EA011202B1 - Линзовый автостереоскопический дисплей и способ синтеза автостереоскопического изображения - Google Patents

Линзовый автостереоскопический дисплей и способ синтеза автостереоскопического изображения Download PDF

Info

Publication number
EA011202B1
EA011202B1 EA200700889A EA200700889A EA011202B1 EA 011202 B1 EA011202 B1 EA 011202B1 EA 200700889 A EA200700889 A EA 200700889A EA 200700889 A EA200700889 A EA 200700889A EA 011202 B1 EA011202 B1 EA 011202B1
Authority
EA
Eurasian Patent Office
Prior art keywords
screen
image
specified
color
dimensional
Prior art date
Application number
EA200700889A
Other languages
English (en)
Other versions
EA200700889A1 (ru
Inventor
Ксавье Левек
Арман Азуле
Original Assignee
Артистик Имэджез
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34949950&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EA011202(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Артистик Имэджез filed Critical Артистик Имэджез
Publication of EA200700889A1 publication Critical patent/EA200700889A1/ru
Publication of EA011202B1 publication Critical patent/EA011202B1/ru

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/317Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using slanted parallax optics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Liquid Crystal (AREA)

Abstract

Автостереоскопическое устройство дисплея содержит матричный экран (2) дисплея и матрицу (4) линз, которая расположена перед ним, и ось линз наклонена относительно вертикальной оси, указанный экран (2) дисплея, в котором указанная матрица (4) линз размещена таким образом, что принимает и оптически обрабатывает растровое изображение, переданное экраном дисплея, причем указанное растровое изображение кодировано для объединения множества (Р) точек обзора одной и той же самой сцены, экран дисплея содержит матрицу пикселей изображения, каждый из которых содержит три ячейки цвета, организованные в строках и столбцах и расположенных таким образом, что колонки одного цвета (R, V, В) формируются на экране. Изображение, представляемое на экране (2) дисплея, формируется узлом трехмерных пикселей (P3D), каждый из которых объединяет множество (Р) точек обзора пиксельного изображения сцены, и каждый трехмерный пиксель (P3D) занимает 3×Р ячейки цвета в двух смежных строках на экране. Указанное изобретение используется, в частности, для трехмерных экранов компьютеров и телевизоров.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к устройству линзового автостереоскопического дисплея. Оно также относится к способу автостереоскопического дисплея, выполненного в этом устройстве, а также к соответствующему способу синтеза автостереоскопического дисплея.
Область изобретения более конкретно относится к трехмерным цветным компьютерным или телевизионным экранам, предназначенным, например, для представления публичной рекламы или сообщений общественной информации, или для отображения содержания образовательного или развлекательного характера.
Уровень техники
Известны устройства автостереоскопического дисплея, для которых не требуются очки, в которых воплощены либо технологии барьера параллакса, или линзовые технологии. Обычно экран автостереоскопического дисплея включает в себя построенный по плазменной или жидкокристаллической (ЖКД, ЬСО) технологии, двумерный электронный экран, обеспечивающий публичное представление ранее кодированного содержания, и экран 2Ό-3Ό преобразования, расположенный на близком расстоянии от двумерного экрана и работающий во время представления, причем этот экран может быть либо экраном типа барьера параллакса, или линзового типа.
Барьеры параллакса воплощаются просто и являются не дорогостоящими при производстве, но при их применении возникает препятствие, связанное с необходимостью использования слишком большого количества фотонов, в частности, когда требуется кодировать множество углов обзора. Таким образом, возможно передавать менее чем 10% маски автостереоскопического экрана. Это приводит к проблемам, связанным с потоком фотонов и яркостью экрана.
Автостереоскопические экраны, в которых воплощаются матрицы линз, обладают очень малыми потерями фотонов и поэтому имеют коэффициент передачи, близкий к 100%, но являются более дорогостоящими при производстве и более сложными при использовании.
Однако существующие в настоящее время линзовые цветные автостереоскопические экраны имеют проблему потери горизонтальной разрешающей способности, которая связана с количеством точек обзора. Разрешающую способность, в целом, разделяют на множество углов обзора.
Таким образом, возникает проблема поиска соответствующего способа кодирования Р точек обзора на 2Ό электронном экране для уравновешивания горизонтальной и вертикальной потери разрешающей способности при одновременном сохранении кодирования цветов КОВ (красный, зеленый, синий). Стереоскопический эффект обязательно должен представлять собой горизонтальный эффект, из-за морфологии глаз. Таким образом, стереоскопическое кодирование обязательно должно быть горизонтальным.
Таким образом, в документе \¥О 0010332 раскрыто горизонтальное кодирование в строке. Кодирование цвета также выполняется горизонтально в строке для разных цветов в последовательном 3Ό пикселе (линзе). Это означает, что линзы расположены вертикально, но потеря разрешающей способности возникает только по горизонтальной оси. Вследствие этого воспринимаемое изображение становится сильно дисимметричным. Например, если рассматривать 2Ό экран с размером 1200x768 пикселей, и если кодируются 8 изображений, разрешающая способность для каждой точки обзора становится равной 150x768, что представляет существенную потерю разрешающей способности по всему изображению.
Кроме того, цвета, кодирующие 3Ό пиксель, располагаются на очень большом расстоянии друг от друга, которое представляет собой удвоенное значение шага линз, при кодировании трех цветов. В результате получают смешивание цветов, которое плохо воздействует на сетчатку глаза, если требуется получить множество углов обзора.
В автостереоскопическом экране, раскрытом в документе ЕР 0791847В1, все виды кодированы горизонтально, но также и вертикально минимум в 3 строках пикселей экрана. Поверхность кодирования цвета, по меньшей мере, равна одному размеру линзы (в горизонтальном направлении) на 3 пикселя экрана (в вертикальном направлении). При этом потеря разрешающей способности в горизонтальном и вертикальном направлениях является однородной. Однако при кодировании, в том виде, как оно выглядит соответствующим для 2Ό экранов, в которых промежутки между пикселями и между ячейками цветов в пикселях является существенным, как в случае некоторых ЖКД экранов, такой подход, в отличие от этого, не может быть удовлетворительным для плазменных экранов, в которых ячейки расположены очень близко друг к другу, или даже иногда практически соединяются вместе, что может привести к существенному смешению изображений различных видов.
Сущность изобретения
Цель настоящего изобретения состоит в создании устройства линзового цветного автостереоскопического дисплея, которое позволяет получить лучшую разрешающую способность, чем в используемых в настоящее время устройствах, и которое особенно пригодно для автостереоскопического оборудования, имеющего малое количество точек обзора, обычно меньше 8.
Эта цель достигается с помощью устройства автостереоскопического дисплея, включающего в себя матричный экран дисплея и матрицу линз, расположенную перед экраном дисплея и имеющую ось линз, которая наклонена относительно вертикальной оси указанного экрана дисплея, причем эта матрица линз
- 1 011202 разработана так, что она оптически принимает и обрабатывает растровое изображение, передаваемое указанным экраном дисплея, причем указанное растровое изображение кодировано так, что выполняется интеграция множества Р точек обзора одной сцены, причем указанный экран дисплея включает в себя матрицу пикселей экрана, каждый из которых включает в себя три ячейки цветов, причем указанные ячейки цветов организованы в строки и столбцы, расположенные таким образом, что формируются столбцы одного цвета (К, 6, В) на указанном экране.
В соответствии с изобретением, изображение, представляемое экраном 2 дисплея, состоит из набора трехмерных пикселей Ρ3Ό, каждый из которых составляет множество Р точек обзора пикселя изображения указанной сцены, и каждый трехмерный пиксель Ρ3Ό занимает 3хР ячеек цвета в двух соседних столбцах на указанном экране.
В этом случае под изображением следует понимать сцену, которую представляют в виде рельефного изображения. С этой целью требуется множество Р точек обзора этого изображения. Один пиксель изображения соответствует Р точкам обзора одного пикселя сцены.
Таким образом, в устройстве дисплея, в соответствии с изобретением, становится возможным уравновесить потери горизонтальной и вертикальной разрешающей способности экрана. При этом, для 4 точек обзора получается одинаковая потери разрешающей способности с коэффициентом 2 в горизонтальном и вертикальном направлениях. Для большего количества точек обзора (например, 5 или 7), достигается отношение потери горизонтальной разрешающей способности к вертикальной разрешающей способности, равное 1,25 (5 точек обзора) и 1,75 (7 точек обзора), причем оба эти значения значительно отличаются от отношений потери разрешающей способности, наблюдаемых в автостереоскопических устройствах предшествующего уровня техники.
Фактически в отличие от технологий кодирования, используемых в устройствах предшествующего уровня техники, в настоящем изобретении сделано частичное разделение между, с одной стороны, задачей стереоскопии, которая обязательно должна быть решена в горизонтальном измерении, и задачей кодирования цветов, которая решается здесь в двух строках по оси кодирования, то есть, фактически, по оси матрицы линз. Каждый трехмерный пиксель Ρ3Ό устройства дисплея в соответствии с изобретением может использовать 2хР смежных ячеек цвета, в одной из двух смежных строк, и в другой строке Р смежных ячеек цвета.
Трехмерные пиксели размещены так, что два горизонтальных смежных трехмерных пикселя перекрываются.
Матрица линз состоит из параллельных цилиндрических линз с таким шагом и углом расположения линз, что каждый трехмерный пиксель, по существу, охватывается двумя смежными элементарными линзами.
Угол α наклона, предпочтительно, выбирают таким, чтобы тангенс α был, по существу, равен отношению ширины ОСЬ ячейки цвета к высоте ССу указанной ячейки цвета.
В одном конкретном варианте выполнения изобретения каждая точка обзора кодирована с каждым трехмерным пикселем:
в первой ячейке первого цвета, расположенной в первой строке, во второй ячейке второго цвета, расположенной в указанной первой строке и смещенной на некоторое количество Р ячеек относительно указанной первой ячейки, и в третьей ячейке третьего цвета, расположенной во второй строке, смежной с указанной первой строкой, причем указанная третья ячейка горизонтально смещена на одну ячейку относительно указанной первой ячейки.
Количество Р точек обзора для устройства автостереоскопического дисплея в соответствии с изобретением, предпочтительно, выбирают из 2, 4, 5 или 7.
Устройство автостереоскопического дисплея в соответствии с изобретением, предпочтительно, может включать в себя плазменный экран, но также экран, построенный по технологии ЖКД, или любой другой матричный экран.
В соответствии с другим аспектом изобретения предложен способ функционирования устройства автостереоскопического дисплея в соответствии с изобретением, причем способ включает в себя отображение изображения, ранее кодированного из изображения, полученного или собранного из множества Р точек обзора, через экран двумерного дисплея, и прием и оптическую обработку указанного отображаемого изображения через матрицу линз, расположенную перед указанным экраном дисплея, и имеющую ось линз, которая наклонена относительно вертикальной оси указанного экрана дисплея для дистанционного генерирования трехмерного изображения, причем указанное растровое изображение кодировано для интегрирования множества точек Р обзора указанного изображения, отличающийся тем, что оптическая обработка, выполняемая указанной матрицей линз, разработана так, что выполняется обработка кодированного изображения, состоящего из набора трехмерных пикселей Ρ3Ό, каждый из которых составляет множество Р точек обзора пикселя изображения указанной сцены, и в каждый трехмерный пиксель Ρ3Ό занимает 3хР точек в двух соседних столбцах на указанном экране.
- 2 011202
В соответствии с другим аспектом изобретения предложен способ синтеза цветного автостереоскопического изображения, выполненный для подачи в устройство дисплея, в соответствии с изобретением, содержания изображения, включающего в себя синтез из множества Р предварительно полученных или рассчитанных цифровых изображений, каждое в форме матрицы пикселей изображения, представляющих сцену, кодированной матрицы дисплея, состоящей из совокупности трехмерных пикселей, каждый из которых объединяет множество Р точек обзора пикселя изображения указанной сцены, причем каждый трехмерный пиксель занимает 3хР ячеек цвета в двух смежных строках на указанном экране.
Краткое описание чертежей
Другие преимущества и характеристики изобретения будут понятны при изучении подробного описания не ограничивающего варианта выполнения и из приложенных чертежей, на которых на фиг. 1 показан обзорный вид устройства автостереоскопического дисплея в соответствии с изобретением, на фиг. 2А, 2В, 2С и 2Ό представлена внутренняя структура кодированного изображения, обрабатываемого устройством автостереоскопического дисплея в соответствии с изобретением, для количества точек обзора, равного 2, 4, 5 и 7, соответственно, и на фиг. 3 показаны основные этапы способа синтеза изображения в соответствии с изобретением.
Подробное описание изобретения
Пример устройства автостереоскопического дисплея в соответствии с изобретением будет вначале описан со ссылкой на фиг. 2Α-2Ό.
Устройство 1 автостереоскопического дисплея включает в себя плазменный экран 2, соединенный с электронным модулем 3 для генерирования кодированных изображений и линзовым фильтром 4 в форме матрицы параллельных цилиндрических линз, наклоненных под углом относительно вертикальной оси плазменного экрана, причем этот линзовый фильтр 4 расположен перед плазменным экраном на расстоянии, по существу, равном фокусному расстоянию Р1 линз, которое в данном примерном варианте выполнения составляет 9 мм, в то время как каждая ячейка цвета экрана дисплея имеет ширину 286 мкм.
Устройство автостереоскопического дисплея в соответствии с изобретением, как ожидается, должно обеспечить отображение рекламы или информационных сообщений на достаточно большом расстоянии Ό от экрана, например на расстоянии, большем чем 2 м, при этом каждый глаз ОС ΟΌ зрителя будет получать отдельные оптические изображения 1т, Ιη, предоставляемые матрицей 4 линз и, благодаря чему, через стереоскопический эффект этот зритель будет воспринимать трехмерное изображение.
Фокусное расстояние ί цилиндрических линз зависит от требуемого оптимального расстояния. На таком оптимальном расстоянии необходимо, чтобы два последовательных изображения, кодированных с помощью двух последовательных ячеек цвета, были разделены на среднее расстояние Оу, равное расстоянию между двумя глазами, например на 65 мм. Фокусное расстояние ί линз может быть определено на основе ширины СС11 ячеек цвета и оптимального расстояния Όορΐ, используя формулу:
ί = СС11. Όορΐ/Оу « 9 мм
Если, например, требуемое оптимальное расстояние Όορΐ равно 2 м и ширина СС11 равна 286 мкм, тогда фокусное расстояние ί равно приблизительно 9 мм.
Ширина 1 линзы зависит, в частности, от требуемого оптимального расстояния. Фактически, когда зритель находится на оптимальном расстоянии (конечном расстоянии), расстояние, разделяющее две точки двумерного экрана, просматриваемые одновременно одним глазом зрителя через две последовательные цилиндрические линзы не равно точно горизонтальному расстоянию, разделяющему оси цилиндрических линз. Взаимозависимость пропорциональности равна Όορΐ /(Όορΐ + ί).
Ширину 1 каждого элемента линзы, таким образом, можно определить из следующей формулы:
1= οο§ α. Ρ. СС11. Όορΐ /(Όορΐ+ί)
Если, например, требуемое оптимальное расстояние Όορΐ равно 2 м, затем, ширина и высота ячейки цвета СС11 равны 286 мкм и 808 мкм, соответственно, фокусное расстояние ί равно 9 мм, количество Р точек обзора равно 4, и ширина 1 линзы тогда равна приблизительно 1,074 мм.
Как показано на фиг. 2А, 2В и 2С, плазменный экран состоит из матрицы элементарных ячеек, содержащей строки пикселей Е1-Ь6 на фиг. 2, и столбцы пикселей С1-С6 на фиг. 2, причем каждый столбец пикселей включает в себя три столбца ячеек цветов В V В. В качестве не ограничивающей иллюстрации каждая ячейка имеет высоту ССу и ширину СС11. Столбцы матрицы дисплея последовательно представляют собой ячейки красного, зеленого и синего цветов.
Для иллюстрации, для экрана, построенного по плазменной технологии, коммерчески доступного в настоящее время, такого как ΡΙΟΝΕΕΒ ΡΌΡ50ΜΧΕ1, который соответствует матрице из 768x1280 пикселей, каждая ячейка имеет высоту ССу, равную 808 мкм и ширину С'С'11 286 мкм.
В первом примерном варианте выполнения, представленном на фиг. 2А, и в соответствии с конфигурацией, имеющей две точки обзора, трехмерный пиксель Ρ3Ό2 (1,1) состоит из четырех последовательных ячеек цветов V, В, В, V в первой нижней строке, в которой кодированы точки обзора 01,1, 11=1, 011, 1ι,ι, соответственно, и двух ячеек цветов В, В во второй верхней строке, в которой, соответственно, кодированы точки обзора 0ι,ι и 11=1. Трехмерный пиксель Ρ3Ό2 (1,2) имеет перевернутую, представленную
- 3 011202 вверх ногами, структуру по сравнению с пикселем Ρ3Ό2 (1,1) - каждый трехмерный пиксель охвачен двумя цилиндрическими линзами ЬС, шаг 1 между линзами которых определен так, чтобы Ι/εοκα было равно удвоенному значению произведения ширины ячейки цвета и отношения Όορΐ/(Όορΐ+Γ). При этом происходит потеря разрешающей способности с коэффициентом 2 в вертикальном направлении и с коэффициентом 1 в горизонтальном направлении.
Во втором примерном варианте выполнения, показанном на фиг. 2В, и в соответствии с конфигурацией имеющей 4 точки обзора, каждый трехмерный пиксель занимает 12 ячеек цвета в двух строках: 8 ячеек в одной строке и 4 ячейки в смежной строке. Таким образом, трехмерный пиксель, Ρ3Ό4(1, 2) содержит четыре ячейки в строке Ь1, каждая кодирована в соответствии с точкой обзора (-1, 0, 1, 2), и восемь ячеек в строке Ь2, дважды представляющей последовательность ячеек, кодированных в соответствии с четырьмя точками обзора. Каждый трехмерный пиксель охвачен двумя цилиндрическими линзами ЬС, шаг 1 между линзами которых определен так, чтобы 1/ео5</. было равно четырехкратному значению произведения ширины ячейки цвета и отношения Όορΐ/(Όορΐ+Γ).
Каждая точка обзора трехмерного пикселя кодирована в трех несмежных ячейках. Таким образом, пиксель изображения 21>2 кодирован в ячейке Я в строке Ь2 экрана и столбце С2 экрана, ячейке V в строке Ь1 экрана и столбце С2 экрана и в ячейке В в строке Ь1 экрана и в колонке С3 экрана.
Горизонтально смежные трехмерные пиксели перекрываются друг с другом и имеют перевернутую геометрическую структуру. Потеря разрешающей способности при применении этой конфигурации, имеющей 4 точки обзора, происходит с коэффициентом 2 в вертикальном направлении и в горизонтальном направлении.
В третьем примерном варианте выполнения, показанном на фиг. 2С, и в соответствии с конфигурацией, имеющей 5 точек обзора, каждый трехмерный пиксель занимает 15 ячеек в двух строках: 10 ячеек в первой строке, что соответствует двум последовательностям из 5 ячеек, каждая из которых кодирует 5 точек обзора (-2, -1, 0, 1, 2), и 5 ячеек в смежной строке, что соответствует последовательности из 5 ячеек, кодирующих 5 точек обзора. Таким образом, без ограничений и с целью иллюстрации трехмерный пиксель Ρ3Ό5 (1, 2) включает в себя в строке Ь1 десять ячеек последовательно кодирующих точки обзора (-2, -1, 0, 1, 2, -2, -1, 0, 1, 2) в цветах (В, Я, V, В, Я, V, В, Я, V, В), и в строке Ь2 пять ячеек последовательно кодирующих точки обзора (-2, -1, 0, 1, 2) в цветах (Я, V, В, Я, V).
Каждый трехмерный пиксель охвачен двумя цилиндрическими линзами ЬС, шаг 1 между линзами которых определен так, чтобы Ι/εοκα было равно пятикратному значению произведения ширины ячейки цвета и отношения ΌορΙ/(ΌορΙ+Γ).
В этой конфигурации, имеющей 5 точек обзора, два трехмерных пикселя используют десять пикселей экрана. При этом происходит потеря разрешающей способности с коэффициентом 2,5 в горизонтальном направлении и с коэффициентом 2 в вертикальном направлении. В четвертом примерном варианте выполнения, показанном на фиг. 2Ό, и в соответствии с конфигурацией имеющей 7 точек обзора, каждый трехмерный пиксель занимает 21 ячейку в двух строках: 14 ячеек в первой строке, что соответствует двум последовательностям из 7 ячеек кодирования, каждая из которых кодирует 7 точек обзора (-3, -2, -1, 0, 1,2, 3), и 7 ячеек в смежной строке, что соответствует последовательности из 7 ячеек, кодирующих 7 точек обзора.
Для каждого пикселя изображения, данная точка обзора кодирована в трехмерном пикселе в трех ячейках цвета, разделенных на две ячейки в строке и одну ячейку в смежной строке. Например, пиксель 2и изображения кодирован в ячейке V, в строке Ь2 экрана и колонке С4 экрана, ячейке В, в строке Ь1 экрана, колонке С4 экрана, и в ячейке Я, в строке Ь1 экрана и колонке С7 экрана.
Как в предыдущих конфигурациях, имеющих 2, 4 и 5 точек обзора, все смежные трехмерные пиксели перекрываются горизонтально. В этой конфигурации, имеющей 7 точек обзора, 2 трехмерных пикселя используют 14 пикселей экрана. При этом происходит потеря разрешающей способности с коэффициентом 3,5 в горизонтальном направлении и с коэффициентом 2 в вертикальном направлении.
Пример воплощения способа синтеза автостереоскопических изображений в соответствии с изобретением будет описан ниже со ссылкой на фиг. 3, причем эти изображения предназначены для подачи в устройство автостереоскопического дисплея в соответствии с изобретением.
Прежде всего рассматривается предварительная фаза (I) получения цифровых изображений в соответствии с множеством Ρ точек обзора, количество которых равно, например, 4, которые соответствующим образом выбирают для получения стереоскопического эффекта. Ρ цифровых изображений могут быть либо синтезированы, или могут быть собраны с удаленных сайтов или из банков изображений, или другим образом получены при съемке фильма.
Для каждой точки обзора каждое из этих цифровых изображений, Ι1, Ι2,..., 1к, ..., Ιρ состоит из матрицы пикселей изображений, причем каждый их этих пикселей Ρι(ΐ, _)),.., Ρκ(ί, ί) изображения содержит три части информации цветов Я V В.
Вторая фаза (II) способа синтеза состоит в построении матрицы МС дисплея путем формирования для каждой точки (ί, _]) изображения для точек обзора 3Ό пикселя, обозначаемого как Ρ3Ό(ί, _]) на фиг. 3, путем подборки 4 точек обзора пикселя изображения, используя способ кодирования, специфичный для
- 4 011202 изобретения, т.е. комбинированное горизонтальное и вертикальное кодирование каждого пикселя Ρ4Ι,
Ρκ(ί, ΐ) кодирования для получения трехмерного пикселя Ρ3Ό(ί, _]). Для иллюстрации, в этом трехмерном пикселе пиксель изображения Ρ2(ί, _)) вносит вклад в ячейку V в верхней строке и две ячейки В и Я в верхней строке.
В третьей фазе (III), матрицы МС дисплея, каждая из которых соответствует изображению кодированной последовательности 8С, затем сохраняют в модуле И8 сохранения изображения, предназначенном для активации в ответ на запрос, поступающий из процессора управления устройства 1 автостереоскопического дисплея, в соответствии с изобретением.
Конечно, изобретение не ограничивается описанными выше примерами, и различные свойства могут быть добавлены к этим примерам без выхода за пределы объема изобретения. В частности, изобретение не ограничивается одним случаем плазменного экрана, но его также можно воплотить с другими типами экранов, имеющими матричную структуру, с непрерывно расположенными или расположенными через промежутки ячейками.
Для этого же экрана также возможно предусмотреть объединение специфичного режима кодирования, используемого в способе отображения в соответствии с изобретением, с другими режимами кодирования пикселя, которые известны в предшествующем уровне техники, или которые возможно будут разработаны в будущем, причем каждый режим кодирования применяется к конкретному блоку или изменяемому блоку строк экрана.
Способ синтеза в соответствии с изобретением, поэтому, осуществляется только на участке строк экрана дисплея, при этом остальные строки подвергаются отдельному режиму кодирования от режима, воплощенного в данном способе.
Также возможно ожидать реализации динамического определения строк на основе отображаемой сцены, на которых выполняется способ синтеза в соответствии с изобретением.

Claims (13)

  1. ФОРМУЛА ИЗОБРЕТЕНИЯ
    1. Автостереоскопический дисплей (1), включающий в себя матричный экран (2) дисплея и матрицу (4) линз, расположенную перед указанным экраном (2) дисплея и имеющую ось линз, которая наклонена относительно вертикальной оси указанного экрана (2) дисплея, причем указанная матрица (4) линз выполнена с возможностью приема растрового изображения, отображаемого указанным экраном (2) дисплея, причем указанное растровое изображение кодировано для объединения множества Р точек обзора одной сцены, причем указанный экран дисплея включает в себя матрицу пикселей экрана, каждый из которых включает в себя три ячейки цветов, причем указанные ячейки цветов упорядочены в строки и столбцы, расположенные таким образом, что формируются столбцы одного цвета (Я, С, В) на указанном экране, при этом изображение, отображаемое экраном (2) дисплея, состоит из набора трехмерных пикселей (Ρ3Ό), каждый из которых объединяет множество Р точек обзора пикселя изображения указанной сцены, и каждый трехмерный пиксель (Ρ3Ό) занимает 3хР ячеек цвета в двух соседних строках на указанном экране, отличающийся тем, что каждый трехмерный пиксель (Ρ3Ό) занимает 2хР смежные ячейки цвета в одной из указанных двух смежных строк и Р смежных ячейки цвета в другой строке.
  2. 2. Автостереоскопический дисплей по п.1, отличающийся тем, что трехмерные пиксели размещены так, что два горизонтально смежных трехмерных пикселя перекрываются друг с другом.
  3. 3. Автостереоскопический дисплей по любому из предыдущих пунктов, отличающийся тем, что матрица линз состоит из параллельных цилиндрическим линз с такими шагом между линзами и углом, что каждый трехмерный пиксель (Ρ3Ό), по существу, охвачен двумя смежными элементарными линзами.
  4. 4. Автостереоскопический дисплей по п.3, отличающийся тем, что шаг 1 между линзами и угол наклона матрицы линз выбраны такими, что
    1 = οο5</..Ρ.ί.ΌιΌορΙ/(ΌορΙ+Γ) где СС11 представляет собой ширину ячейки цвета, Όορΐ представляет собой требуемое оптимальное расстояние отображения и Γ представляет собой фокусное расстояние матрицы линз.
  5. 5. Автостереоскопический дисплей по п.4, отличающийся тем, что угол α наклона выбирают так, чтобы тангенс α был, по существу, равен отношению ширины (ССН) ячейки цвета к высоте (СС'.У) указанной ячейки цвета.
  6. 6. Автостереоскопический дисплей по любому из предыдущих пунктов, отличающийся тем, что в пределах каждого трехмерного пикселя кодирована каждая точка обзора:
    в первой ячейке первого цвета, расположенной в первой строке, во второй ячейке второго цвета, расположенной в указанной первой строке и смещенной на некоторое количество Р ячеек относительно указанной первой ячейки, и в третьей ячейке третьего цвета, расположенной во второй строке, смежной с указанной первой строкой, причем указанная третья ячейка горизонтально смещена на одну ячейку относительно указанной первой ячейки.
  7. 7. Автостереоскопический дисплей по любому из предыдущих пунктов, отличающийся тем, что количество Р точек обзора выбрано из 2, 4, 5 или 7.
    - 5 011202
  8. 8. Автостереоскопический дисплей по любому из предыдущих пунктов, отличающийся тем, что экран (2) электронного дисплея представляет собой плазменный экран.
  9. 9. Автостереоскопический дисплей по одному из пп.1-8, отличающийся тем, что экран электронного дисплея представляет собой жидкокристаллический экран (ЖКД).
  10. 10. Способ работы автостереоскопического дисплея по одному из предыдущих пунктов, включающий в себя отображение растрового изображения, ранее кодированного из изображения, полученного или собранного из множества (Р) точек обзора, через экран (2) двумерного дисплея, и прием и оптическую обработку указанного отображаемого изображения через матрицу (4) линз, расположенную перед указанным экраном (2) дисплея и имеющую ось линз, которая наклонена относительно вертикальной оси указанного экрана дисплея для дистанционного генерирования трехмерного изображения (1т, Ιη), причем указанное растровое изображение кодировано для объединения множества точек (Р) обзора указанного изображения, при этом оптическая обработка, выполняемая указанной матрицей (4) линз, включает обработку кодированного изображения, состоящего из набора трехмерных пикселей (Ρ3Ώ), каждый из которых составляет множество Р точек обзора пикселя изображения указанной сцены, и каждый 'трехмерный пиксель (Ρ3Ώ) занимает 3хР точек в двух соседних строках на указанном экране, отличающийся тем, что каждый трехмерный пиксель (Ρ3Ώ) занимает 2хР смежные ячейки цвета в одной из указанных двух смежных строк и Р смежных ячейки цвета в другой строке.
  11. 11. Способ формирования цветного автостереоскопического изображения для автостереоскопическго дисплея (1) по любому из пп.1-9, включающий в себя формирование из множества Р предварительно полученных или собранных цифровых изображений, каждое в форме матрицы пикселей изображения, представляющих сцену, кодированной матрицы (МС) дисплея, состоящей из совокупности 'трехмерных пикселей (Ρ3Ώ), каждый из которых объединяет множество Р точек обзора пикселя изображения указанной сцены, причем каждый 'трехмерный пиксель (Ρ3Ώ) занимает 3хР ячеек цветов в двух смежных строках на указанном экране, отличающийся тем, что каждый трехмерный пиксель (Ρ3Ώ) занимает 2хР смежные ячейки цвета в одной из указанных двух смежных строк и Р смежных ячейки цвета в другой строке.
  12. 12. Способ по п.11, отличающийся тем, что он осуществляется только на участке строк экрана дисплея, при этом остальные строки подвергаются режиму кодирования, отдельному от режима, воплощенного в данном способе.
  13. 13. Способ по п.12, отличающийся тем, что строки, на которых осуществляется данный способ, определяют динамически на основе отображаемой сцены.
EA200700889A 2004-10-18 2005-10-14 Линзовый автостереоскопический дисплей и способ синтеза автостереоскопического изображения EA011202B1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0411018A FR2876804B1 (fr) 2004-10-18 2004-10-18 Dispositif et procede de visualisation autostereoscopique a base de lenticulaire, et procede de synthese d'images autostereoscopiques associe
PCT/FR2005/002562 WO2006042953A1 (fr) 2004-10-18 2005-10-14 Dispositif et procédé de visualisation autostéréoscopique à base de lenticulaire, et procédé de synthèse d'images autostéréoscopiques associé

Publications (2)

Publication Number Publication Date
EA200700889A1 EA200700889A1 (ru) 2007-08-31
EA011202B1 true EA011202B1 (ru) 2009-02-27

Family

ID=34949950

Family Applications (1)

Application Number Title Priority Date Filing Date
EA200700889A EA011202B1 (ru) 2004-10-18 2005-10-14 Линзовый автостереоскопический дисплей и способ синтеза автостереоскопического изображения

Country Status (15)

Country Link
US (1) US20080291267A1 (ru)
EP (1) EP1803304B1 (ru)
JP (1) JP2008517311A (ru)
KR (1) KR20070072590A (ru)
CN (1) CN101040537A (ru)
AR (1) AR051138A1 (ru)
AT (1) ATE417466T1 (ru)
CA (1) CA2581695A1 (ru)
DE (1) DE602005011655D1 (ru)
EA (1) EA011202B1 (ru)
FR (1) FR2876804B1 (ru)
IL (1) IL182138A0 (ru)
PE (1) PE20060810A1 (ru)
TW (1) TWI289684B (ru)
WO (1) WO2006042953A1 (ru)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781278B1 (ko) 2006-05-04 2007-11-30 엘지전자 주식회사 입체영상 표시장치
TW200951490A (en) * 2008-01-15 2009-12-16 Koninkl Philips Electronics Nv Method for view rendering on an autostereoscopic display and an autostereoscopic display
KR101572791B1 (ko) * 2008-02-11 2015-12-01 코닌클리케 필립스 엔.브이. 자동 입체영상 이미지 출력 디바이스
CN102272665A (zh) * 2008-11-07 2011-12-07 迪美森科技公司 用于2d/3d自动立体多视角显示器的背光***
WO2010070564A1 (en) * 2008-12-18 2010-06-24 Koninklijke Philips Electronics N.V. Autostereoscopic display device
CN101511035B (zh) * 2009-03-17 2011-07-27 南京中电熊猫液晶显示科技有限公司 三维立体显示装置
US20120062551A1 (en) * 2010-09-13 2012-03-15 Lg Electronics Inc. Image display apparatus and method for operating image display apparatus
US20150015946A1 (en) * 2010-10-08 2015-01-15 SoliDDD Corp. Perceived Image Depth for Autostereoscopic Displays
CN102238409B (zh) * 2011-05-10 2013-07-24 湖南创图视维科技有限公司 一种裸眼3d电视墙
JP5818674B2 (ja) * 2011-12-21 2015-11-18 株式会社東芝 画像処理装置、方法、及びプログラム、並びに、画像表示装置
TWI464455B (zh) * 2013-07-26 2014-12-11 Dayu Optoelectronics Co Ltd 立體顯示裝置
CN104423051A (zh) * 2013-09-10 2015-03-18 大昱光电股份有限公司 立体显示装置
US9967546B2 (en) 2013-10-29 2018-05-08 Vefxi Corporation Method and apparatus for converting 2D-images and videos to 3D for consumer, commercial and professional applications
US20150116458A1 (en) 2013-10-30 2015-04-30 Barkatech Consulting, LLC Method and apparatus for generating enhanced 3d-effects for real-time and offline appplications
CN103869487B (zh) * 2014-03-18 2016-01-13 深圳市华星光电技术有限公司 显示装置及其显示图像的方法
US10158847B2 (en) 2014-06-19 2018-12-18 Vefxi Corporation Real—time stereo 3D and autostereoscopic 3D video and image editing
WO2016102495A1 (en) 2014-12-24 2016-06-30 Koninklijke Philips N.V. Autostereoscopic display device
US10182224B2 (en) * 2015-08-31 2019-01-15 Theia Limited Method for creating 3D image
TWI628948B (zh) * 2017-01-09 2018-07-01 亞洲大學 擷取影像之立體成像系統
US10129984B1 (en) * 2018-02-07 2018-11-13 Lockheed Martin Corporation Three-dimensional electronics distribution by geodesic faceting
CN112014978A (zh) * 2019-05-29 2020-12-01 刁鸿浩 裸眼立体显示器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0791847A1 (en) * 1996-02-23 1997-08-27 Koninklijke Philips Electronics N.V. Autostereoscopic display apparatus
WO2004043079A1 (ja) * 2002-11-07 2004-05-21 Sanyo Electric Co., Ltd. 立体映像処理方法及び立体映像表示装置
WO2004081863A2 (de) * 2003-03-12 2004-09-23 Siegbert Hentschke Autostereoskopisches wiedergabesystem für 3d darstellungen
US6801243B1 (en) * 1997-07-23 2004-10-05 Koninklijke Philips Electronics N.V. Lenticular screen adaptor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637815B1 (en) * 1993-08-04 2006-04-05 Canon Kabushiki Kaisha Image processing method and image processing apparatus
US5500765A (en) * 1994-05-11 1996-03-19 Dimension Technologies Inc. Convertible 2D/3D autostereoscopic display
US6061179A (en) * 1996-01-23 2000-05-09 Canon Kabushiki Kaisha Stereoscopic image display apparatus with two-/three-dimensional image display switching function
JP3397602B2 (ja) * 1996-11-11 2003-04-21 富士通株式会社 画像表示装置及び方法
US7671889B2 (en) * 2000-06-07 2010-03-02 Real D Autostereoscopic pixel arrangement techniques
AU2002354681A1 (en) * 2001-07-13 2003-01-29 Mems Optical, Inc. Autosteroscopic display with rotated microlens-array and method of displaying multidimensional images, especially color images
US20040196359A1 (en) * 2002-05-28 2004-10-07 Blackham Geoffrey Howard Video conferencing terminal apparatus with part-transmissive curved mirror
US20040263971A1 (en) * 2003-02-12 2004-12-30 Lenny Lipton Dual mode autosteroscopic lens sheet
JP4271155B2 (ja) * 2004-02-10 2009-06-03 株式会社東芝 三次元画像表示装置
FR2873824B1 (fr) * 2004-07-30 2006-10-27 Pierre Allio Procede d'affichage d'une image autostereoscopique a n points de vue

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0791847A1 (en) * 1996-02-23 1997-08-27 Koninklijke Philips Electronics N.V. Autostereoscopic display apparatus
US6801243B1 (en) * 1997-07-23 2004-10-05 Koninklijke Philips Electronics N.V. Lenticular screen adaptor
WO2004043079A1 (ja) * 2002-11-07 2004-05-21 Sanyo Electric Co., Ltd. 立体映像処理方法及び立体映像表示装置
WO2004081863A2 (de) * 2003-03-12 2004-09-23 Siegbert Hentschke Autostereoskopisches wiedergabesystem für 3d darstellungen

Also Published As

Publication number Publication date
US20080291267A1 (en) 2008-11-27
DE602005011655D1 (de) 2009-01-22
CN101040537A (zh) 2007-09-19
PE20060810A1 (es) 2006-10-12
TW200619681A (en) 2006-06-16
ATE417466T1 (de) 2008-12-15
FR2876804A1 (fr) 2006-04-21
TWI289684B (en) 2007-11-11
IL182138A0 (en) 2007-07-24
AR051138A1 (es) 2006-12-20
FR2876804B1 (fr) 2007-01-05
JP2008517311A (ja) 2008-05-22
EP1803304B1 (fr) 2008-12-10
EP1803304A1 (fr) 2007-07-04
EA200700889A1 (ru) 2007-08-31
WO2006042953A1 (fr) 2006-04-27
KR20070072590A (ko) 2007-07-04
CA2581695A1 (fr) 2006-04-27

Similar Documents

Publication Publication Date Title
EA011202B1 (ru) Линзовый автостереоскопический дисплей и способ синтеза автостереоскопического изображения
EA010474B1 (ru) Устройство и способ линзового автостереоскопического дисплея и соответствующий способ синтеза автостереоскопического изображения
CN1261797C (zh) 视差屏障和多视图显示器
EP2497274B1 (en) Autostereoscopic display device
US7787008B2 (en) Three-dimensional image display device
US20080225113A1 (en) Three-dimensional image display device, method for displaying three-dimensional image, and structure of three-dimensional image data
CN101107644B (zh) 多视图显示设备
TWI628635B (zh) 顯示器面板及顯示器裝置
RU2313191C2 (ru) Способ и система формирования стереоизображения
KR101206385B1 (ko) N개의 시점을 갖는 복합시차지각 영상을 표시하기 위한 방법
CN1985524A (zh) 三维图像数据的结构,其记录方法及其显示再现方法
US8553074B2 (en) Auto stereoscopic display improving brightness
CN103533336B (zh) 高分辨率自由立体显示器
JP2009500648A (ja) 最適視距離への適合を伴うオートステレオスコピック表示の方法およびデバイス
JP3990176B2 (ja) 立体像表示装置
KR20150055442A (ko) 입체 영상 표시 장치
CN211128025U (zh) 多视点裸眼3d显示屏、多视点裸眼3d显示设备
TW202127870A (zh) 多視點3d顯示屏、多視點3d顯示設備
US20090295909A1 (en) Device and Method for 2D-3D Switchable Autostereoscopic Viewing
US20130321577A1 (en) Stereoscopic Video Signal Processing Apparatus and Method Therefor
US10466543B2 (en) Pixel geometries for spatially multiplexed stereo 3D displays
CN101626517B (zh) 视差图像实时合成立体图像的方法
US20120081513A1 (en) Multiple Parallax Image Receiver Apparatus
CA2795955A1 (en) Simultaneous reproduction of a plurality of images by means of a two-dimensional imaging matrix
JP2013183438A (ja) 表示装置

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AM AZ BY KZ KG MD TJ TM RU