DK142328B - Process for producing high viscosity lubricating oil. - Google Patents

Process for producing high viscosity lubricating oil. Download PDF

Info

Publication number
DK142328B
DK142328B DK424373AA DK424373A DK142328B DK 142328 B DK142328 B DK 142328B DK 424373A A DK424373A A DK 424373AA DK 424373 A DK424373 A DK 424373A DK 142328 B DK142328 B DK 142328B
Authority
DK
Denmark
Prior art keywords
catalyst
hydroisomerization
oil
lubricating oil
hydrocracking
Prior art date
Application number
DK424373AA
Other languages
Danish (da)
Other versions
DK142328C (en
Inventor
Claude Clement
Michel Houte
Emmanuel Neel
Original Assignee
Shell Int Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Int Research filed Critical Shell Int Research
Publication of DK142328B publication Critical patent/DK142328B/en
Application granted granted Critical
Publication of DK142328C publication Critical patent/DK142328C/da

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil

Description

(^) (11) FREMUEGGELSESSKRIFT 1U2328 DANMARK «η c 10 e 45/60 «(21) Ansøgning nr. 424j/75 (22) Indleveret den ^ · au£* U (24) Lebedag 2. SUg * 1S 15 (44) Ansøgningen fremtogt og . -, ,, , Qp/-> fremlssggelsesskriftet offentliggjort den ·>· OK '* DIREKTORATET FOR ^ .(^) (11) PROGRESSION SCRIPTURE 1U2328 DENMARK "η c 10 e 45/60" (21) Application No. 424j / 75 (22) Filed on ^ · au £ * U (24) Living day 2. SUg * 1S 15 (44 ) The application forwarded and. -,,, Qp / -> the promulgation letter published on ·> · OK '* DIRECTORATE FOR ^.

PATENT-OG VAREMÆRKEVÆSENET (3°) gj? J22619P> FRTHE PATENT AND TRADEMARK (3 °) J22619P> FR

(71) SHELL INTERNATIONALE RESEARCH MAATSCHAPPU E.V., Carel van Bylandt=(71) SHELL INTERNATIONAL RESEARCH COMPANY E.V., Carel van Bylandt =

Taan 30, Haag, NL.Taan 30, The Hague, NL.

(72) Opfinder: Claude Clement, Centre de Recherche de Grand-Couronne, 76 -Grand-Couronne, FR: Michel Houte, Centre de Recherche de Grand-Couron= ne, 76 - Grand-Couronne, FRT Emmanuel Neel, Centre de Recherche de Grand-Couronne, 76 - Grand-Couronne, FR.(72) Inventor: Claude Clement, Grand-Couronne Research Center, 76 -Grand-Couronne, FR: Michel Houte, Grand-Couron Research Center = ne, 76 - Grand-Couronne, FRT Emmanuel Neel, Center of Research the Grand Couronne, 76 - Grand Couronne, FR.

(74) Fuldmagtig under sagens behandling:(74) Proxy during the proceedings:

Kontor for Industriel Eneret v. Svend Schørmlng.Office of Industrial Excellence v. Svend Schørmlng.

(54) Fremgangsmåde til fremstilling af smøreolie med høj viskositetsindeks.(54) Process for producing high viscosity lubricating oil.

Den foreliggende opfindelse angår en fremgangsmåde til fremstilling af smøreolie med høj viskositetsindeks.The present invention relates to a process for producing high viscosity lubricating oil.

Smøreolier med høj viskositetsindeks kan fremstilles ved katalytisk hydrokrakning af en højtkogende mineraloliefraktion,fx et vakuumdestillat der koger mellem 350 og 550°C eller en cif asf alteret residualolie. Efter hydrokrakningen fjernes de kulbrinter der koger under området mellem 350 og 40C°C, ved destillation af det resulterende produkt og den højerekogende remanens afvokses, fx ved behandling med en blanding af metylætylketon og toluen ved lav temperatur. Den afvoksede remanens er en smøreolie med gode kvaliteter, herunder høj viskositetsindeks, fx mellem 100 og 140.High viscosity index lubricating oils can be produced by catalytic hydrocracking of a high boiling mineral oil fraction, for example a vacuum distillate boiling between 350 and 550 ° C or a cif asf altered residual oil. After the hydrocracking, the hydrocarbons boiling in the range of between 350 and 40 ° C are removed by distillation of the resulting product and the higher boiling residue, for example by treatment with a mixture of methyl ethyl ketone and low temperature toluene. The dewaxed residue is a lubricating oil with good grades, including high viscosity index, for example between 100 and 140.

142328 2 Sådanne processer har imidlertid den ulempe at de mængder vokser, der frembringes ved adskillelse af remanensen fra destillationen af effluenten fra hydrokrakningstrinnet, repræsenterer et tab af nyttige produkter og således nedsætter udbyttet af den ønskede omdannelse.However, such processes have the disadvantage that the quantities of waxes produced by separating the residue from the distillation of the effluent from the hydrocracking step represent a loss of useful products and thus reduce the yield of the desired conversion.

Det har nu vist sig at det er muligt at forbedre totaludbyttet fra en sådan omdannelse ved at underkaste de vokser, der vindes ved adskillelse af hydrolcrakningsproduktet, katalytisk hydroiso-merisation under anvendelse af en katalysator indeholdende et eller flere metaller af jerngruppen, et eller flere metaller af gruppen VI B i grundstoffernes periodiske system, bor og en katalysatorbærer bestående af oxyd.It has now been found that it is possible to improve the overall yield from such conversion by subjecting the waxes obtained by separation of the hydrolyzing product to catalytic hydroisomerization using a catalyst containing one or more metals of the iron group, one or more metals. of group VI B in the periodic system of the elements, boron and an oxide catalyst support.

Det har desuden vist sig at den nævnte katalytiske hydro-isomerisationsproces ikke blot repræsenterer et vigtigt middel til at forbedre totaludbyttet ved fremstilling af smøreolier fra en højt-kogende mineraloliefraktion , men også er et meget fordelagtigt middel til frembringelse af smøreolier med endnu højere viskositetsindeks end viskositetsindeksen af en smøreolie fremstillet ved hydro-krakning, fx mellem 140 og 170.In addition, it has been found that the said catalytic hydroisomerization process not only represents an important means of improving the overall yield in the production of lubricating oils from a high boiling mineral oil fraction, but is also a very advantageous agent for producing lubricating oils having an even higher viscosity index than the viscosity index. of a lubricating oil produced by hydro-cracking, for example between 140 and 170.

For at drage fordel af sidstnævnte fortrin, er det nødvendigt at vælge fødemateriale til hydroisomerisationsreaktoren præcist, som det vil blive beskrevet mere udførligt nedenfor.To take advantage of the latter advantage, it is necessary to select feed material for the hydroisomerization reactor precisely, as will be described in more detail below.

Opfindelsen angår således en fremgangsmåde til fremstilling af smøreolie med høj viskositetsindeks ved hvilken en højt-kogende mineraloliefraktion underkastes katalytisk hydrokraknings-behandling ved forhøjet temperatur og tryk i nærværelse af en hydrokrakningskatalysator og hydrogen, kulbrinter med kogepunkt under en temperatur mellem 350 og 400°C skilles fra det flydende produkt fra hydrokrakningsbehandlingen, den remanens der koger over en temperatur mellem 350 og 400°C adskilles ved afvoksning i en smøreolie med høj viskositetsindeks og voks, og dette voks underkastes katalytisk hydroisomerisation i nærværelse af hydrogen og en katalysator og fremgangsmåden ifølge opfindelsen er ejendommelig ved at hydroisomerisationskatalysatoren indeholder et eller flere metaller af jerngruppen, et eller flere metaller af gruppe VI B i grundstoffernes periodiske system, bor og en katalysatorbærer bestående af oxyd.The invention thus relates to a process for producing high viscosity lubricating oil in which a high boiling mineral oil fraction is subjected to catalytic hydrocracking at elevated temperature and pressure in the presence of a hydrocracking catalyst and hydrogen, hydrocarbons having a boiling point below a temperature between 350 and 400 ° C. from the liquid product of the hydrocracking treatment, the residue boiling over a temperature between 350 and 400 ° C is separated by dewaxing in a high viscosity index and wax lubricating oil, and this wax is subjected to catalytic hydroisomerization in the presence of hydrogen and a catalyst and the process of the invention is characterized in that the hydroisomerization catalyst contains one or more metals of the iron group, one or more metals of group VI B in the periodic system of the elements, boron and a catalyst support consisting of oxide.

Udgangsmaterialer der egner sig til fremsgangsmåden ifølge opfindelsen er blandinger af højtlcogende kulbrinter, fx tunge jord-oliefraktioner og tunge fraktioner frembragt ved pyrolyse af kul, 3 142328 bituminøs skifer ("shale") eller tjæresand. Jordoliefraktioner der i det mindste delvis koger over smøreolies kogepunktsområde kan anvendes med fordel. Som fødemateriale for den foreliggende fremgangsmåde foretrækkes det at bruge en fraktion vundet ved vakuumdestillation af en jordolieremanens vundet ved atmosfærisk destillation. Kogepunktsområdet for et sådant vakuumdestillat er i almindelighed mellem 350 og 550°C. Imidlertid foretrækkes deasfalterede residu-al-jordoliefraktioner i særlig grad. Blandinger af vakuumdestillater og deasfalterede residual-jordoliefraktioner er ligeledes velegnede til anvendelse.Starting materials suitable for the process of the invention are mixtures of high boiling hydrocarbons, for example heavy petroleum fractions and heavy fractions generated by coal pyrolysis, bituminous shale or tar sand. Petroleum fractions that at least partially boil over the boiling range of lubricating oil can be used advantageously. As feed material for the present process, it is preferred to use a fraction obtained by vacuum distillation of a petroleum residue obtained by atmospheric distillation. The boiling range of such a vacuum distillate is generally between 350 and 550 ° C. However, deasphalted residual petroleum fractions are particularly preferred. Mixtures of vacuum distillates and deasphalted residual petroleum fractions are also suitable for use.

Hydrokrakningsbehandlingen og hydroisomerisatioren udføres ved forhøjet temperatur og tryk i nærværelse af hydrogen eller en hydrogenholdig gas. Der kan bruges rent hydrogen, men det er unødvendigt. En gas med et hydrogenindhold på 70% eller derover er fuldstændig velegnet.The hydrocracking treatment and hydroisomerization are carried out at elevated temperature and pressure in the presence of hydrogen or a hydrogen-containing gas. Pure hydrogen can be used, but it is unnecessary. A gas having a hydrogen content of 70% or more is perfectly suitable.

I praksis vil der fortrinsvis blive anvendt en hydrogen-holdig gas stammende fra et katalytisk reforminganlæg. En sådan gas har ikke blot højt hydrogenindhold, men indeholder også lavtkogende kulbrinter såsom metan, ætan og en ringe mængde propan.In practice, preferably, a hydrogen-containing gas originating from a catalytic reforming plant will be used. Such gas not only has high hydrogen content, but also contains low boiling hydrocarbons such as methane, ethane and a small amount of propane.

Den temperatur og det tryk der bruges ved hydrokrakningsbehandlingen kan varieres inden for vide grænser i afhængighed af den ønskede omdannelsesgrad. Der vil som regel blive valgt en temperatur på ikke under 300°C og ikke over 550°C. Ved temperaturer under 30C°C nedsættes omdannelseshastigheden, mens der.ved temperaturer på over 550°C sker forceret krakning, således at der kun vindes en begrænset mængde af det ønskede produkt. En temperatur mellem 350 og 400°C foretrækkes. Tryk på under 50 bar er mindre ønskelige fordi de forkorter katalysatorens levetid og medfører risiko for en excessiv mængde aromater i produkter, der i ugunstig retning ville påvirke både viskositetsindeksen og produktets sluttelige egenskaber. Et tryk på over 250 bar ville nødvendiggøre et meget kostbart anlæg. Det foretrækkes derfor at bruge tryk mellem 100 og 200 bar.The temperature and pressure used in the hydrocracking treatment can be varied within wide limits depending on the desired degree of conversion. A temperature of not less than 300 ° C and not more than 550 ° C will usually be selected. At temperatures below 30 ° C the rate of conversion is reduced, while at temperatures above 550 ° C forced cracking occurs so that only a limited amount of the desired product is obtained. A temperature between 350 and 400 ° C is preferred. Pressures below 50 bar are less desirable because they shorten the life of the catalyst and result in the risk of an excessive amount of aromatics in products which would adversely affect both the viscosity index and the final properties of the product. Pressure above 250 bar would necessitate a very expensive system. It is therefore preferable to use pressures between 100 and 200 bar.

Med hensyn til rumhastighed og hydrogen/olie-mængdeforhold kan disse også vælges inden for meget vide grænser. Imidlertid vælges der fortrinsvis en rumhastighed mellem 0,1 og 5 kg olie pr. time pr. liter katalysator. En rumhastighed på under 0,1 kg/h x 1 ville udkræve en så stor reaktor til omdannelse af en given mængde, at det ville blive uøkonomisk, mens en rumhastighed på over 5 kg/h x 1 4 142328 kun ville give lav omdannelseshastighed til det ønskede produkt.In terms of space velocity and hydrogen / oil ratio these can also be selected within very wide limits. However, preferably a space velocity of between 0.1 and 5 kg of oil per day is chosen. per hour liter of catalyst. A space velocity of less than 0.1 kg / hx 1 would require such a large reactor to convert a given amount that it would be uneconomical, while a space velocity of more than 5 kg / hx 1 would give only a low conversion rate to the desired product.

Mængdeforholdet hydrogen/olie er fortrinsvis mellem 10Q og 5000 standardliter (liter ved l bar og 0°c) pr. kg olie. Et meget lavt mængdeforhold H2/olie ville i ugunstig retning påvirke katalysatorens levetid, mens et meget højt mængdeforhold H2/olie ville bevirke betydeligt tab af fødemateriale over katalysator lej erne, og ville kræve høj kompression til cirkuleringen af gassen med højt hydrogenindhold.The hydrogen / oil ratio is preferably between 10Q and 5000 standard liters (liter at 1 bar and 0 ° C) per liter. kg of oil. A very low amount of H2 / oil would adversely affect the life of the catalyst, while a very high amount of H2 / oil would cause significant loss of feed material over the catalyst beds and would require high compression for the circulation of the high hydrogen content gas.

De hydrokralcningskatalysatorer der bruges ved fremgangsmåden ifølge opfindelsen er katalysatorer som indeholder en eller flere hydrogeneringsbestanddele på en bærer. Hydrokrakningskataly-satorerne består fortrinsvis af mindst et eller flere metaller af gruppe VB, VIB, VIIB og/eller VIII i grundstoffernes periodiske sy-/ og/eller sulfider.af et eller flere stem, og/eller et eller flere oxyder/af disse metaller.The hydrocalcification catalysts used in the process of the invention are catalysts which contain one or more hydrogenation components on a support. The hydrocracking catalysts preferably consist of at least one or more metals of Group VB, VIB, VIIB and / or VIII in the periodic sewing and / or sulfides of the elements. One or more trunks and / or one or more oxides / of these metals. .

Grupperne VB, VIB, VIIB og VIII i grundstoffernes periodiske system indeholder følgende metaller: v, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir og Pt. Egnede katalysatorer er dem som indeholder mindst to metalliske hydrogeneringskomponenter, idet en af disse metalliske komponenter fortrinsvis består af nikkel og/eller kobolt og/eller en forbindelse af nikkel og/eller kobolt, mens den anden består af molybdæn og/eller wolfram og/eller en forbindelse af molybdæn og/eller wolfram. Betydningsfulde faktorer ved denne proces er mængden af metallisk hydrogeneringskomponent udtrykt som % af hele katalysatoren, og forholdet mellem nikkel og/eller kobolt på den ene side og molybdæn og/eller wolfram på den anden side.Groups VB, VIB, VIIB and VIII of the periodic system of the elements contain the following metals: v, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir and pt. Suitable catalysts are those containing at least two metallic hydrogenation components, one of these metallic components preferably consisting of nickel and / or cobalt and / or a compound of nickel and / or cobalt, while the other consists of molybdenum and / or tungsten and / or a compound of molybdenum and / or tungsten. Significant factors in this process are the amount of metallic hydrogenation component expressed as% of the total catalyst, and the ratio of nickel and / or cobalt on the one hand to molybdenum and / or tungsten on the other.

Det er fordelagtigt ikke at vælge for lille mængde af den metalliske komponent, eftersom dette ville kunre påvirke den udkrævede hydrogeneringsvirkning. En meget stor mængde metallisk komponent ville føre til at porerne i den porøse katalysatorbærer ville blive tilstoppet, således at en del af katalysatorens specifikke overfladeareal ville blive gjort utilgængeligt for det materiale der skal omdannes. Det har vist sig at en katalysator indeholdende 3-25 vægt% molybdæn og/eller wolfram er fremragende god til den foreliggende fremgangsmåde. Det foretrækkes derfor at anvende ovennævnte vægtprocenter af metalliske hydrogeneringskomponenter i katalysatoren før denne bruges til der· foreliggende fremgangsmåde.It is advantageous not to choose too small an amount of the metallic component since this would only affect the required hydrogenation effect. A very large amount of metallic component would cause the pores of the porous catalyst support to become clogged so that part of the specific surface area of the catalyst would be made inaccessible to the material to be converted. It has been found that a catalyst containing 3-25 wt.% Molybdenum and / or tungsten is excellent for the present process. It is therefore preferred to use the above weight percentages of metallic hydrogenation components in the catalyst before using it for the present process.

Aktiviteten og selektiviteten af disse sidstnævnte katalysatorer kan forbedres yderligere ved tilsætning af fosfor, fx 5 142328 mellem I og 10 vægt% fosfor, regnet som P20j.. Et -fosforindhold mellem 2 og 9 vægtjé, regnet som P«o , på hele katalysatorens vægt fore- ^ 5 trækkes endnu mere, og det har vist sig at maksimal katalysatoraktivitet opnås når fosforindholdet er mellem 3 og 7 vægt%, ligeledes regnet som P20^ på hele katalysatorvægten.The activity and selectivity of these latter catalysts can be further enhanced by the addition of phosphorus, for example, between 1 and 10% by weight of phosphorus, calculated as P 2 O 2. A phosphorus content of 2 to 9% by weight, calculated as P is further drawn and it has been found that maximum catalyst activity is achieved when the phosphorus content is between 3 and 7% by weight, also counted as P2 O2 on the entire catalyst weight.

En anden foretrukken gruppe hydrokrakningskatalysatorer repræsenteres af den gruppe hydroisomerisationskatalysatorer, der beskrives nedenfor. I dette tilfælde er den bedst egnede hydrokrak-ningskatalysator en katalysator som er fuldstændig identisk med hydro i somerisationskatalysatoren, hvilket betegner en betydelig forenkling af det hele.Another preferred group of hydrocracking catalysts is represented by the group of hydroisomerization catalysts described below. In this case, the most suitable hydrocracking catalyst is a catalyst which is completely identical to hydro in the somerization catalyst, signifying a significant simplification of the whole.

Generelt indeholder den hydroisomerisationskatalysator, der bruges ved fremgangsmåden ifølge opfindelsen, mindst to metalliske hydrogeneringskomponenter, en bærer og bor.In general, the hydroisomerization catalyst used in the process of the invention contains at least two metallic hydrogenation components, a carrier and boron.

En af de metalliske komponenter består af mindst ét metal af jerngruppen (Fe, Co, Ni) eller en forbindelse af et sådant metal; desuden må katalysatoren indeholde mindst ét metal af gruppe VIB eller en forbindelse af et sådant metal.One of the metallic components consists of at least one metal of the iron group (Fe, Co, Ni) or a compound of such a metal; in addition, the catalyst must contain at least one group VIB metal or a compound of such metal.

Skønt alle metallerne af jerngruppen og alle metallerne af gruppe VIB i grundstoffernes periodiske system kan bruges som den ene af de to hydrogeneringskomponenter ved omdannelseskatalysatoren ifølge opfindelsen, foretrækkes det i almindelighed at bruge en kombination af nikkel og wolfram, hvilket gør det muligt at opnå de bedste resultater. Med hensyn til vægt% af de metalliske bestanddele foretrækkes hydroisomerisationskatalysatorer indeholdende 3-16 vægt% af et eller flere metaller af jerngruppen og 6-24 vægt% af et eller flere metaller af gruppe VIB.Although all the metals of the iron group and all the metals of group VIB in the periodic system of the elements can be used as one of the two hydrogenation components of the conversion catalyst according to the invention, it is generally preferred to use a combination of nickel and tungsten, which makes it possible to obtain the best results. With respect to weight percent of the metallic constituents, hydroisomerization catalysts containing 3 to 16 weight percent of one or more metals of the iron group and 6 to 24 weight percent of one or more metals of Group VIB are preferred.

Den mængde bor der bruges på katalysatoren kan også variere inden for vide grænser. Det har imidlertid vist sig at katalysatorens aktivitet afhænger af den vægt% bor, der findes deri. Et borindhold på 1-20, især 3-15%, regnet som på hele kataly satorens vægt, giver god katalytisk aktivitet. En særlig høj aktivitet af katalysatoren og effektivitet af hydroisomerisationen opnås hvis ifølge opfindelsen denne katalysator er som angivet i krav 2. Det har vist sig at maksimal katalysatoraktivitet opnås når borindholdet er mellem 5 og 10 vægt%, ligeledes regnet som hele katalysatorens vægt.The amount of boron used on the catalyst may also vary within wide limits. However, it has been found that the activity of the catalyst depends on the weight percent boron contained therein. A boron content of 1-20, especially 3-15%, calculated as on the weight of the entire catalyst, provides good catalytic activity. A particularly high activity of the catalyst and efficiency of the hydroisomerization are achieved if, according to the invention, this catalyst is as set forth in claim 2. It has been found that maximum catalyst activity is achieved when the boron content is between 5 and 10% by weight, also calculated as the total weight of the catalyst.

Som hydrokraknings- og/eller hydroisomerisationskatalysa-tor-bærer kan der i princippet anvendes et hvilket som helst ild- 6 162328 fast materiale som er modstandsdygtigt mod de kemiske produkter. Egnede materialer er fx aluminiumoxyd, kiselsyreanliydrid, magniumoxyd, titanoxyd og blandinger og forbindelser af disse oxyder.As a hydrocracking and / or hydroisomerization catalyst support, any refractory material which is resistant to the chemical products can in principle be used. Suitable materials are, for example, alumina, silicic anhydride, magnesium oxide, titanium oxide and mixtures and compounds of these oxides.

'Kommercielt aluminiumoxyd indeholder i almindelighed små mængder urenheder, fx kiselsyreanliydrid og natrium. Det har vist sig at aluminiumoxyd indeholdende mellem 0,5 og 3 vægt% kiselsyre-anhydrid og maksimalt 0,005 vægt°/0 natrium er et ypperligt bærermateriale for katalysatoren. Det foretrækkes derfor at bruge et sådant aluminiumoxyd. Hvis aluminiumoxydet indeholder mere end 0,005 vægt% natrium, kan dette natriumindhold nedsættes til det ønskede niveau ved ionbytning med en opløsning af ammoniumsalte. Endelig kan der også bruges sure bærere såsom syrebehandlede lerarter og zeolitiske molekylsigtematerialer.Commercial alumina generally contains small amounts of impurities, for example silicic anhydride and sodium. It has been found that alumina containing between 0.5 and 3% by weight of silicic anhydride and a maximum of 0.005% by weight / 0 sodium is an excellent catalyst support material. It is therefore preferable to use such an alumina. If the alumina contains more than 0.005% by weight sodium, this sodium content may be reduced to the desired level by ion exchange with a solution of ammonium salts. Finally, acidic carriers such as acid-treated clays and zeolite molecular sieve materials can also be used.

For yderligere at forøge aktiviteten af hydroisomerisa-tionskatalysator kan man ifølge opfindelsen lade den indeholde fluor. Det kan også gælde hydrokrakningskatalysatoren, og særlig høj aktivitet opnår man hvis ifølge opfindelsen hydroisomerisationskatalysatoren indeholder 1-6 vægt% fluor regnet på bærervægten. Det skal imidlertid bemærkes at hvis den anvendte hydrokrakningskatalysator (hvad enten den er fluoreret eller ej') indeholder nikkel og/eller kobolt, molybdæn og/eller wolfram og fosfor, forudses der ikke anvendelse af en hydroisomerisationskatalysator som indeholder fluor.In order to further increase the activity of hydroisomerization catalyst, the invention may contain fluorine. It may also apply to the hydrocracking catalyst, and particularly high activity is achieved if, according to the invention, the hydroisomerization catalyst contains 1-6% by weight of fluorine based on the carrier weight. However, it should be noted that if the hydrocracking catalyst used (whether fluorinated or not) contains nickel and / or cobalt, molybdenum and / or tungsten and phosphorus, the use of a hydroisomerization catalyst containing fluorine is not envisaged.

Hydrokraknings- og hydroisomerisationslcatalysatorerne kan fremstilles på en hvilken som helst ønsket måde, fx ved imprægnering af bæreren med en eller flere vandige opløsninger af forbindelser af de andre komponenter, hvorefter der tørres og kalcineres i temperaturområderne henholdsvis 100-250°C og 450-850°C i en periode på l/2 til fem timer.The hydrocracking and hydroisomerization catalysts can be prepared in any desired manner, for example, by impregnating the support with one or more aqueous solutions of compounds of the other components, then drying and calcining in the temperature ranges of 100-250 ° C and 450-850 °, respectively. C for a period of 1/2 to five hours.

Efter kalcineringen vil de metalliske bestanddele og fosfor, hvis det anvendes, sandsynligvis være til stede i form af oxyder i katalysatoren, selv om man ikke kan udelukke den mulighed at de i det mindste delvis er bundet til katalysatorbæreren.After calcination, the metallic constituents and phosphorus, if used, are likely to be present in the form of oxides in the catalyst, although the possibility that they are at least partially bound to the catalyst support cannot be ruled out.

Det har vist sig at den katalytiske omdannelse af tunge kulbrinteblandinger til smøreolie ved hjælp af hydrogen giver bedre resultater med i forvejen sulfiderede hydrokraknings- og/eller hydroisomerisationskatalysatorer, således at de metalliske oxyder 7 142328 deri i det mindste delvis er blevet omdannet til de tilsvarende metal sulfider.It has been found that the catalytic conversion of heavy hydrocarbon mixtures to lubricating oil by hydrogen gives better results with pre-sulfated hydrocracking and / or hydroisomerization catalysts, so that the metallic oxides therein have at least partially been converted to the corresponding metal sulphides.

Det foretrækkes derfor at bruge en sulfideret katalysator. Selv om fødematerialet til hydrokrakningszonen i almindelighed indeholder svovlforbindelser, der hurtigt sulfiderer en oxydholdig katalysator efter hydrokrakningsbehandlingens begyndelse, er det fordelagtigt at sulfidere hydrokrakningskatalysatoren i forvejen, således at der bruges en sulfideret katalysator fra hydrokrakningsprocessens begyndelse.Therefore, it is preferred to use a sulfided catalyst. Although the feedstock for the hydrocracking zone generally contains sulfur compounds which rapidly sulfide an oxide-containing catalyst after the start of the hydrocracking treatment, it is advantageous to sulfide the hydrocracking catalyst in advance so that a sulfidized catalyst is used from the beginning of the hydrocracking process.

En særlig god metode og derfor en der fortrinsvis bruges til sulfidering består i at man bringer katalysatoren ved en temperatur mellem 250°C og 450°C og et tryk mellem 30 og 70 bar, mens rumhastigheden er mellem 1 og 10 kg^j? time pr. liter katalysator og mængdeforholdet hydrogen/olie er mellem 50 og 500 standardliter H2 pr. kg olie, i kontakt med en olie indeholdende svovlforbindelser og fortrinsvis med gasolie indeholdende svovlforbindelser. Denne behandling udføres fortrinsvis i samme reaktionsbeholder som den hvor den hydrogenative omdannelse af smøreolien skal finde sted.A particularly good method and therefore one which is preferably used for sulphidation consists in bringing the catalyst at a temperature between 250 ° C and 450 ° C and a pressure between 30 and 70 bar, while the space velocity is between 1 and 10 kg. per hour The volume of hydrogen / oil is between 50 and 500 standard liters of H2 per liter. in contact with an oil containing sulfur compounds and preferably with gas oil containing sulfur compounds. This treatment is preferably carried out in the same reaction vessel as that in which the hydrogenative conversion of the lubricating oil is to take place.

Efter sulfidering af katalysatoren indføres udgangsmaterialet til fremstilling af smøreolie med høj viskositetsindeks i reaktoren ved en passende temperatur, tryk, rumhastighed og mængdeforhold H2/olie, og dette materiale føres over katalysatoren der fortrinsvis befinder sig i et eller flere lejer bestående af partikler med dimensioner mellem 0,5 og 5 mm.After sulfation of the catalyst, the starting material for producing high viscosity index lubricating oil is introduced into the reactor at an appropriate temperature, pressure, room rate and ratio H2 / oil, and this material is passed over the catalyst preferably in one or more beds consisting of particles having dimensions between 0.5 and 5 mm.

Efter at have passeret gennem hydrokrakningsreaktoren afkøles produktet og adskilles i en gas med højt hydrogenindhold og et flydende produkt. Gassen med højt hydrogenindhold recirkuleres fortrinsvis til reaktoren, i det mindste delvis. Det flydende produkt indeholder kulbrinter med kogepunkt under smøreoliers kogepunkt samt kulbrinter med kogepunkt inden for smøreoliers kogepunktsområde.After passing through the hydrocracking reactor, the product is cooled and separated into a high-hydrogen gas and a liquid product. The high hydrogen gas is preferably recirculated to the reactor, at least in part. The liquid product contains hydrocarbons with a boiling point below the boiling point of the lubricating oil as well as hydrocarbons with a boiling point within the boiling range of the lubricating oil.

De kulbrinter, som koger under smøreoliernes kogepunktsområde, fraskilles fortrinsvis ved fraktioneret destillation af den højere kogende remanens. Skæringspunktet for denne destillation vælges fortrinsvis på en sådan måde at begyndelseskogepunktet for den højere kogende remanens ligger mellem 350 og 400°C.The hydrocarbons boiling below the boiling range of the lubricating oils are preferably separated by fractional distillation of the higher boiling residue. The point of intersection of this distillation is preferably chosen in such a way that the initial boiling point of the higher boiling residue is between 350 and 400 ° C.

Bortset fra ypperlige smøreoliekomponenter, indeholder denne remanens normale og svagt forgrenede paraffiner der betegnes 142328 8 med ordet "voks", som størkner ved stuetemperatur og således har ugunstig indvirkning på den ønskede smøreolies flydepunkt. Denne remanens afvokses derfor til dannelse af en smøreolie eller en brugbar smøreoliekomponent. Denne behandling kan udføres på en hvilken som helst ønsket måde, fx ved hjælp af et opløsningsmiddel. Sidstnævnte proces består i at man opløser et fødemateriale indeholdende vokset i et Organisk opløsningsmiddel og afkøler dette fødemateriale til at bevirke krystallisation af vokset,der derefter skilles fra opløsningsmiddel/olie-blandingen ved filtrering. Egnede opløsningsmidler for denne behandling er flydende propan, butan, pentan, benzen, toluen, acetone, metylætylketon og blandinger af en eller flere aromater med metylætylketon.Apart from excellent lubricating oil components, this residue contains the normal and slightly branched paraffins designated 142328 by the word "wax" which solidify at room temperature and thus adversely affect the flow point of the desired lubricating oil. Therefore, this residue is dewaxed to form a lubricating oil or a useful lubricating oil component. This treatment can be carried out in any desired manner, for example by means of a solvent. The latter process consists of dissolving a feed containing wax in an Organic solvent and cooling this feed to cause crystallization of the wax which is then separated from the solvent / oil mixture by filtration. Suitable solvents for this treatment are liquid propane, butane, pentane, benzene, toluene, acetone, methyl ethyl ketone and mixtures of one or more aromatics with methyl ethyl ketone.

Afvoksningen udføres fortrinsvis ved hjælp af en blanding af 40-60 rumfangsdele metylætylketon og 60-40 rumfangsdele toluen ved en temperatur mellem -10 og -30°C, idet rumfangsforholdet mellem opløsningsmiddel og olie er mellem 1:1 og 10:1.The dewaxing is preferably carried out using a mixture of 40-60 volumes of methyl ethyl ketone and 60-40 volumes of toluene at a temperature between -10 and -30 ° C, with the volume ratio of solvent to oil being between 1: 1 and 10: 1.

Den afvoksede remanens har høj viskositetsindeks, fx mellem 100 og 140, i afhængighed af de betingelser under hvilke hydrogeneringsomdannelsen af udgangsmaterialet er blevet udført. Den egner sig således eminent godt til anvendelse som "multigrade" smøreolie eller som komponent i en "multigrade" smøreolie. Denne afvokse-de remanens kan desuden tjene til fremstilling ved vakuumdestillation af en eller flere smøreolier eller smøreoliekomponenter med høje viskositetsindekser og varierende viskositet, der derefter kan omdannes til glimrende "multigrade" smøreolier ved sammenblanding af dem eller blanding af dem med andre komponenter.The dewaxed residue has a high viscosity index, for example between 100 and 140, depending on the conditions under which the hydrogenation conversion of the starting material has been carried out. It is thus eminently suitable for use as a "multigrade" lubricating oil or as a component of a "multigrade" lubricating oil. This dewaxed residue may further serve to produce by vacuum distillation one or more lubricating oils or lubricating oil components with high viscosity indices and varying viscosity, which can then be converted into excellent "multigrade" lubricating oils by mixing them or mixing them with other components.

Det voks der vindes ved afvoksningsprocessen underkastes derefter katalytisk hydroisomerisation, fortrinsvis under følgende reaktionsbetingelser: temperatur 310-450°C, tryk 50-200 bar abs., rumhastighed 0,1-5,0 1 voks/time/1 katalysator og mængdeforhold H2/voks 100-5000 standardliter E0 (0°C, 1 bar) pr. kg voks. Særlig godt resultat af hydroisomerisationen fås ifølge opfindelsen hvis man går frem som angivet i krav 5.The wax obtained by the dewaxing process is then subjected to catalytic hydroisomerization, preferably under the following reaction conditions: temperature 310-450 ° C, pressure 50-200 bar abs., Room velocity 0.1-5.0 1 wax / hour / 1 catalyst and amount ratio H2 / wax 100-5000 standard liters E0 (0 ° C, 1 bar) per kg of wax. Particularly good result of the hydroisomerization is obtained according to the invention if one proceeds as claimed in claim 5.

Da omdannelsen i hydroisomerisationszonen er ufuldstændig, er det nødvendigt fra det uomdannede voks at fraslcille den olie som vindes som resultat af omdannelsen, hvilket udføres ved afvoksning.As the conversion in the hydroisomerization zone is incomplete, it is necessary to extract from the unchanged wax the oil which is obtained as a result of the conversion, which is carried out by dewaxing.

Små mængder kulbrinter med kogepunkt under smøreoliers kogepunktsområde kan være til stede i effluenten fra hydroisomerisationszonen, der afvokses påny i en anden afvolcsningszone; det foretrækkes imidlertid at udelukke disse lette materialer eftersom de virker 9 142328 som et uønsket fortyndingsmiddel og derved reducerer effektiviteten og udbyttet af de senere behandlingstrin. Følgelig består fødemate-rialet for den anden afvoksningszone fortrinsvis kun af den fraktion som koger inden for smøreoliers kogepunktsområde i effluenten fra isomerisationszonen. Hele den normalt flydende fraktion, der indeholder neopentan og de højere kogende kulbrinter, af effluenten fra hydroisomerisationszonen, eller en hvilken som helst udvalgt del af denne fraktion, kan ikke desto mindre bruges i den anden afvoksningszone, forudsat at den del som koger inden for smøreoliers kogepunktsområde indgår deri.Small amounts of boiling hydrocarbons below the boiling range of lubricating oils may be present in the effluent from the hydroisomerization zone, which is again dewaxed in another depletion zone; however, it is preferred to exclude these lightweight materials as they act as an undesirable diluent, thereby reducing the efficiency and yield of the subsequent treatment steps. Accordingly, the feed material for the second dewaxing zone preferably consists only of the fraction boiling within the boiling point range of the lubricating oil in the effluent from the isomerization zone. Nevertheless, all of the normally liquid fraction containing neopentane and the higher boiling hydrocarbons of the effluent from the hydroisomerization zone, or any selected portion of this fraction, may be used in the second dewaxing zone, provided that the portion boiling within the lubricating oil. boiling range included.

Med betegnelsen "kulbrinter med kogepunkt inden for smøreoliers kogepunktsområde", menes højtkogende kulbrinter med en viskositet som gør dem nyttige som smøremidler eller smøremiddelkomponenter. Selv om nogle smøreolier kan være mere flygtige, har de fleste smøreolier begyndelseskogepunkt ved atmosfæretryk på mindst 350°C.By the term "boiling hydrocarbons within the boiling range of lubricating oils" is meant high boiling hydrocarbons having a viscosity which makes them useful as lubricants or lubricant components. Although some lubricating oils may be more volatile, most lubricating oils have an initial boiling point at atmospheric pressure of at least 350 ° C.

Adskillelse af kulbrinter med kogepunkt under smøreoliers kogepunktsområde i effluenten fra hydroisomerisationszonen udføres hensigtsmæssigt ved fraktioneret destillation og/eller momentan separation (flash separation). Imidlertid kan der også bruges andre adskillelsesprocesser.Separation of hydrocarbons with boiling point below the boiling range of lubricating oils in the effluent from the hydroisomerization zone is conveniently carried out by fractional distillation and / or instantaneous separation (flash separation). However, other separation processes can also be used.

Afvoksningen af den fraktion som koger inden for smøreoliers kogepunktsområde, og som er vundet fra effluenten fra isomeri-sationszonen, kan udføres på konventionel måde. Qpløsningsmiddel-af-voksning kan hensigtsmæssigt bruges til dette formål. Ved denne operation opløses et voksholdigt fødemateriale i et organisk opløsningsmiddel og afkøles derefter for at bevirke krystallisation af vokset, der fraskilles ved filtrering fra opløsningsmiddel/olie-blandingen. Egnede opløsningsmidler hertil er flydende propan, benzen, toluen, acetone, metylætylketon og blandinger af metylætylketon med en eller flere aromater.The dewaxing of the fraction boiling within the boiling range of lubricating oils, which is obtained from the effluent from the isomerization zone, can be carried out in a conventional manner. Solvent-waxing may conveniently be used for this purpose. In this operation, a waxy feed material is dissolved in an organic solvent and then cooled to effect crystallization of the wax which is separated by filtration from the solvent / oil mixture. Suitable solvents for this are liquid propane, benzene, toluene, acetone, methyl ethyl ketone and mixtures of methyl ethyl ketone with one or more aromatics.

Afvoksningen af den fraktion som koger inden for smøreoliers kogepunktsområde i effluenten fra hydroisomerisationszonen udføres fortrinsvis ved hjælp af en blanding af 40-60 rumfangsdele metylætylketon og 60-40 rumfangsdele toluen ved en temperatur mellem -10 og -40°C, idet rumfangsforholdet mellem opløsningsmiddel og olie er mellem 1:1 og 10:1.The dewaxing of the fraction boiling within the boiling range of lubricating oils in the effluent from the hydroisomerization zone is preferably carried out by a mixture of 40-60 parts by volume of methyl ethyl ketone and 60-40 parts by volume of toluene at a temperature between -10 and -40 ° C, oil is between 1: 1 and 10: 1.

De vokser der er vundet efter afvoksningen af hydroisome-risationsproduktet recirkuleres med fordel i det mindste delvis til hydroisomerisationszonen eller til hydrokrakningszonen, idet denne udførelsesform for fremgangsmåden ifølge opfindelsen yderligere for- 142328 ίο bedrer totaludbyttet ved den tilsigtede omdannelse.The waxes obtained after the dewaxing of the hydroisomerization product are advantageously recycled at least partially to the hydroisomerization zone or to the hydrocracking zone, this embodiment of the process of the invention further enhancing the overall yield by the intended conversion.

Endvidere lean ifølge en anden udførelsesform for den foreliggende fremgangsmåde en blanding af de volcser der vindes efter hydrokraiming og en del af den samme fraktion af højtkogende mineralolie til omdannelse ved hydrokr aiming, underkastes hydro isomerisation. På denne måde vindes der smøreolier med en viskositets-indeks mellem 100 og 140 efter hydroisomerisation og afvoksning, mens totaludbyttet fra den påfølgende omdannelse er mellem 35 og 80%, regnet på hele fødematerialet af mineralolier, når alle de vokser der vindes efter hydroisomerisationen recirkuleres.Furthermore, according to another embodiment of the present process, a mixture of the volts obtained after hydrocracking and part of the same fraction of high boiling mineral oil for conversion by hydrocliming is subjected to hydroisomerization. In this way, lubricating oils with a viscosity index between 100 and 140 are obtained after hydroisomerization and dewaxing, while the total yield from the subsequent conversion is between 35 and 80%, calculated on the entire feedstock of mineral oils when all the waxes obtained after hydroisomerization are recycled.

Hvis de vokser der vindes efter hydrokrakningen ikke blandes med en fraktion af mineralolierne, men omdannes som sådanne ved hydroisomerisation, opnås der smøreolier med endnu højere vis-lcositetsindékser, fx mellem 140 og 170, med de samme yderst gunstige omdannelsesudbytter.If the waxes obtained after the hydrocracking are not mixed with a fraction of the mineral oils but converted as such by hydroisomerization, lubricating oils with even higher viscosity indices, for example between 140 and 170, are obtained with the same extremely favorable conversion yields.

Smøreolier med høj eller meget høj viskositetsindeks egner sig glimrende til brug som "multigrade" smøreolier eller komponenter af "multigrade" smøreolie. Disse produkter kan tjene til fremstilling ved vakuumdestillation af en eller flere typer smøreolie eller smøreoliekomponent med meget høje viskositetsindexer og med varierende viskositeter.Lubricating oils with high or very high viscosity index are ideally suitable for use as "multigrade" lubricating oils or components of "multigrade" lubricating oil. These products can serve to produce by vacuum distillation of one or more types of lubricating oil or lubricating oil component having very high viscosity indices and with varying viscosities.

Smøreoliekomponenterne kan omdannes til glimrende "multigrade" smøreolier ved at de blandes sammen eller blandes med andre smøreoliekomponenter.The lubricating oil components can be transformed into excellent "multigrade" lubricating oils by mixing or blending with other lubricating oil components.

For at forenkle fremgangsmåden ifølge opfindelsen anbefales det at udføre hydrokrakningsbehandlingen og hydroisomerisationen ved hjælp af samme katalysator. Denne katalysator kan deles mellem to særskilte reaktorer på en sådan måde at hydrokrakningsbe-handlingen kan udføres i den første reaktor og hydroisomerisationen i den anden.In order to simplify the process according to the invention, it is recommended to carry out the hydrocracking treatment and the hydroisomerization by the same catalyst. This catalyst can be split between two separate reactors in such a way that the hydrocracking treatment can be carried out in the first reactor and the hydroisomerization in the second.

Det er imidlertid muligt at udføre hydrokrakningsbehand-. . lingen og hydroisomerisationen i samme reaktor. På denne måde behø ves der kun én reaktor til fremgangsmåden ifølge opfindelsen, hvilket repræsenterer en betydelig omkostningsbesparelse.However, it is possible to perform hydrocracking treatment. . and hydroisomerization in the same reactor. In this way, only one reactor is needed for the process of the invention, which represents a significant cost savings.

Som allerede nævnt foran kan det voks, der skilt fra hy-droisomerisationsproduktet, recirkuleres til hydroisomerisationsre-aktoren eller til hydrokrakningsrealctoren til yderligere omdannelse til smøreolie med meget høj viskositetsindeks.As mentioned above, the wax separated from the hydroisomerization product can be recycled to the hydroisomerization reactor or to the hydrocracking reactor for further conversion to a very high viscosity index lubricating oil.

11 14232811 142328

Hvis hydrokrakningsbehandlingen og hydroisomerisationen udføres i samme reaktor, foretrækkes det at føre vokset særskilt fra hydroisomerisationsproduktet sammen med den højtkogende mine-raloliefraktion til reaktoren og at underkaste blandingen af voks og højtkogende mineraloliefraktion en kombineret hydroisomerisations- og hydrokrakningsbehandling.If the hydrocracking treatment and the hydroisomerization are carried out in the same reactor, it is preferable to carry the wax separately from the hydroisomerization product together with the high boiling mineral oil fraction to the reactor and to subject the mixture of wax and high boiling mineral oil fraction to a combined hydroisomerization and hydrocracking treatment.

Fremgangsmåden ifølge opfindelsen skal belyses nærmere ved nogle eksempler.The process according to the invention will be elucidated by some examples.

Eksempel 1Example 1

En residual-jordoliefraktion, deasfalteret ved hjælp af flydende propan og stammende fra en nordafrikansk råolie, havde følgende egenskaber:A residual petroleum fraction, decanted by liquid propane and derived from a North African crude oil, had the following properties:

Massefylde 20/4 0,907Density 20/4 0.907

Viskositet ved 37°C 32,8 cStViscosity at 37 ° C 32.8 cSt

Viskositetsindeks (VIE) (ASTM-D 2270) efter afvoksning ved -19°C 77Viscosity Index (VIE) (ASTM-D 2270) after dewaxing at -19 ° C 77

Olieudbytte efter afvoksning ved -19°C 89,2 vægt%Oil yield after dewaxing at -19 ° C 89.2% by weight

Denne afasfalterede residual-jordoliefraktion underkastedes katalytisk hydrokrakning under følgende reaktionsbetingelser:This asphalted residual petroleum fraction was subjected to catalytic hydrocracking under the following reaction conditions:

Temperatur 440°CTemperature 440 ° C

Absolut tryk 140 barAbsolute pressure 140 bar

Rumhastighed 1 kg olie pr.Room speed 1 kg oil per

time pr. 1 katalysator Mængdeforhold Hp/olie 1000 standard liter Hp pr. kg olie^per hour 1 catalyst Volume ratio Hp / oil 1000 standard liter Hp per kg of oil ^

Sammensætning af den anvendte katalysator ΑΙρΟ^ 63,0 vægt% P205 3,9 "Composition of the catalyst used ΑΙρΟ ^ 63.0% by weight P205 3.9 "

Mo03 19,4 "Mo03 19.4 "

NiO 9,7 " F 3,0 "NiO 9.7 "F 3.0"

Si02 1,0 " 56 vægt%, bestående af den fraktion som kogte under 400°C, skiltes ved fraktioneret destillation fra det flydende produkt der vandtes ved hjælp af hydrokrakningsbehandling.SiO2 1.0 "56% by weight, consisting of the fraction boiled below 400 ° C, was separated by fractional distillation from the liquid product which was obtained by hydrocracking treatment.

12 14232812 142328

Den fraktion som kogte over 400°C (44 vægt%) afvoksedes ved hjælp af en blanding af 50 dele metylætyllceton og 50 dele toluen ved en temperatur på -27 °C. Mængdeforholdet opløsningsmiddel/ olie var 3:1. Under denne afvoksningsbehandning fraskiltes der 12 vægt% slackvoks. Den på denne måde vundne smøreolie havde en visko-si tetsindeks (Vig, ASTM-D 2270) på 130.The fraction which boiled above 400 ° C (44% by weight) was dewaxed by a mixture of 50 parts of methyl ethyl tacetone and 50 parts of toluene at a temperature of -27 ° C. The solvent / oil ratio was 3: 1. During this dewaxing treatment, 12 wt% slack wax is separated. The lubricating oil thus obtained had a viscosity index (Vig, ASTM-D 2270) of 130.

Udbyttet af denne smøreolie var 38 vægt%, regnet på den oprindelige afasfalterede residual-jordoliefralction.The yield of this lubricating oil was 38% by weight, based on the original decontaminated residual petroleum friction.

Den vundne slackvoks fraskilt ved afvoksningen underkastedes derefter katalytisk hydroisomerisation under følgende reaktionsbetingelser :The resulting slack wax separated by the wax was then subjected to catalytic hydroisomerization under the following reaction conditions:

Temperatur 340°CTemperature 340 ° C

Absolut tryk 140 barAbsolute pressure 140 bar

Rumhastighed 0,8l kg slackvoks pr. time pr. 1 kataly sator0.8l kg slack wax per room per hour 1 catalyst

Forhold l^/olie 1660 standardliter pr. 1 slackvoksRatio l / oil 1660 standard liters per liter. 1 slack wax

Den anvendte katalysator indeholdt 67,5 vægrø AlgO^, 20,0 vægt% MoOg, 6,5 vægt% NiO og 6,0 vægt% ^20 3' Den var fremstillet ved imprægnering af aluminiumoxyd-ekstrudater med en diameter på 1,5 mm med en opløsning af ammoniak, ammoniumparamolybdat, borsyre og nikkelformiat, påfølgende tørring af de imprægnerede ekstruda-ter i to timer ved 200°C og kalcinering deraf i to timer ved 650QC.The catalyst used contained 67.5 wt.% AlgO 2, 20.0 wt.% MoOg, 6.5 wt.% NiO, and 6.0 wt.% 20 20 'It was prepared by impregnating alumina extrudates having a diameter of 1.5. mm with a solution of ammonia, ammonium paramolybdate, boric acid and nickel formate, subsequent drying of the impregnated extrudates for two hours at 200 ° C and calcination thereof for two hours at 650 ° C.

Denne katalysator var i forvejen sulfideret i 36 timer ved ved en temperatur på 350°C, et tryk på 50 bar, en rumhastighed på 1 kg. pr. time pr. 1 katalysator og et forhold hydrogen/olie på 150 standardliter hydrogen pr. kg olie, at være blevet bragt i kontakt med tung gasolie indeholdende svovlforbindelser.This catalyst was already sulfided for 36 hours at a temperature of 350 ° C, a pressure of 50 bar, a space velocity of 1 kg. per. per hour 1 catalyst and a hydrogen / oil ratio of 150 standard liters of hydrogen per liter. kg of oil, to have been brought into contact with heavy gas oil containing sulfur compounds.

Fraktionen med kogepunkt under 400°C skiltes ved fraktioneret destillation fra iSomerisationsprodulctet. Udbyttet af remanensen med kogepunkt over 400°C var 45 vægt%, regnet på fødematerialet til hydroisomerisationen. Denne remanens afvoksedes ved ~27QC ved hjælp af en blanding af metylætyllceton og toluen (50:50), idet mængdeforholdet opløsningsmiddel/olie var 8:1.The boiling point fraction below 400 ° C was separated by fractional distillation from the iSomerization product. The yield of the residue having a boiling point above 400 ° C was 45% by weight, based on the feed material for the hydroisomerization. This residue was dewaxed at ~ 27 ° C using a mixture of methyl ether ketone and toluene (50:50), the solvent / oil ratio being 8: 1.

Udbyttet af afvolcset smøreolie var 35 vægt%, regnet på fødemateriale til hydroisomerisationen.The yield of depopulated lubricating oil was 35% by weight, based on feed material for the hydroisomerization.

Denne smøreolie havde følgende egenskaber: 13 142328This lubricating oil had the following properties: 13 142328

Viskositetsindeks (vig, ASTM-D 2270) 158Viscosity Index (cf. ASTM-D 2270) 158

Kinematisk viskositet ved 38°C 30,6 cStKinematic viscosity at 38 ° C 30.6 cSt

Kinematisk viskositet ved 99°C 5,97 cStKinematic viscosity at 99 ° C 5.97 cSt

Sammenligningsforsøgcomparison Tests

En afasfalteret residual-jordoliefraktion af samme oprindelse og sammensætning som udgangsmaterialet i eksempel 1 afvokse-des ved -27°C ved hjælp af en blanding af metylætylketon og toluen (50:50), idet der anvendtes et mængdeforhold opløsningsmiddel/olie på 3:1. Ved denne operation fraskiltes der 14 vægt% slackvoks.An asphalted residual petroleum fraction of the same origin and composition as the starting material of Example 1 was dewaxed at -27 ° C using a mixture of methyl ethyl ketone and toluene (50:50) using a solvent / oil ratio of 3: 1. . In this operation, 14% by weight of slack wax is separated.

Denne slackvoks hydroisomeriseredes under samme reaktionsbetingelser som i eksempel 1 og under anvendelse af samme sulfidere-de hydroisomerisationskatalysator som beskrevet i eksempel 1.This slack wax was hydroisomerized under the same reaction conditions as in Example 1 and using the same sulfided hydroisomerization catalyst as described in Example 1.

Fraktionen med kogepunkt over 400°C af det flydende hydro-isomerisationsprodukt afvoksedes på samme måde som beskrevet for hy-droisomerisationsproduktet i eksempel 1.The boiling point fraction above 400 ° C of the liquid hydroisomerization product was dewaxed in the same manner as described for the hydroisomerization product of Example 1.

Udbyttet af smøreolie var nu 20 vægt% i relation til hy-droisomerisations-fødematerialet. Den vundne smøreolie havde følgende egenskaber:The yield of lubricating oil was now 20% by weight relative to the hydroisomerization feed. The lubricating oil obtained had the following properties:

Viskositetsindeks (Vig, ASTM-D 2270) 100Viscosity Index (Vig, ASTM-D 2270) 100

Kinematisk viskositet ved 38°C 195 cStKinematic viscosity at 38 ° C 195 cSt

Kinematisk viskositet ved 99°C 16,89 cStKinematic viscosity at 99 ° C 16.89 cSt

Eksempel 2Example 2

En blanding af 40 vægt% af den i eksempel 1 beskrevne afasfalterede residual-jordoliefraktion og 60% af de slackvokser der vandtes ved afvoksning af remanensen fra adskillelsen ved destillation af hydrokrakningsproduktet, som beskrevet i eksempel l, hydroisomeriseredes ved hjælp af katalysatoren indeholdende nikkel, molybdæn og bor som beskrevet i eksempel 1, under følgende reaktionsbetingelser :A mixture of 40% by weight of the asphalted residual petroleum fraction described in Example 1 and 60% of the slack waxes obtained by dewaxing the residue from the separation by distillation of the hydrocracking product, as described in Example 1, was hydroisomerized by the catalyst containing nickel, molybdenum and boron as described in Example 1, under the following reaction conditions:

Temperatur 424°CTemperature 424 ° C

Absolut tryk 140 barAbsolute pressure 140 bar

Rumhastighed 1,2 kg slackvoks pr. time pr. 1 katalysator1.2 kg slack wax per room per hour 1 catalyst

Forhold H2/olie 1750 standardliter H2 pr. kg slackvoks 14 142328Ratio H2 / oil 1750 standard liter H2 per kg of slack wax 14 142328

Efter fraskillelse af fraktionen med kogepunkt under 400p C og afvoksning af den på denne måde vundne fraktion, vandtes der en smøreolie med viskositetsindeks (Vig, ASTM-D 2270) på 139 og en kinematisk viskositet ved 99°C på 8,8 cSt.After separating the fraction with boiling point below 400p C and dewaxing the fraction thus obtained, a lubricating oil with viscosity index (Vig, ASTM-D 2270) of 139 and a kinematic viscosity at 99 ° C of 8.8 cSt was obtained.

Udbyttet, regnet på det til reaktoren førte fødemateriale, var 45 vægt%.The yield, based on the feed material fed to the reactor, was 45% by weight.

DK424373AA 1972-08-04 1973-08-02 Process for producing high viscosity lubricating oil. DK142328B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7228195A FR2194767B1 (en) 1972-08-04 1972-08-04
FR7228195 1972-08-04

Publications (2)

Publication Number Publication Date
DK142328B true DK142328B (en) 1980-10-13
DK142328C DK142328C (en) 1981-03-09

Family

ID=9102888

Family Applications (1)

Application Number Title Priority Date Filing Date
DK424373AA DK142328B (en) 1972-08-04 1973-08-02 Process for producing high viscosity lubricating oil.

Country Status (13)

Country Link
JP (1) JPS573716B2 (en)
AU (1) AU474479B2 (en)
BE (1) BE802800R (en)
CA (1) CA967901A (en)
DE (1) DE2339278A1 (en)
DK (1) DK142328B (en)
FR (1) FR2194767B1 (en)
GB (1) GB1440230A (en)
IT (1) IT1045905B (en)
NL (1) NL7310691A (en)
NO (1) NO138533C (en)
SE (1) SE396613B (en)
ZA (1) ZA735265B (en)

Families Citing this family (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2576031B1 (en) * 1985-01-15 1987-10-09 Shell Int Research PROCESS FOR HYDRO-ISOMERIZATION OF OIL WAXES
US5059299A (en) * 1987-12-18 1991-10-22 Exxon Research And Engineering Company Method for isomerizing wax to lube base oils
US4929795A (en) * 1987-12-18 1990-05-29 Exxon Research And Engineering Company Method for isomerizing wax to lube base oils using an isomerization catalyst
US4959337A (en) * 1987-12-18 1990-09-25 Exxon Research And Engineering Company Wax isomerization catalyst and method for its production
US4900707A (en) * 1987-12-18 1990-02-13 Exxon Research And Engineering Company Method for producing a wax isomerization catalyst
US4992159A (en) * 1988-12-16 1991-02-12 Exxon Research And Engineering Company Upgrading waxy distillates and raffinates by the process of hydrotreating and hydroisomerization
US5167847A (en) * 1990-05-21 1992-12-01 Exxon Research And Engineering Company Process for producing transformer oil from a hydrocracked stock
US5358628A (en) * 1990-07-05 1994-10-25 Mobil Oil Corporation Production of high viscosity index lubricants
US5643440A (en) * 1993-02-12 1997-07-01 Mobil Oil Corporation Production of high viscosity index lubricants
US6296757B1 (en) 1995-10-17 2001-10-02 Exxon Research And Engineering Company Synthetic diesel fuel and process for its production
US5689031A (en) 1995-10-17 1997-11-18 Exxon Research & Engineering Company Synthetic diesel fuel and process for its production
US5766274A (en) 1997-02-07 1998-06-16 Exxon Research And Engineering Company Synthetic jet fuel and process for its production
JP5057603B2 (en) * 1998-05-01 2012-10-24 昭和シェル石油株式会社 Lubricating oil composition for internal combustion engines
FR2778583B1 (en) * 1998-05-13 2000-06-16 Inst Francais Du Petrole CATALYST COMPRISING A PHYLLOSILICATE CONTAINING BORON AND / OR SILICON AND HYDROCRACKING METHOD
FR2798136B1 (en) * 1999-09-08 2001-11-16 Total Raffinage Distribution NEW HYDROCARBON BASE OIL FOR LUBRICANTS WITH VERY HIGH VISCOSITY INDEX
US6824671B2 (en) 2001-05-17 2004-11-30 Exxonmobil Chemical Patents Inc. Low noack volatility poly α-olefins
US6699385B2 (en) * 2001-10-17 2004-03-02 Chevron U.S.A. Inc. Process for converting waxy feeds into low haze heavy base oil
US6759364B2 (en) * 2001-12-17 2004-07-06 Shell Oil Company Arsenic removal catalyst and method for making same
EP2083043B1 (en) 2002-08-12 2017-01-18 ExxonMobil Chemical Patents Inc. Plasticized polyolefin compositions
US7271209B2 (en) 2002-08-12 2007-09-18 Exxonmobil Chemical Patents Inc. Fibers and nonwovens from plasticized polyolefin compositions
US7998579B2 (en) 2002-08-12 2011-08-16 Exxonmobil Chemical Patents Inc. Polypropylene based fibers and nonwovens
US7531594B2 (en) 2002-08-12 2009-05-12 Exxonmobil Chemical Patents Inc. Articles from plasticized polyolefin compositions
US8003725B2 (en) 2002-08-12 2011-08-23 Exxonmobil Chemical Patents Inc. Plasticized hetero-phase polyolefin blends
TW200513320A (en) 2003-06-16 2005-04-16 Shell Int Research A process and catalyst for the selective hydrogenation of diolefins contained in an olefin containing stream and for the removal of arsenic therefrom and a method of making such catalyst
US8192813B2 (en) 2003-08-12 2012-06-05 Exxonmobil Chemical Patents, Inc. Crosslinked polyethylene articles and processes to produce same
US8389615B2 (en) 2004-12-17 2013-03-05 Exxonmobil Chemical Patents Inc. Elastomeric compositions comprising vinylaromatic block copolymer, polypropylene, plastomer, and low molecular weight polyolefin
GB0511320D0 (en) 2005-06-03 2005-07-13 Exxonmobil Chem Patents Inc Elastomeric structures
US7851418B2 (en) 2005-06-03 2010-12-14 Exxonmobil Research And Engineering Company Ashless detergents and formulated lubricating oil containing same
JP5438966B2 (en) 2005-07-15 2014-03-12 エクソンモービル・ケミカル・パテンツ・インク Elastomer composition
US20070093398A1 (en) 2005-10-21 2007-04-26 Habeeb Jacob J Two-stroke lubricating oils
US8299005B2 (en) 2006-05-09 2012-10-30 Exxonmobil Research And Engineering Company Lubricating oil composition
US7863229B2 (en) 2006-06-23 2011-01-04 Exxonmobil Research And Engineering Company Lubricating compositions
US7745544B2 (en) 2006-11-30 2010-06-29 Exxonmobil Chemical Patents Inc. Catalytic epoxidation and hydroxylation of olefin/diene copolymers
US7615589B2 (en) 2007-02-02 2009-11-10 Exxonmobil Chemical Patents Inc. Properties of peroxide-cured elastomer compositions
SG174897A1 (en) 2009-03-23 2011-11-28 Jx Nippon Oil & Energy Corp Hydrotreating catalyst, process for producing same, and process for hydrotreating hydrocarbon oil
EP2390279A1 (en) 2009-12-17 2011-11-30 ExxonMobil Chemical Patents Inc. Polypropylene composition with plasticiser for sterilisable films
US20140194333A1 (en) 2013-01-04 2014-07-10 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US20150099675A1 (en) 2013-10-03 2015-04-09 Exxonmobil Research And Engineering Company Compositions with improved varnish control properties
US10190072B2 (en) 2013-12-23 2019-01-29 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US9506008B2 (en) 2013-12-23 2016-11-29 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US20150175923A1 (en) 2013-12-23 2015-06-25 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US20150175924A1 (en) 2013-12-23 2015-06-25 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
SG11201603480VA (en) 2013-12-23 2016-05-30 Exxonmobil Res & Eng Co Method for improving engine fuel efficiency
US9885004B2 (en) 2013-12-23 2018-02-06 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US9896634B2 (en) 2014-05-08 2018-02-20 Exxonmobil Research And Engineering Company Method for preventing or reducing engine knock and pre-ignition
US20150322368A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
US20150322369A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
US20150322367A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
US10519394B2 (en) 2014-05-09 2019-12-31 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition while maintaining or improving cleanliness
US9506009B2 (en) 2014-05-29 2016-11-29 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
US9944877B2 (en) 2014-09-17 2018-04-17 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
WO2016073149A1 (en) 2014-11-03 2016-05-12 Exxonmobil Research And Engineering Company Low transition temperature mixtures or deep eutectic solvents and processes for preparation thereof
SG11201702860WA (en) 2014-12-24 2017-07-28 Exxonmobil Res & Eng Co Methods for determining condition and quality of petroleum products
WO2016106211A1 (en) 2014-12-24 2016-06-30 Exxonmobil Research And Engineering Company Methods for authentication and identification of petroleum products
WO2016109322A1 (en) 2014-12-30 2016-07-07 Exxonmobil Research And Engineering Company Lubricating oil compositions containing encapsulated microscale particles
US10781397B2 (en) 2014-12-30 2020-09-22 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
WO2016109382A1 (en) 2014-12-30 2016-07-07 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
US10000721B2 (en) 2014-12-30 2018-06-19 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
US9926509B2 (en) 2015-01-19 2018-03-27 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection and solubility
US10119093B2 (en) 2015-05-28 2018-11-06 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
US10119090B2 (en) 2015-07-07 2018-11-06 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
US10590360B2 (en) 2015-12-28 2020-03-17 Exxonmobil Research And Engineering Company Bright stock production from deasphalted oil
US10550335B2 (en) 2015-12-28 2020-02-04 Exxonmobil Research And Engineering Company Fluxed deasphalter rock fuel oil blend component oils
US20170183578A1 (en) 2015-12-28 2017-06-29 Exxonmobil Research And Engineering Company Bright stock production from low severity resid deasphalting
US9951290B2 (en) 2016-03-31 2018-04-24 Exxonmobil Research And Engineering Company Lubricant compositions
US10494579B2 (en) 2016-04-26 2019-12-03 Exxonmobil Research And Engineering Company Naphthene-containing distillate stream compositions and uses thereof
US20180037841A1 (en) 2016-08-03 2018-02-08 Exxonmobil Research And Engineering Company Lubricating engine oil for improved wear protection and fuel efficiency
SG11201901013WA (en) 2016-08-05 2019-03-28 Rutgers The State University Of New Jersey Thermocleavable friction modifiers and methods thereof
US20180100120A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Method for preventing or minimizing electrostatic discharge and dielectric breakdown in electric vehicle powertrains
US20180100114A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Low conductivity lubricating oils for electric and hybrid vehicles
US20180100118A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Method for controlling electrical conductivity of lubricating oils in electric vehicle powertrains
WO2018118477A1 (en) 2016-12-19 2018-06-28 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition compression spark ignition engines
US10647936B2 (en) 2016-12-30 2020-05-12 Exxonmobil Research And Engineering Company Method for improving lubricant antifoaming performance and filterability
EP3562924B8 (en) 2016-12-30 2022-07-20 ExxonMobil Technology and Engineering Company Low viscosity lubricating oil compositions for turbomachines
WO2018144167A1 (en) 2017-02-01 2018-08-09 Exxonmobil Research And Engineering Company Lubricating engine oil and method for improving engine fuel efficiency
WO2018144301A1 (en) 2017-02-06 2018-08-09 Exxonmobil Chemical Patents Inc. Low transition temperature mixtures and lubricating oils containing the same
US10793801B2 (en) 2017-02-06 2020-10-06 Exxonmobil Chemical Patents Inc. Low transition temperature mixtures and lubricating oils containing the same
US10487289B2 (en) 2017-02-21 2019-11-26 Exxonmobil Research And Engineering Company Lubricating oil compositions and methods of use thereof
US10876062B2 (en) 2017-03-24 2020-12-29 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity boosting base stocks and lubricating oil formulations containing the same
US10858610B2 (en) 2017-03-24 2020-12-08 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity boosting base stocks and lubricating oil formulations containing the same
US10738258B2 (en) 2017-03-24 2020-08-11 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency and energy efficiency
US10808196B2 (en) 2017-03-28 2020-10-20 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity reducing base stocks and lubricating oil formulations containing the same
WO2019014092A1 (en) 2017-07-13 2019-01-17 Exxonmobil Research And Engineering Company Continuous process for the manufacture of grease
WO2019018145A1 (en) 2017-07-21 2019-01-24 Exxonmobil Research And Engineering Company Method for improving deposit control and cleanliness performance in an engine lubricated with a lubricating oil
US20190062667A1 (en) 2017-08-25 2019-02-28 Exxonmobil Research And Engineering Company Ashless engine lubricants for high temperature applications
US20190062668A1 (en) 2017-08-25 2019-02-28 Exxonmobil Research And Engineering Company Ashless engine lubricants for high temperature applications
US20190085256A1 (en) 2017-09-18 2019-03-21 Exxonmobil Research And Engineering Company Hydraulic oil compositions with improved hydrolytic and thermo-oxidative stability
US20190093040A1 (en) 2017-09-22 2019-03-28 Exxonmobil Research And Engineering Company Lubricating oil compositions with viscosity and deposit control
WO2019089181A1 (en) 2017-10-30 2019-05-09 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
US20190136147A1 (en) 2017-11-03 2019-05-09 Exxonmobil Research And Engineering Company Lubricant compositions with improved performance and methods of preparing and using the same
WO2019094019A1 (en) 2017-11-09 2019-05-16 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition while maintaining or improving cleanliness
US20190153351A1 (en) 2017-11-22 2019-05-23 Exxonmobil Research And Engineering Company Lubricating oil compositions with oxidative stability in diesel engines
WO2019112711A1 (en) 2017-12-04 2019-06-13 Exxonmobil Research And Enginerring Company Method for preventing or reducing low speed pre-ignition
US20190185782A1 (en) 2017-12-15 2019-06-20 Exxonmobil Research And Engineering Company Lubricating oil compositions containing microencapsulated additives
US20190203139A1 (en) 2017-12-28 2019-07-04 Exxonmobil Research And Engineering Company Friction and wear reduction using liquid crystal base stocks
WO2019133191A1 (en) 2017-12-29 2019-07-04 Exxonmobil Research And Engineering Company Lubrication of oxygenated diamond-like carbon surfaces
US20190203142A1 (en) 2017-12-29 2019-07-04 Exxonmobil Research And Engineering Company Lubricating oil compositions with wear and sludge control
US10774286B2 (en) 2017-12-29 2020-09-15 Exxonmobil Research And Engineering Company Grease compositions with improved performance and methods of preparing and using the same
US20190345407A1 (en) 2018-05-11 2019-11-14 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US20190376000A1 (en) 2018-06-11 2019-12-12 Exxonmobil Research And Engineering Company Non-zinc-based antiwear compositions, hydraulic oil compositions, and methods of using the same
US20190382680A1 (en) 2018-06-18 2019-12-19 Exxonmobil Research And Engineering Company Formulation approach to extend the high temperature performance of lithium complex greases
US20200024538A1 (en) 2018-07-23 2020-01-23 Exxonmobil Research And Engineering Company Lubricating oil compositions with oxidative stability in diesel engines using biodiesel fuel
US20200032158A1 (en) 2018-07-24 2020-01-30 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine corrosion protection
US20200102519A1 (en) 2018-09-27 2020-04-02 Exxonmobil Research And Engineering Company Low viscosity lubricating oils with improved oxidative stability and traction performance
US20200140775A1 (en) 2018-11-05 2020-05-07 Exxonmobil Research And Engineering Company Lubricating oil compositions having improved cleanliness and wear performance
WO2020112338A1 (en) 2018-11-28 2020-06-04 Exxonmobil Research And Engineering Company Lubricating oil compositions with improved deposit resistance and methods thereof
US20200181525A1 (en) 2018-12-10 2020-06-11 Exxonmobil Research And Engineering Company Method for improving oxidation and deposit resistance of lubricating oils
WO2020132164A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricating oil compositions with viscosity control
WO2020131515A2 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricant compositions with improved wear control
US20200199477A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Method for improving high temperature antifoaming performance of a lubricating oil
WO2020131439A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having polyurea thickeners made with isocyanate terminated prepolymers
WO2020131440A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having calcium sulfonate and polyurea thickeners
WO2020131441A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having improved performance
WO2020132166A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricating oil compositions with antioxidant formation and dissipation control
WO2020176171A1 (en) 2019-02-28 2020-09-03 Exxonmobil Research And Engineering Company Low viscosity gear oil compositions for electric and hybrid vehicles
CN113853420B (en) 2019-03-20 2023-02-17 巴斯夫欧洲公司 Lubricant composition
WO2020257379A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257376A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257370A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257373A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257375A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257377A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257371A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
US10712105B1 (en) 2019-06-19 2020-07-14 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257378A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257374A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020264534A2 (en) 2019-06-27 2020-12-30 Exxonmobil Research And Engineering Company Method for reducing solubilized copper levels in wind turbine gear oils
US11976251B2 (en) 2019-12-18 2024-05-07 ExxonMobil Technology and Engineering Company Method for controlling lubrication of a rotary shaft seal
CN115605374A (en) 2020-03-27 2023-01-13 埃克森美孚技术与工程公司(Us) Condition monitoring of heat transfer fluids for electrical systems
US11760952B2 (en) 2021-01-12 2023-09-19 Ingevity South Carolina, Llc Lubricant thickener systems from modified tall oil fatty acids, lubricating compositions, and associated methods

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1065205A (en) * 1964-12-08 1967-04-12 Shell Int Research Process for the production of lubricating oils or lubricating oil components

Also Published As

Publication number Publication date
FR2194767B1 (en) 1975-03-07
CA967901A (en) 1975-05-20
NO138533B (en) 1978-06-12
NL7310691A (en) 1974-02-06
AU474479B2 (en) 1976-07-22
NO138533C (en) 1978-09-20
AU5885173A (en) 1975-02-06
SE396613B (en) 1977-09-26
DE2339278A1 (en) 1974-02-14
IT1045905B (en) 1980-06-10
DK142328C (en) 1981-03-09
GB1440230A (en) 1976-06-23
JPS4959802A (en) 1974-06-11
ZA735265B (en) 1974-07-31
FR2194767A1 (en) 1974-03-01
BE802800R (en) 1974-01-28
JPS573716B2 (en) 1982-01-22

Similar Documents

Publication Publication Date Title
DK142328B (en) Process for producing high viscosity lubricating oil.
US3923636A (en) Production of lubricating oils
US3730876A (en) Production of naphthenic oils
JP6427180B2 (en) How to upgrade refined heavy residual oil to petrochemical products
AU666973B2 (en) Process for producing low viscosity lubricating base oil having high viscosity index
JP7048728B2 (en) Low quality oil reforming method and reforming system
US3684695A (en) Hydrocracking process for high viscosity index lubricating oils
KR101791051B1 (en) Method of the convrsion of polycyclic aromatic hydrocarbons into btx-rich monocyclic aromatic hydrocarbons
US3883417A (en) Two-stage synthesis of lubricating oil
EP0090437B1 (en) Process for the production of hydrocarbon oil distillates
US3642610A (en) Two-stage hydrocracking-hydrotreating process to make lube oil
WO2017093056A1 (en) Process for producing lpg and btx from a heavy aromatic feed
CN111117701A (en) Hydrogenation method for maximum production of heavy naphtha and jet fuel components
JP2016526596A (en) Method and apparatus for improved carbon utilization to convert crude oil into petrochemical products
US3238118A (en) Conversion of hydrocarbons in the presence of a hydrogenated donor diluent
EP0082555B1 (en) Process for the production of hydrocarbon oil distillates
US3702817A (en) Production of lubricating oils including hydrofining an extract
CN110003947B (en) Process for producing low slack wax and high viscosity index base oil
US3723295A (en) Hydrocracking production of lubes
JP2890060B2 (en) Manufacturing method of lubricating base oil
US3256175A (en) Production of lubricating oils from aromatic extracts
CA2899196C (en) Fixed bed hydrovisbreaking of heavy hydrocarbon oils
JPS6132356B2 (en)
US2647076A (en) Catalytic cracking of petroleum hydrocarbons with a clay treated catalyst
US3012963A (en) Hydrogenation of lubricating oils to remove sulfur and saturate aromatics

Legal Events

Date Code Title Description
PBP Patent lapsed