DE2114312B2 - Metall-Luft-Batterie - Google Patents

Metall-Luft-Batterie

Info

Publication number
DE2114312B2
DE2114312B2 DE2114312A DE2114312A DE2114312B2 DE 2114312 B2 DE2114312 B2 DE 2114312B2 DE 2114312 A DE2114312 A DE 2114312A DE 2114312 A DE2114312 A DE 2114312A DE 2114312 B2 DE2114312 B2 DE 2114312B2
Authority
DE
Germany
Prior art keywords
electrolyte
powder
metal
electrode
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE2114312A
Other languages
English (en)
Other versions
DE2114312A1 (de
DE2114312C3 (de
Inventor
Hideo Tokio Baba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of DE2114312A1 publication Critical patent/DE2114312A1/de
Publication of DE2114312B2 publication Critical patent/DE2114312B2/de
Application granted granted Critical
Publication of DE2114312C3 publication Critical patent/DE2114312C3/de
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • H01M12/065Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode with plate-like electrodes or stacks of plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • H01M8/225Fuel cells in which the fuel is based on materials comprising particulate active material in the form of a suspension, a dispersion, a fluidised bed or a paste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Cells (AREA)
  • Fuel Cell (AREA)

Description

Die Erfindung betrifft eine Batterie entsprechend dem Oberbegriff des Anspruchs 1.
Eine derartige Batterie ist aus der DT-OS 1810036 bekannt. Bei dieser Batterie bilden eine oder mehrere wi Gasdiffusionselektroden die vertikalen Wände einer Flüssigkeit enthaltenden Zelle.
Eine ebene, negative Elektrode ist in der Zelle vertikal und mit Abstand von den Gasdiffusionselektroden angeordnet. Die Gasdiffusionselektrode enthält h> einen Katalysator, wie Silber, und vorzugsweise ein weiteres elektrisch leitendes Material, wie Kohlenstoff. Ein Elektrolyt, wie Kaliumhydroxid, mit einem sehr fein verteilten Metallpulver, wie Zink, zirkuliert durch dje Zelle, Euje mit der negativen Elektrode verbundene Einrichtung fängt wenigstens zeitweise einen Teil des Metallpulvers einr Das Metallpulver braucht im. Elektrolyten nicht löslich zu sein; das verbrauchte Metalloxid sol] jedoch im Elektrolyten löslich sein. Für die negative Elektrode wird kein Katalysator benötigt; im Elektrolyten ist kein Katalysator enthalten.
Die Wirkungsweise einer solchen Batterie wird nachstehend erläutert Da die Gasdiffusionselektrode eine Dreiphasen-Grenzfläche von Sauerstoff, Silber und einem Elektrolyten besitzt, werden Sauerstoff und Wasser im Elektrolyten zu einem Hydroxydion OH- umgewandelt, das dann durch den Elektrolyten wandert, in Berührung mit dem pulverförmigen Zink kommt und es in ein Zinkion und ein freies Elektron verwandelt. Sind die Gasdiffusionselektrode und die negative Elektrode elektrisch mit einer äußeren Last verbunden, so fließt in dieser ein elektrischer Strom. Die Batterie enthält eine Vielzahl von Zellen, wobei der Elektrolyt mit dem darin in Suspension befindlichen Metallteilchen kontinuierlich durch alle Zellen gleichzeitig zirkuliert. Zur Umwälzung des Elektroryt-Metallteilchen-Brennstoff gemische ist die Batterie an Förder- und Absaugpumpen angeschlossen.
Der Erfindung, liegt die Aufgabe zugrunde, den Leistungsverbrauch der Förder- und Absaugpumpen möglichst niedrig zu halten.
Gelöst wird diese Aufgabe gemäß der Erfindung durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale. Zweckmäßige Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
Im Unterschied zu der bekannten Batterie wird also der Elektrolyt nur intermittierend jeder Batteriezelle zugeführt. Ferner können die Teilchendichte des Elektrolyten überwacht und zusätzliche Metallteilchen eingeführt werden, wenn ein bestimmter Zustand bei der Überwachung festgestellt wird. Weitere Ausgestaltungen der Erfindung betreffen eine verbesserte Form der negativen Elektrode sowie eine verbesserte Form der positiven Elektrode. Auch kann der Elektrolyt-Sättigungspunkt bei Verwendung von Zinkoxid durch Zugabe eines weiteren chemischen Stoffes zum Elektrolyten erhöht werden.
Die Erfindung wird nachstehend anhand der Fig. 1 bis 14 beispielsweise erläutert. Es zeigt
Fig. 1 eine perspektivische Darstellung der Batterie,
Fig. 2 eine Vorderansicht einer Batteriezelle, Fig. 3 eine Seitenansicht der Zelle der Fig. 2, Fig. 4 eine Dichte-Meßeinrichtung,
Fig. S in auseinandergezogener Anordnung einen Ausschnitt der negativen Elektrode der Batterie,
Fig. 6 und 7 einen Ausschnitt einer weiteren Ausführungsform der negativen Elektrode,
Fig. 8 und 9 eine Rück- bzw. Vorderansicht der positiven Elektrode,
Fi g. 10 eine perspektivische Darstellung eines Teils der Batterie,
Fig. 11 eine perspektivische Darstellung eines Trichters und einer Ventilanordnung für die Zuleitung von Metallteilchen zum Elektrolyten,
Fig. 12 Rohrleitungen für die Zu- und Ableitung des Elektrolyt-Metallteilchen-Gemischs,
Fig. 13 ein Diagramm, aus dem die Abhängigkeit der Ausgangsspannung einer Batteriezelle in Abhängigkeit von den Amperestunden vor einer erneuten
Umwälzung des Elektrolyt-Metallteilchen-Gemischs hervorgeht, und
Fig. 14 in auseinandergezogener Anordnung eine Gasdiffusionselektrode.
Fig. 1 veranschaulicht schematisch die Metall-Luft-Batterie. Die Batterie I enthält eine Anzahl einzelner Zellen 2, die nebeneinander angeordnet sind. Jede Zelle ist eine vollständige, selbständige Kammer, die Flüssigkeit enthält, jedoch Seitenwände 3 besitzt, die den Durchtritt eines sauerstoffhaltigen Gases in das Innere hinein g«statten. Ein Elektrolyt-Metallteilchen· Mischtank 4 ist der Batterie 1 nahe benachbart zugeordnet und mit einer Zuleitung 6 und einer Rückleitung 7 versehen. In der Zuleitung 6 ist eine Pumpe ti angeordnet, die das Elektrolyt-Metallteilchen-Gemisch unter Druck einem Verteilerstück 9 zuführt, das über Einlaßleitungen 10 mit der Oberseite jeder 2IeIIe 2 verbunden ist. In der Rückleitung 7 ist eine Saugpumpe 11 angeordnet, die das Gemisch vom Baien jeder Zelle 2 über Auslaßleitungen 12 und ein Auslaß-Verteilerstück 13 abzielt.
In den Mischtank 4 reicht ein Trichter 14 hinein, der am Boden eine Öffnung 15 besitzt, die durch ein Ventil 16, welches von einer Einrichtung 17 betätigt wird, selektiv geöffnet und geschlossen wird. Die Bodenwand des Trichters 14 wird durch zwei geneigte Metallplatten 18 gebildet Der Winkel Θ, den die Platten 18 mit der Horizontalen bilden, soll größer als 20° sein; die sich gegenüberliegenden Seiten der Öffnung sollen vertikal verlaufen. Die Metallteilchen im Trichter 14 können durch eine Öffnung 19 wiedev ergänzt werden, während die Ergänzung des Elektrolyts im Mischtank über einen Elektrolyt-Zuleitungsanschluß 20 erfolgt
Der Steuermechanismus für das Ventil 16 wird durch eine in der Auslaßleitung 12 einer der Brennstoffzellen 2 angeordnete Einrichtung 21 zur Messung der Teilchendichte betätigt. Die Gasdiffusionselektrode 3 jeHer der Zellen 2 ist mit einem Leistungs-AusgangsanschJuß 22 verbunden, während die negative Elelctrode jeder Zelle 2 mit einem Leistungs-Ausgangsanschluß 23 in Verbindung steht. Die beiden Ausgangsanschlüsse (von denen der eine positiv und der andere negativ ist) sind ihrerseits mit einer zu versorgenden Last verbunden, beispielsweise mit einem nur schematisch angedeuteten Elektromotor 24.
Die Struktur jeder Zelle 2 der Batterie 1 ergibt sich vor allem aus den Fig. 2,3,8,9 und 14. Es sind zwei Kunststoffrahmen 25 vorgesehen, die je vier Paare von Ansätzen 26 aufweisen, ferner Spannbolzen 27, die zwischen einander gegenüberliegenden Paaren von Ansätzen 26 angeordnet sind und über Muttern 28 die Ansätze 26 zusammenspannen. Die öffnung jedes Rahmens 25 wird durch eine Gasdiffusionselektrode 3 ausgefüllt. Diese Elektrode 3 dient als positive Elektrode und ist auf einem Nickelsieb 29 ausgebildet (vgl. Fig. 14). Das Nickelsieb 29 ist in einen Pulverpreßteil 30 eingebettet, dessen spezifische Zusammensetzung noch näher erläutert wird. Das plattenförmige Element, das von dem in den porösen Pulverpreßteil 30 eingebetteten Nickelsieb 29 gebildet wird, wird dann mit einem Überzug 31 eines Materials versehen, das so porös ist, daß ein sauerstoffhaltiges Gas hindurchtreten kann, das jedoch gegenüber Flüssigkeit undurchlässig ist. Eine dieser plattenförmigen Elektroden wird dann in jedem der beiden zueinander passenden Rahmen 25 angebracht, wobei der flüssigkeitsundurchlässige Überzug 31 nach
außen weist Ein elektrischer Leiter 32 erstreckt sich vom Nickelsieb und dem Pulverpreßtefl zur Außenseite der Rahmenanordnung (vgl, Fig. 8).
Eine bevorzugte Pulvermischung, in der das Nikkeisieb 29 eingebettet wird, enthält als Ausgangsmaterialien Silberoxidpulver, Polytetrafluoräthylenpulver, Kohlenstoffpulver und Ammoniumkarbonatpulver mit folgenden Gewichtsanteilen:
Silberoxidpulver (Α^,Ο) 6,7 Gew.-%
Polytetrafluoräthylenpulver 43,0 Gew.-% Kohlenstoffpulver 23,0 Gew.-% Ammoniunikarbonat (NH4)2CO3 27,3 Gew.-%
Dieses Pulvergemisch wird um ein Nickelsieb gepreßt, so daß letzteres eingebettet und eine Platte gebildet wird. Diese Platte wird dann erhitzt, so daß flüchtige Materialien ausgetrieben werden und der gewünschte Porositätsgrad erreicht wird. Das Silberoxidpulver dispergiert sich leicht mit dem Kohlenstoffpulver und wird gegenüber S'Jberkarbonatpulver bevorzugt Auch Nickel oder ei« anderes elektrisch leitendes Material kann als Pulver verwendet werden.
In Fig. 5 ist in teilweise auseinandergezogener Darstellung die negative Elektrode 33 veranschaulicht Sie enthält ein Metallsieb 34, das sandwichartig zwischen zwei Platten 35 angeordnet ist, die zahlreiche kleine, nach oben gerichtete, flächenartige Ansätze 36 aufweisen. Ein elektrischer Leiter 32a führt vom Metallsieb 34 und den zugehörigen Metallplatten 35 zur Außenseite der Rahmenanordnung. Diese plattenförmige negative Elektrode liegt sandwichartig zwischen den zwei positiven Elektroden, ist hiervon jedoch durch nichtleitende Rippen 37 (vgl. Fig. 9) in Abstand gehalten. Diese Rippen 37 wirken zugleich als Ablenkungen, die das Elektrolyt-Metallteilchen-Gemisch an den nach oben gerichteten, becherartigen Ansätzen 36 der negativen Elektrode 33 vorbei nach unten lenken, wobei ein Teil der Metallpartikel eingefangen wird. Die unteren Enden wenigstens einer der Rippen 37 sind auf eine Ecke der Zelle hin gerichtet, um das Gemisch gleichförmiger über den unteren Teil der negativen Elektrode 33 gerichtet zu verteilen, wenn sich das Gemisch der Zelle 2 nähert, die benachbart zu ihrer Auslaßleitung 12 liegt.
Ein zweites, bevorzugtes Ausfühningsberspiel der negativen Elektrode ist schematisch in Fig. 6 veranschaulicht Hier liegt ein verhältnismäßig rauher Siebteil 38 über dem Zwischensieb 39. Die beiden rauhen Siebteile 38 bilden nach oben gerichtete Taschen, die Zinkpulver aus dem Elektrolyt-Zink-Gemisch aufnehmen, wenn dieses von oben nach unten fließt. Fig. 7 veranschaulicht denselben Siebteil 38 wie in Fig. 6, jedoch mit einer darauf befindlichen Ancam.nlung von Zinkpulver.
Zur Herstellung der Brennstoffzelle wird also eine negative Elektrode sandwichartig zwischen zwei positiven Elektroden angeordnet, wobei Rippen die Elektroden trennen und die Elektroden in zwei zueinander passenden Ralupenteilen 25 zusammengespannt werden, so daß sich eine flüssigkeitsdichte Zellenstruktur ergibt. Wie Fig. 2 zeigt, ragt eine Einlaßleitung 10 in den oberen Bereich jeder Zelle hinein, während eine Auslaßleitung 12 vom Boden jeder Zelle ausgeht. Ferner geht eine Einlaß-Bypassleitung 41 nach unten und tritt auf der dir Auslaßleitung 12 gegenüberliegenden Seite im Bodenbereich der Zelle ein. Diese Bypassleitung 41 ist kleiner als die Haupt-Einlaßleitung 10 und dient dem Zweck, etwa im Bodenbereich der Zelle angesammelten Schlamm auszuspülen.
Als Elektrolyt wird vorzugsweise Kaliumhydroxid mit einer Konzentration von wenigsten 6 N verwendet. Hinzugefügt wird ein lösliches Alkalimetallsalz, wie Kaliumsilikat, Natriumsilikat, Kaliumphosphat, Ammoniumsilikat usw., im Verhältnis von 200 bis 300 ecm des löslichen Alkalimetallsalzes pro 1 Kaliumhydroxid. Die Zugabe dieses löslichen Alkalimetallsalzes erhöht den Sättigungspunkt des Kaliumhydroxids für eine wasserhaltige Zinkverbindung, wie Zinkoxid. Das bevorzugte Alkalimetallsalz ist Kaliumsilikat; es versteht sich, daß dieses Material gewisse Anteile von Siliziumdioxid enthält. Es wird angenommen, daß die Löslichkeit des Zinkoxids nicht auf der zugegebenen Menge von Kaliumsilikat beruht, vorausgesetzt, daß etwa 200 bis 300 ecm Kaliumsilikatlösung pro I Kaliumhydroxid zugesetzt werden. Ein bevorzugtes Gewichtsverhältnis des Siliziumbestandteiles in der Kaliumsilikatlösung (gemessen in der Form
H SiliJHiHY bn ÜUf ύΐζ if alii>mcilijfatj/\-
sung, liegt zwischen 1:3 bis 1:10.
Es wurde festgestellt, daß das Zinkpulver vorzugsweise in einer Größe zwischen 20 bis 200 μπι liegen soll. Auf jeden Fall sollte die Korngröße des Zinkpulvers kleiner als 500 μπι sein, da größere Zinkteilchen dazu neigen, sich in den Ventilen der Rohrverteilerstücke, in den Zellen und/oder in den Leitungen festzusetzen und auf diese Weise die Elektrolytströmung zu behindern. Die Zinkteilchen sollen ferner dendritische Form besitzen, so daß sie die gewünschte Oberflächengröße zum Kontakt mit dem Elektrolyten ergeben.
Wie aus den schematischen Darstellungen der Fig. 10 und 12 hervorgeht, enthält eine Ventilanordnung ein Ventil 42 im Einlaß-Verteilerstück 9. Es wird für jede Zelle nur in der Zeit geöffnet, in der ein im Auslaßverteilerstück 13 vorgesehenes Ventil 43 derselben Zelle geöffnet ist. Eine andere Zelle enthält die Ventile 44 und 45; eine weitere Zelle die Ventile 46 und 47, die jeweils im Einlaß- bzw. Auslaß-Verteilerstück 9, 13 vorgesehen sind. In gleicher Weise sind auch für alle übrigen Zeilen der ganzen Batterie entsprechende Ventile vorhanden. Ihre Betätigung erfolgt von einer Nockenwelle 48, die durch einen Motor 49 gedreht wird. Auf der Nockenwelle 48 sind eine Anzahl von Nocken 50, 51, 52 vorgesehen, die mit Fingern 53, 54 bzw. 55 in Eingriff kommen. Die Ventile 42 und 43 sitzen auf einer gemeinsamen Stange 56, die in einem Lagerteil 57 hin- und herbeweglich ist und unter der Wirkung von Federn 58,59 steht. Eine gleichartige Anordnung ist für die benachbarten Zellen vorgesehen. Wird eine Batterie mit zwölf Zellen verwendet, so werden vorzugsweise zwei paarweise zusammengehörende Ventile, wie die Ventile 42 und 43, für eine Zeitdauer von etwa S bis 6 Sekunden geöffnet und dann für eine Zeitdauer von etwa 50 bis 55 Sekunden geschlossen. Es wurde festgestellt, daß man die wirksamste Ausnutzung der Metallteilchen erhält, indem man den Ventilzyklus auf diese Weise einteilt; hierbei fließt nämlich zu jedem Zeitpunkt nur durch eine Zelle Elektrolyt, wobei jedoch während der ganzen Zeit Elektrolyt durch das System strömt.
Wie bereits erwähnt wurde, bestehen die Metallteilchen aus feinverteilten Zinkteilchen, die sich im Elektrolyten in Suspension befinden. Wird das Zink durch Lieferung von elektrischer Leitung allmählich aufgebraucht, so wird die Gesamtmenge allmählich oxidiert; der in Suspension verbleibende Teil kann
weniger elektrische Leistung liefern; ein Zinksediment im Boden der Auslaßleitung 12 wird kleiner. Es wird daher erforderlich, weiteres Zinkpulver in Suspension in den Elektrolyten einzuführen. Der mit Zinkteilchen gefüllte Vorratstrichter 14 ist mit dem Abgabeventil 16 im oberen Teil des Mischtanks 4 vorgesehen. Das Ventil 16 wird elektrisch durch eine Zeitgeber-Betätigungseinrichtung 17 betätigt, die von Zeit zu Zeit durch eine Dichte-Meßeinrichtung 21 erregt wird. Es kann dies eine optische Einrichtung sein, wie sie schematisch in Fig. 4 dargestellt ist. Ein Lichtstrahl einer Lampe 40 trifft durch Fenster 42, die an einer der Auslaßleitungen 12 vorgesehen sind, auf einen Lichtaufnahmeteil 43, beispielsweise eine Kadmiumsulphidzelle, eine Photodiode oder dergleichen. Dieser Teil 43 überträgt ein elektrisches Signal auf die Ventilbetätigungseinrichtung 17, die das Ventil 16 für eine vorbestimmte Zeit öffnet, und zwar jedesmal denn v^cnn das SchiänünniveEu so weit absinkt dsß der Lichtstrahl unterbrochen wird. Ist der Lichtstrahl unterbrochen, so wird kein Brennstoff aus dem Trichter 14 in den Elektrolyt eingeführt. Ein bevorzugter Anteil von Zink im Elektrolyt ist dann gegeben, wenn etwa 100 g Zink pro Minute durch die negative Elektrode fließen. Die Ventilbetätigungseinrichtung 17 kann beispielsweise ein Zeitschalter sein, der eine Nockenwelle 44 jedesmal dann eine Umdrehung ausführen VnQx, wenn die Einrichtung elektrisch erregt wird. Bei der Drehung der Nockenwelle 44 drückt sie den Ventilstößel 45 gegen die Wirkung einer Feder 46 nach unten (vgl. Fig. 11).
Nachdem der Elektrolyt seinen Sättigungspunkt erreicht hat und das Zinkoxid oder andere wasserhaltige Zinkverbindungen nicht langer darin gelöst werden können, werden der Mischtank 4 und das System durch einen geeigneten, nicht dargestellten Auslaß entleert; dann werden über die Einlasse 19 und 20 neuer Elektrolyt und neues Metallpulver eingeführt.
Der im Mischtank 4 und in den Zellen 2 gespeicherte Elektrolyt muß ausreichend sein, damit die Oberfläche des Elektrolyten über der Zuleitung 6 des Mischtanks 4 liegt. Das feinverteilte Zinkpulver im Trichter 14 kann beispielsweise durch elektrolytische Extraktion erzeugt werden. Hierdurch erhält man ein körniges, nadeiförmiges Zinkpulver. Es ist erwünscht, daß das Zinkpulver allmählich in den Elektrolyten im Mischtank 4 eingeführt wird, so daß sich im Elektrolyten eine vorbestimmte Konzentration des Zinkpulvers ergibt. Am günstigsten ist es, wenn die Zufuhr des Pulvers mit etwa konstanter Menge pro Zeiteinheit erfolgt. Dies wird durch die geneigten Platter 18 erleichtert, die unter einem Winkel von mehr als 20° gegenüber der Horizontalen angeordnet sein sollen. Das konstante Pumpen des Gemische aus dem Mischtank 4 durch die Zuleitung 6 und das Abziehen des Elektrolyten aus den Zellen und das Pumpen durch die Rückleitung 7 zum Mischtank 4 bewirkt eine ständige Bewegung des Gemisches im Mischtank und hält damit die Metallteilchen in Suspension.
Aus der Konstruktion und Anordnung der Elektroden erkennt man ferner, daß jede Zelle das an den negativen Kollektorplatten 33 anhaftende Zinkpulver verteilt, so daß die elektrische Entladung während einer Unterbrechung der Zirkulation des Gemisches zur Zelle aufrechterhalten wird. Die Anordnung gewährleistet also, daß die an der negativen Elektrode 33 anhaftende Menge der Metallteilchen ausreicht, um die elektrische Ladung ohne Unterbrechung aufrecht-
zuerhalten, während die Teilchenzufuhr unterbrochen ist. Die anhand der Fig. 5,6 und 7 erläuterte spezielle Struktur gewährleistet zu diesem Zweck das Anhaften oder Einfangen einer ausreichenden Teilchenmenge an der negativen Elektrode 33.
An der Oberseite jeder Zelle ist ein Überströmrohr 47 vorgesehen (vgl. Fig. 2), das mit einer RückführleitUnR 48 verbunden ist, die zum Mischtank 4 führt (vgl. Fig. 10).
Die Rippen 37 (Fig. 9) bewirken, daß der Elektrolyt mit gleichförmiger und hoher Strömungsgeschwindigkeit durch die verschiedenen Zellen und an den einzelnen negativen Elektroden 33 entlangströmt; infolgedessen bleibt eine vorbestimmte Menge Zinkpulver an der Elektrode 33 haften und reagiert mit den Hydroxydionen, die durch den Kontakt von Sauerstoffatomen in der Luft mit dem Oxydationskatalysator (Ag2 in der Gasdiffusionselektrode erzeugt werden. Das Zankpuiver gibt Elektronen ab und wird schließlich zu Zinkoxid oder zu anderen hydratisierten Zinkverbindungen umgewandelt.
Vorzugsweise läßt man den Elektrolyten vor Beginn des Betriebes und/oder vor Beendigung des Betriebes zirkulieren, ohne daß praktisch Metallpulver darin vermischt ist. Auf diese Weise werden alle Nebenprodukte weggewaschen, die auf der negativen Elektrode 33 durch die vorhergehende Zirkulation des Elektrolyten unmittelbar vor Beendigung des Betriebes niedergeschlagen wurden, ferner auch sonstiger angesammelter Schlamm und/oder freie Metallteitchen vom Boden der Zellen. Dadurch wird die Möglichkeit ausgeschlossen, daß Zink, das in den Leitungen 7 und 13 durch die Zirkulierung des Elektrolyten unmittelbar vor Beendigung des Betriebes sich abgesetzt hat, einen Kurzschluß zwischen den Zellen verursacht; hierdurch kann ferner teilweise aufgebrauchtes Zink entfernt werden, so daß frisches Zink von der negativen Elektrode eingefangen werden kann und bei Beginn des Betriebes wieder die gewünschte elektrische Leistung zur Verfügung steht.
Weiden die Metallteilchen intermittierend den Zellen 2 zugeführt, so daß sie an der negativen Elektrode 33 anhaften und eine elektrische Entladung aufrechterhalten, selbst während die Zirkulation des Gemisches in der einzelnen Zelle unterbrochen ist, so braucht die Leistung der Förder- und Absaugpumpen 8,11 nicht so groß zu sein wie bei kontinuierlicher Zirkulation des Gemisches in allen Zellen. Wenn beispielsweise die Klemmenspannung einer Zelle etwa 1 Volt beträgt, wie dies bei Batterien zwischen 12 und 100 Volt Ausgangsspannung üblicherweise der Fall ist, so müssen je nach gewünschter Ausgangsspannung 12 bis 100 Zellen in Reihe geschaltet werden. Soll das Gemisch kontinuierlich allen diesen Zellen zugeführt werden, so wird eine sehr starke Förderpumpe und eine starke Absaugpumpe benötigt. Bei der beschriebenen Batterie brauchen dagegen nur Förder- und Absaugpumpen vorgesehen zu werden, die ausreichen, um das Gemisch einer Zelle mit einer bestimmten Strömungsgeschwindigkeit zuzuführen bzw. es von dieser Zeile abzusaugen; zumindest brauchen diese Pumpen nur für einen verhältnismäßig kleinen Prozentsatz aller Zellen bemessen zu werden.
Wie Fig. 13 zeigt, kann die übliche Elektrizitätsmenge von der Kurve A auf die Werte der Kurve B vergrößert werden, indem Kaliumsilikat zum Kaliumhydroxydelektrolyten zugesetzt wird, so daß zusätzliche Mengen von verbrauchten Metallteilchen, beispielsweise ZnO oder ein anderes Zinkhydrat, im Elektrolyt löslich sind und das System weiterhin arbeitet und zusätzliche Elektrizität liefert.
Die beschriebene Batterie kann während einer langen Betriebszeit eine Last, beispielsweise einen Elektromotor, speisen. Sie arbeitet bei normalen Umgebungstemperaturen und enthält keine gefährlichen chemischen Elemente als Brennstoff, wie beispielsweise Wasserstoff. Der Elektrolyt und das Zinkoxid können auf einfache Weise und mit geringen Kosten regeneriert werden. Die Herstellungskosten der Batterie sind verhältnismäßig niedrig; gleiches gilt auch für die Kosten der Metallteilchen. Die Kapazität ist ausreichend, um Kraftfahrzeuge bei annehmbar hc hen Geschwindigkeiten auf die Dauer von S bis 10 Stunden anzutreiben.
Hierzu 5 Blatt Zeichnungen

Claims (6)

Patentansprüche;
1. Metall-Luft-Batterie mit Zellen, die je eine Elektrolytflüssigkeit enthaltende Kammer aufweisen, mit einem Elektrolyten, der in Suspension Metallteilchen als negatives aktives Material aufweist, ferner mit wenigstens einer stehenden Wand, die aus einer positiven Gasdiffusionselektrode besteht, die gegenüber Elektrolytflüssigkeit undurchlässig ist, jedoch ein sauerstoffbaltiges Gas durchläßt, weiterhin mit einer in jeder Zelle mit Abstand von der positiven Elektrode angeordneten plattenförmigen negativen Elektrode hoher Leitfähigkeit, dadurch gekennzeich- ■% net, daß die negative Elektrode (33) nach oben gerichtete, zur Aufnahme und Ansammlung von Metallteilchen bestimmte Ansätze (36) aufweist, und daß weiterhin Einrichtungen (37) vorgesehen sind, die den Elektrolyten mit darm in Suspension *> befindlichen Metallteilchen selektiv den einzelnen Zellen (2) zuführen.
2. Batterie nach Anspruch 1, dadurch gekennzeichnet, daß negatives aktives Material durch Zink mit einer Teilchengröße zwischen 20 und -'"> 200 Mikrometer gebildet 'jvird.
3. Batterie nach Anspruch 1, dadurch gekennzeichnet, daß die positive Elektrode (3) ein Nikkeisieb (29) enthält, daß in eine Pulverpreßplatte eingebettet ist, die als Ausgangsmaterialien etwa in 6,7 Gewichtsprozent Silberoxidpulver, 43 Gewichtsprozent PoiytetrafHoräthylenpulver, 23 Gewichtsprozent Kohlenstoffpulver und 37,3 Gewichtsprozent Ammcnium^arbonatpulver enthält. )>
4. Batterie nach Anspruch 1, dadurch gekennzeichnet, daß die Ansätze (36) der negativen Elektrode (33) taschenartig ausgebildet ist.
5. Batterie nach Anspruch 1, dadurch gekennzeichnet, daß die einstückig ausgebildete negative w Elektrode (33) wenigstens eine ebene Metallplatte
(35) aufweist, an deren Außenseite die Ansalze
(36) taschenartig ausgebildet sind, sowie ein Metallsieb (34) an der Platteninnenseite.
6. Batterie nach Anspruch 1, dadurch gekenn- 4> zeichnet, daß der Elektrolyt ein chemisches Material aus der Gruppe enthält, zu der im wesentlichen gehören Kaliumsilikat, Natriumsilikat, Kaliumphosphat, Natriumphosphat und Mischungen davon, wobei der Elektrolyt durch Kaliumhydroxid w gebildet ist.
DE2114312A 1970-04-07 1971-03-24 Metall-Luft-Batterie Expired DE2114312C3 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP45029689A JPS5040459B1 (de) 1970-04-07 1970-04-07

Publications (3)

Publication Number Publication Date
DE2114312A1 DE2114312A1 (de) 1971-10-21
DE2114312B2 true DE2114312B2 (de) 1980-06-26
DE2114312C3 DE2114312C3 (de) 1981-05-07

Family

ID=12283059

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2114312A Expired DE2114312C3 (de) 1970-04-07 1971-03-24 Metall-Luft-Batterie

Country Status (6)

Country Link
JP (1) JPS5040459B1 (de)
CA (1) CA955301A (de)
DE (1) DE2114312C3 (de)
FR (1) FR2092017B1 (de)
GB (1) GB1320646A (de)
NL (1) NL7104619A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0071015A2 (de) * 1981-07-24 1983-02-09 Accumulatorenwerke Hoppecke Carl Zoellner & Sohn GmbH & Co. KG Metall-Luft-Zelle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847671A (en) * 1973-04-13 1974-11-12 Electromedia Hydraulically-refuelable metal-gas depolarized battery system
FR2298195A1 (fr) * 1975-01-14 1976-08-13 Comp Generale Electricite Generateur electrochimique air-zinc
WO2017181275A1 (en) * 2016-04-18 2017-10-26 Zincnyx Energy Solutions, Inc. Energy storage device electrolyte additive
JP6694955B2 (ja) * 2016-05-31 2020-05-20 京セラ株式会社 亜鉛電池および亜鉛フロー電池
CN110313094A (zh) * 2016-12-21 2019-10-08 京瓷株式会社 液流电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR361058A (fr) * 1905-11-30 1906-05-16 Edmond Brousseau élément d'accumulateur et batterie
BE592862A (de) * 1960-07-04
IL28488A (en) * 1967-08-11 1971-04-28 State Of Israel The Prime Mini Device for the electrochemical generation of electric current
JPS4815262B1 (de) * 1967-11-20 1973-05-14

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0071015A2 (de) * 1981-07-24 1983-02-09 Accumulatorenwerke Hoppecke Carl Zoellner & Sohn GmbH & Co. KG Metall-Luft-Zelle
EP0071015A3 (en) * 1981-07-24 1983-08-24 Accumulatorenwerke Hoppecke Carl Zoellner & Sohn Gmbh & Co. Kg Galvanic element, particularly metal-air cell

Also Published As

Publication number Publication date
CA955301A (en) 1974-09-24
DE2114312A1 (de) 1971-10-21
NL7104619A (de) 1971-10-11
FR2092017B1 (de) 1974-08-23
DE2114312C3 (de) 1981-05-07
FR2092017A1 (de) 1972-01-21
JPS5040459B1 (de) 1975-12-24
GB1320646A (en) 1973-06-20

Similar Documents

Publication Publication Date Title
DE69220030T2 (de) Mechanisch wiederaufladbare Batterien und darin verwendbare Anoden
DE69306598T2 (de) Elektrochemisches Metall-Luft-Element mit elektrisch oder mechanisch aufladbaren Anoden
DE2341483C3 (de) Luftdepolarisationszelle
DE2502738C3 (de) Brennstoffbatterie
DE3543574C2 (de) Metall-Halogen-Sammlerbatterie aus aneinandergeschichteten Elementen mit Elektrolytumwälzung
DE2801619A1 (de) Energieumwandlungsvorrichtung
DE1696565A1 (de) Elektrochemische Akkumulatorenzelle mit drei Elektroden
DE1916200A1 (de) Wiederaufladbare alkalische Zinkzelle
DE69709402T2 (de) Verfahren und vorrichtung zur brennstoffbefüllen einer elektrochemischen kraftquelle
DE1163413B (de) Verfahren zum Formieren, Laden und Entladen von Akkumulatoren mit saurem Elektrolyten mit hohen Stromdichten
DE1810036B2 (de) Galvanische Metall-Gasbatterie
DE1912382A1 (de) Metall-Luft-Element
DE2114312C3 (de) Metall-Luft-Batterie
DE1671811C3 (de) Sammlerbatterie mit Bleidioxid enthaltenden positiven Platten und negativen Platten, die Zinkamalgam oder Kadmiumamalgam in poröser Form enthalten
DE2025489C3 (de) Galvanisches Trockenelement
DE112005002020T5 (de) Brennstoffzellensystem
DE1696563C3 (de) Alkalische Akkurrmlatorenzelle mit positiven Silberelektroden und negativen Zinkelektroden
DE1671867B2 (de) Gasdepolarisiertes galvanisches element mit feinem anodenmaterial
DE69116561T2 (de) Chemischer reaktor mit gasabscheider und darin zu benutzender tragrahmen
DE2735115C3 (de) Verfahren zur Erzeugung von elektrischem Strom und galvanisches Element zur Durchführung des Verfahrens
DE1942331B2 (de) Verfahren zum Laden einer galvanischen Batterie mit mehreren Zellen, die eine positive Sauerstoffelektrode und eine wiederaufladbare negative Elektrode enthalten
DE2756049C2 (de) Meerwasserbatterie mit verzögerter Wirkung
DE2440619B2 (de) Wiederaufladbare Zink-Chlor-Zelle
EP0182852A1 (de) Bleibatterie
DE563261C (de) Elektrischer Akkumulator

Legal Events

Date Code Title Description
OD Request for examination
C3 Grant after two publication steps (3rd publication)
8339 Ceased/non-payment of the annual fee