DK157663B - CARRIER VANADIUM OXIDE CATALYST, PROCEDURE FOR ITS PREPARATION AND ITS USE IN NITRIL PREPARATION - Google Patents

CARRIER VANADIUM OXIDE CATALYST, PROCEDURE FOR ITS PREPARATION AND ITS USE IN NITRIL PREPARATION Download PDF

Info

Publication number
DK157663B
DK157663B DK427177A DK427177A DK157663B DK 157663 B DK157663 B DK 157663B DK 427177 A DK427177 A DK 427177A DK 427177 A DK427177 A DK 427177A DK 157663 B DK157663 B DK 157663B
Authority
DK
Denmark
Prior art keywords
vanadium oxide
catalyst
support
alkali metal
carrier
Prior art date
Application number
DK427177A
Other languages
Danish (da)
Other versions
DK157663C (en
DK427177A (en
Inventor
Morgan Chuan-Yuan Sze
Original Assignee
Lummus Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/819,771 external-priority patent/US4092271A/en
Application filed by Lummus Co filed Critical Lummus Co
Publication of DK427177A publication Critical patent/DK427177A/en
Publication of DK157663B publication Critical patent/DK157663B/en
Application granted granted Critical
Publication of DK157663C publication Critical patent/DK157663C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/84Nitriles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/28Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing six-membered aromatic rings, e.g. styrene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyridine Compounds (AREA)

Description

iin

DK 157663BDK 157663B

Opfindelsen angår en katalysator af vanadiumoxid, der bæres på en porøs bærer i en sådan mængde, at der fås et vægtforhold mellem vanadiumoxid og bærer på fra ca. 0,3:1 til ca. 3:1 stort set overalt inde i bærerens porer, hvorhos vanadiumoxidet i smeltet form er 5 blevet anbragt i alt væsentligt inde i porerne af en bærer med et 2 3 overfladeareal på over 50 m /g og en porøsitet på over 0,4 cm /g.The invention relates to a catalyst of vanadium oxide supported on a porous support in such an amount that a weight ratio of vanadium oxide to carrier of about 5% is obtained. 0.3: 1 to approx. 3: 1 practically everywhere within the pores of the support, wherein the vanadium oxide in molten form has been substantially deposited within the pores of a support having a surface area of greater than 50 m / g and a porosity greater than 0.4 cm / g.

Beskrivelsen til US patent nr. 3.963.645 omhandler en vanadiumoxid- katalysator på bærer, hvori vanadiumoxidet understøttes af en 10 siliciumoxid-aluminiumoxid- eller gamma-al umi niumoxid-bærer i en sådan mængde, at der opnås et vægtforhold mellem metaloxid og bærer mellem ca. 0,3:1 og ca. 3:1, i det væsentlige helt inde i bærerens porer. Vanadiumoxidet anbringes i smeltet form inde i porerne af 2 bæreren, som har et overfladeareal større end ca. 50 m /g og en 3 15 porøsitet større end ca. 0,4 cm /g.The disclosure of U.S. Patent No. 3,963,645 discloses a carrier vanadium catalyst wherein the vanadium oxide is supported by a silica-alumina or gamma-alumina support in an amount such that a metal-to-carrier weight ratio is obtained. ca. 0.3: 1 and approx. 3: 1, essentially completely within the pores of the wearer. The vanadium oxide is placed in molten form within the pores of the carrier, which has a surface area greater than ca. 50 m / g and a porosity greater than ca. 0.4 cm / g.

Den foreliggende opfindelsen angår en forbedring ved katalysatoren ifølge ovennævnte patentskrift, ved hvilken den katalytiske effekt af katalysatoren forøges.The present invention relates to an improvement in the catalyst according to the above-mentioned patent, in which the catalytic effect of the catalyst is increased.

2020

Ifølge den foreliggende opfindelse er der således tilvejebragt en katalysator af vanadiumoxid, der bæres på en porøs bærer i en sådan mængde, at der fås et vægtforhold mellem vanadiumoxid og bærer på fra ca. 0,3:1 til ca. 3:1 stort set overalt inde i bærerens porer, 25 hvorhos vanadiumoxidet i smeltet form er blevet anbragt i alt væsentligt inde i porerne af en bærer med et overfladeareal på over 50 m /g og en porøsitet på over 0,4 cm g, hvilken katalysator er ejendommelig ved, at katalysatoren også indeholder et alkalimetal i en sådan mængde, at der tilvejebringes et mol forhold mellem vanadi-30 ummetal og alkalimetal på fra 2:1 til 30:1.According to the present invention, there is thus provided a catalyst of vanadium oxide which is carried on a porous support in such an amount that a weight ratio of vanadium oxide to carrier of approx. 0.3: 1 to approx. 3: 1 virtually everywhere within the pores of the carrier, wherein the vanadium oxide in molten form has been substantially deposited within the pores of a carrier having a surface area greater than 50 m / g and a porosity of more than 0.4 cm g, which The catalyst is characterized in that the catalyst also contains an alkali metal in such an amount that a molar ratio of vanadium metal to alkali metal of 2: 1 to 30: 1 is provided.

Opfindelsen angår endvidere en fremgangsmåde til katalytisk ammoxi-dation af en forbindelse indeholdende mindst én alkylgruppe til dannelse af en nitril, hvilken fremgangsmåde er ejendommelig ved, at 35 ammoxidationen gennemføres med katalysatoren ifølge krav 1 og i fravær af molekylært oxygen, og at katalysatoren regenereres i en separat regenerator ved kontakt med oxygen.The invention further relates to a process for catalytic ammonia oxidation of a compound containing at least one alkyl group to form a nitrile, the process being characterized in that the ammonium oxidation is carried out with the catalyst according to claim 1 and in the absence of molecular oxygen, and the catalyst is regenerated in a separate regenerator upon contact with oxygen.

Nærmere bestemt omfatter katalysatoren et alkalimetal, som enten er 2More specifically, the catalyst comprises an alkali metal which is either 2

DK 157663BDK 157663B

lithium, natrium, kalium, rubidium eller cesium, i en sådan mængde, at der tilvejebringes et mol-forhold mellem vanadiummetal og alkalimetal på fra ca. 2:1 til 30:1, og fortrinsvis fra ca. 8:1 til 20:1. Alkalimetallet er fortrinsvis natrium.lithium, sodium, potassium, rubidium or cesium, in such an amount as to provide a molar ratio of vanadium metal to alkali metal of from ca. 2: 1 to 30: 1, and preferably from ca. 8: 1 to 20: 1. The alkali metal is preferably sodium.

5 Bæreren, som vanadiumpentoxidet skal understøttes på, har et over-fladeareal på over ca. 50 cm /g og en porøsitet på over ca. 0,4 3 cm /g. Generelt er overfladearealet af bæreren ikke over ca. 600 2 3 m /g og porøsiteten ikke over ca. 1,2 cm /g. Bærere med et overfla-10 deareal på ca. 200 m /g har vist sig at give særligt gode resultater. Som eksempler på foretrukne bærere med disse egenskaber kan nævnes: Siliciumoxid-aluminiumoxid, zeoliter og aluminiumoxid, mi krokrystallinsk aluminiumoxid og gamma-, delta-, eta-, kappa- og chi-modifikationerne af aluminiumoxid. Siliciumoxid-aluminiumoxid-15 bærere og gamma-aluminiumoxidbærere er særligt foretrukne.5 The carrier on which the vanadium pentoxide is to be supported has a surface area exceeding approx. 50 cm / g and a porosity exceeding approx. 0.4 3 cm / g. In general, the surface area of the support is not more than approx. 600 2 3 m / g and the porosity does not exceed approx. 1.2 cm / g. Carriers with a surface area of 10 approx. 200 m / g has been found to produce particularly good results. Examples of preferred carriers having these properties are: silica-alumina, zeolites and alumina, microcrystalline alumina, and the gamma, delta, eta, kappa and chi modifications of alumina. Silica-alumina carriers and gamma-alumina carriers are particularly preferred.

Desuden angår opfindelsen en fremgangsmåde til fremstilling af den understøttede vanadiumoxidkatalysator ifølge opfindelsen, hvilken fremgangsmåde er ejendommelig ved, at en porøs bærer med et overfla-20 deareal på over 50 m /g og en porøsitet på over 0,4 cm /g behandles med en vandig opløsning af et al kalimetal hydroxid, og at den behandlede bærer og vanadiumoxid på bæreren opvarmes til over vanadiumox-idets smeltetemperatur, hvorhos vanadiumoxidet og al kalimetalhydrox-idet benyttes i en sådan mængde, at der tilvejebringes et vægtfor-25 hold mellem vanadiumoxid og bærer på fra 0,3:1 til 3:1 stort set overalt inde i bærerens porer og et mol forhold mellem vanadiummetal og alkalimetal på fra 2:1 til 30:1.In addition, the invention relates to a process for preparing the supported vanadium oxide catalyst according to the invention, characterized in that a porous support having a surface area greater than 50 m / g and a porosity of more than 0.4 cm / g is treated with a aqueous solution of an all potassium hydroxide and the treated carrier and vanadium oxide on the support heated to above the melting temperature of the vanadium oxide, the vanadium oxide and all potassium hydroxide being used in such an amount to provide a weight ratio of vanadium oxide to carrier of from 0.3: 1 to 3: 1 virtually anywhere within the carrier pores and a molar ratio of vanadium metal to alkali metal of 2: 1 to 30: 1.

En anden udførelsesform for fremgangsmåden til fremstilling af den 30 understøttede vanadiumoxidkatalysator er ved hjælp af en sammensmeltningsteknik uden forudgående behandling af bæreren med et alkalimetal, efterfulgt af imprægnering af den understøttede vanadiumoxidkatalysator med en vandig opløsning af al kalimetalhydroxidet for at tilvejebringe den ønskede mængde alkalimetal samt opvarmning 35 til en temperatur over vanadiumoxids smeltepunkt.Another embodiment of the process for preparing the supported vanadium oxide catalyst is by means of a fusion technique without prior treatment of the support with an alkali metal, followed by impregnation of the supported vanadium oxide catalyst with an aqueous solution of all the calcium metal hydroxide to provide the desired amount of alkali metal to obtain the desired amount. 35 to a temperature above the melting point of vanadium oxide.

En anden udførelsesform for fremgangsmåden til fremstilling af den understøttede vanadiumoxidkatalysator er at forblande vanadiumoxidet og en al kalimetal forbindel se, såsom hydroxidet eller oxidet i 3Another embodiment of the process for preparing the supported vanadium oxide catalyst is to premix the vanadium oxide and an all potassium metal compound, such as the hydroxide or oxide in 3

DK 157663BDK 157663B

passende mængder, og ved sammensmeltning af fastholde den fremkomne blanding af bæreren.appropriate amounts, and by fusing together maintain the resulting mixture of the carrier.

Ifølge en foretrukket udførelsesform for fremgangsmåden dannes en 5 særlig aktiv form af katalysatoren ved at tilvejebringe en blanding af al kalimetal hydroxid og vanadiumoxid på bæreren og opvarme den understøttede blanding til vanadiumoxidets smeltetemperatur ved en kontrolleret opvarmningshastighed. Nærmere bestemt opvarmes den understøttede blanding til vanadiumoxidets smeltetemperatur med en 10 middel hastighed på mindre end ll,rc/min., fortrinsvis mindre end 8,3°C/min., og med en særligt foretrukket opvarmningshastighed på 5,5eC/min. eller mindre. Generelt opvarmes den understøttede blanding således til smeltetemperaturen over et tidsrum på mindst én time, og særligt gode resultater opnås over en periode på 2 timer 15 eller derover.According to a preferred embodiment of the process, a particularly active form of the catalyst is formed by providing a mixture of all potassium hydroxide and vanadium oxide on the support and heating the supported mixture to the melting temperature of the vanadium oxide at a controlled heating rate. More specifically, the supported mixture is heated to the melting temperature of the vanadium oxide at a mean rate of less than 11, rc / min, preferably less than 8.3 ° C / min, and with a particularly preferred heating rate of 5.5eC / min. or less. Generally, the supported mixture is thus heated to the melting temperature over a period of at least one hour, and particularly good results are obtained over a period of 2 hours 15 or more.

Den understøttede blanding holdes ved eller over smeltetemperaturén i tilstrækkelig lang tid til at vanadiumoxidet anbringes i alt væsentligt inde i bærerens porer. Generelt holdes den understøttede 20 blanding ved en temperatur på fra 704eC til 788°C over et tidsrum på fra 1 til 10 timer.The supported mixture is maintained at or above the melting temperature for a sufficient period of time for the vanadium oxide to be deposited substantially within the pores of the support. Generally, the supported mixture is maintained at a temperature of from 704 ° C to 788 ° C over a period of from 1 to 10 hours.

Ved fremstilling af katalysatoren ifølge den foretrukne fremgangsmåde, d.v.s. kontrolleret opvarmning af vanadiumoxid og alkalime-25 tal hydroxid på bæreren, er i det mindste en del af al kal i met al let til stede i den endelige katalysator, som alkalimetalvanadat, fortrinsvis natriumvanadat. Hvis opvarmning til smeltemteperatur gennemføres, dannes alkalimetalvanadat ikke, og en sådan katalysator har vist sig at være mindre selektiv for så vidt angår fremstilling 30 af nitriler, selvom den udgør en forbedring i forhold til den tilsvarende katalysator uden alkalimetal!et. Ifølge den særligt foretrukne udførelsesform indeholder katalysatoren således både vanadiumoxid og alkalimetalvanadat, fortrinsvis natriumvanadat. Fortrinsvis er mindst ca. 10 vægtprocent af alkalimetallet til stede 35 som vanadat.In preparing the catalyst according to the preferred process, i.e. controlled heating of vanadium oxide and alkali metal hydroxide on the support is at least part of all calcium in the metal easily present in the final catalyst, such as alkali metal vanadate, preferably sodium vanadate. If melting temperature heating is performed, alkali metal vanadate is not formed and such a catalyst has been found to be less selective in preparation of nitriles, although it represents an improvement over the corresponding alkali metal catalyst. Thus, according to the particularly preferred embodiment, the catalyst contains both vanadium oxide and alkali metal vanadate, preferably sodium vanadate. Preferably at least approx. 10% by weight of the alkali metal present 35 as vanadate.

Den understøttede vanadiumoxidkatalysator ifølge opfindelsen er navnlig egnet til fremstilling af nitriler ved oxidativ ammonolyse (ammoxidation). Den organiske reaktant, der benyttes omThe supported vanadium oxide catalyst according to the invention is particularly suitable for the preparation of nitriles in oxidative ammonolysis (amm oxidation). The organic reactant used

DK 157663 BDK 157663 B

4 udgangsmateriale for fremstillingen af nitriler ved ammoxidation, er en forbindelse, der indeholder mindst én alkylgruppe, nemlig aromatiske, aliphatiske, alicycliske og heterocycliske forbindelser med mindst én alkylgruppe.4 starting material for the preparation of nitriles by breast oxidation is a compound containing at least one alkyl group, namely aromatic, aliphatic, alicyclic and heterocyclic compounds having at least one alkyl group.

55

Som repræsentative eksempler på al kyl substituerede aromatiske carbonhydrider, som er egnede som udgangsmaterialer, kan nævnes al kyl substituerede benzener og naphtalener og navnlig benzen, som kan indeholde to eller flere al kylgrupper, i hvilket tilfælde det 10 fremkomne produkt er en polynitril. Al kylgruppen indeholder generelt ikke over 4 carbonatomer, fortrinsvis ikke over 2 carbonatomer. Som særlige eksempler på egnede al kyl substituerede aromatiske carbonhydrider kan nævnes: toluen, forskellige xylener ved fremstilling af forskellige phthalonitriler, ethyl benzen, trimethylbenzener, methyl-15 naphtalener, 1,2,4,5-tetramethylbenzen og lignende.As representative examples of all alkyl substituted aromatic hydrocarbons suitable as starting materials, mention may be made of all alkyl substituted benzenes and naphthalenes and in particular benzene which may contain two or more alkyl groups, in which case the resulting product is a polynitrile. Generally, all of the cooling group does not contain more than 4 carbon atoms, preferably not more than 2 carbon atoms. Examples of suitable alkyl substituted aromatic hydrocarbons include: toluene, various xylenes in the preparation of various phthalonitriles, ethyl benzene, trimethylbenzenes, methylnaphthalenes, 1,2,4,5-tetramethylbenzene and the like.

Som eksempler på egnede aliphatiske forbindelser kan nævnes: olefi-niske carbonhydrider med mindst én alkylgruppe, såsom propylen og isobutylen til fremstilling af henholdsvis acrylonitril og metha-20 crylonitril.Examples of suitable aliphatic compounds include: olefinic hydrocarbons having at least one alkyl group such as propylene and isobutylene for the production of acrylonitrile and methacrylonitrile, respectively.

Som eksempler på egnede alicycliske forbindelser kan nævnes: methyl -cyclopentan, methylcyclohexan, al kyl substituerede decaliner og lignende.Examples of suitable alicyclic compounds include: methylcyclopentane, methylcyclohexane, alkyl substituted decalines and the like.

2525

De heterocycliske forbindelser, der er anvendelige som udgangsmaterialer til fremstilling af nitriler ved ammoxidation ifølge den forliggende opfindelse, indbefatter al kyl substituerede furaner, pyrrol er, indoler, thiophener, pyrazoler, imidazoler, thiazoler, 30 oxazoler, pyraner, pyridiner, quinoliner, isoquinoliner, pyrimi-diner, pyridaziner, pyraziner og lignende. De foretrukne heterocycliske forbindelser er med alkyl, fortrinsvis lavere alkyl, substituerede pyridiner, idet pyridiner med en alkylgruppe i beta-stilling i forhold til det heterocycliske nitrogenatom foretrækkes særligt, 35 idet disse pyridiner kan omdannes til nicotinonitril, specielt 3-picolin, 2,3- og 2,5-dimethylpyridin, 2-methyl-5-ethylpyridin og 3-ethylpyridin.The heterocyclic compounds useful as starting materials for the preparation of nitriles in breast oxidation according to the present invention include all alkyl substituted furans, pyrroles, indoles, thiophenes, pyrazoles, imidazoles, thiazoles, oxazoles, pyrans, pyridines, quinolines, isoquins pyrimidines, pyridazines, pyrazines and the like. The preferred heterocyclic compounds are with alkyl, preferably lower alkyl, substituted pyridines, with pyridines having an alkyl group in beta position relative to the heterocyclic nitrogen atom being particularly preferred, these pyridines being convertible to nicotinonitrile, especially 3-picoline, 2.3 - and 2,5-dimethylpyridine, 2-methyl-5-ethylpyridine and 3-ethylpyridine.

Udgangsmaterialet, der indeholder mindst én alkylgruppe, omdannes 5The starting material containing at least one alkyl group is converted 5

DK 157663BDK 157663B

til en nitril ved i gasfase at kontakte udgangsmaterialet med ammoniak i nærvær af den understøttede vanadiumoxidkatalysator ifølge opfindelsen i fravær af en gas indeholdende frit oxygen.to a nitrile by contacting, in gas phase, the starting material with ammonia in the presence of the supported vanadium oxide catalyst of the invention in the absence of a gas containing free oxygen.

Denne sammenbringning gennemføres generelt ved en temperatur på fra 5 ca. 300eC til ca. 500eC, fortrinsvis fra ca. 375°C til ca. 475°C, idet kontakttiden generelt ligger fra ca. 0,5 til 15 sekunder, fortrinsvis fra ca. 2 til ca. 8 sekunder. Reaktionstrykket ligger generelt fra ca. 1 til ca. 5 atmosfære. Mol-forholdet mellem ammoniak og udgangsmateriale ligger generelt fra ca. 2:1 til ca. 16:1, • 10 fortrinsvis fra ca. 3:1 til ca. 8:1.This assembly is generally carried out at a temperature of from 300 ° C to approx. 500 ° C, preferably from ca. 375 ° C to approx. 475 ° C, with the contact time generally ranging from approx. 0.5 to 15 seconds, preferably from approx. 2 to approx. 8 seconds. The reaction pressure generally ranges from approx. 1 to approx. 5 atmosphere. The molar ratio of ammonia to starting material generally ranges from approx. 2: 1 to approx. 16: 1, • 10 preferably from ca. 3: 1 to approx. 8: 1.

Ifølge den foretrukne udførelsesform for opfindelsen kontaktes udgangsmaterialet og ammoniak med den understøttede vanadiumoxidkatalysator ifølge opfindelsen i fravær af oxygen, idet den under-15 støttede vanadiumoxidkatalysator periodisk overføres til en anden reaktor og deri kontaktes med en gas indeholdende frit oxygen regenerere katalysatoren generelt over et tidsrum på fra ca. 2 til 20 minutter. Generelt holdes den understøttede vanadiumoxidkatalysator ikke i strømmen over en periode på over ca. 30 minutter, 20 fortrinsvis fra ca. 2 til ca. 10 minutter. Den understøttede vanadiumoxidkatalysator recirkuleres derefter til en nitrilproduktions-zone. Det antages, at den understøttede vanadiumoxidkatalysator reduceres under nitrilproduktionstrinnet, og følgelig er periodisk oxidation af katalysatoren nødvendig for at holde den understøttede 25 vanadiumoxidkatalysator på den oxiderede form, der er nødvendig for ni tri 1fremsti 11 i ngen.According to the preferred embodiment of the invention, the starting material and ammonia are contacted with the supported vanadium oxide catalyst of the invention in the absence of oxygen, the supported vanadium oxide catalyst being periodically transferred to another reactor and contacted therewith a gas containing free oxygen generally regenerating the catalyst over a period of time. from approx. 2 to 20 minutes. In general, the supported vanadium oxide catalyst is not kept in the stream for a period of more than approx. 30 minutes, 20 preferably from ca. 2 to approx. 10 minutes. The supported vanadium oxide catalyst is then recycled to a nitrile production zone. It is believed that the supported vanadium oxide catalyst is reduced during the nitrile production step, and consequently periodic oxidation of the catalyst is necessary to keep the supported vanadium oxide catalyst in the oxidized form necessary for nine triplet 11s.

Opfindelsen vil nu blive belyst nærmere i nedenstående eksempler:The invention will now be elucidated in the following examples:

30 Eksempel IExample I

Katalysator A (ifølge opfindelsen) 3000 g siliciumoxid-aluminiumoxid-katalysatorbærer til brug til 35 fluid bed-katalysatorer og med betegnelsen Grace 135 opslæmmedes i 4500 g 1 vægtprocent NaOH og omrørtes i 30 minutter. Efter bundfældning dekanteredes supernatantvæsken og erstattedes med 4500 g vand, og blandingen omrørtes i yderligere 30 minutter. Blandingen skiltes igen ved dekantering. Efter tørring ved 110°C indeholdt den 6Catalyst A (according to the invention) 3000 g of silica-alumina catalyst support for use with 35 fluid bed catalysts and designated Grace 135 were slurried in 4500 g of 1 wt% NaOH and stirred for 30 minutes. After settling, the supernatant liquid was decanted and replaced with 4500 g of water and the mixture was stirred for a further 30 minutes. The mixture was separated again by decanting. After drying at 110 ° C, it contained 6

DK 157663BDK 157663B

behandlede bærer 0,9 vægtprocent Na. Denne bærer blandedes derefter med 2000 g pulveriseret vanadiumoxid og opvarmedes til 816eC i 5 timer i en langsomt roterende cylindrisk ovn. Efter afkøling fjernedes katalysatoren fra ovenen og sigtedes gennem en sigte med 5 maskevidde 420 øm.treated carrier 0.9% by weight Na. This carrier was then mixed with 2000 g of powdered vanadium oxide and heated to 816 ° C for 5 hours in a slowly rotating cylindrical furnace. After cooling, the catalyst was removed from the oven and sieved through a 5 mesh screen 420 sieve.

Katalysator BCatalyst B

3000 g af en siliciumoxid-aluminiumoxid-katalysatorbærer til brug 10 til fluid bed-katalysatorer og med betegnelsen Grace 135 blandedes med 2000 g pulveriseret vanadiumoxid og opvarmedes til 760°C i 5 timer i en langsomt roterende cylindrisk ovn. Efter afkøling fjernedes katalysatoren fra ovnen og sigtedes gennem en sigte med maskevidde 420 øm.3000 g of a silica-alumina catalyst support for use in fluid bed catalysts 10, designated Grace 135, was mixed with 2000 g of powdered vanadium oxide and heated to 760 ° C for 5 hours in a slowly rotating cylindrical furnace. After cooling, the catalyst was removed from the furnace and sieved through a sieve of mesh size 420 s.

1515

Katalysatorerne A og B benyttedes derefter til fremstilling af isophthalonitril under følgende omstændigheder. Ammoxidationen gennemførtes i fravær af molekylært oxygen, idet katalysatorerne A og B regenereredes i en separat regenerator ved kontakt med oxygen.Catalysts A and B were then used to prepare isophthalonitrile under the following circumstances. The ammonium oxidation was carried out in the absence of molecular oxygen, the catalysts A and B being regenerated in a separate regenerator upon contact with oxygen.

2020

Tabel ITable I

Katalysator-type B ACatalyst Type B A

Reaktortryk, kPa, absolut 105 105 25 Reaktortemperatur, °C 427 427Reactor pressure, kPa, absolute 105 105 25 Reactor temperature, ° C 427 427

Regeneratortemperatur, eC 488-499 488-499Regenerator temperature, eC 488-499 488-499

Katalysatorcirkulation, g/min. 56 53 3Catalyst circulation, g / min. 56 53 3

Organisk fødehastighed, cm /min. 3,3 3,4 Fødesammensætning 30 m-xylen, vægtprocent 69 69 m-toluonitril, vægtproent 31 31 NH3 i fødning mol/mol organisk fødning 9,1 8,8Organic feed rate, cm / min. 3.3 3.4 Food composition 30 m-xylene, weight percent 69 69 m-toluonitrile, weight percentage 31 31 NH3 in feed mole / mole organic feed 9.1 8.8

Inert gas i fødning 35 mol/mol organisk fødning 9,4 8,9Inert gas in feed 35 mol / mol organic feed 9.4 8.9

Omdannelse, mol procent 52,5 41,5Conversion, mole percent 52.5 41.5

Slutudbytte af isophthalonitrilFinal yield of isophthalonitrile

Basis m-xylen, mol procent 80,7 86,6Base m-xylene, mole percent 80.7 86.6

Basis ammoniak, mol procent 27 49Base ammonia, mole percent 27 49

DK 157663BDK 157663B

Der opnås forbedrede resultater ved at anvende katalysatoren ifølge opfindelsen (katalysator A), hvilket godtgøres ved forøget ammoni akog carbonhydridudbytte.Improved results are obtained by using the catalyst of the invention (Catalyst A), which is evidenced by increased ammonia and hydrocarbon yield.

5 Eksempel IIExample II

3000 g af en siliciumoxid-aluminiumoxid-katalysatorbærer til fluid bed-katalysatorer og med betegnelsen Grace 135 opslæmmedes i 4500 g 1 vægtprocent NaOH og omrørtes i 30 minutter. Efter bundfældning 10 dekanteredes supernatantvæsken og erstattedes med 4500 g vand, og blandingen omrørtes i yderligere 30 minutter. Blandingen adskiltes igen ved dekantering. Efter tørring ved 110eC indeholdt den behandlede bærer 0,9 vægtprocent Na. Denne bærer blandedes derefter med 2000 g pulveriseret vanadiumoxid og opvarmedes med hastigheden 15 5,5°C/min. i en langsomt roterende cylindrisk ovn til en temperatur på 760eC og blev holdt ved denne temperatur i 5 timer. Efter afkøling blev katalysatoren fjernet fra ovnen og sigtet gennem en sigte med maskevidden 420 øm.3000 g of a silica-alumina catalyst support for fluid bed catalysts, designated Grace 135, was slurried in 4500 g of 1 wt% NaOH and stirred for 30 minutes. After settling 10, the supernatant liquid was decanted and replaced with 4500 g of water and the mixture was stirred for a further 30 minutes. The mixture was separated again by decantation. After drying at 110 ° C, the treated support contained 0.9% by weight Na. This carrier was then mixed with 2000 g of powdered vanadium oxide and heated at a rate of 5.5 ° C / min. in a slowly rotating cylindrical furnace to a temperature of 760 ° C and kept at this temperature for 5 hours. After cooling, the catalyst was removed from the furnace and sieved through a sieve of mesh size 420 mm.

20 Tabel II opsummerer de resultater, der opnås, når denne katalysator benyttes til fremstilling af terephthalonitril ud fra p-xylen (forsøg 1) og til fremstillingen af nicotinonitril ud fra beta-picolin (forsøg 2). Ammoxidationen gennemførtes i fravær af molekylært oxygen, idet katalysatorerne regenereredes i en særskilt 25 regenerator ved kontakt med oxygen.Table II summarizes the results obtained when using this catalyst for the preparation of terephthalonitrile from p-xylene (experiment 1) and for the preparation of nicotinonitrile from beta-picoline (experiment 2). The ammonium oxidation was carried out in the absence of molecular oxygen, the catalysts being regenerated in a separate regenerator upon contact with oxygen.

30 3530 35

Tabel IITable II

88

DK 157663BDK 157663B

Forsøg 1 Forsøg 2Experiment 1 Experiment 2

Reaktortryk, kPa, absolut 270 201 5 Reaktortemperatur, eC 427 413Reactor pressure, kPa, absolute 270 201 5 Reactor temperature, eC 427 413

Regeneratortemperatur, "C 501-513 501-513Regenerator temperature, "C 501-513 501-513

Katalysatorcirkulation, g/min. 112,8 73,8Catalyst circulation, g / min. 112.8 73.8

Organisk fødningshastighed, cm3/min. 6,7 8,0 10 NH3 i fødning mol/mol organisk fødning 7,8 5,0Organic feed rate, cm3 / min. 6.7 8.0 10 NH 3 in feed mole / mole organic feed 7.8 5.0

Inert gas i fødning mol/mol organisk fødning 0,7 0,6Inert gas in feed mol / mol organic feed 0.7 0.6

Omdannelse, molprocent 50,67 30,05 15 I forsøg 1 opnåedes følgende selektiviteter og udbytter:Conversion, mole percent 50.67 30.05 In experiment 1, the following selectivities and yields were obtained:

Selektivitet, mol procent 20 Terephthalonitril 93,53 p-tolunitri 1 0,00 benzonitril 0,04 carbonoxider 6,43 25 Udbytter, mol procent slutorganisk 93,53 ammoniak 65,71 I fors,øg 2 opnåedes følgende selektiviteter og udbytter: 30Selectivity, mole percent 20 Terephthalonitrile 93.53 p-tolunitri 1 0.00 benzonitrile 0.04 carbon oxides 6.43 Yields, mole percent final organic 93.53 ammonia 65.71 In Experiment 2, the following selectivities and yields were obtained: 30

Selektivitet, mol procentSelectivity, mole percent

Nicontinonitril 89,66 pyridin 0,74 55 carbonoxider 9,60 9Nicontinonitrile 89.66 Pyridine 0.74 55 Carbon Oxides 9.60 9

DK 157663BDK 157663B

Udbytter, mol procent slutorganisk 89,66 ammoniak 66,70 5Yields, mole percent final organic 89.66 ammonia 66.70 5

Eksempel IIIExample III

Der fremstilledes to katalysatorer som beskrevet i forbindelse med eksempel II, (40% vanadiumoxid og 1% natrium) med undtagelse af, at 10 den ene katalysator opvarmedes med en hastighed på 5,5eC/min. og den anden opvarmedes med en hastighed på over ll°C/min.Two catalysts were prepared as described in connection with Example II (40% vanadium oxide and 1% sodium) except that one catalyst was heated at a rate of 5.5 ° C / min. and the other was heated at a rate above 11 ° C / min.

Tabel III opsummerer de opnåede resultater, når katalysatorerne benyttedes til fremstilling af isophthalonitril ud fra m-xylen.Table III summarizes the results obtained when the catalysts were used to prepare isophthalonitrile from m-xylene.

15 Ammoxidationen gennemførtes i fravær af molekylært oxygen, og regenereringen af katalysatoren gennemførtes på cyklisk basis i stedet for kontinuerlig cirkulation af katalysatoren som i de foregående eksempler.The ammonium oxidation was carried out in the absence of molecular oxygen and the regeneration of the catalyst was carried out on a cyclic basis instead of continuous circulation of the catalyst as in the previous examples.

20 Tabel IIITable III

Opvarmningshastighed for katalysator, °C/min. >11 5,5Catalyst heating rate, ° C / min. > 11 5.5

Temperatur, eC 427 427 25 Katalysatorfyldning, g 400 400 3Temperature, eC 427 427 25 Catalyst Filling, g 400 400 3

Katalysator/olie, g/cm 20,8 20Catalyst / oil, g / cm 20.8 20

Tryk, kPa, absolut 133 133 GHSV (STP), time"1 1040 1242 HNg/organisk, mol/mol 5,4 6 30 Selektiviteter, molprocent IPN 56,5 64,9 m-TN 33,9 22,3 BN - 1,7 C0X 9,5 11,1 35 Omdannelse, % 37,2 47,4Pressure, kPa, absolute 133 133 GHSV (STP), hourly 1 1040 1242 HNg / organic, mol / mol 5.4 6 30 Selectivities, mole percent IPN 56.5 64.9 m-TN 33.9 22.3 BN - 1.7 CO 9.5 11.1 35 Conversion,% 37.2 47.4

Slutudbytte, % 85,4 83,8Final yield,% 85.4 83.8

Rum-tid-udbytte (eng.: space-time yield), g/g*time 0,15 0,20Space-time yield, g / g * hour 0.15 0.20

, DK 157663 B, DK 157663 B

1010

Den ved langsom opvarmning dannede katalysator frembyder en forbedret selektivitet udtrykt i omdannelse af methylgruppe til nitril.The slow-heating catalyst presents an improved selectivity expressed in conversion of methyl group to nitrile.

Når katalysatoren ifølge den foreliggende opfindelse benyttes til 5 fremstilling af nitriler, opnås forbedrede carbonhydrid-selektivitet og ammoniakudbytte i forhold til den fra beskrivelsen til US patent nr. 3.963.645 kendte katalysator. Uden at det er hensigten at begrænse opfindelsens område, antages det, at den forbedrede katalytiske effekt skyldes en modifikation af vanadiumoxidet ved reaktion 10 med alkalimetallet ved smeltetemperaturen.When the catalyst of the present invention is used for the preparation of nitriles, improved hydrocarbon selectivity and ammonia yield are obtained relative to the catalyst known from the specification of U.S. Patent No. 3,963,645. While not intended to limit the scope of the invention, it is believed that the enhanced catalytic effect is due to a modification of the vanadium oxide by reaction 10 with the alkali metal at the melting temperature.

15 20 25 30 3515 20 25 30 35

Claims (16)

1. Katalysator af vanadiumoxid, der bæres på en porøs bærer i en sådan mængde, at der fås et vægtforhold mellem vanadiumoxid og bærer 5 på fra ca. 0,3:1 til ca. 3:1 stort set overalt inde i bærerens porer, hvorhos vanadiumoxidet i smeltet form er blevet anbragt i alt væsentligt inde i porerne af en bærer med et overfladeareal på over 2 3 50 m /g og en porøsitet på over 0,4 cm/g, kendetegnet ved, at katalysatoren også indeholder et alkalimetal i en sådan 10 mængde, at der tilvejebringes et molforhold mellem vanadiummetal og alkalimetal på fra 2:1 til 30:1.1. Vanadium oxide catalyst carried on a porous support in an amount such that a weight ratio of vanadium oxide to support 5 is obtained from ca. 0.3: 1 to approx. 3: 1 virtually anywhere within the pores of the support, wherein the vanadium oxide in molten form has been substantially deposited within the pores of a support having a surface area greater than 2,350 m / g and a porosity greater than 0.4 cm / g , characterized in that the catalyst also contains an alkali metal in such an amount that a molar ratio of vanadium metal to alkali metal of 2: 1 to 30: 1 is provided. 2. Katalysator ifølge krav 1, kendetegnet ved, at bæreren er siliciumoxid-aluminiumoxid. 15Catalyst according to claim 1, characterized in that the support is silica-alumina. 15 3. Katalysator ifølge krav 1-2, kendetegnet ved, at al kalimetallet er natrium.Catalyst according to claims 1-2, characterized in that all the potassium metal is sodium. 4. Katalysator ifølge krav 1, kendetegnet ved, at 20 mol forhol det mellem vanadiummetal og alkalimetal er fra 8:1 til 20:1Catalyst according to claim 1, characterized in that the 20 mol ratio of the vanadium metal to the alkali metal is from 8: 1 to 20: 1 5. Katalysator ifølge krav 1, kendetegnet ved, at bæreren er gamma-al umi niumoxid.Catalyst according to claim 1, characterized in that the carrier is gamma-alumina. 6. Katalysator ifølge krav 1, kendetegnet ved, at mindst 10 vægtprocent af alkalimetallet er til stede som al kalimetal vanadat.Catalyst according to claim 1, characterized in that at least 10% by weight of the alkali metal is present as all potassium metal vanadate. 7. Fremgangsmåde til katalytisk ammoxidation af en forbindelse / indeholdende mindst én alkylgruppe til dannelse af en nitril, kendetegnet ved, at ammoxidationen gennemføres med katalysatoren ifølge krav 1 og i fravær af molekylært oxygen, og at katalysatoren regenereres i en separat regenerator ved kontakt med oxygen.A process for catalytic ammonium oxidation of a compound / containing at least one alkyl group to form a nitrile, characterized in that the ammonium oxidation is carried out with the catalyst of claim 1 and in the absence of molecular oxygen, and the catalyst is regenerated in a separate regenerator upon contact with oxygen. . 8. Fremgangsmåde ifølge krav 7, kendetegnet ved, at forbindelsen er benzen substitueret med mindst én alkylgruppe.Process according to claim 7, characterized in that the compound is benzene substituted by at least one alkyl group. 9. Fremgangsmåde ifølge krav 7, kendetegnet ved, at DK 157663B forbindelsen er en pyridin substitueret med mindst én al kylgruppe, som er i beta-stilling i forhold til det heterocycliske nitrogen.Process according to claim 7, characterized in that the DK 157663B compound is a pyridine substituted with at least one alkyl group which is in beta position with respect to the heterocyclic nitrogen. 10. Fremgangsmåde til fremstilling af den understøttede vanadium- 5 oxidkatalysator ifølge krav 1, kendetegnet ved, at en 2 porøs bærer med et overfladeareal på over 50 m /g og en porøsitet pa over 0,4 cm /g behandles med en vandig opløsning af et al kalimetal-hydroxid, og at den behandlede bærer og vanadiumoxid på bæreren opvarmes til over vanadiumoxidets smeltetemperatur, hvorhos vana-10 diumoxidet og alkalimetalhydroxidet benyttes i en sådan mængde, at der tilvejebringes et vægtforhold mellem vanadiumoxid og bærer på fra 0,3:1 til 3:1 stort set overalt inde i bærerens porer og et molforhold mellem vanadiummetal og alkalimetal på fra 2:1 til 30:1.Process for the preparation of the supported vanadium oxide catalyst according to claim 1, characterized in that a 2 porous support having a surface area greater than 50 m / g and a porosity of more than 0.4 cm / g is treated with an aqueous solution of et al. potassium metal hydroxide, and the treated carrier and vanadium oxide on the support are heated above the melting temperature of the vanadium oxide, the vanadium oxide and alkali metal hydroxide being used in such a manner as to provide a weight ratio of vanadium oxide to carrier of 0.3 to 3: 1 virtually anywhere within the carrier pores and a molar ratio of vanadium metal to alkali metal of 2: 1 to 30: 1. 11. Fremgangsmåde ifølge krav 10, kendetegnet ved, at bæreren behandles med alkalimetalhydroxidet inden vanadiumoxidet anbringes på bæreren.Process according to claim 10, characterized in that the support is treated with the alkali metal hydroxide before the vanadium oxide is applied to the support. 12. Fremgangsmåde ifølge krav 10, kendetegnet ved, at 20 bæreren behandles med den vandige opløsning af al kalimetal hydroxid efter vanadiumoxidets placering på bæreren.Process according to claim 10, characterized in that the carrier is treated with the aqueous solution of all potassium hydroxide after the vanadium oxide is placed on the carrier. 13. Fremgangsmåde ifølge krav 10, kendetegnet ved, at bæreren behandles med alkalimetalhydroxidet samtidig med, at vana- 25 diumoxidet placeres på bæreren.Process according to claim 10, characterized in that the support is treated with the alkali metal hydroxide while the vanadium oxide is placed on the support. 14. Fremgangsmåde ifølge krav 10, kendetegnet ved, at blandingen af alkalimetalhydroxidet og vanadiumoxidet opvarmes til vanadiumoxidets smeltetemperatur ved en middel hastighed på mindre 30 end ll,leC/min. og at den understøttede blanding holdes ved vanadiumoxidets smeltetemperatur for at anbringe vanadiumoxidet stort set helt inde i bærerens porer.Process according to Claim 10, characterized in that the mixture of the alkali metal hydroxide and the vanadium oxide is heated to the melting temperature of the vanadium oxide at an average rate of less than 1, 1 C / min. and that the supported mixture is maintained at the melting temperature of the vanadium oxide to place the vanadium oxide substantially completely within the pores of the support. 15. Fremgangsmåde ifølge krav 14, kendetegnet ved, at 35 den gennemsnitlige opvarmningshastighed ikke er over 5,5eC/min.Process according to claim 14, characterized in that the average heating rate is not above 5.5eC / min. 16. Fremgangsmåde ifølge krav 15, kendetegnet ved, at den understøttede blanding holdes ved en temperatur på 704eC over en ! periode på fra 1 til 10 timer.Process according to claim 15, characterized in that the supported mixture is maintained at a temperature of 704 ° C over one hour. period of from 1 to 10 hours.
DK427177A 1976-09-27 1977-09-27 CARRIER VANADIUM OXIDE CATALYST, PROCEDURE FOR ITS PREPARATION AND ITS USE IN NITRIL PREPARATION DK157663C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US72706076A 1976-09-27 1976-09-27
US72706076 1976-09-27
US81977177 1977-07-28
US05/819,771 US4092271A (en) 1976-09-27 1977-07-28 Supported vanadia catalyst for nitrile production and process for preparing the catalyst

Publications (3)

Publication Number Publication Date
DK427177A DK427177A (en) 1978-03-28
DK157663B true DK157663B (en) 1990-02-05
DK157663C DK157663C (en) 1990-07-09

Family

ID=27111443

Family Applications (1)

Application Number Title Priority Date Filing Date
DK427177A DK157663C (en) 1976-09-27 1977-09-27 CARRIER VANADIUM OXIDE CATALYST, PROCEDURE FOR ITS PREPARATION AND ITS USE IN NITRIL PREPARATION

Country Status (22)

Country Link
JP (1) JPS5342193A (en)
AR (1) AR218264A1 (en)
AU (1) AU513349B2 (en)
BR (1) BR7706375A (en)
CA (1) CA1100476A (en)
CH (1) CH641156A5 (en)
CS (1) CS216248B2 (en)
DD (1) DD132785A5 (en)
DE (1) DE2741625B2 (en)
DK (1) DK157663C (en)
ES (1) ES462675A1 (en)
FI (1) FI63867C (en)
FR (1) FR2365372A2 (en)
GB (1) GB1539366A (en)
IE (1) IE45969B1 (en)
NL (1) NL178313C (en)
NO (1) NO150146C (en)
PL (1) PL119446B1 (en)
PT (1) PT67087B (en)
RO (1) RO73289A (en)
SE (1) SE434706B (en)
YU (1) YU40012B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0065704A1 (en) * 1981-05-12 1982-12-01 Ashland Oil, Inc. Redox catalyst plus promoter for oxidation of hydrocarbons
DE3401676A1 (en) * 1984-01-19 1985-07-25 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR PRODUCING A V (ARROW DOWN) 2 (ARROW DOWN) O (ARROW DOWN) 5 (ARROW DOWN) AND ALKALISULFATE-CONTAINING CATALYST FOR THE OXIDATION OF SO (ARROW DOWN) 2 (ARROW DOWN) (ARROW DOWN) DOWN)
EP0253360B1 (en) * 1986-07-15 1993-12-01 Koei Chemical Co., Ltd. Process for preparing nitriles
JPS63116465U (en) * 1987-01-22 1988-07-27
EP0556489A1 (en) * 1992-02-19 1993-08-25 Shell Internationale Researchmaatschappij B.V. Process for the dehydrogenation of hydrocarbons

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1357675A (en) * 1963-02-11 1964-04-10 Aquitaine Petrole New catalyst for the recovery of gaseous sulfur compounds contained in low concentrations in waste gases and flue gases, and their transformation into sulfur trioxide and process using such a catalyst
DE1290125C2 (en) * 1963-11-06 1974-04-11 PROCESS FOR THE PREPARATION OF BENZONITRILE
US3963645A (en) * 1969-02-27 1976-06-15 The Lummus Company Supported metal oxides
DE1930880B2 (en) * 1969-06-18 1980-02-21 Chemische Werke Huels Ag, 4370 Marl Process for the production of iso- and / or terephthalic acid dinitriles

Also Published As

Publication number Publication date
NL7709953A (en) 1978-03-29
FI63867B (en) 1983-05-31
AU513349B2 (en) 1980-11-27
FI63867C (en) 1983-09-12
YU228777A (en) 1982-08-31
ES462675A1 (en) 1978-12-16
FR2365372B2 (en) 1983-07-29
SE7710757L (en) 1978-03-28
JPS5342193A (en) 1978-04-17
PL119446B1 (en) 1981-12-31
AR218264A1 (en) 1980-05-30
CH641156A5 (en) 1984-02-15
NO150146C (en) 1984-08-29
PT67087B (en) 1979-02-22
CA1100476A (en) 1981-05-05
DE2741625A1 (en) 1978-03-30
SE434706B (en) 1984-08-13
AU2823677A (en) 1979-03-01
RO73289A (en) 1981-11-04
NL178313C (en) 1986-03-03
IE45969L (en) 1978-03-27
DD132785A5 (en) 1978-11-01
IE45969B1 (en) 1983-01-12
PT67087A (en) 1977-10-01
PL201050A1 (en) 1978-09-25
GB1539366A (en) 1979-01-31
CS216248B2 (en) 1982-10-29
BR7706375A (en) 1978-07-04
YU40012B (en) 1985-06-30
DK157663C (en) 1990-07-09
DE2741625B2 (en) 1980-10-16
NO773192L (en) 1978-03-29
NL178313B (en) 1985-10-01
FI772543A (en) 1978-03-28
FR2365372A2 (en) 1978-04-21
NO150146B (en) 1984-05-21
DK427177A (en) 1978-03-28

Similar Documents

Publication Publication Date Title
US6392048B1 (en) Process for preparing carbocyclic or heterocyclic nitriles by vapor phase ammoxidation
DK157663B (en) CARRIER VANADIUM OXIDE CATALYST, PROCEDURE FOR ITS PREPARATION AND ITS USE IN NITRIL PREPARATION
JPH0699397B2 (en) Process for producing 3-cyanopyridine from a mixture of 3-methylpyridine and 3-methylpiperidine
US4092271A (en) Supported vanadia catalyst for nitrile production and process for preparing the catalyst
US4284781A (en) Supported vanadia catalyst and use thereof for nitrile production
CA1063608A (en) Preparation of pyridines and nicotinonitrile from piperidines
US3381011A (en) Pyridine production
DK152673B (en) METHOD OF MANUFACTURING NICOTINONITRIL
EP0539505B1 (en) Improved processes for the preparation of 2,2'-bipyridyls
KR0149013B1 (en) High temperature process for selective production of 3-methyl pyridine
EP0239904A2 (en) Method of preparing 2,3,6-trichloropyridine and 2,3,5,6-tetrachloropyridine in the gas phase
US5149816A (en) High temperature process for selective production of 3-methylpyridine
KR800000596B1 (en) Supported vanadia catalyst for nitrile production
US3829428A (en) Process for the catalytic vapor-phase synthesis of alkylpyridines
Prins Synthesis of picolines and other aza-aromatics from arylamines by isomerization-rearrangement and from dinitriles by hydrogenation-cyclization reactions
US5037838A (en) Method for the manufacture of triethylenediamine using a pelleted titania-supported tungstopyrophosphate catalyst
JPH0674254B2 (en) Process for producing pyrazine derivative
JP4114019B2 (en) Nitrile compound production method and production catalyst
US6051714A (en) Processes for dechlorinating pyridines
JP4545593B2 (en) Process for producing vinylpyridine from picoline on modified zeolite
JPH0517462A (en) Production of triethylene diamine compounds and piperazine compounds
KR100696277B1 (en) Method for producing aromatic compound isomers
JP4430549B2 (en) Process for preparing 2,6-divinylpyridine and 2-methyl-6-vinylpyridine from 2,6-lutidine with modified zeolite
US7102025B2 (en) Method for producing alkyl and/or cycloalkyl-substituted cyclic nitrile
JPS62294668A (en) Production of compound having pyrazine nucleus

Legal Events

Date Code Title Description
PBP Patent lapsed