DE3325230A1 - Method for improving heat transfer in a water/brine-air heat exchanger for circuit-bound heat recovery systems or analogously for other fields - Google Patents

Method for improving heat transfer in a water/brine-air heat exchanger for circuit-bound heat recovery systems or analogously for other fields

Info

Publication number
DE3325230A1
DE3325230A1 DE19833325230 DE3325230A DE3325230A1 DE 3325230 A1 DE3325230 A1 DE 3325230A1 DE 19833325230 DE19833325230 DE 19833325230 DE 3325230 A DE3325230 A DE 3325230A DE 3325230 A1 DE3325230 A1 DE 3325230A1
Authority
DE
Germany
Prior art keywords
water
heat
heat exchanger
cross
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19833325230
Other languages
German (de)
Other versions
DE3325230C2 (en
Inventor
Heinz 4152 Kempen Schilling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heinz Schilling Kg 4152 Kempen
Heinz Schilling KG
Original Assignee
Heinz Schilling Kg 4152 Kempen
Heinz Schilling KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heinz Schilling Kg 4152 Kempen, Heinz Schilling KG filed Critical Heinz Schilling Kg 4152 Kempen
Priority to DE3325230A priority Critical patent/DE3325230C2/en
Publication of DE3325230A1 publication Critical patent/DE3325230A1/en
Application granted granted Critical
Publication of DE3325230C2 publication Critical patent/DE3325230C2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/18Safety or protection arrangements; Arrangements for preventing malfunction for removing contaminants, e.g. for degassing

Abstract

If it is desired to use a heat exchanger not only to transfer a maximum quantity of heat but in so doing simultaneously to maintain the temperature level as high as possible (for all heat recovery systems), it is a mandatory precondition in this that the heat exchanger is constructed to a purely cross-counterflow design and is operated with a heat capacity ratio of w = 1.0 (w = mL . cL : mW . cW). It has so far not been possible to satisfy the two conditions simultaneously. The idea according to the invention therefore relates to a method for removing the obstacles to date - too low a rate of flow in the water-conducting tubes (for w = 1.0), and water ducts which cannot be vented (in the case of pure cross-counterflow operation). This is performed according to the invention by providing the water-conducting heat exchanger tubes with a twisted filler insert which converts the tubular cross-section into an annular cross-section and thus also increases the water velocity at the heat-transferring surfaces in conjunction with a lower water throughput. It is also possible as an equivalent for a plurality of tube layers to be combined to form a water duct and always to project horizontally. The heat exchangers thus produced for max. heat transfer are provided at the periphery with an arrangement of gates, by means of which each water duct can be separately vented and taken into operation, and the heat exchanger thereby becomes wholly functional.

Description

Verfahren zur Verbesserung der Wärmeübertragung in Wasser/SohleProcess to improve the heat transfer in water / sole

- Luft - Wärmetauscher für kreislaufverbundene Wärmerückgewinnungsanlagen oder sinngemäß für andere Bereiche Einleitung: Wärmetauscher haben die Aufgabe, eine bestimmte Wärmemenge zu übertragen und dies bei geringstem Materialverbrauch und vor allem mit minimalem Primärenergieauiwand. Wärmetauscher Wasser/Luft sind dabei noch durch den extremen Volumenstromunterschied z. B. 1 m3 Wasser zu 830 m Luft konstruktiv vorbestimmt. Will man eine max. mögliche Wärmemenge übertragen und dabei auch das Energiepotential so hoch wie möglich erhalten, so ist dies unabhängig von der Wärmetauscherfläche nur bei geeigneter WT-Bauart (Gegenstrom- bzw. Kreuz-Gegenstromprinzip) und bei einem Wasserwertverhältnis w = 1,0 (w = ml c1 : m2 c23 möglich.- Air heat exchangers for circuit-connected heat recovery systems or analogously for other areas Introduction: Heat exchangers have the task of to transfer a certain amount of heat and this with the lowest possible material consumption and above all with a minimal primary energy wall. Heat exchangers are water / air while still due to the extreme volume flow difference z. B. 1 m3 of water at 830 m Air predetermined by design. If you want to transfer a maximum possible amount of heat and keeping the energy potential as high as possible, this is independent from the heat exchanger surface only with a suitable heat exchanger design (counterflow or cross-counterflow principle) and with a water value ratio w = 1.0 (w = ml c1: m2 c23 possible.

Dies wäre relativ einfach nach Figur 1 zu lösen, könnte jeder Lage eines Wärmetauschers ein separater Wasserkreislauf mit Anschluß an den Sammelrohren zugeordnet werden. Wird jedoch die erforderliche Fließwassermenge bei w = 1,0 auf viele Wasserwege aufgeteilt (Zahl der Rohrlagen = Zahl der Wasserwege), so wird die Geschwindigkeit in den wasserführenden Rohren zu gering, der innere Wärmeübergangswiderstand erhöht und damit insgesamt die Wärmeübertragung stark vermindert. Eine zweckmäßige Aufteilung der Rohrlagen auf weniger Wasserwege wie in Figur 3 ist nicht möglich, da der Wärmetauscher aufgrund von Luftpolstern im Wasserkreislauf nicht funktionsfähig wäre. Da beide Forderungen - Gegenstromprinzip und Wasserwertverhältnis w = 1,0 - nicht am Wärmetauscher realisierbar waren, erfolgte bisher eine Fertigung im Gegen-Gleich-Kreuzstrom (Figur 2).This would be relatively easy to solve according to Figure 1, any situation could a heat exchanger, a separate water circuit with connection to the header pipes be assigned. However, the required amount of flowing water is increased at w = 1.0 divided into many waterways (number of pipe layers = number of waterways), so will the speed in the water-carrying pipes too low, the internal heat transfer resistance increased and thus overall the heat transfer greatly reduced. A functional one Distribution of the pipe layers to fewer waterways as in Figure 3 is not possible, because the heat exchanger is not functional due to air cushions in the water circuit were. Since both requirements - countercurrent principle and water value ratio w = 1.0 - could not be realized on the heat exchanger, so far a production in counter-direct-cross-flow has been carried out (Figure 2).

Der max. mögliche Temperaturaustauschgrad an einem Wärmetauscher ist somit begrenzt auf ca. 65 7. (trocken) bei einer kreislaufverbundenen WRG von ca. 42 7. (trocken).The maximum possible degree of temperature exchange on a heat exchanger is thus limited to approx. 65 7. (dry) with a closed-loop heat recovery of approx. 42 7. (dry).

Verfahren zur Verbesserung der Wärmeübertragung Die erfindungsgemäße Idee des Verfahrens liegt nun darin, einen ausschließlich im Kreuz-Gegenstromprinzip und nach dem Wasserwertverhältnis-von w = 1,0 konzipierten und gefertigen Wärmetauscher, weicher jedoch durch Luftpolster in den verengten oder horizontal verspringenden Wasserwegen nicht mehr funktionsfähig wäre, durch ein besonderes wasserseitiges Anschlußsystem betriebs- und funktionsfähig zu machen.Method for improving heat transfer The invention The idea of the process is now to use one exclusively in the cross-countercurrent principle and heat exchangers designed and manufactured according to the water value ratio of w = 1.0, softer, however, due to air cushions in the narrowed or horizontally receding areas Waterways would no longer be functional, due to a special water-side To make connection system operational and functional.

Die für die Wärmeübertragung notwendige Strömungsgeschwindigkeit in den Wasserwegen wird dabei durch den Einsatz von Füllkörpern (Figur la) oder Zusammenfassung mehrerer Rohrlagen (Figur 3) erreicht.The flow velocity in the waterways is thereby through the use of packing (Figure la) or summary several pipe layers (Figure 3) achieved.

Das wasserseitige Anschlußsystem besteht dabei aus den in Figur 3 angeordneten Absperrungen sowie Füll- und Entleerungseinrichttlngen.The water-side connection system consists of the systems shown in FIG arranged barriers as well as filling and emptying devices.

Beispiel Inbetriebnahme: Kaltwasseranschluß herstellen, Ventile 1 + 2 geschlossen, Ventil 3 öffnen, danach Ventil 4 öffnen (mit Schlauchanschluß), Ventile 5 - 8 bleiben geschlossen. Dann Ventil 5 solange öffnen bis im Schlauch keine Luftblasen mehr sichtbar, danach Ventil 5 schließen und 6 öffnen usw. bis alle Wasserwege mit Wasser gefüllt und luftfrei sind.Commissioning example: Establish cold water connection, valves 1 + 2 closed, open valve 3, then open valve 4 (with hose connection), Valves 5 - 8 remain closed. Then open valve 5 until it is in the hose no more air bubbles visible, then close valve 5 and open 6 and so on until all waterways are filled with water and free of air.

- Leerseite -- blank page -

Claims (2)

Ansprüche 1. Wasser/Sohle - Luft - Wärmetauscher dadurch gekennzeichnet, dal3 zur Erhöhung der Strömungsgeschwindigkeit in den Rohren Füllkörper wie Figur la verwendet, oder mehrere Rohr lagen zu einem Wasserweg zusammengefaßt werden und dazu horizontal verspringen, Figur llla und 3. Claims 1. water / sole - air - heat exchanger characterized in that dal3 to increase the flow velocity in the pipes packing like figure la used, or several pipe lay can be combined to form a waterway and to do this, jump horizontally, Figure 11a and 3. 2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß ein wasserseitiges Anschlußsystem mit Absperrungen (Figur 3) vorhanden ist, damit jeder Wasserweg separat abgesperrt, entliiftet und funktionsbereit in Betrieb genommen werden kann. 2. Heat exchanger according to claim 1, characterized in that a water-side connection system with barriers (Figure 3) is available so that everyone The waterway is separately shut off, vented and put into operation ready for use can be.
DE3325230A 1983-07-13 1983-07-13 Water / brine-air heat exchanger Expired - Lifetime DE3325230C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE3325230A DE3325230C2 (en) 1983-07-13 1983-07-13 Water / brine-air heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3325230A DE3325230C2 (en) 1983-07-13 1983-07-13 Water / brine-air heat exchanger

Publications (2)

Publication Number Publication Date
DE3325230A1 true DE3325230A1 (en) 1985-03-07
DE3325230C2 DE3325230C2 (en) 1994-03-31

Family

ID=6203847

Family Applications (1)

Application Number Title Priority Date Filing Date
DE3325230A Expired - Lifetime DE3325230C2 (en) 1983-07-13 1983-07-13 Water / brine-air heat exchanger

Country Status (1)

Country Link
DE (1) DE3325230C2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4408087A1 (en) * 1994-03-10 1995-09-14 Schilling Heinz Kg Variable control heat exchanger
WO1997021972A1 (en) * 1995-12-12 1997-06-19 Heinz Schilling Kg Process and device for venting heat exchangers in a fully automatic manner
EP0810657A2 (en) * 1996-05-31 1997-12-03 R-Theta Inc. Heat sink with coolant accelerator
US6447478B1 (en) 1998-05-15 2002-09-10 Ronald S. Maynard Thin-film shape memory alloy actuators and processing methods
WO2004068052A1 (en) 2003-01-31 2004-08-12 Heinz Schilling Kg Air/water heat exchanger with partial water ways

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202019103830U1 (en) 2019-07-11 2019-11-13 Seifert Systems Ltd. Arrangement for operating several air-liquid heat exchanger units connected in parallel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1132667A (en) * 1955-10-04 1957-03-14 Co-axial tubes for heat exchangers
EP0072996A1 (en) * 1981-08-19 1983-03-02 Mihama Manufacturing Co., Ltd. Plastic turbulence inducing member
DE3206512A1 (en) * 1982-02-24 1983-09-01 L. & C. Steinmüller GmbH, 5270 Gummersbach HEAT EXCHANGER
DE3320265A1 (en) * 1983-06-04 1984-12-06 Heinrich Dr.-Ing. 4290 Bocholt Hampel Tube-in-tube heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1132667A (en) * 1955-10-04 1957-03-14 Co-axial tubes for heat exchangers
EP0072996A1 (en) * 1981-08-19 1983-03-02 Mihama Manufacturing Co., Ltd. Plastic turbulence inducing member
DE3206512A1 (en) * 1982-02-24 1983-09-01 L. & C. Steinmüller GmbH, 5270 Gummersbach HEAT EXCHANGER
DE3320265A1 (en) * 1983-06-04 1984-12-06 Heinrich Dr.-Ing. 4290 Bocholt Hampel Tube-in-tube heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4408087A1 (en) * 1994-03-10 1995-09-14 Schilling Heinz Kg Variable control heat exchanger
WO1997021972A1 (en) * 1995-12-12 1997-06-19 Heinz Schilling Kg Process and device for venting heat exchangers in a fully automatic manner
EP0810657A2 (en) * 1996-05-31 1997-12-03 R-Theta Inc. Heat sink with coolant accelerator
EP0810657A3 (en) * 1996-05-31 1999-09-15 R-Theta Inc. Heat sink with coolant accelerator
US6447478B1 (en) 1998-05-15 2002-09-10 Ronald S. Maynard Thin-film shape memory alloy actuators and processing methods
WO2004068052A1 (en) 2003-01-31 2004-08-12 Heinz Schilling Kg Air/water heat exchanger with partial water ways

Also Published As

Publication number Publication date
DE3325230C2 (en) 1994-03-31

Similar Documents

Publication Publication Date Title
DE2925272A1 (en) HEAT EXCHANGER
EP0901601B1 (en) Heat exchanger
DE3325230A1 (en) Method for improving heat transfer in a water/brine-air heat exchanger for circuit-bound heat recovery systems or analogously for other fields
DE102013106412A1 (en) Heat and cooling providing device and method for operating the same
DE1551006A1 (en) Boiler tube heat exchanger
EP0141339B1 (en) Device for heat recovery from waste water with simultaneous saving of potable water
DE102008018826B4 (en) Plant and process for the production of energy
DE3400377A1 (en) Heat exchanger for heating plants
DE941485C (en) Cooling device with water heating
DE667596C (en) Device for deep-freezing liquids
DE1404208A1 (en) Heating water storage tank
DE1007044B (en) Standing, steam-heated countercurrent device
DE102008052934B4 (en) Stages geothermal probe
DE1426734A1 (en) Liquid metal heated steam generator or superheater
AT104826B (en) Flue gas preheater.
DE2318495A1 (en) TANK HEAT EXCHANGER
DE699810C (en) and gaseous steam or broth
DE3015758C2 (en) Heat exchanger
DE1069163B (en)
AT85403B (en) Radiators with flat, spiral or spiral heating channels.
DE1940188A1 (en) Sea-water de-salination by distillation
DE102004054006A1 (en) Heat exchanger for e.g. ventilation or air conditioning systems, has distributor and collector for transporting liquid located in gas stream
DE1813939A1 (en) Heat exchangers, in particular feed water preheaters
DE614328C (en) Process for the transfer of heat from high-tension gases, in particular the exhaust gases from deflagration chambers, to other substances
DE580343C (en) Surface condenser or the like with pipes rigidly fastened in both pipe bases

Legal Events

Date Code Title Description
8101 Request for examination as to novelty
8105 Search report available
8125 Change of the main classification

Ipc: F28D 7/00

8110 Request for examination paragraph 44
D2 Grant after examination
8364 No opposition during term of opposition