oxazolidingruppe) erfolgt, so daß die Kettenverlängerung zu besonders homogenen Produkten führt. Das erfindungsgemäße Verfahren eignet sich vorzüglich zur Herstellung von wäßrigen Dispersionen bzw. Lösungen, die einen Feststoffgehalt von 10 bis 70, vorzugsweise 30 bis 65 Gew.-% aufweisen.
  • In den Dispersionen weisen die Teilchen der diskontinuierlichen Phase im allgemeinen Durchmesser von 50 bis 1000 nm auf. Auch die Herstellung von Solen mit mittlerem Teilchendurchmesser der diskontiuierlichen Phase von etwa 1-50 nm bzw. klaren, wäßrigen Lösungen, in welchen der Festkörper in molekulardisperser Form oder höchstens in Form von Assoziaten vorliegt, ist erfindungsgemäß möglich.
  • ob beim erfindungsgemäßen Verfahren Lösungen oder Dispersionen der Polyurethane in Wasser erhalten werden, ist vor allen vom Molekulargewicht und der Hydrophilie der gelösten bzw. dispergierten Teflchen abhängig, welche ihrerseits durch geeignete Wahl von Art und Mengenverhältnie der Ausgangematerialien, insbesondere bei der Herstellung der NCO-Präpolymeren,nach den bekannten Prinzipien der Polyurethan-Chemie eingestellt werden können. So führt beispielsweise die Verwendung von einem NCO-Präpolymeren mit einer geringfügig unter 2 liegenden mittleren NCO-Funktionalität zu einem Abbruch der Polyadditionsreaktion, bevor allzu hohe Molekulargewichte erreicht sind. Die nach dem erfindungsgemäßen Verfahren hergestellten, in wäßriger Dispersion bzw. Lösung vorliegenden Polyurethane sind den bekannten in organischen Lösungsmitteln hergestellten Polyurethanen ebenbürtig. Aus ihnen hergestellte Filme weisen eine ausgezeichnete mechanische Festigkeit und Hydrolysebeatändigkeit auf und können für die verschiedensten Einsatzgebiete verwendet werden.
  • Wegen der in den erfindungsgemäßen Verfahrensprodukten eingebauten seitenständigen Hydroxylgruppen lassen sich diese nach Formgebung beispielsweise durch Abdunsten des Lösungsmittels bzw. Wassers,nachdem der Lösung bzw. der Dispersion ein chemisch oder thermisch aktivierbares Vernetzungsmittel zugegeben worden warlvernetzen. Geeignete Vernetzungsmittel sind z.B. Polyisocyanate mit blockierten Isocyanatgruppen oder gegenüber Hydroxylgruppen reaktionsfähige Melaminharze. Auch bei einem Verzicht einer chemischen Vernetzung der erfindungsgemäßen Verfahrensprodukte über die seitenständigen Hydroxylgruppen können diese von Vorteil sein, da sie oft die physikalische Affinität der erfindungsgemäßen Verfahrensprodukte zu Substraten, die mit den erfindungsgemäßen Verbindungen beschichtet werden, erhöhen
  • Alle in den nachfolgenden Beispielen genannten Teile sind Gewichtsteile.
  • Beispiel
  • 1237,5 Teile eines Polybutylenadipats (MG= 2250) und 191,3 Teile eines vierfach propoxylierten Adduktes aus 2-Butendiol-1,4 und Natriumbisulfit (MG= 425), im folgenden als "Addukt" bezeichnet, wurden bei 120°C im Wasserstrahlvakuum entwässert Zu diesem Gemisch wurden bei 70°C 488,4 Teile 1-Isocyanato-3-isocyanatomethyl-3,5,5-trimethylcyclohexan gegeben und die Mischung nach Anheben der Temperatur auf 100°C solange gerührt, bis der NCO-Gehalt der Schmelze 5,3 % betrug. Nach Abkühlen auf 60°C wurden 437,4 Teile eines Bisoxazolidins der Formel
    Figure imgb0011
    eingerührt und die Mischung anschließend unter kräftigem Rühren mit 5060 Teilen entionten Wassers versetzt. Die entstandene wäßrige Dispersion hatte einen Feststoffgehalt von 30 % und eine Viskosität von 14 Sekunden (Fordbecher, 4 mm). Sie zeigte im durchscheinenden Licht einen Tyndall-Effekt. Die Dispersion trocknet zu einem klaren, farblosen und klebfreien Film auf, der folgende mechanische Daten besitzt:
  • Zugfestigkeit: 37,2 MPa
  • Bruchdehnung: 620 %
  • 330 Teile der Dispersion wurden mit 15 Teilen eines Hexamethyl/Butyloxymethylmelamins versetzt und zu einem Film vergossen. Nach der Trocknung wurde der Film 20 Minuten auf 130°C erhitzt. Die an diesem Film gemessenen mechanischen Werte waren:
  • Zugfestigkeit: 45,3 MPa
  • Bruchdehnung: 410 %
  • Der Film war nach dem Befeuchten mit Toluol und Aceton nicht klebrig und löste sich in heißem DMF nicht auf.
  • Beispiel 2
  • Das NCO-Präpolymer aus Beispiel 1 wurde bei 60°C mit 361,8 Teilen eines Bisoxazolidins der Formel
    Figure imgb0012
    versetzt. Unter kräftigem Rühren wurden 5100 Teilen entionten Wassers zugegeben. Die entstandene Dispersion hatte einen Festkörpergehalt von 30 % und eine Viskosität von 18 Sekun- . den (Fordbecher, 4 mm). Sie zeigte im durchscheinenden Licht einen Tyndall-Effekt.
  • Die Dispersion trocknet zu einem klaren, farblosen und klebfreien Film auf, der nach völliger Entfernung des Wassers eine Shore-A-Härte von 78 aufwies. Nach 20-minütigem Erhitzen auf 130°C war die Härte auf 85 (Shore-A) angestiegen und der Film in heißem DMF nur noch quellbar, jedoch nicht mehr löslich.
  • Beispiel 3
  • 600 Tiele eines Polyäthanoldiolphthalates (MG-2000) und 525 Teile eines Polyäthandiolphthalatadipates (MG-1750) sowie 170,4 Teile des in Beispiel 1 beschriebenen Adduktes wurden bei 120°C im Wasserstrahlvakuum entwässert. Zu diesem Gemisch wurden bei 70°C 285,6 Teile Hexamethylendiisocyanat gegeben und die Mischung nach Anheben der Temperatur auf 100°C solange gerührt, bis der NCO-Gehalt der Schmelze 4,8 % betrug. Nach dem Abkühlen auf 80°C wurden 209 Teile eines Oxazolidins der Formel
    Figure imgb0013
    eingerührt und die Mischung anschließend unter kräftigem Rühren mit 4070 Teilen entionten Wassers versetzt. Die entstandene wäßrige Dispersion hatte einen Feststoffgehalt von 30 % und eine Viskosität von 15 Sekunden (Fordbecher, 4 mm). Die Dispersion zeigte im durchscheinenden Licht einen Tyndall-Effekt. Die Dispersion trocknete nach dem Vergießen zu einem klaren, harten Film auf, der jedoch mit dem Fingernagel leicht zu ritzen war. Die Bleistifthärte betrug HB-H. Nach 20-minütigem Erhitzen auf 130°C war die die auf 3 H angestiegen.
  • Beispiel 4
  • 300 Teile eines Polyäthandiolphthalats (MG=2000) und 612,5 Teile eines Polyäthandiolphthalatadipates (MG-1750) sowie 13,4 Tiele 1,1,1-Trishydroxymethylpropan und 148,8 Teile des in Beispiel 1 beschriebenen Addukt wurden bei 120°C im Wasserstrahlvakuum entwässert. Zu diesem Gemisch wurden bei 70°C 285,6 Teile Hexamethylendiisocyanat gegeben und die Mischung nach Anheben der Temperatur auf 100°C solange gerührt, bis der NCO-Gehalt der Schmelze 4,3 % betrug. Nach dem Abkühlen auf 80°C wurden 252,7 Teile eines Oxazolidins der Formel
    Figure imgb0014
    eingerührt und die Mischung anschließend unter kräftigem Rühren mit 2230 Teilen entionten Wassers versetzt. Es entstand eine wäßrige Dispersion mit einem Feststoffgehalt von 40 % und einer Viskosität von 20 Sekunden (Fordbecher, 4 mm). Die Dispersion zeigte im durchscheinenden Licht einen Tyndall-Effekt.
  • Beispiel 5
  • 1000 Teile eines Äthandiol/Butandiol-1,4/Diäthylenglykolpoly- adipates (MG = 2000) sowie 1100 Teile eines Adduktea aus stöchiometrischen Mengen (i) eines auf n-Butanol gestarteten Polyätheralkohols aus 83 % Äthylenoxid und 17 % Propylenoxid (MG - 1900), (ii) Hexamethylendiisocyanat und (iii) Diäthanolamin wurden bei 120°C im Wasserstrahlvakuum entwässert. Zu diesem Gemisch wurden 369,2 Teile Hexamethylendiisocyanat gegeben und die Mischung nach Anheben der Temperatur auf 100°C solange gerührt, bis der NCO-Gehalt der Schmelze 4,1 % betrug. Nach dem Abkühlen auf 30°C wurden 358,2 Teile eines Oxazolidins der Formel
    Figure imgb0015
    eingerührt und die Mischung anschließend unter kräftigem Rühren mit 6160 Teilen entionten Wassers versetzt. Die entstandene Dispersion hatte einen Festkörpergehalt von 30 %. Die Dispersion zeigte im durchscheinenden Licht einen Tyndall-Effekt.
  • Beispiel 6
  • 1192,5 Teile eines Polybutandioladipates (MG -2250) und 137,5 Teile eines auf Bisphenol A gestarteten Propylenoxidpolyäther (MG = 550) sowie 85,5 Teile eines auf n-Butanol gestarteten Polyätheralkohols aus 85 % Äthylenoxid und 15 % Propylenoxid und 85,2 Teile des in Beispiel 1 beschriebenen Addukts wurden bei 120°C im Wasserstrahlvakuum entwässert. Zu diesem Gemisch wurden bei 70°C 488,4 Teile 1-Isocyanato-3-isocyanatomethyl-3,5,5-trimethylcyclohexan gegeben und die Mischung nach Anheben der Temperatur auf 100°C solange gerührt, bis der NCO-Gehalt 5,0 % betrug. Nach dem Abkühlen auf 60°C wurden 437,4 Teile eines Bisoxazolidins der Formel
    Figure imgb0016
    eingerührt und die Mischung anschließend unter kräfigem Rühren mit 3320 Teilen entionten Wassers versetzt. Die entstandene Dispersion hatte einen Festkörpergehalt von 40 % und eine Viskosität von 18 Sekunden (Fordbecher, 4 mm). Sie zeigte im durchscheinenden Licht einen Tyndall-Effekt. Die Dispersion trocknet zu einem klaren, farblosen und elastischen Film auf, der folgende mechanische Daten besitzt:
  • Zugfestigkeit: 28,6 MPa
  • Bruchdehnung: 930 %
  • 250 Teile der Dispersion wurden mit 20 Teilen eines Butanonverkappten Triisocyanatohexylbiurets vermischt. Nach dem Auftrocknen eines Films wurde dieser 30 Minuten auf 160°C erhitzt. Die an diesem Film gemessenen mechanischen Daten waren:
  • Zugfestigkeit: 41,7 MPa
  • Bruchdehnung: 430 %
  • Beispiel 7
  • 500 Teile eines Polyäthylenphthalats (MG = 2000) und 332 Teile eines auf Bisphenol A gestarteten Polypropylenglykol- äthers (MG = 550) sowie 13,4 Teile Trishydroxymethylpropan und 104 Teile des in Beispiel 1 beschriebenen Addukts wurden bei 120°C im Wasserstrahlvakuum entwässert. Zu diesem Gemisch wurden bei 70°C 320 Teile Hexandiisocyanat geben und die Mischung nach Anheben der Temperatur auf 100°C solange gerührt, bis der NCO-Gehalt 4,7 % betrug. Nach dem Abkühlen auf 40°C wurden 246 Teile eines Oxazolidins der Formel
    Figure imgb0017
    eingerührt und die Mischung anschließend unter kräftigem Rühren mit einer Mischung aus 2260 Teilen entionten Wassers und 76 Teilen Äthylenglykolmonoäthylester versetzt. Es bildete sich eine Dispersion mit einem Festkörpergehalt von 40 %. Sie zeigte im durchscheinenden Licht einen Tyndall-Effekt.
  • Beispiel 8
  • 552 Teile eines auf Bisphenol A gestarteten Polypropylenglykol- äthers (MG = 550) wurden bei 120°C im Wasserstrahlvakuum entwässert und bei 70°C mit 320 Teilen Hexandiisocyanat vermischt. Nach dem Anheben der Temperatur auf 1009C wurde das Gemisch solange gerührt, bis der NCO-Gehalt 8,7 betrug. Die Mischung wurde auf 50°C abgekühlt und 238 Teile eines Addukts von 20 Molen Äthylenoxid an 1 Mol iso-Nonylphenol wurden in ihr aufgelöst. Nach der Zugabe von 320 Teilen eines Oxazolidins der Formel
    Figure imgb0018
    und 84 Teilen Äthylenglykolmonoäthyläther wurden unter kräftigem Rühren 2500 Teile entionten Wassers zugesetzt. Es entstand eine Dispersion mit einem Festkörpergehalt von 38 %. Sie zeigte im durchscheinenden Licht einen Tyndall-Effekt. Nach dem Ausgießen und Auftrocknen bildete sich ein klarer zäher Film, der hohe Härte besaß.
  • Beispiel 9
  • 556 Teile eines auf Bisphenol A gestarteten Polypropylenglykoläthers ( MG =550) und 93,6 Teile des in Beispiel 1 beschriebenen Addukts wurden bei 120°C im Wasserstrahlvakuum entwässert. Zu diesem Gemisch wurden bei 70°C 320 Teile Hexandiisocyanat gegeben und die Mischung nach Anheben der Temperatur auf 100°C solange gerührt, bis der NCO-Gehalt 6,3 % betrug. Bei 70°C wurde nach dem Vermischen mit 80 Teilen eines Oxazolidins der Formel
    Figure imgb0019
    12 Stunden lang gerührt. Darauf wurden 105 Teile Äthylenglykolmonoäthyläther zugesetzt und bei 500C 1590 Teile entionten Wassers eingerührt. Die entstandene Dispersion hatte einen Festkörpergehalt von 40 % und zeigte im durchscheinenden Licht einen Tyndall-Effekt. Sie trocknete zu einem klaren zähen und glänzenden Film auf.

Claims (3)

1) Verfahren zur Herstellung von im wesentlichen linearen Isocyanatpolyadditionsprodukten mit seitenständigen Hydroxylgruppen durch Umsetzung von freie Isocyanatgruppen und Oxazolidingruppen aufweisenden Reaktivsystemen mit Wasser, dadurch gekennzeichnet, daß man
a) im wesentlichen lineare Präpolymere, welche endständig sowohl Isocyanatgruppen als auch Oxazolidingruppen oder
b) ein, im wesentlichen lineare NCO-Präpolymere und Bisoxazolidine aufweisendes Gemisch

durch Vermischen mit Wasser kettenverlängert, wobei die Wassermenge so bemessen wird, daß pro Mol an im Reaktionsgemisch vorliegenden Oxazolidingruppen mindestens 1 Mol' Wasser vorliegt.
2) Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man als Präpolymere hydrophil modifizierte und/oder einen externen Emulgator enthaltende Präpolymere und einen bezüglich der Kettenverlängerungsreaktion hohen Wasserüberschuß verwendet, so daß unmittelbar eine wäßrige Dispersion bzw. Lösung der Polyadditionsprodukte erhalten wird.
3) Gemäß Anspruch 1 erhältliche, seitenständige Hydroxylgruppen aufweisende Isocyanat-Polyadditionsprodukte.
EP78100323A 1977-07-15 1978-07-07 Verfahren zur Herstellung von seitenständige Hydroxylgruppen aufweisenden Isocyanat-Polyadditionsprodukten und die nach diesem Verfahren erhaltenen Produkte. Expired EP0000381B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19772732131 DE2732131A1 (de) 1977-07-15 1977-07-15 Verfahren zur herstellung von seitenstaendige hydroxylgruppen aufweisenden isocyanat-polyadditionsprodukten
DE2732131 1977-07-15

Publications (2)

Publication Number Publication Date
EP0000381A1 true EP0000381A1 (de) 1979-01-24
EP0000381B1 EP0000381B1 (de) 1980-08-06

Family

ID=6014055

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100323A Expired EP0000381B1 (de) 1977-07-15 1978-07-07 Verfahren zur Herstellung von seitenständige Hydroxylgruppen aufweisenden Isocyanat-Polyadditionsprodukten und die nach diesem Verfahren erhaltenen Produkte.

Country Status (6)

Country Link
US (1) US4192937A (de)
EP (1) EP0000381B1 (de)
JP (1) JPS5420098A (de)
DE (2) DE2732131A1 (de)
ES (1) ES471750A1 (de)
IT (1) IT1105095B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0122552A2 (de) * 1983-04-13 1984-10-24 Bayer Ag Wässrige, vernetzerhaltige Polyurethanzubereitungen und ihre Verwendung zur Thermoaktiv-Einstrich-Umkehrbeschichtung
EP0372264A1 (de) * 1988-11-14 1990-06-13 Reichhold Chemicals, Inc. Hochleistungs-Einkomponenten-Urethanzusammensetzungen mit vorzüglichen Witterungseigenschaften sowie Verfahren zur Herstellung und Verwendung dergleichen
EP0477060A1 (de) * 1990-09-10 1992-03-25 Bostik Limited Zwei-Komponenten Polyurethan-Verschweissmittel, Verfahren zu deren Herstellung, sowie ihre Verwendung zum Schweissen einer Windschutzscheibe
EP2792349A2 (de) 2004-10-08 2014-10-22 Forward Pharma A/S Gesteuerte Freisetzung von pharmazeutischen Zusammensetzungen mit Fumarinsäureester

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3048085A1 (de) * 1980-12-19 1982-07-22 Bayer Ag, 5090 Leverkusen Dispersionen von sulfonatgruppen aufweisenden polymeren, ein verfahren zu ihrer herstellung, sowie ihre verwendung als beschichtungsmittel
DE3137748A1 (de) * 1981-09-23 1983-03-31 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von hitzeaktivierbare vernetzer enthaltenden waessrigen dispersionen oder loesungen von polyurethan-polyharnstoffen, die nach dem verfahren erhaeltlichen dispersionen oder loesungen, sowie ihre verwendung zur herstellung von ueberzuegen
JPS58144961A (ja) * 1982-02-24 1983-08-29 Fujitsu Ltd 記憶領域管理方式
DE3521618A1 (de) 1985-06-15 1986-12-18 Bayer Ag, 5090 Leverkusen In wasser dispergierbare polyisocyanat-zubereitung und ihre verwendung als zusatzmittel fuer waessrige klebstoffe
DE3630045A1 (de) * 1986-09-04 1988-03-17 Bayer Ag Klebstoff und die verwendung des klebstoffs zur herstellung von verklebungen
DE4418157A1 (de) 1994-05-25 1995-11-30 Basf Ag Thermokoagulierbare wässerige Polyurethan-Dispersionen
CN1070875C (zh) * 1995-01-13 2001-09-12 爱赛克斯特种产品公司 可用湿气固化的两组分聚氨酯粘合剂
EP0774475A3 (de) 1995-11-17 1997-10-01 Basf Ag Wässerige Dispersionen enthaltend ein Polyurethan mit oximblockierten Isocyanatgruppen und/oder Carbonylgruppen in Keto- oder Aldehydfunktion
US5922809A (en) * 1996-01-11 1999-07-13 The Dow Chemical Company One-part moisture curable polyurethane adhesive
AR005429A1 (es) * 1996-01-11 1999-06-23 Essex Specialty Prod Prepolimeros de poliuretano, composiciones adhesivas en un solo envase que incluyen dichos prepolimeros y procedimiento para adherir substratos con dichascomposiciones
US5852103A (en) * 1996-05-08 1998-12-22 Essex Specialty Products, Inc. Two-part moisture curable polyurethane adhesive
US7459167B1 (en) 2000-07-27 2008-12-02 3M Innovative Properties Company Biocidal polyurethane compositions and methods of use
ATE344286T1 (de) 2000-08-07 2006-11-15 Dow Global Technologies Inc Feuchtigkeitshärtbarer einkomponenten- polyurethanklebstoff
US6573375B2 (en) 2000-12-20 2003-06-03 Union Carbide Chemicals & Plastics Technology Corporation Liquid thickener for surfactant systems
DE10133789A1 (de) * 2001-07-16 2003-02-06 Basf Ag Wässrige Dispersionen für hydrolysefeste Beschichtungen
DE10238146A1 (de) 2002-08-15 2004-02-26 Basf Ag Wasseremulgierbare Isocyanate mit verbesserten Eigenschaften
DE10306243A1 (de) * 2003-02-14 2004-08-26 Bayer Ag Einkomponenten-Beschichtungssysteme
DE102004026118A1 (de) * 2004-05-28 2005-12-15 Bayer Materialscience Ag Klebstoffe
ES2638863T3 (es) 2005-02-24 2017-10-24 Basf Se Dispersiones acuosas de poliuretano endurecibles por radiación
DE102006036220A1 (de) * 2006-08-03 2008-02-07 Clariant International Limited Polyetheramin-Makromonomere mit zwei benachbarten Hydroxylgruppen und ihre Verwendung zur Herstellung von Polyurethanen
EP1918314A1 (de) 2006-10-31 2008-05-07 Sika Technology AG Polyurethanzusammensetzung mit guter Anfangsfestigkeit
ES2394520T3 (es) * 2006-12-22 2013-02-01 Basf Se Microcápsulas que contienen compuestos con grupos carbodiimida
DE102008000270A1 (de) 2007-02-14 2008-08-28 Basf Se Verfahren zur Herstellung von Polyurethandispersionen mit geringem Gehalt an hochsiedenden Lösungsmitteln
DE102008000478A1 (de) 2007-03-05 2008-09-11 Basf Se Polyurethan-Dispersionen mit Polyethercarbonatpolyolen als Aufbaukomponente
EP1975187A1 (de) * 2007-03-28 2008-10-01 Sika Technology AG Verfahren zur Herstellung von Polyurethanzusammensetzungen mit niedrigem Isocyanat-Monomergehalt
DE102007020523A1 (de) 2007-05-02 2008-11-06 Helling, Günter, Dr. Metallsalz-Nanogel enthaltende Polymere
DE102007026196A1 (de) 2007-06-04 2008-12-11 Basf Se Verfahren zur Herstellung wasseremulgierbarer Polyurethanacrylate
DE102008004178A1 (de) 2008-01-11 2009-07-16 Basf Se Textile Flächengebilde, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102008014211A1 (de) 2008-03-14 2009-09-17 Bayer Materialscience Ag Wässrige Dispersion aus anionisch modifizierten Polyurethanharnstoffen zur Beschichtung eines textilen Flächengebildes
DE102008038944A1 (de) * 2008-08-11 2010-02-18 Borealis Agrolinz Melamine Gmbh Thermoplastische Polymere auf Basis von N-haltigen Verbindungen
ATE539131T1 (de) * 2008-08-26 2012-01-15 Basf Se Klebstoffzusammensetzung für selbstklebende, wiederablösbare artikel auf basis von adhäsiven polymeren und organischen nanopartikeln
EP2419466B1 (de) 2009-04-14 2017-09-13 Basf Se Klebstoff aus polymeren mit kristallinen domänen, amorphem polyurethan und silanverbindungen
EP2419465B1 (de) 2009-04-14 2014-09-03 Basf Se Verwendung von polyurethanklebstoff aus polyesterdiolen, polyetherdiolen und silanverbindungen zur herstellung folienbeschichteter möbel
DE102010043486A1 (de) 2009-11-16 2011-05-19 Basf Se Kaschierverfahren unter Verwendung von Carbodiimid- und Harnstoffgruppen enthaltenden Klebstoffen
EP2368928B1 (de) 2010-03-24 2013-10-30 Basf Se Wasseremulgierbare Isocyanate mit verbesserten Eigenschaften
EP2368926B1 (de) 2010-03-25 2013-05-22 Basf Se Wasseremulgierbare Isocyanate mit verbesserten Eigenschaften
EP2388283A1 (de) 2010-05-18 2011-11-23 Bayer MaterialScience AG Verfahren zur Einstellung der Viskosität von anionischen Polyurethandispersionen
BR112013001530A2 (pt) 2010-07-29 2016-05-24 Basf Se uso de um adesivo de dispersão de poliuretano aquoso, processo para produzir películas compostas, e, película composta
US8956497B2 (en) 2010-07-29 2015-02-17 Basf Se Biodisintegratable composite foils
US9089624B2 (en) 2010-08-23 2015-07-28 Basf Se Ultrathin fluid-absorbent cores comprising adhesive and having very low dry SAP loss
CN103403049B (zh) 2010-12-20 2016-08-10 巴斯夫欧洲公司 制备聚氨酯-聚丙烯酸酯复合分散体的方法
DE102011015459A1 (de) 2011-03-29 2012-10-04 Basf Se Polyurethane, ihre Herstellung und Verwendung
EP2691465B1 (de) 2011-03-30 2015-09-09 Basf Se Latent reaktive polyurethandispersion mit aktivierbarer vernetzung
US8841369B2 (en) 2011-03-30 2014-09-23 Basf Se Latently reactive polyurethane dispersion with activatable crosslinking
JP2014519544A (ja) 2011-06-14 2014-08-14 ビーエーエスエフ ソシエタス・ヨーロピア 放射線硬化可能な水性ポリウレタン分散液
US9005762B2 (en) 2011-12-09 2015-04-14 Basf Se Use of aqueous polyurethane dispersions for composite foil lamination
JP6104271B2 (ja) 2011-12-09 2017-03-29 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 複合シート貼り合わせのための水性ポリウレタン分散液の使用
US10144553B2 (en) 2012-07-04 2018-12-04 Basf Se Bonded packaging system for foods
US20150247076A1 (en) 2012-09-18 2015-09-03 Basf Se Polymers comprising a polyurethane backbone endcapped with reactive (meth)acrylic terminating groups and their use as adhesives
EP2900735B1 (de) 2012-09-28 2016-09-14 Basf Se Wasseremulgierbare isocyanate mit verbessertem glanz
EP2914642B1 (de) 2012-11-02 2017-01-18 Basf Se Verwendung von wässrigen polyurethandispersionen zur kaschierung von formkörpern
WO2014128031A1 (de) 2013-02-22 2014-08-28 Basf Se Verfahren zur herstellung von wässrigen polyurethanzubereitungen
EP2992027A1 (de) 2013-05-02 2016-03-09 Basf Se Wasseremulgierbare isocyanate für beschichtungen mit verbessertem glanz
WO2015055591A1 (en) 2013-10-16 2015-04-23 Basf Se Process for preparing water-emulsifiable polyurethane acrylates
KR102231319B1 (ko) 2014-01-17 2021-03-24 바스프 에스이 폴리우레탄 포함 수성 분산액을 포함하는 라미네이션 인쇄 잉크
DE102014204582A1 (de) 2014-03-12 2015-09-17 Basf Se Neue Polymerdispersionen
JP2017523263A (ja) 2014-06-10 2017-08-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se アシルモルホリンを含有するポリマー分散液
WO2016016286A1 (de) 2014-08-01 2016-02-04 Basf Se Verfahren zur herstellung und verwendung wässriger polyurethan-polyacrylat-hybriddispersionen sowie deren verwendung in beschichtungsmitteln
AU2015357109A1 (en) 2014-12-05 2017-06-29 Basf Se Aqueous adhesive dispersion containing polyurethanes and ethoxylated fatty alcohols
WO2016162215A1 (de) 2015-04-07 2016-10-13 Basf Se Polymerdispersionen enthaltend n-acylpyrrolidine
EP3491064B1 (de) 2016-08-01 2021-09-01 Stahl International B.V. Polymerdispersionen mit verringerter emission von acetaldehyd
WO2018108631A1 (de) 2016-12-14 2018-06-21 Basf Se Wasseremulgierbare isocyanate mit verbesserten eigenschaften
US10385261B2 (en) 2017-08-22 2019-08-20 Covestro Llc Coated particles, methods for their manufacture and for their use as proppants
WO2019072590A1 (de) 2017-10-11 2019-04-18 Basf Se Schutzfolien, hergestellt aus polyolefinträgermaterial, primer und strahlungsvernetzbarem schmelzklebstoff
EP3755753B1 (de) 2018-02-21 2022-07-27 Basf Se Verfahren zur herstellung von mit klebstoff beschichteten artikeln
EP3775084A1 (de) 2018-04-13 2021-02-17 Basf Se Sauerstoffabsorbierende wässrige kaschierklebstoffzusammensetzung
US20220111626A1 (en) 2019-01-11 2022-04-14 Basf Se Film coating method using engraving roller system
EP3986944A1 (de) 2019-06-24 2022-04-27 Basf Se Wasseremulgierbare isocyanate mit verbesserten eigenschaften
CN115135684A (zh) 2020-03-02 2022-09-30 巴斯夫欧洲公司 在家庭堆肥条件下可生物分解的复合箔
US20230211598A1 (en) 2020-06-09 2023-07-06 Basf Se Process for recycling of bonded articles
WO2022179912A1 (en) 2021-02-24 2022-09-01 Basf Se Adhesive labels comprising biodegradable aqueous polyurethane pressure-sensitive adhesive
US20240209173A1 (en) 2021-04-22 2024-06-27 Basf Se Process for preparing coated shaped bodies and their use
WO2023117977A1 (en) 2021-12-21 2023-06-29 Basf Se Chemical product passport
WO2024083787A1 (en) 2022-10-18 2024-04-25 Basf Se Storage-stable coated particles and their preparation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533983A (en) * 1966-06-01 1970-10-13 Furane Plastics Thermosetting phenyl glycidyl ether derivatives of isocyanate-terminated organic compounds
US3743626A (en) * 1968-10-18 1973-07-03 Rohm & Haas Hydrocurable oxazolidine-isocyanate compositions
US3702839A (en) * 1969-07-25 1972-11-14 Monsanto Res Corp Process for preparing 2-oxazolidone polymers
BE757998A (fr) * 1969-10-28 1971-04-26 Henkel & Cie Gmbh Procede de fabrication de matieres synthetiques contenant des groupes urethane
US3763070A (en) * 1970-06-03 1973-10-02 Ici Ltd Hydraulic cement with polyisocyanate and aliphatic polyepoxide
US3817938A (en) * 1971-02-12 1974-06-18 K Ashida Polyoxazolidone catalyst
DE2632513C3 (de) * 1976-07-20 1979-09-06 Bayer Ag, 5090 Leverkusen Mit Wasser härtbare in Abwesenheit von Wasser lagerfähige Gemische auf Polyurethanbasis
US4118373A (en) * 1977-05-04 1978-10-03 The Dow Chemical Company Preparation of urethane elastomers from epoxy resin, polyols and polyisocyanates using a catalyst composition of an organometal salt with either nitrogen or phosphorus compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Keine Entgegenhaltungen. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0122552A2 (de) * 1983-04-13 1984-10-24 Bayer Ag Wässrige, vernetzerhaltige Polyurethanzubereitungen und ihre Verwendung zur Thermoaktiv-Einstrich-Umkehrbeschichtung
EP0122552A3 (en) * 1983-04-13 1986-11-26 Bayer Ag Aqueous polyurethane compositions containing a cross-linker, and their use in thermo-active one-layer transfer coating
EP0372264A1 (de) * 1988-11-14 1990-06-13 Reichhold Chemicals, Inc. Hochleistungs-Einkomponenten-Urethanzusammensetzungen mit vorzüglichen Witterungseigenschaften sowie Verfahren zur Herstellung und Verwendung dergleichen
EP0477060A1 (de) * 1990-09-10 1992-03-25 Bostik Limited Zwei-Komponenten Polyurethan-Verschweissmittel, Verfahren zu deren Herstellung, sowie ihre Verwendung zum Schweissen einer Windschutzscheibe
EP2792349A2 (de) 2004-10-08 2014-10-22 Forward Pharma A/S Gesteuerte Freisetzung von pharmazeutischen Zusammensetzungen mit Fumarinsäureester

Also Published As

Publication number Publication date
IT1105095B (it) 1985-10-28
DE2732131A1 (de) 1979-01-25
JPS6131728B2 (de) 1986-07-22
JPS5420098A (en) 1979-02-15
ES471750A1 (es) 1979-02-01
EP0000381B1 (de) 1980-08-06
IT7850255A0 (it) 1978-07-12
US4192937A (en) 1980-03-11
DE2860113D1 (en) 1980-11-27

Similar Documents

Publication Publication Date Title
EP0000381B1 (de) Verfahren zur Herstellung von seitenständige Hydroxylgruppen aufweisenden Isocyanat-Polyadditionsprodukten und die nach diesem Verfahren erhaltenen Produkte.
EP0269972B1 (de) Verfahren zur Herstellung von in Wasser löslichen oder dispergierbaren Polyurethanen und ihre Verwendung zur Beschichtung beliebiger Substrate
EP0000029B1 (de) Verfahren zur Herstellung von wässrigen Polyurethan-Dispersionen und -Lösungen und deren Verwendung zur Beschichtung von flexiblen Substraten
EP0009760B1 (de) Verfahren zur Herstellung von wässrigen Dispersionen oder Lösungen von Polyurethan-Polyharnstoffen sowie ihre Verwendung
EP0004069B1 (de) Verfahren zur Herstellung von wässrigen Lösungen oder Dispersionen von Polyurethanen sowie ihre Verwendung zur Herstellung von Überzügen, Lacken oder Beschichtungen
DE2446440C3 (de) Verfahren zur Herstellung von wäßrigen Dispersionen von Sulfonatgruppen aufweisenden Polyurethanen
EP0242731B1 (de) Verfahren zur Herstellung von wässrigen Dispersionen von Polyurethan-Polyharnstoffen und ihre Verwendung als oder zur Herstellung von Beschichtungsmitteln
EP0304718B1 (de) Wässrige Lösungen und Dispersionen von Polyisocyanat-Polyadditionsprodukten, ein Verfahren zur Herstellung der wässrigen Lösungen und Dispersionen sowie ihre Verwendung als Klebstoff
EP0000568B1 (de) Verfahren zur Herstllung von wässrigen Dispersionen oder Lösungen von Isocyanat-Polyadditionsprodukten; Verwendung dieser Dispersionen bzw. Lösungen zur Herstellung von Überzügen und Beschichtungen
EP0154768B1 (de) Verfahren zur Herstellung von Polyurethanen, Polyurethane mit aromatischen Aminoendgruppen und ihre Verwendung
DE3630045A1 (de) Klebstoff und die verwendung des klebstoffs zur herstellung von verklebungen
EP0103174B1 (de) Verfahren zur Herstellung von vernetzten Polyurethan-Ionomerdispersionen
DE3142255T1 (de) Polymer compositions and manufacture
EP0392352A2 (de) Wässrige Dispersionen von durch Einwirkung von energiereicher Strahlung vernetzbaren Polyurethanen
EP0044460A1 (de) Feste, in Wasser dispergierbare, Isocyanatgruppen aufweisende Kunststoffvorläufer und Verfahren zur Herstellung von wässrigen Kunststoffdispersionen unter Verwendung dieser Kunststoffvorläufer
DE2651505A1 (de) Kationische elektrolytstabile dispersionen
DE3140873A1 (de) Stabile waessrige polyutheran-dispersion
DE3831169A1 (de) Waessrige dispersionen
EP0071898A1 (de) Langzeit-lagerbeständige, heterogene Einkomponentensysteme aus Polyol-/Diphenylmethan-uretdion-diisocyanaten, Verfahren zu ihrer Herstellung und ihre Verwendung zur Synthese hochmolekularer Polyurethane
DE2744544A1 (de) Waessrige harnstoff-urethan-dispersionen
EP0003521A1 (de) Wässrige Lösungen oder Dispersionen von Polyisocyanat-Polyadditionsprodukten, ein Verfahren zu ihrer Herstellung, sowie ihre Verwendung als Klebemittel
WO2004111103A1 (de) Selbstrvernetzende wässrige polyurethandispersionen
EP0538649B1 (de) Modifizierte Polyharnstoffe
EP0097869A2 (de) Primäre aromatische Aminogruppen, Urethangruppen und Polyestergruppierungen aufweisende Verbindungen, Verfahren zu ihrer Herstellung und ihre Verwendung als Baukomponente von Polyurethanen
EP0148462B1 (de) Verfahren zur in situ-Herstellung von Harnstoffgruppen-enthaltenden Diisocyanaten in Polyolen, dem Verfahren entsprechende Dispersionen oder Lösungen sowie ihre Verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB NL

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB NL

REF Corresponds to:

Ref document number: 2860113

Country of ref document: DE

Date of ref document: 19801127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900628

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900718

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19910731

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19910731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940615

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940628

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940731

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950707

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960402

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT