DE19547733A1 - Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zu ihrer Herstellung sowie modifizierte Stärke - Google Patents

Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zu ihrer Herstellung sowie modifizierte Stärke

Info

Publication number
DE19547733A1
DE19547733A1 DE19547733A DE19547733A DE19547733A1 DE 19547733 A1 DE19547733 A1 DE 19547733A1 DE 19547733 A DE19547733 A DE 19547733A DE 19547733 A DE19547733 A DE 19547733A DE 19547733 A1 DE19547733 A1 DE 19547733A1
Authority
DE
Germany
Prior art keywords
starch
plants
dna
cells
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19547733A
Other languages
English (en)
Inventor
Ruth Lorberth
Jens Dr Kosmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Bioscience GmbH
Original Assignee
Institut fuer Genbiologische Forschung Berlin GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Genbiologische Forschung Berlin GmbH filed Critical Institut fuer Genbiologische Forschung Berlin GmbH
Priority to DE19547733A priority Critical patent/DE19547733A1/de
Priority to HU9900510A priority patent/HU229777B1/hu
Priority to EP04002725A priority patent/EP1435205B1/de
Priority to PCT/EP1996/004109 priority patent/WO1997011188A1/de
Priority to DE59611501T priority patent/DE59611501D1/de
Priority to EP06013739A priority patent/EP1728441A3/de
Priority to ES96932575T priority patent/ES2264143T3/es
Priority to AU71313/96A priority patent/AU715944B2/en
Priority to PT96932575T priority patent/PT851934E/pt
Priority to JP51147997A priority patent/JP4118330B2/ja
Priority to DE59611362T priority patent/DE59611362D1/de
Priority to AT96932575T priority patent/ATE332382T1/de
Priority to EP05024607A priority patent/EP1702518A1/de
Priority to DK96932575T priority patent/DK0851934T3/da
Priority to AT04002725T priority patent/ATE447855T1/de
Priority to CA2231774A priority patent/CA2231774C/en
Priority to EP96932575A priority patent/EP0851934B1/de
Priority to ES04002725T priority patent/ES2335494T3/es
Priority to PT04002725T priority patent/PT1435205E/pt
Priority to DK04002725.2T priority patent/DK1435205T3/da
Publication of DE19547733A1 publication Critical patent/DE19547733A1/de
Priority to US09/045,360 priority patent/US6207880B1/en
Priority to US09/746,390 priority patent/US6815581B2/en
Priority to US10/750,161 priority patent/US7176190B2/en
Priority to US11/281,861 priority patent/US20060168691A1/en
Priority to US11/583,077 priority patent/US7897760B2/en
Priority to US11/583,839 priority patent/US7569744B2/en
Priority to JP2008028262A priority patent/JP2008173128A/ja
Priority to US12/271,255 priority patent/US20100174061A1/en
Priority to US12/979,894 priority patent/US8586722B2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

Die vorliegende Erfindung betrifft DNA-Moleküle, die ein Stärkekorn-gebundenes Protein codieren, sowie Verfahren und rekombinante DNA-Moleküle zur Herstellung transgener Pflanzenzellen und Pflanzen, die eine modifizierte Stärke mit veränderten Viskositätseigenschaften und einem veränderten Phosphatgehalt synthetisieren. Die Erfindung betrifft ebenfalls die aus den Verfahren resultierenden transgenen Pflanzenzellen und Pflanzen und die aus den transgenen Pflanzenzellen und Pflanzen erhältliche Stärke.
Das Polysaccharid Stärke, das einen der wichtigsten Speicherstoffe im Pflanzenreich darstellt, findet neben der Verwendung im Nahrungsmittelbereich auch eine breite Verwendung als nachwachsender Rohstoff für die Herstellung industrieller Produkte. Um die Anwendung dieses Rohstoffes in möglichst vielen Einsatzgebieten zu ermöglichen, ist es notwendig, eine große Stoffvielfalt und eine Anpassung an die jeweiligen Anforderungen der zu verarbeitenden Industrie zu erreichen.
Obwohl Stärke aus einem chemisch einheitlichen Grundbaustein, der Glucose, aufgebaut ist, stellt Stärke keinen einheitlichen Rohstoff dar. Es handelt sich dabei eher um ein komplexes Gemisch aus unterschiedlichen Molekülformen, die sich hinsichtlich ihres Verzweigungsgrades und des Auftretens von Verzweigungen der Glucoseketten unterscheiden. Man unterscheidet insbesondere die Amylose-Stärke, ein im wesentlichen unverzweigtes Polymer aus α-1,4-verknüpften Glucosemolekülen, von der Amylopektin-Stärke, die ein Gemisch aus unterschiedlich stark verzweigten Glucoseketten darstellt, wobei die Verzweigungen durch das Auftreten von α-1,6-glycosidischen Verknüpfungen zustande kommen.
Die molekulare Struktur der Stärke, die zu einem großen Teil durch den Verzweigungsgrad, das Amylose/Amylopektin-Verhältnis, die durchschnittliche Kettenlänge sowie das Vorhandensein von Phosphatgruppen bestimmt wird, ist ausschlaggebend für wichtige funktionelle Eigenschaften der Stärke bzw. ihrer wäßrigen Lösungen. Als wichtige funktionelle Eigenschaften sind hierbei beispielsweise zu nennen die Löslichkeit, das Retrogradierungsverhalten, die Filmbildungseigenschaften, die Viskosität, die Farbstabilität, die Verkleisterungseigenschaften, d. h. Binde- und Klebeigenschaften, sowie die Kältestabilität. Auch die Stärkekorngröße kann für verschiedene Anwendungen von Bedeutung sein. Von besonderem Interesse ist insbesondere die Erzeugung von hochamylosehaltigen Stärken. Ferner kann eine in Pflanzenzellen enthaltene modifizierte Stärke das Verhalten der Pflanzenzelle unter bestimmten Bedingungen vorteilhaft verändern. Denkbar ist beispielsweise eine Verringerung des Stärkeabbaus während der Lagerung von Stärke-enthaltenden Organen, wie z. B. Samen oder Knollen, vor deren weiterer Verarbeitung, z. B. zur Extraktion der Stärke. Ferner ist es von Interesse, modifizierte Stärken herzustellen, die dazu führen, daß Pflanzenzellen oder pflanzliche Organe, die diese Stärke enthalten, besser zur Weiterverarbeitung geeignet sind, beispielsweise bei der Herstellung von "Popcorn" oder "Corn flakes" aus Mais oder von Pommes frites, Chips oder Kartoffelpulver aus Kartoffeln. Von besonderem Interesse ist hierbei die Verbesserung der Stärken in der Hinsicht, daß sie ein reduziertes "cold sweetening" aufweisen, d. h. eine verringerte Freisetzung von reduzierenden Zuckern (insbesondere Glucose) bei einer längeren Lagerung bei niedrigen Temperaturen. Gerade Kartoffeln werden häufig bei Temperaturen von 4-8°C gelagert, um den Stärkeabbau während der Lagerung zu minimieren. Die hierbei freigesetzten reduzierenden Zucker, insbesondere Glucose, führen beispielsweise bei der Herstellung von Pommes frites oder Chips zu unerwünschten Bräunungsreaktionen (sogenannte Maillard-Reaktionen).
Die Anpassung der aus Pflanzen isolierbaren Stärke an bestimmte industrielle Verwendungszwecke erfolgt häufig mit Hilfe chemischer Modifikationen, die in der Regel zeit- und kostenintensiv sind. Es erscheint daher wünschenswert, Möglichkeiten zu finden, Pflanzen herzustellen, die eine Stärke synthetisieren, die in ihren Eigenschaften bereits den Anforderungen der verarbeitenden Industrie entspricht.
Herkömmliche Wege zur Herstellung derartiger Pflanzen bestehen in klassischen Züchtungsverfahren und der Erzeugung von Mutanten. So wurde beispielsweise bei Mais eine Mutante erzeugt, die eine Stärke mit veränderten Viskositätseigenschaften synthetisiert (US Patentschrift 5,331,108), sowie eine Maissorte (waxy maize) durch Züchtung etabliert, deren Stärke zu nahezu 100% aus Amylopektin besteht (Akasuka und Nelson, J. Biol. Chem. 241 (1966), 2280-2285). Ferner sind bei Mais und Erbse Mutanten beschrieben worden, die Stärken mit hohem Amylosegehalt synthetisieren (70% in Mais bzw. bis zu 50% in Erbse). Diese Mutanten sind bisher nicht auf molekularer Ebene charakterisiert worden und erlauben somit auch nicht die Erzeugung entsprechender Mutanten in anderen stärkespeichernden Pflanzen.
Alternativ können Pflanzen, die eine Stärke mit veränderten Eigenschaften synthetisieren, mit Hilfe gentechnischer Verfahren erzeugt werden. Beschrieben wurde beispielsweise in mehreren Fällen die gentechnische Veränderung von Kartoffelpflanzen, mit dem Ziel der Veränderung der in den Pflanzen synthetisierten Stärke (z. B. WO 92/11376; WO 92/14827). Voraussetzung für die Anwendung gentechnischer Verfahren ist jedoch die Verfügbarkeit von DNA-Sequenzen, deren Genprodukte einen Einfluß auf die Stärkesynthese, die Stärkemodifikation oder den Stärkeabbau haben.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, DNA-Moleküle und Verfahren zur Verfügung zu stellen, die es ermöglichen, Pflanzen dahingehend zu verändern, daß sie eine Stärke synthetisieren, die sich hinsichtlich ihrer physikalischen und/oder chemischen Eigenschaften von natürlicherweise in den Pflanzen synthetisierter Stärke unterscheidet, insbesondere eine hochamylosehaltige Stärke, und die somit für allgemeine und/oder spezielle Verwendungszwecke besser geeignet ist.
Diese Aufgabe wird durch die Bereitstellung der in den Patentansprüchen bezeichneten Ausführungsformen gelöst.
Die vorliegende Erfindung betrifft somit DNA-Moleküle, die ein Protein mit der unter Seq ID No. 2 angegebenen Aminosäuresequenz codieren. Derartige Proteine liegen in den Plastiden pflanzlicher Zellen sowohl an Stärkekörnern gebunden vor, als auch außerhalb von Stärkekörnern in freier, d. h. löslicher Form. Die Enzymaktivität derartiger Proteine führt bei Expression in E. coli zu einer erhöhten Phosphorylierung des in den Zellen synthetisierten Glykogens. Das Molekulargewicht dieser Proteine liegt im Bereich von 140-160 kd, wenn es mit Hilfe einer SDS-Gelelektrophorese bestimmt wird.
Ferner betrifft die vorliegende Erfindung DNA-Moleküle, die eine DNA-Sequenz mit der unter Seq ID No. 1 angegebenen Nukleotidabfolge, insbesondere die in Seq ID No. 1 angegebenen codierenden Region, umfassen.
Gegenstand der Erfindung sind ebenfalls DNA-Moleküle, die ein Protein codieren, das in den Plastiden pflanzlicher Zellen zum Teil an Stärkekörnern gebunden vorliegt, und die mit den oben genannten erfindungsgemäßen DNA-Molekülen hybridisieren. Der Begriff "Hybridisierung" bedeutet in diesem Zusammenhang eine Hybridisierung unter konventionellen Hybridisierungsbedingungen, vorzugsweise unter stringenten Bedingungen, wie sie beispielsweise in Sambrook et al. (1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) beschrieben sind. Diese DNA-Moleküle, die mit den erfindungsgemäßen DNA-Molekülen hybridisieren, können prinzipiell aus jedem beliebigen Organismus (d. h. Prokaryonten oder Eukaryonten, insbesondere aus Bakterien, Pilzen, Algen, Pflanzen oder tierischen Organismen) stammen, der derartige DNA-Moleküle besitzt. Sie stammen vorzugsweise aus mohokotylen oder dikotylen Pflanzen, insbesondere aus Nutzpflanzen, und besonders bevorzugt aus Stärke­ speichernden Pflanzen.
DNA-Moleküle, die mit den erfindungsgemäßen DNA-Molekülen hybridisieren, können z. B. aus genomischen oder aus cDNA-Bibliotheken verschiedener Organismen isoliert werden.
Die Identifizierung und Isolierung derartiger DNA-Moleküle aus Pflanzen oder anderen Organismen kann dabei unter Verwendung der erfindungsgemäßen DNA-Moleküle oder Teile dieser DNA-Moleküle bzw. der reversen Komplemente dieser Moleküle erfolgen, z. B. mittels Hybridisierung nach Standardverfahren (siehe z. B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY).
Als Hybridisierungsprobe können z. B. DNA-Moleküle verwendet werden, die exakt die oder im wesentlichen die unter Seq ID No. 1 angegebene DNA-Sequenz oder Teile dieser Sequenz aufweisen. Bei den als Hybridisierungsprobe verwendeten DNA-Fragmenten kann es sich auch um synthetische DNA-Fragmente handeln, die mit Hilfe der gängigen DNA-Synthesetechniken hergestellt wurden und deren Sequenz im wesentlichen mit der der erfindungsgemäßen DNA-Moleküle übereinstimmt. Hat man Gene identifiziert und isoliert, die mit den erfindungsgemäßen DNA-Sequenzen hybridisieren, ist eine Bestimmung der Sequenz und eine Analyse der Eigenschaften der von dieser Sequenz codierten Proteine erforderlich.
Weiterhin betrifft die vorliegende Erfindung DNA-Moleküle, deren Sequenzen aufgrund des genetischen Codes degeneriert sind im Vergleich zu den Sequenzen der obengenannten DNA-Moleküle, und die ein Protein codieren, das in den Plastiden pflanzlicher Zellen teilweise an Stärkekörner gebunden vorliegt.
Gegenstand der Erfindung sind ebenfalls Fragmente, Derivate und allelische Varianten der oben beschriebenen DNA-Moleküle, die das oben beschriebene Protein codieren. Unter Fragmenten werden dabei Teile der DNA-Moleküle verstanden, die lang genug sind, um das beschriebene Protein zu codieren. Der Ausdruck Derivat bedeutet in diesem Zusammenhang, daß die DNA-Sequenzen dieser Moleküle sich von den Sequenzen der oben beschriebenen DNA-Moleküle an einer oder mehreren Positionen unterscheiden und einen hohen Grad an Homologie zu dieser DNA-Sequenz aufweisen. Homologie bedeutet dabei eine Sequenzidentität von mindestens 40%, insbesondere eine Identität von mindestens 60%, vorzugsweise über 80% und besonders bevorzugt über 90%. Die Abweichungen zu den oben beschriebenen DNA-Molekülen können dabei durch Deletion, Substitution, Insertion oder Rekombination entstanden sein.
Homologie bedeutet ferner, daß funktionelle und/oder strukturelle Äquivalenz zwischen den betreffenden DNA-Molekülen oder den durch sie codierten Proteinen, besteht. Bei den DNA-Molekülen, die homolog zu den oben beschriebenen DNA-Molekülen sind und Derivate dieser DNA-Moleküle darstellen, handelt es sich in der Regel um Variationen dieser DNA-Moleküle, die Modifikationen darstellen, die dieselbe biologische Funktion ausüben. Es kann sich dabei sowohl um natürlicherweise auftretende Variationen handeln, beispielsweise um Sequenzen aus anderen Organismen, oder um Mutationen, wobei diese Mutationen auf natürliche Weise aufgetreten sein können oder durch gezielte Mutagenese eingeführt wurden. Ferner kann es sich bei den Variationen um synthetisch hergestellte Sequenzen handeln.
Bei den allelischen Varianten kann es sich sowohl um natürlich auftretende Varianten handeln, als auch um synthetisch hergestellte oder durch rekombinante DNA-Techniken erzeugte Varianten.
Die von den verschiedenen Varianten der erfindungsgemäßen DNA-Moleküle codierten Proteine weisen bestimmte gemeinsame Charakteristika auf. Dazu können z. B. Enzymaktivität, Molekulargewicht, immunologische Reaktivität, Konformation etc. gehören, sowie physikalische Eigenschaften wie z. B. das Laufverhalten in Gelelektrophoresen, chromatographisches Verhalten, Sedimentationskoeffizienten, Löslichkeit, spektroskopische Eigenschaften, Stabilität, pH-Optimum, Temperatur-Optimum etc.
Die erfindungsgemäßen DNA-Moleküle können prinzipiell aus jedem Organismus stammen, der die beschriebenen Proteine exprimiert, vorzugsweise aus Pflanzen, insbesondere aus stärkesynthetisierenden bzw. stärkespeichernden Pflanzen. Besonders bevorzugt sind dabei z. B. Getreidearten (wie Gerste, Roggen, Hafer, Weizen etc.), Mais, Reis, Erbse, Maniok, Kartoffel usw.
Ferner betrifft die Erfindung Vektoren, insbesondere Plasmide, Cosmide, Viren, Bacteriophagen und andere in der Gentechnik gängige Vektoren, die die oben beschriebenen erfindungsgemäßen DNA-Moleküle enthalten.
In einer bevorzugten Ausführungsform sind die in den Vektoren enthaltenen DNA-Moleküle verknüpft mit DNA-Elementen, die die Transkription in prokaryontischen oder eukaryontischen Zellen gewährleisten.
In einer weiteren Ausführungsform betrifft die Erfindung Wirtszellen, insbesondere prokaryontische oder eukaryontische Zellen, die ein oben beschriebenes erfindungsgemäßes DNA-Molekül oder einen Vektor enthalten. Dabei handelt es sich vorzugsweise um bakterielle Zellen.
Es wurde nun gefunden, daß das durch die erfindungsgemäßen DNA-Moleküle codierte Protein einen Einfluß auf die Stärkesynthese bzw. -modifikation hat, und eine Veränderung der Menge des Proteins in pflanzlichen Zellen zu Veränderungen im Stärkemetabolismus der Pflanzen führt, insbesondere zur Synthese von Stärken mit veränderten physikalischen und chemischen Eigenschaften.
Durch die Bereitstellung der erfindungsgemäßen DNA-Moleküle ist es somit möglich, mit Hilfe gentechnischer Verfahren Pflanzen herzustellen, die eine modifizierte Stärke synthetisieren, die sich in ihrer Struktur und ihren physikalischen und chemischen Eigenschaften von in Wildtyp-Pflanzen synthetisierter Stärke unterscheidet. Hierzu werden die erfindungsgemäßen DNA-Moleküle mit DNA-Elementen verknüpft, die die Transkription und Translation in Pflanzenzellen gewährleisten, und in pflanzliche Zellen eingebracht.
Die vorliegende Erfindung betrifft somit auch transgene Pflanzenzellen, die ein erfindungsgemäßes DNA-Molekül enthalten, wobei dieses mit einem Promotor verknüpft ist, der die Transkription in pflanzlichen Zellen gewährleistet und der in Bezug auf das DNA-Molekül heterolog ist.
Die transgenen Pflanzenzellen können nach dem Fachmann bekannten Techniken zu ganzen Pflanzen regeneriert werden. Die durch Regeneration der erfindungsgemäßen transgenen Pflanzenzellen erhältlichen Pflanzen sind ebenfalls Gegenstand der vorliegenden Erfindung. Ferner sind Gegenstand der Erfindung Pflanzen, die die obenbeschriebenen transgenen Pflanzenzellen enthalten. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen Pflanzenspezies handeln, d. h. sowohl monokotyle als auch dikotyle Pflanzen. Bevorzugt handelt es sich um Nutzpflanzen, insbesondere stärkespeichernde Nutzpflanzen, wie z. B. Getreidearten (Roggen, Gerste, Hafer, Weizen etc.), Reis, Mais, Erbse, Maniok und Kartoffel.
Die erfindungsgemäßen transgenen Pflanzenzellen und Pflanzen synthetisieren aufgrund der Expression bzw. zusätzlichen Expression eines erfindungsgemäßen DNA-Moleküls eine Stärke, die im Vergleich zu Stärke aus Wildtyp-Pflanzen, d. h. nicht­ transformierten Pflanzen, modifiziert ist, insbesondere im Hinblick auf die Viskosität wäßriger Lösungen dieser Stärke und/oder den Phosphatgehalt. Dieser ist in der Regel bei der Stärke aus transgenen Pflanzenzellen bzw. Pflanzen erhöht, wodurch die physikalische Eigenschaften der Stärke verändert werden.
Gegenstand der vorliegenden Erfindung ist somit auch die aus den erfindungsgemäßen transgenen Pflanzenzellen und Pflanzen erhältliche Stärke.
Ferner betrifft die Erfindung die durch Transkription der erfindungsgemäßen DNA-Moleküle erhältlichen RNA-Moleküle sowie Proteine, die durch die erfindungsgemäßen DNA-Moleküle codiert werden. Es handelt sich dabei vorzugsweise um pflanzliche, kerncodierte Proteine, die in den Plastiden lokalisiert sind. In den Plastiden liegen diese Enzyme sowohl an den Stärkekörnern gebunden vor als auch frei. Die entsprechenden Proteine aus Solanum tuberosum weisen in einer SDS-Gelelektrophorese ein Molekulargewicht von 140-160 kd auf und führen bei Expression in E. coli zu einer erhöhten Phosphorylierung des in den Zellen synthetisierten Glycogens.
Gegenstand der Erfindung sind ebenfalls Antikörper, die spezifisch ein erfindungsgemäßes Protein erkennen. Es kann sich hierbei sowohl um monoclonale als auch um polyclonale Antikörper handeln.
Es wurde ferner gefunden, daß es möglich ist, die Eigenschaften der in Pflanzenzellen synthetisierten Stärke dadurch zu beeinflussen, daß die Menge an Proteinen, die durch die erfindungsgemäßen DNA-Moleküle codiert werden, in den Zellen verringert wird. Diese Verringerung kann beispielsweise durch antisense-Expression der erfindungsgemäßen DNA-Moleküle, durch Expression geeigneter Ribozyme oder mittels Cosuppression erfolgen.
Gegenstand der vorliegenden Erfindung sind somit auch DNA-Moleküle, die eine antisense-RNA codieren, die komplementär ist zu Transkripten eines erfindungsgemäßen DNA-Moleküls. Um bei Transkription in pflanzlichen Zellen einen antisense-Effekt zu bewirken, sind derartige DNA-Moleküle mindestens 15 bp lang, vorzugsweise länger als 100 bp und besonders bevorzugt länger als 500 bp, jedoch in der Regel kürzer als 5000 bp, vorzugsweise kürzer als 2500 bp.
In einer weiteren Ausführungsform betrifft die vorliegende Erfindung DNA-Moleküle, die ein RNA-Molekül mit Ribozymaktivität codieren, das spezifisch Transkripte eines erfindungsgemäßen DNA-Moleküls spaltet.
Ribozyme sind katalytisch aktive RNA-Moleküle, die in der Lage sind, RNA-Moleküle und spezifische Zielsequenzen zu spalten. Mit Hilfe gentechnologischer Methoden ist es möglich, die Spezifität von Ribozymen zu verändern. Es existieren verschiedene Klassen von Ribozymen. Für die praktische Anwendung mit dem Ziel, das Transkript eines bestimmten Gens gezielt zu spalten, werden bevorzugt Vertreter zweier verschiedener Gruppen von Ribozymen verwendet. Die eine Gruppe wird gebildet von Ribozymen, die dem Typ der GruppeI-Intron-Ribozymen zuzuordnen sind. Die zweite Gruppe wird von Ribozymen gebildet, die als charakteristisches Strukturmerkmal ein sogenanntes "hammerhead"-Motiv aufweisen. Die spezifische Erkennung des Ziel-RNA-Moleküls kann modifiziert werden durch Änderung der Sequenzen, die dieses Motiv flankieren. Diese Sequenzen bestimmen über Basenpaarung mit Sequenzen im Zielmolekül die Stelle, an der die katalytische Reaktion und somit die Spaltung des Zielmoleküls erfolgt. Da die Sequenzanforderungen für eine effiziente Spaltung äußerst gering sind, ist es im Prinzip möglich, spezifische Ribozyme für praktisch jedes beliebige RNA-Molekül zu entwickeln.
Um DNA-Moleküle herzustellen, die ein Ribozym codieren, das spezifisch Transkripte eines erfindungsgemäßen DNA-Moleküls spaltet, wird beispielsweise eine DNA-Sequenz, die eine katalytische Domäne eines Ribozyms codiert, beiderseits mit DNA-Sequenzen verknüpft, die homolog sind zu Sequenzen des Zielenzyms. Als Sequenzen, die die katalytische Domänen codieren, kommen beispielsweise in Frage die katalytische Domäne der Satelliten-DNA des SCMo-Virus (Davies et al., Virology 177 (1990), 216-224) oder die der Satelliten-DNA des TobR-Virus (Steinecke et al., EMBO J. 11 (1992), 1525-1530; Haseloff und Gerlach, Nature 334 (1988), 585-591). Die die katalytische Domäne flankierenden DNA-Sequenzen stammen vorzugsweise aus den oben beschriebenen erfindungsgemäßen DNA-Molekülen.
In einer weiteren Ausführungsform betrifft die vorliegende Erfindung Vektoren, die die oben beschriebenen DNA-Moleküle enthalten, insbesondere solche, bei denen die beschriebenen DNA-Moleküle verknüpft sind mit regulatorischen DNA-Elementen, die die Transkription in pflanzlichen Zellen gewährleisten.
Ferner betrifft die vorliegende Erfindung Wirtszellen, die die beschriebenen DNA-Moleküle oder Vektoren enthalten. Die Wirtszelle kann eine prokaryontische, beispielsweise bakterielle, oder eukaryontische Zelle sein. Bei den eukaryontischen Wirtszellen handelt es sich vorzugsweise um pflanzliche Zellen.
Ferner betrifft die Erfindung transgene Pflanzenzellen, die ein oben beschriebenes DNA-Molekül enthalten, das eine antisense-RNA oder ein Ribozym codiert, wobei dieses DNA-Molekül verknüpft ist mit DNA-Elementen, die die Transkription in pflanzlichen Zellen gewährleisten. Diese transgenen Pflanzenzellen können nach gängigen Techniken zu ganzen Pflanzen regeneriert werden. Die Erfindung betrifft somit auch Pflanzen, die erhältlich sind durch Regeneration aus den beschriebenen transgenen Pflanzenzellen, sowie Pflanzen, die die beschriebenen transgenen Pflanzenzellen enthalten. Bei den transgenen Pflanzen kann es sich wiederum um Pflanzen jeder beliebigen Pflanzenspezies handeln, vorzugsweise um Nutzpflanzen, insbesondere stärkespei­ chernde, wie oben angegeben.
Durch die Expression der beschriebenen DNA-Moleküle, die antisense-RNA oder ein Ribozym codieren, in den transgenen Pflanzenzellen kommt es zu einer Verringerung der Menge an Proteinen, die durch erfindungsgemäße DNA-Moleküle codiert werden, die endogen in den Zellen vorliegen. Diese Verringerung hat überraschenderweise eine drastische Veränderung der physikalischen und chemischen Eigenschaften der in den Pflanzenzellen synthetisierten Stärke zur Folge, insbesondere der Viskositätseigenschaften wäßriger Lösungen dieser Stärke, des Phosphatgehaltes als auch der Freisetzung reduzierender Zucker bei Lagerung der Pflanzenzellen oder Pflanzenteile bei niedrigen Temperaturen. Die Eigenschaften der in den transgenen Pflanzenzellen synthetisierten Stärke wird weiter unten ausführlich beschrieben.
Gegenstand der vorliegenden Erfindung ist somit auch die aus den beschriebenen transgenen Pflanzenzellen und Pflanzen erhältliche Stärke.
Ferner betrifft die Erfindung die durch die beschriebenen DNA-Moleküle codierten antisense-RNA-Moleküle, sowie RNA-Moleküle mit Ribozymaktivität, die durch Transkription erhältlich sind.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung transgener Pflanzenzellen, die im Vergleich zu nicht-transformierten Zellen eine modifizierte Stärke synthetisieren, bei dem in den Pflanzenzellen die Menge an Proteinen verringert wird, die durch erfindungsgemäße DNA-Moleküle codiert werden, die endogen in den Zellen vorliegen.
In einer bevorzugten Ausführungsform erfolgt diese Verringerung mit Hilfe eines antisense-Effektes. Hierzu werden erfindungsgemäße DNA-Moleküle oder Teile davon in antisense-Orientierung mit einem Promotor verknüpft, der die Transkription in pflanzlichen Zellen gewährleistet, sowie gegebenenfalls mit einem Terminationssignal, das die Termination der Transkription sowie die Polyadenylierung des Transkriptes gewährleistet. Um einen effizienten antisense-Effekt in den pflanzlichen Zellen zu gewährleisten, sollte die synthetisierte antisense-RNA eine Mindestlänge von 15 Nukleotiden, vorzugsweise von mindestens 100 Nukleotiden und besonders bevorzugt von über 500 Nukleotiden aufweisen. Ferner sollte die die antisense-RNA codierende DNA-Sequenz in bezug auf die zu transformierende Pflanzenspezies homolog sein. Es können jedoch auch DNA-Sequenzen verwendet werden, die einen hohen Grad an Homologie zu endogen in den Zellen vorhandenen DNA-Sequenzen aufweisen, vorzugsweise eine Homologie von mehr als 90%, besonders bevorzugt von mehr als 95%.
In einer weiteren bevorzugten Ausführungsform erfolgt die Verringerung der Menge an Proteinen, die durch die erfindungsgemäßen DNA-Moleküle codiert werden, durch einen Ribozym-Effekt. Die prinzipielle Wirkungsweise von Ribozymen, sowie die Konstruktion von DNA-Molekülen, die derartige RNA-Moleküle codieren, wurden bereits oben beschrieben. Um in transgenen Zellen eine RNA mit Ribozymaktivität zu exprimieren, werden die oben beschriebenen DNA-Moleküle, die für ein Ribozym codieren, mit DNA-Elementen verknüpft, die die Transkription in pflanzlichen Zellen gewährleisten, insbesondere mit einem Promotor und einem Terminationssignal. Die in den Pflanzenzellen synthetisierten Ribozyme führen zur Spaltung von Transkripten von erfindungsgemäßen DNA-Molekülen, die endogen in den Zellen vorliegen.
Eine weitere Möglichkeit der Verringerung der Menge an Proteinen, die durch die erfindungsgemäßen DNA-Moleküle codiert werden, ist die Cosuppression. Gegenstand der Erfindung sind dabei auch die durch das erfindungsgemäße Verfahren erhältlichen Pflanzenzellen, die dadurch charakterisiert sind, daß bei ihnen die Menge an Proteinen verringert ist, die durch die erfindungsgemäßen DNA-Moleküle codiert werden, und die im Vergleich zu Wildtyp-Zellen eine modifizierte Stärke synthetisieren.
Ferner betrifft die Erfindung Pflanzen, die erhältlich sind durch Regeneration der beschriebenen Pflanzenzellen, sowie Pflanzen, die die beschriebenen erfindungsgemäßen Zellen enthalten.
Die aus den beschriebenen Pflanzenzellen und Pflanzen erhältliche Stärke ist ebenfalls Gegenstand der vorliegenden Erfindung. Diese weist im Vergleich zu Stärke aus Wildtyp-Pflanzen veränderte physikalische und chemische Eigenschaften auf. Beispielsweise besitzt diese Stärke im Vergleich zur Stärke aus Wildtyp-Pflanzen einen reduzierten Phosphatgehalt. Ferner zeigen wäßrige Lösungen dieser Stärke veränderte Viskositätseigenschaften.
In einer bevorzugten Ausführungsform ist der Phosphatgehalt der beschriebenen Stärke um mindestens 50%, vorzugsweise um mindestens 75% und besonders bevorzugt um mehr als 80% im Vergleich zu Stärke aus Wildtyp-Pflanzen verringert.
Der besondere Vorzug der beschriebenen Stärke liegt in den veränderten Viskositätseigenschaften wäßriger Lösungen dieser Stärke.
Ein gängiger Test, der verwendet wird, um die Viskositätseigenschaften zu bestimmen, ist der sogenannte Brabender-Test. Dieser Test wird durchgeführt unter der Verwendung eines Apparates, der beispielsweise als Viskograph E bekannt ist. Hergestellt und vertrieben wird dieses Instrument unter anderem von der Firma Brabender OHG Duisburg (Deutschland).
Der Test besteht im wesentlichen darin, daß Stärke in Gegenwart von Wasser zunächst erhitzt wird, um zu bestimmen, wann die Hydratisierung und das Schwellen der Stärkekörner einsetzt. Dieser Vorgang, der auch als Gelatinisierung bzw. Verkleisterung bezeichnet wird, beruht auf der Auflösung von Wasserstoffbrückenbindungen und geht einher mit einer meßbaren Viskositätszunahme der Stärkesuspension. Während eine weitere Erhitzung nach der Gelatinisierung zur vollständigen Auflösung der Stärkepartikel und einer Abnahme der Viskosität führt, kommt es bei einer Abkühlung unmittelbar nach der Gelatinisierung typischerweise zu einer Viskositätszunahme (siehe Fig. 3). Das Resultat eines Brabendertests ist eine Kurve, die die Viskosität in Abhängigkeit von der Zeit angibt, wobei zunächst eine Temperaturzunahme bis über die Gelatinisierungstemperatur und anschließend eine Abkühlung erfolgt.
Die Analyse einer Brabender-Kurve zielt in der Regel ab auf die Bestimmung der Verkleisterungstemperatur, der maximalen Viskosität bei Erhitzen, der Viskositätszunahme bei Abkühlung, sowie der Viskosität nach dem Erkalten. Diese Parameter sind wichtige Charakteristika, die die Qualität einer Stärke sowie ihre Verwendbarkeit für verschiedene Anwendungen bestimmen.
Die Stärke, die sich beispielsweise aus Kartoffelpflanzen isolieren läßt, bei denen durch einen antisense-Effekt die Menge an erfindungsgemäßen Proteinen in den Zellen reduziert wurde, zeigt Charakteristika, die stark von denen abweichen, die Stärke zeigt, die aus Wildtyppflanzen isolierbar ist. Im Vergleich zu diesen zeigt sie nur eine geringe Viskositätszunahme beim Erhitzen, eine geringere maximale Viskosität, sowie eine stärkere Viskositätszunahme beim Erkalten (siehe Fig. 3, 4 und 5).
In einer bevorzugten Ausführungsform betrifft die Erfindung somit eine Stärke, deren wäßrige Lösungen die in Fig. 4 oder 5 dargestellten charakteristischen Viskositätseigenschaften besitzen. Die modifizierte Stärke weist, insbesondere unter den in Beispiel 8a genannten Bedingungen zur Bestimmung der Viskosität mit Hilfe eines Brabender-Viskosimeters, das Charakteristikum auf, daß während des Aufkochens im Vergleich zu Wildtypstärke nur eine geringe Viskositätszunahme erfolgt. Dies bietet die Möglichkeit, die erfindungsgemäße Stärke zur Herstellung höher konzentriert er Kleister zu verwenden.
Ferner weist die modifizierte Stärke die Eigenschaft auf, daß es nach Erreichen der maximalen Vikosität nur zu einer geringen Viskositätsabnahme kommt. Dagegen kommt es bei einem Erkalten zu einer starken Viskositätszunahme, so daß die Viskosität höher ist als die einer Stärke aus Wildtyp-Pflanzen.
Weiterhin ist es möglich, durch Verringerung der Menge an erfindungsgemäßen Proteinen in transgenen Pflanzenzellen eine Stärke herzustellen, die bei Lagerung von Pflanzenteilen, die diese Stärke enthalten, bei niedrigen Temperaturen, insbesondere bei 4-8°C, zu einer verringerten Freisetzung reduzierender Zucker führt im Vergleich zu Stärke aus nicht-transformierten Zellen. Diese Eigenschaft ist beispielsweise besonders vorteilhaft für die Bereitstellung von Kartoffeln, die bei Lagerung bei niedrigen Temperaturen eine verringerte Freisetzung von reduzierenden Zuckern aufweisen, d. h. ein verringertes "cold sweetening". Derartige Kartoffeln sind besonders gut geeignet zur Herstellung von Pommes frites, Chips oder ähnlichem, da bei ihrer Verwendung unerwünschte Bräunungsreaktionen (Maillard-Reaktionen) ausbleiben oder zumindestens stark verringert sind.
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung wird in den transformierten Pflanzenzellen nicht nur die Synthese eines erfindungsgemäßen Proteins reduziert, sondern darüber hinaus auch die Synthese mindestens eines weiteren, an der Stärkesynthese und/oder Modifikation beteitligten Enzyms. Bevorzugt sind dabei beispielsweise stärkekorngebundene Stärkesynthesen oder Verzweigungsenzyme.
Es wurde überraschend gefunden, daß Kartoffelpflanzen, bei denen die Synthese des erfindungsgemäßen Proteins sowie auch des Verzweigungsenzyms aufgrund eines antisense-Effekts reduziert ist, eine Stärke synthetisieren, die in ihren Eigenschaften stark abweicht von Stärke aus Wildtyppflanzen. Im Vergleich zu Wildtypstärke zeigen wäßrige Lösungen dieser modifizierten Stärke so gut wie keine Viskositätszunahme beim Erhitzen oder beim Abkühlen (vgl. Fig. 6).
Des weiteren zeigt eine mikroskopische Analyse der Stärkekörner vor und nach dem Erhitzen deutlich, daß im Gegensatz zur Wildtypstärke die Stärkekörner aus derart veränderten Pflanzen nicht aufgeschlossen sind, sondern ihre ursprüngliche Struktur annähernd beibehalten. Es handelt sich somit um eine gegenüber dem Kochprozeß resistente Stärke. Wird von dieser Stärke der Amylosegehalt bestimmt mittels der in dem Beispielteil beschriebenen Methodik, so ergeben sich Amylosegehalte von über 50%, vorzugsweise über 60% und besonders bevorzugt über 70% für diese Stärke. Die wäßrigen Lösungen der aus diesen Pflanzen isolierbaren Stärke zeigen vorzugsweise die in Fig. 6 dargestellten charakteristischen Viskositätseigenschaften.
Eine derartige erfindungsgemäße hochamylosehaltige Stärke weist gegenüber Wildtypstärke eine Reihe von Vorteilen für verschiedene Verwendungen auf. So besitzen hochamylosehaltige Stärken ein hohes Potential zur Nutzung in Folien und Filmen. Die auf der Grundlage von hochamylosehaltigen Stärken erzeugten Folien und Filme, die in weitesten Bereichen der Verpackungsindustrie eingesetzt werden können, besitzen den deutlichen Vorteil, daß sie biodegradierbar sind. Neben dieser Anwendung, die im wesentlichen von in klassischer Weise auf der Erdölchemie basierenden Polymeren abgedeckt wird, besitzt die Amylose noch weitere unikate Anwendungsfelder, die durch die Eigenschaft der Amylose bedingt sind, eine Helix zu bilden. Die von der Amylose gebildete Helix ist im Inneren hydrophob und außen hydrophil. Aufgrund dessen kann Amylose zur Komplexierung und molekularen Verkapselung niedermolekularer oder auch höher molekularer Substanzen eingesetzt werden. Beispiele dafür sind:
  • - die molekulare Verkapselung von Vitaminen und Wirkstoffen mit dem Ziel des Schutzes vor Oxydation, Verflüchtigung, thermischem Abbau oder aber der Überführung in ein wäßriges Milieu;
  • - die molekulare Verkapselung von Aromastoffen zur Erhöhung der Löslichkeit;
  • - die molekulare Verkapselung von Düngemitteln/Pestiziden zur Stabilisierung und kontrollierten Freisetzung;
  • - die molekulare Verkapselung von Arzneistoffen zur Stabilisierung der Dosierbarkeit und kontrollierten Freisetzung von Retardpräparaten.
Eine weitere wichtige Eigenschaft von Amylose ist die Tatsache, daß es sich um ein chirales Molekül handelt. Aufgrund der Chiralität kann es präferentiell nach Immobilisierung beispielsweise an einer Säule zur Trennung von Enantiomeren eingesetzt werden.
Weiterhin wurde überraschend gefunden, daß Stärke, die sich aus Kartoffelpflanzen isolieren läßt, bei denen durch einen antisense-Effekt die Menge an erfindungsgemäßen Proteinen in den Zellen reduziert wird, in Kombination mit einer Reduktion der Proteine, die die enzymatische Aktivität einer stärkekorngebundenen Stärkesynthase der Isoform I (GBSSI) aufweisen, Charakteristika zeigt, die stark von denen abweichen, die Stärke zeigt, die aus Wildtyppflanzen isolierbar ist. Im Vergleich zu Stärke aus Wildtyppflanzen zeigen wäßrige Lösungen dieser Stärke nur eine geringe Viskositätszunahme beim Erhitzen, eine geringere maximale Viskosität sowie so gut wie keine Viskositätszunahme beim Erkalten (vgl. Fig. 7). Wenn von dieser Stärke das Verhältnis Amylose zu Amylopektin bestimmt wird, zeichnet sich diese Stärke dadurch aus, daß fast keine Amylose mehr nachweisbar ist. Der Amylosegehalt dieser Stärke liegt vorzugsweise unter 5%, besonders bevorzugt unter 2%. Die erfindungsgemäße Stärke unterscheidet sich ferner von der bekannten Stärke, die durch Inhibierung des GBSSI-Gens alleine mittels gentechnischer Verfahren in transgenen Kartoffelpflanzen erzeugt werden kann. So weist diese Stärke eine starke Viskositätszunahme beim Erhitzen auf. Die wäßrigen Lösungen der erfindungsgemäßen Stärke zeigen vorzugsweise die in Fig. 7 dargestellten charakteristischen Viskositätseigenschaften. Insbesondere unter den im Beispiel 13 genannten Bedingungen zur Bestimmung der Viskosität mit Hilfe eines Rapid Visco Analysers weist die modifizierte Stärke das Charakteristikum auf, daß während des Aufkochens im Vergleich zur Wildtypstärke, aber auch im Vergleich zur waxy- Stärke nur eine geringe Viskositätszunahme erfolgt.
Dies bietet die Möglichkeit, die erfindungsgemäße Stärke zur Herstellung höher konzentrierter Kleister zu verwenden. Ferner weist die modifizierte Stärke die Eigenschaft auf, daß es nach Erreichen der maximalen Viskosität nur zu einer geringeren Viskositätsabnahme kommt sowie zu so gut wie keiner Viskositätszunahme beim Erkalten.
Möglichkeiten zur Verringerung der Aktivität eines Verzweigungsenzyms in pflanzlichen Zellen wurden bereits beschrieben, beispielsweise in der WO 92/14827 und der WO 95/26407. Die Verringerung der Aktivität einer stärkekorngebundenen Stärkesynthase der Isoform I (GBSSI) kann unter der Verwendung von dem Fachmann bekannten Methoden erfolgen, beispielsweise mittels eines antisense-Effekts. DNA-Sequenzen, die eine GBSSI aus Kartoffel codieren, sind beispielsweise bekannt aus Hergersberg (Dissertation (1988) Universität Köln, Visser et al. (Plant Sci. 64 (1989), 185-192) oder van der Leiy et al. (Mol. Gen. Genet. 228 (1991), 240-248).
Das erfindungsgemäße Verfahren kann prinzipiell auf alle Pflanzenspezies angewendet werden. Von Interesse sind sowohl monokotyle als auch dikotyle Pflanzen, insbesondere Nutzpflanzen und hierbei bevorzugt stärkespeichernde Pflanzen, wie z. B. Getreidepflanzen (Roggen, Gerste, Hafer, Weizen, etc.), Reis, Mais, Erbse, Maniok und Kartoffel.
Unter dem Begriff "regulatorische DNA-Elemente, die die Transkription in pflanzlichen Zellen gewährleisten" werden im Rahmen der vorliegenden Erfindung DNA-Abschnitte verstanden, die die Initiation bzw. die Termination der Transkription in pflanzlichen Zellen ermöglichen. Zu den DNA-Abschnitten, die die Initiation der Transkription gewährleisten zählen insbesondere Promotoren.
Für die Expression der verschiedenen oben beschriebenen erfindungsgemäßen DNA-Moleküle in Pflanzen kommt im Prinzip jeder in pflanzlichen Zellen funktionale Promotor in Betracht. Der Promotor kann homolog oder heterolog in bezug auf die verwendete Pflanzenspezies sein. Geeignet ist beispielsweise der 35S-Promotor des Cauliflower-Mosaik-Virus (Odell et al., Nature 313 (1985), 810-812), der eine konstitutive Expression in allen Geweben einer Pflanze gewährleistet und das in der WO/9401571 beschriebene Promotorkonstrukt. Es können jedoch auch Promotoren verwendet werden, die nur zu einem durch äußere Einflüsse determinierten Zeitpunkt (siehe beispielsweise WO/9307279) oder in einem bestimmten Gewebe der Pflanze zu einer Expression nachfolgender Sequenzen führen (siehe z. B. Stockhaus et al., EMBO J. 8 (1989), 2245-2251).
Präferentiell werden Promotoren eingesetzt, die in den stärkespeichernden Organen der zu transformierenden Pflanzen aktiv sind. Dies sind beim Mais die Maiskörner, während es bei der Kartoffel die Knollen sind. Zur Transformation der Kartoffel kann insbesondere, aber nicht ausschließlich, der knollenspezifische B33-Promotor (Rocha-Sosa et al., EMBO J. 8 (1989), 23-29) verwendet werden.
Neben Promotoren können DNA-Abschnitte zur Initiation der Transkription auch DNA-Sequenzen enthalten, die eine weitere Steigerung der Transkription gewährleisten, beispielsweise sogenannte Enhancer-Elemente.
Ferner kann der Begriff "regulatorische DNA-Elemente" auch Terminationssignale umfassen, die der korrekten Beendigung der Transkription sowie der Addition eines Poly-A-Schwanzes an das Transkript dienen, dem eine Funktion bei der Stabilisierung der Transkripte beigemessen wird. Derartige Elemente sind in der Literatur beschrieben und sind beliebig austauschbar. Beispiele für derartige Terminationssequenzen sind die 3′-nichttranslatierten Regionen, die das Polyadenylierungssignal des Nopalin-Synthase-Gens (NOS-Gen) oder des Octopinsynthase-Gens (Gielen et al., EMBO J. 8 (1989), 23-29) aus Agrobakterien umfassen, oder die 3′-nichttranslatierten Regionen der Gene der Speicherproteine aus Sojabohne, sowie die der Gene der kleinen Untereinheit der Ribulose-1,5-Bisphosphat-Carboxylase (ssRUBISCO).
Die Einführung erfindungsgemäßer DNA-Moleküle in pflanzliche Zellen erfolgt vorzugsweise unter Verwendung von Plasmiden. Vorzugsweise werden dafür Plasmide verwendet, die eine stabile Integration der eingeführten DNA in das pflanzliche Genom gewährleisten.
In den Beispielen der vorliegenden Erfindung wird der binäre Vektor pBinAR (Höfgen und Willmitzer, Plant Sci. 66 (1990), 221-230) verwendet. Bei diesem Vektor handelt es sich um ein Derivat des binären Vektors pBin19 (Bevan, Nucl. Acids Res. 12 (1984), 8711-8721), der kommerziell erhältlich ist (Clontech Laboratories, Inc., USA).
Es ist jedoch auch jeder andere Pflanzentransformations­ vektor geeignet, in den eine Expressionskassette inseriert werden kann, und der die Integration der Expressionskassette in das pflanzliche Genom gewährleistet.
Zur Vorbereitung der Einführung fremder Gene in höhere Pflanzen stehen eine große Anzahl von Klonierungsvektoren zur Verfügung, die ein Replikationssignal für E. coli und ein Markergen zur Selektion transformierter Bakterienzellen enthalten. Beispiele für derartige Vektoren sind pBR322, pUC-Serien, M13mp-Serien, pACYC184 usw. Die gewünschte Sequenz kann an einer passenden Restriktionsschnittstelle in den Vektor eingeführt werden. Das erhaltene Plasmid wird für die Transformation von E.coli-Zellen verwendet. Transformierte E.coli-Zellen werden in einem geeigneten Medium kultiviert, anschließend geerntet und lysiert. Das Plasmid wird nach Standardmethoden wiedergewonnen. Als Analysemethode zur Charakterisierung der gewonnenen Plasmid-DNA werden im allgemeinen Restriktionsanalysen und Sequenzanalysen eingesetzt. Nach jeder Manipulation kann die Plasmid DNA gespalten werden und resultierende DNA-Fragmente mit anderen DNA-Sequenzen verknüpft werden.
Für die Einführung von DNA in eine pflanzliche Wirtszelle stehen eine Vielzahl von Techniken zur Verfügung. Diese Techniken umfassen die Transformation pflanzlicher Zellen mit T-DNA unter Verwendung von Agrobacterium tumefaciens oder Agrobacterium rhizogenes als Transformationsmittel, die Fusion von Protoplasten, die Injektion, die Elektroporation von DNA, die Einbringung von DNA mittels der biolistischen Methode sowie weitere Möglichkeiten.
Bei der Injektion und Elektroporation von DNA in Pflanzenzellen werden an sich keine speziellen Anforderungen an die verwendeten Plasmide gestellt. Es können einfache Plasmide wie z. B. pUC-Derivate verwendet werden. Sollen aber aus derartig transformierten Zellen ganze Pflanzen regeneriert werden, ist die Anwesenheit eines selektierbaren Markergens notwendig.
Je nach Einführungsmethode gewünschter Gene in die Pflanzenzelle können weitere DNA-Sequenzen erforderlich sein. Werden z. B. für die Transformation der Pflanzenzelle das Ti- oder Ri-Plasmid verwendet, so muß mindestens die rechte Begrenzung, häufig jedoch die rechte und linke Begrenzung der Ti- und Ri-Plasmid T-DNA als Flankenbereich mit den einzuführenden Genen verbunden werden.
Werden für die Transformation Agrobakterien verwendet, muß die einzuführende DNA in spezielle Plasmide kloniert werden, und zwar entweder in einen intermediären Vektor oder in einen binären Vektor. Die intermediären Vektoren können aufgrund von Sequenzen, die homolog zu Sequenzen in der T-DNA sind, durch homologe Rekombination in das Ti- oder Ri-Plasmid der Agrobakterien integriert werden. Dieses enthält außerdem die für den Transfer der T-DNA notwendige vir-Region. Intermediäre Vektoren können nicht in Agrobakterien replizieren. Mittels eines Helferplasmids kann der intermediäre Vektor auf Agrobacteriuin tumefaciens übertragen werden (Konjugation). Binäre Vektoren können sowohl in E.coli als auch in Agrobakterien replizieren. Sie enthalten ein Selektionsmarker-Gen und einen Linker oder Polylinker, welche von der rechten und linken T-DNA Grenzregion eingerahmt werden. Sie können direkt in die Agrobakterien transformiert werden (Holsters et al., Mol. Gen. Genet. 163 (1978), 181-187). Die zur Transformation der Agrobakterien verwendeten Plasmide enthalten weiterhin ein Selektionsmarkergen, beispielsweise das NPT II-Gen, das die Selektion transformierter Bakterien erlaubt. Das als Wirtszelle dienende Agrobakterium soll ein Plasmid, das eine vir-Region trägt, enthalten. Die vir-Region ist für den Transfer der T-DNA in die Pflanzenzelle notwendig. Zusätzliche T-DNA kann vorhanden sein. Das derartig transformierte Agrobakterium wird zur Transformation von Pflanzenzellen verwendet.
Die Verwendung von T-DNA für die Transformation von Pflanzenzellen ist intensiv untersucht und ausreichend in EP 120516; Hoekema, In: The Binary Plant Vector System Offsetdrukkerÿ Kanters B.V., Alblasserdam (1985), Chapter V; Fraley et al., Crit. Rev. Plant. Sci., 4: 1-46 und An et al., EMBO J. 4 (1985), 277-287 beschrieben worden. Binäre Vektoren sind bereits z. T. kommerziell erhältlich, z. B. pBIN19 (Clontech Laboratories, Inc., USA).
Für den Transfer der DNA in die Pflanzenzelle können Pflanzen- Explantate zweckmäßigerweise mit Agrobacterium tumefaciens oder Agrobacteriuin rhizogenes kokultiviert werden. Aus dem infizierten Pflanzenmaterial (z. B. Blattstücke, Stengelsegmente, Wurzeln, aber auch Protoplasten oder Suspensions-kultivierte Pflanzenzellen) können dann in einem geeigneten Medium, welches Antibiotika oder Biozide zur Selektion transformierter Zellen enthalten kann, wieder ganze Pflanzen regeneriert werden. Die so erhaltenen Pflanzen können dann auf Anwesenheit der eingeführten DNA untersucht werden.
Ist die eingeführte DNA einmal im Genom der Pflanzenzelle integriert, so ist sie dort in der Regel stabil und bleibt auch in den Nachkommen der ursprünglich transformierten Zelle erhalten. Sie enthält normalerweise einen Selektionsmarker, der den transformierten Pflanzenzellen Resistenz gegenüber einem Biozid oder einem Antibiotikum wie Kanamycin, G 418, Bleomycin, Hygromycin oder Phosphinotricin u. a. vermittelt. Der individuelle gewählte Marker sollte daher die Selektion transformierter Zellen gegenüber Zellen, denen die eingeführte DNA fehlt, gestatten.
Die transformierten Zellen wachsen innerhalb der Pflanze in der üblichen Weise (siehe auch McCormick et al., Plant Cell Reports 5 (1986), 81-84). Die resultierenden Pflanzen können normal angezogen werden und mit Pflanzen, die die gleiche transformierte Erbanlage oder andere Erbanlagen besitzen, gekreuzt werden. Die daraus entstehenden hybriden Individuen haben die entsprechenden phänotypischen Eigenschaften.
Es sollten zwei oder mehrere Generationen angezogen werden, um sicherzustellen, daß das phänotypische Merkmal stabil beibehalten und vererbt wird. Auch sollten Samen geerntet werden, um sicherzustellen, daß der entsprechende Phänotyp oder andere Eigenarten erhalten geblieben sind.
Die aus den erfindungsgemäßen Pflanzenzellen bzw. Pflanzen erhältliche Stärke eignet sich aufgrund ihrer Eigenschaften neben den bereits oben angesprochenen speziellen Verwendungszwecken für verschiedene industrielle Verwendungen.
Grundsätzlich läßt sich Stärke in zwei große Kategorien unterteilen, die Hydrolyseprodukte der Stärke und die sogenannten nativen Stärken. Zu den Hydrolyseprodukten zählen im wesentliche die über enzymatische oder chemische Verfahren erhaltene Glucose sowie Glucosebausteine, die für weitere Prozesse, wie Fermentation, oder auch weitere chemische Modifikationen eingesetzt werden können. In diesem Bereich kann die Einfachheit und kostengünstige Ausführung eines Hydrolyseverfahrens, wie es gegenwärtig im wesentlichen enzymatisch unter Verwendung von Amyloglucosidase verläuft, von Bedeutung sein. Darunter läßt sich vorstellen, daß ein geringerer Einsatz von für die Hydrolyse eingesetzten Enzymen durch Veränderung der Struktur der Stärke, z. B. größere Oberfläche des Korns, leichtere Verdaulichkeit durch geringeren Verzweigungsgrad oder sterische, die Zugänglichkeit für die eingesetzten Enzyme limitierende Struktur, zu einer Kosteneinsparung führen kann.
Die Verwendungen der sogenannten nativen Stärken, die wegen ihrer polymeren Struktur eingesetzt werden, lassen sich in zwei große Bereiche unterteilen:
(a) Verwendung im Nahrungsmittelbereich
Stärke ist ein klassischer Zusatzstoff für viele Nahrungsmittel, bei denen sie im wesentlichen die Funktion des Bindens von wäßrigen Zusatzstoffen übernimmt bzw. eine Erhöhung der Viskosität oder aber eine erhöhte Gelbildung hervorruft. Wichtige Eigenschaftsmerkmale sind das Fließ- und Sorptionsverhalten, die Quell- und Verkleisterungs­ temperatur, die Viskosität und Dickungsleistung, die Löslichkeit der Stärke, die Transparenz und Kleisterstruktur, die Hitze-, Scher- und Säure­ stabilität, die Neigung zur Retrogradation, die Fähigkeit zur Filmbildung, die Gefrier/Taustabilität, die Verdaulichkeit sowie die Fähigkeit zur Komplexbildung mit z. B. anorganischen oder organischen Ionen.
(b) Einsatz im Nicht-Nahrungsmittelbereich
Der andere große Einsatzbereich liegt bei der Verwendung der Stärke als Hilfsstoff bei unterschiedlichen Herstellungsprozessen bzw. als Zusatzstoff in technischen Produkten. Der wesentliche Einsatzbereich für die Verwendung von Stärke als Hilfsstoff ist zum einen die Papier- und Pappeindustrie. Stärke wird dabei in erster Linie zur Retardation (Zurückhaltung von Feststoffen), der Abbindung von Füllstoff- und Feinstoffteilchen, als Festigungsstoff und zur Entwässerung eingesetzt. Darüberhinaus werden die günstigen Eigenschaften der Stärke in bezug auf die Steifigkeit, die Härte, den Klang, den Griff, den Glanz, die Glätte, die Spaltfestigkeit sowie die Oberflächen ausgenutzt.
Innerhalb des Papierherstellungsprozesses sind vier Anwendungsbereiche, nämlich Oberfläche, Strich, Masse und Sprühen, zu unterscheiden.
Die Anforderungen an die Stärke in bezug auf die Oberflächenbehandlung sind im wesentlichen ein hoher Weißegrad, eine angepaßte Viskosität, eine hohe Viskositätsstabilität, eine gute Filmbildung sowie eine geringe Staubbildung. Bei der Verwendung im Strich ist der Feststoffgehalt, eine angepaßte Viskosität, ein hohes Bindevermögen sowie eine hohe Pigmentaffinität wichtig. Als Zusatz zur Masse ist eine rasche, gleichmäßige, verlustfreie Verteilung, eine hohe mechanische Stabilität und eine vollständige Zurückhaltung im Papierfließ von Bedeutung. Beim Einsatz der Stärke im Sprühbereich sind ebenfalls ein angepaßter Feststoffgehalt, hohe Viskosität sowie ein hohes Bindevermögen von Bedeutung.
Ein großer Einsatzbereich besteht beispielsweise in der Klebstoffindustrie, wo man die Einsatzmöglichkeiten in vier Teilbereiche gliedert: die Verwendung als reinem Stärkeleim, die Verwendung bei mit speziellen Chemikalien aufbereiteten Stärkeleimen, die Verwendung von Stärke als Zusatz zu synthetischen Harzen und Polymerdispersionen sowie die Verwendung von Stärken als Streckmittel für synthetische Klebstoffe. 90% der Klebstoffe auf Stärkebasis werden in den Bereichen Wellpappenherstellung, Herstellung von Papiersäcken, Beuteln oder Tüten, Herstellung von Verbundmaterialien für Papier und Aluminium, Herstellung von Kartonagen und Wiederbefeuchtungsleim für Briefumschläge, Briefmarken usw. eingesetzt.
Eine weitere mögliche Verwendung als Hilfsmittel und Zusatzstoff besteht bei der Herstellung von Textilien und Textilpflegemitteln. Innerhalb der Textilindustrie sind die folgenden vier Einsatzbereiche zu unterscheiden: Der Einsatz der Stärke als Schlichtmittel, d. h. als Hilfsstoff zur Glättung und Stärkung des Klettverhaltens zum Schutz gegen die beim Weben angreifenden Zugkräfte sowie zur Erhöhung der Abriebfestigkeit beim Weben, als Mittel zur Textilaufrüstung vor allem nach qualitätsverschlech­ ternden Vorbehandlungen, wie Bleichen, Färben usw., als Verdickungsmittel bei der Herstellung von Farbpasten zur Verhinderung von Farbstoffdiffusionen sowie als Zusatz zu Kettungsmitteln für Nähgarne.
Ferner kann die Stärke als Zusatz bei Baustoffen verwendet werden. Ein Beispiel ist die Herstellung von Gipskartonplatten, bei der die im Gipsbrei vermischte Stärke mit dem Wasser verkleistert, an die Oberfläche der Gipsplatte diffundiert und dort den Karton an die Platte bindet. Weitere Einsatzbereiche sind die Beimischung zu Putz- und Mineralfasern. Bei Transportbeton kann die Stärke zur Verzögerung der Abbindung eingesetzt werden.
Ferner bietet sich die Stärke zur Herstellung von Mitteln zur Bodenstabilisation an, die bei künstlichen Erdbewegungen zum temporären Schutz der Bodenpartikel gegenüber Wasser eingesetzt werden. Kombinationsprodukte aus Stärke und Polymeremulsionen sind nach heutiger Kenntnis in ihrer Erosions- und verkrustungsmindernden Wirkung den bisher eingesetzten Produkten gleichzusetzen, liegen preislich aber deutlich unter diesen.
Ferner kann die Stärke in Pflanzenschutzmitteln zur Veränderung der spezifischen Eigenschaften der Präparate verwendet werden. So werden Stärken beispielsweise zur Verbesserung der Benetzung von Pflanzenschutz- und Düngemitteln, zur dosierten Freigabe der Wirkstoffe, zur Umwandlung flüssiger, flüchtiger und/oder übelriechender Wirkstoffe in mikrokristalline, stabile, formbare Substanzen, zur Mischung inkompatibler Verbindungen und zur Verlängerung der Wirkdauer durch Verminderung der Zersetzung eingesetzt.
Ein wichtiges Einsatzgebiet besteht ferner im Bereich der Pharmaka, Medizin und Kosmetikindustrie. In der pharmazeutischen Industrie kann die Stärke als Bindemittel für Tabletten oder zur Bindemittelverdünnung in Kapseln eingesetzt werden. Weiterhin eignet sich die Stärke als Tablettensprengmittel, da sie nach dem Schlucken Flüssigkeit absorbiert und nach kurzer Zelt so weit quillt, daß der Wirkstoff freigesetzt wird. Medizinische Gleit- und Wundpuder sind weitere Anwendungsmöglichkeiten. Im Bereich der Kosmetik kann die Stärke beispielsweise als Träger von Puderzusatzsoffen, wie Düften und Salicylsäure eingesetzt werden. Ein relativ großer Anwendungsbereich für die Stärke liegt bei Zahnpasta.
Auch die Verwendung der Stärke als Zusatzstoff zu Kohle und Briketts ist denkbar. Kohle kann mit einem Stärkezusatz quantitativ hochwertig agglomeriert bzw. brikettiert werden, wodurch ein frühzeitiges Zerfallen der Briketts verhindert wird. Der Stärkezusatz liegt bei Grillkohle zwischen 4 und 6%, bei kalorierter Kohle zwischen 0,1 und 0,5%. Desweiteren eignet sich die Stärke als Bindemittel, da durch ihren Zusatz zu Kohle und Brikett der Ausstoß schädlicher Stoffe deutlich vermindert werden kann.
Die Stärke kann ferner bei der Erz- und Kohleschlammaufbereitung als Flockungsmittel eingesetzt werden.
Ein weiterer Einsatzbereich besteht als Zusatz zu Gießereihilfsstoffen. Bei verschiedenen Gußverfahren werden Kerne benötigt, die aus Bindemittel-versetzten Sänden hergestellt werden. Als Bindemittel wird heute überwiegend Bentonit eingesetzt, das mit modifizierten Stärken, meist Quellstärken, versetzt ist.
Zweck des Stärkezusatzes ist die Erhöhung der Fließfestigkeit sowie die Verbesserung der Bindefestigkeit. Darüberhinaus können die Quellstärken weitere produktionstechnische Anforderungen, wie im kalten Wasser dispergierbar, rehydratisierbar, gut in Sand mischbar und hohes Wasserbindungsvermögen, aufweisen.
In der Kautschukindustrie kann die Stärke zur Verbesserung der technischen und optischen Qualität eingesetzt werden. Gründe sind dabei die Verbesserung des Oberflächenglanzes, die Verbesserung des Griffs und des Aussehens. Dafür wird Stärke vor der Kaltvulkanisation auf die klebrigen gummierten Flächen von Kautschukstoffen gestreut. Ebenso kann sie für die Verbesserung der Bedruckbarkeit des Kautschuks eingesetzt werden.
Eine weitere Einsatzmöglichkeit der modifizierten Stärke besteht bei der Herstellung von Lederersatzstoffen.
Auf dem Kunststoffsektor zeichnen sich folgende Einsatzgebiete ab: die Einbindung von Stärkefolgeprodukten in den Verarbeitungsprozeß (Stärke ist nur Füllstoff, es besteht keine direkte Bindung zwischen synthetischem Polymer und Stärke) oder alternativ die Einbindung von Stärkefolgeprodukten in die Herstellung von Polymeren (Stärke und Polymer gehen eine feste Bindung ein).
Die Verwendung der Stärke als reinem Füllstoff ist verglichen mit den andere Stoffen wie Talkum nicht wettbewerbsfähig. Anders sieht es aus, wenn die spezifischen Stärkeeigenschaften zum Tragen kommen und hierdurch das Eigenschaftsprofil der Endprodukte deutlich verändert wird. Ein Beispiel hierfür ist die Anwendung von Stärkeprodukten bei der Verarbeitung von Thermoplasten, wie Polyethylen. Hierbei werden die Stärke und das synthestische Polymer durch Koexpression im Verhältnis von 1 : 1 zu einem "master batch" kombiniert, aus dem mit granuliertem Polyethylen unter Anwendung herkömmlicher Verfahrenstechniken diverse Produkte hergestellt werden. Durch die Einbindung der Stärke in Polyethylenfolien kann eine erhöhte Stoffdurchlässigkeit bei Hohlkörpern, eine verbesserte Wasserdampfdurchlässigkeit, ein verbessertes Antistatik­ verhalten, ein verbessertes Antiblockverhalten sowie eine verbesserte Bedruckbarkeit mit wäßrigen Farben erreicht werden.
Eine andere Möglichkeit ist die Anwendung der Stärke in Polyurethanschäumen. Mit der Adaption der Stärkederivate sowie durch die verfahrenstechnische Optimierung ist es möglich, die Reaktion zwischen synthetischen Polymeren und den Hydroxygruppen der Stärke gezielt zu steuern. Das Ergebnis sind Polyurethanfolien, die durch die Anwendung von Stärke folgende Eigenschaftsprofile erhalten: eine Verringerung des Wärmeausdehnungs­ koeffizienten, Verringerung des Schrumpfverhaltens, Verbesserung des Druck/Spannungsverhaltens, Zunahme der Wasserdampfdurchlässigkeit ohne Veränderung der Wasseraufnahme, Verringerung der Entflammbarkeit und der Aufrißdichte, kein Abtropfen brennbarer Teile, Halogenfreiheit und verminderte Alterung. Nachteile, die gegenwärtig noch vorhanden sind, sind verringerte Druckfestigkeit sowie eine verringerte Schlagfestigkeit. Möglich ist nicht nur die Produktentwicklung von Folien. Auch feste Kunststoffprodukte, wie Töpfe, Platten und Schalen sind mit einem Stärkegehalt von über 50% herzustellen. Ferner weisen die Stärke/Polymermischungen den Vorteil auf, daß sie eine sehr viel höhere biologische Abbaubarkeit aufweisen.
Außerordentliche Bedeutung haben weiterhin aufgrund ihres extremen Wasserbindungsvermögens Stärkepfropfpoly­ merisate gewonnen. Dies sind Produkte mit einem Rückgrat aus Stärke und einer nach dem Prinzip des Radikalketten­ mechanismus aufgepfropften Seitengitters eines synthetischen Monomers. Die heute verfügbaren Stärkepfropfenpolymerisate zeichnen sich durch ein besseres Binde- und Rückhaltevermögen von bis zu 1000 g Wasser pro g Stärke bei hoher Viskosität aus. Diese Superabsorber werden hauptsächlich im Hygienebereich verwendet, z. B. bei Produkten wie Windeln und Unterlagen sowie im landwirtschaftlichen Sektor, z. B. bei Saatgutpillierungen.
Entscheidend für den Einsatz der neuen gentechnischen veränderten Stärke sind zum einen die Struktur, Wassergehalt, Proteingehalt, Lipidgehalt, Fasergehalt, Asche/Phosphatgehalt, Amylose/Amylopektinverhältnis, Molmas­ senverteilung, Verzweigungsgrad, Korngröße und -form sowie Kristallisation, zum anderen auch die Eigenschaften, die in folgenden Merkmalen münden: Fließ- und Sorptionsverhalten, Verkleisterungstemperatur, Dickungsleistung, Löslichkeit, Kleisterstruktur, Transparenz, Hitze-, Scher- und Säurestabilität, Retrogradationsneigung, Gelbildung, Gefrier/Taustabilität, Komplexbildung, Jodbindung, Filmbildung, Klebekraft, Enzymstabilität, Verdaulichkeit und Reaktivität. Besonders hervorzuheben ist ferner die Viskosität.
Ferner kann die aus den erfindungsgemäßen Pflanzenzellen bzw. Pflanzen erhältliche modifizierte Stärke weiteren chemischen Modifikationen unterworfen werden, was zu weiteren Verbesserungen der Qualität für bestimmte der oben beschriebenen Einsatzgebiete führt oder zu neuen Einsatzgebieten. Diese chemischen Modifikationen sind dem Fachmann grundsätzlich bekannt. Insbesondere handelt es sich dabei um Modifikationen durch
  • - Säurebehandlung
  • - Oxidation
  • - Veresterung (Entstehung von Phosphat-, Nitrat-, Sulfat-, Xanthat-, Acetat- und Citratstärken. Weitere organische Säuren können ebenfalls zur Veresterung eingesetzt werden.)
  • - Erzeugung von Stärkeethern (Stärke-Alkylether, O-Allylether, Hydroxylalkylether, O-Carboxylmethylether, N-haltige Stärkeether, S-haltige Stärkeether)
  • - Erzeugung von vernetzten Stärken
  • - Erzeugung von Stärke-Pfropf-Polymerisaten.
Gegenstand der Erfindung ist auch Vermehrungsmaterial der erfindungsgemäßen Pflanzen, wie z. B. Samen, Früchte, Stecklinge, Knollen oder Wurzelstöcke, wobei dieses erfindungsgemäße Pflanzenzellen enthält.
Hinterlegungen
Folgende im Rahmen der vorliegenden Erfindung hergestellten und/oder verwendeten Plasmide wurden bei der als internationale Hinterlegungsstelle anerkannten Deutschen Sammlung von Mikroorganismen (DSM) in Braunschweig, Bundesrepublik Deutschland, entsprechend den Anforderungen des Budapester Vertrages für die internationale Anerkennung der Hinterlegung von Mikroorganismen zum Zwecke der Patentierung hinterlegt (Hinterlegungsnummer; Hinterlegungsdatum):
Plasmid pBinAR Hyg (DSM 9505) (20.10.1994)
Plasmid p33-anti-BE (DSM 6146) (20.08.1990)
Plasmid pRL2 (DSM 10225) (04.09.1995).
Verwendete Medien und Lösungen
Elutionspuffer:
25 mM Tris, pH 8,3
250 mM Glycin
Dialysepuffer:
50 mM Tris-HCl, pH 7,0
50 mM NaCl
2 mM EDTA
14,7 mM β-Mercaptoethanol
0,5 mM PMSF
Proteinpuffer:
50 mM Natriumphosphatpuffer, pH 7,2
10 mM EDTA
0,5 mM PMSF
14,7 mM β-Mercaptoethanol
Lugolsche Lösung:
12 g KI
6 g I₂
ad 1,8 l mit ddH₂O
20 × SSC:
175.3 g NaCl
88.2 g Natrium-Citrat
ad 1000 ml mit ddH₂O
pH 7,0 mit 10 N NaOH
10 × MEN:
200 mM MOPS
50 mM Natriumacetat
10 mM EDTA
pH 7,0
NSEB-Puffer:
0,25 M Natriumphosphatpuffer, pH 7,2
7% SDS
1 mM EDTA
1% BSA (w/v).
Beschreibung der Abbildungen
Fig. 1 zeigt das Plasmid p35S-anti-RL.
Aufbau des Plasmids:
A = Fragment A: CaMV 35S-Promotor, nt 6909-7437 (Franck et al., Cell 21 (1980), 285-294).
z B = Fragment B: ca. 1949 bp-langes Asp718-Fragment aus pRL1
Orientierung zum Promotor: anti-sense.
Der Pfeil gibt die Richtung des offenen Leserasters an.
C = Fragment C: nt 11 748-11 939 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984), 835-846).
Fig. 2 zeigt das Plasmid pB33-anti-RL.
Aufbau des Plasmids:
A = Fragment A: B33-Promotor des Patatin-Gens B33 aus Solanum tuberosuin (Rocha-Sosa et al., EMBO J. 8 (1989), 23-29).
B = Fragment B: ca. 1949 bp-langes Asp718-Fragment aus pRL1
Orientierung zum Promotor: anti-sense
Der Pfeil gibt die Richtung des offenen Leserasters an.
C = Fragment C: nt 11 748-11 939 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984), 835-846).
Fig. 3 zeigt eine mit einem Brabender-Viskograph vom Typ Viskograph E aufgezeichnete Brabender-Kurve einer wäßrigen Lösung von Stärke, die aus nicht-transformierten Kartoffelpflanzen der Varietät D´sir´e isoliert wurde (siehe Beispiel 8).
Dabei bedeuten:
Drehm.: Drehmoment
[BE]: Brabender-Einheiten
Temp.: Temperatur
A: Verkleisterungsbeginn
B: Maximale Viskosität
C: Start der Haltezeit
D: Start der Kühlzeit
E: Ende der Kühlzeit
F: Ende der End-Haltezeit.
Die blaue Linie gibt die Viskosität an; die rote den Temperaturverlauf.
Fig. 4 zeigt eine mit einem Brabender-Viskograph vom Typ Viskograph E aufgezeichnete Brabender-Kurve einer wäßrigen Lösung von Stärke, die aus Kartoffelpflanzen isoliert wurde, die mit dem Plasmid p35S-anti-RL transformiert worden waren (siehe Beispiel 8). Für die Bedeutung der Abkürzungen siehe Fig. 3.
Fig. 5 zeigt eine mit einem Brabender-Viskograph vom Typ Viskograph E aufgezeichnete Brabender-Kurve einer wäßrigen Lösung von Stärke aus Kartoffeln, die mit dem Plasmid pB33-anti-RL transformiert worden waren (siehe Beispiel 8). Für die Bedeutung der Abkürzungen siehe Fig. 3.
Fig. 6 zeigt mit einem Rapid Visco Analyser aufgezeichnete Kurven wäßriger Stärkelösungen, die aus Kartoffelpflanzen isoliert wurden (siehe Beispiel 12). Die rote Linie gibt den Temperaturverlauf an, die blauen Linien 1, 2, 3 und 4 die Viskositäten folgender Stärkelösungen:
Linie 1: Stärke, die aus Wildtyppflanzen isoliert worden ist,
Linie 2: Stärke, die aus Pflanzen isoliert worden ist, bei denen das Verzweigungsenzym alleine inhibiert wurde (vgl. Beispiel 1 der Patentanmeldung WO92/14827),
Linie 3: Stärke, die aus Pflanzen isoliert worden ist, bei denen lediglich die erfindungsgemäßen Proteine in ihrer Konzentration verringert wurden (vgl. Beispiel 6),
Linie 4: Stärke, die aus Pflanzen isoliert worden ist, die mit dem Plasmid p35S-anti-RL in Kombination mit dem Plasmid p35SH-anti-BE (vgl. Beispiel 12) transformiert worden sind.
Fig. 7 zeigt mit einem Rapid Visco Analyser aufgezeichnete Kurven wäßriger Stärkelösungen, die aus Kartoffelpflanzen isoliert wurden (siehe Beispiel 13). Die rote Linie gibt den Temperaturverlauf an, die blauen Linien 1, 2, 3 und 4 die Viskositäten folgender Stärkelösungen:
Linie 1: Stärke, die aus Wildtyppflanzen isoliert worden ist,
Linie 2: Stärke, die aus Pflanzen isoliert worden ist, die allein mit dem Plasmid pB33-anti-GBSSI isoliert wurde (sog. waxy-Kartoffel),
Linie 3: Stärke, die aus Pflanzen isoliert worden ist, die allein mit dem Plasmid p35S-anti-RL transformiert wurde (vgl. Beispiel 6),
Linie 4: Stärke, die aus Pflanzen isoliert worden ist, die mit dem Plasmid pB33-anti-RL in Kombination mit dem Plasmid pB33-anti-GBSSI (vgl. Beispiel 13) transformiert worden sind.
Die Beispiele erläutern die Erfindung.
In den Beispielen wurden folgende Standardtechniken angewendet:
1. Klonierungsverfahren
Zur Klonierung in E.coli wurde der Vektor pBluescriptSK verwendet.
Für die Pflanzentransformation wurden die Genkonstruktionen in den binären Vektor pBinAR (Höfgen und Willmitzer, Plant Sci. 66 (1990), 221-230) und B33-Hyg kloniert.
2. Bakterienstämme
Für den pBluescript-Vektor und für die pBinAR- und B33-Hyg-Konstrukte wurde der E.coli-Stamm DH5α (Bethesda Research Laboratories, Gaithersburgh, USA) verwendet.
Die Transformation der Plasmide in die Kartoffelpflanzen wurde mit Hilfe des Agrobacterium tumefaciens-Stammes C58C1 pGV2260 durchgeführt (Deblaere et al., Nucl. Acids Res. 13 (1985), 4777: 4788).
3. Transformation von Agrobacteriuin tumefaciens
Der Transfer der DNA erfolgte durch direkte Transformation nach der Methode von Höfgen & Willmitzer (Nucleic Acids Res. 16 (1988), 9877). Die Plasmid-DNA transformierter Agrobakterien wurde nach der Methode von Birnboim & Doly (Nucleic Acids Res. 7 (1979), 1513-1523) isoliert und nach geeigneter Restriktionsspaltung gelelektrophoretisch analysiert.
4. Transformation von Kartoffeln
Zehn kleine mit dem Skalpell verwundete Blätter einer Kartoffel-Sterilkultur (Solanum tuberosum L.cv. D´sir´e) wurden in 10 ml MS-Medium (Murashige & Skoog, Physiol. Plant. 15 (1962), 473-497) mit 2% Saccharose gelegt, welches 50 µl einer unter Selektion gewachsenen Agrobacterium tumefaciens-Übernachtkultur enthielt. Nach 3-5 minütigem, leichtem Schütteln erfolgte eine weitere Inkubation für 2 Tage im Dunkeln. Daraufhin wurden die Blätter zur Kallusinduktion auf MS-Medium mit 1,6% Glucose, 5 mg/l Naphthylessigsäure, 0,2 mg/l Benzylaminopurin, 250 mg/l Claforan, 50 mg/l Kanamycin bzw. 1 mg/l Hygromycin B, und 0,80% Bacto Agar gelegt. Nach einwöchiger Inkubation bei 25°C und 3000 Lux wurden die Blätter zur Sproßinduktion auf MS-Medium mit 1,6% Glucose, 1,4 mg/l Zeatinribose, 20 mg/l Naphthylessigsäure, 20 mg/l Giberellinsäure, 250 mg/l Claforan, 50 mg/l Kanamycin bzw. 3 mg/l Hygromycin B, und 0,80% Bacto Agar gelegt.
5. Radioaktive Markierung von DNA-Fragmenten
Die radiokative Markierung von DNA-Fragmenten wurde mit Hilfe eines DNA-Random Primer Labelling Kits der Firma Boehringer (Deutschland) nach den Angaben des Herstellers durchgeführt.
6. Northern Blot-Analyse
RNA wurde nach Standardprotokollen aus Blattgewebe von Pflanzen isoliert. 50 µg der RNA wurden auf einem Agarosegel aufgetrennt (1,5% Agarose, 1 × MEN-Puffer, 16,6% Formaldehyd). Das Gel wurde nach dem Gellauf kurz in Wasser gewaschen. Die RNA wurde mit 20 × SSC mittels Kapillarblot auf eine Nylonmembran vom Typ Mybond N (Amersham, UK) transferiert. Die Membran wurde anschließend bei 80°C unter Vakuum für zwei Stunden gebacken.
Die Membran wurde in NSEB-Puffer für 2 h bei 68°C prähybridisiert und anschließend in NSEB-Puffer über Nacht bei 68°C in Gegenwart der radioaktiv markierten Probe hybridisiert.
7. Pflanzenhaltung
Kartoffelpflanzen wurden im Gewächshaus unter folgenden Bedingungen gehalten:
Lichtperiode. 16 h bei 25 000 Lux und 22°C
Dunkelperiode: 8 h bei 15°C
Luftfeuchte 60%.
8. Bestimmung des Amylose/Amylopektinverhältnisses in Stärke aus Kartoffelpflanzen
Stärke wurde nach Standardmethoden aus Kartoffelpflanzen isoliert und das Verhältnis Amylose zu Amylopektin nach der von Hovenkamp-Hermelink et al. beschriebenen Methode (Potato Research 31 (1988) 241-246) bestimmt.
9. Bestimmung von Glucose, Fructose und Saccharose
Zur Bestimmung des Glucose-, Fructose- bzw. Saccharosegehalts werden kleine Knollenstücke (Durchmesser ca. 10 mm) von Kartoffelknollen in flüssigem Stickstoff eingefroren und anschließend für 30 min bei 80°C in 0,5 ml 10 mM HEPES, pH 7,5; 80% (Vol./Vol.) Ethanol extrahiert. Der Überstand, der die löslichen Bestandteile enthält, wird abgenommen und das Volumen bestimmt. Der Überstand wird zur Bestimmung der Menge an löslichen Zuckern verwendet. Die quantitative Bestimmung von löslicher Glucose, Fructose und Saccharose wird in einem Ansatz mit folgender Zusammensetzung durchgeführt:
100,0 mM Imidazol/HCl, pH 6,9
1,5 mM MgCl₂
0,5 mM NADP⁺
1,3 mM ATP
10-50 µl Probe
1,0 U Glucose-6-Phosphatdehydrogenase aus Hefe.
Der Ansatz wird für 5 min bei Raumtemperatur inkubiert. Die Bestimmung der Zucker erfolgt anschließend mittels gängiger photometrischer Methoden durch Messung der Absorption bei 340 nm nach der aufeinanderfolgenden Zugabe von
1,0 Einheiten Hexokinase aus Hefe (zur Bestimmung von Glucose)
1,0 Einheiten Phosphoglucoisomerase aus Hefe (zur Bestimmung von Fructose) und
1,0 Einheiten Invertase aus Hefe (zur Bestimmung von Saccharose).
Beispiel 1 Isolierung Stärkekorn-gebundener Proteine aus Kartoffelstärke
Die Isolierung von Stärkekorn-gebundenen Proteinen aus Kartoffelstärke erfolgte durch Elektroelution in einer Elutionsvorrichtung, die analog zu dem "Model 422 Electro-Eluter" (BIORAD Laboratories Inc., USA) konstruiert war, aber ein wesentlich größeres Volumen aufwies (ca. 200 ml) Es wurden 25 g getrocknete Stärke in Elutionspuffer aufgenommen (Endvolumen 80 ml). Die Stärke stammte aus Kartoffeln, die aufgrund der anti-sense-Expression einer DNA-Sequenz, die für die Stärkekorn-gebundene Stärkesynthase I (GBSS I) aus Kartoffel kodiert, eine nahezu amylosefreie Stärke produzieren. Die Suspension wurde im Wasserbad auf 70-80°C erwärmt. Anschließend wurden 72,07 g Harnstoff zugegeben (Endkonzentration 8 M) und das Volumen mit Elutionspuffer auf 180 ml aufgefüllt. Die Stärke löste sich unter ständigem Rühren und bekam eine kleisterartige Konsistenz. Die Proteine wurden aus der Lösung mit Hilfe des Elutionsvorrichtung über Nacht elektroeluiert (100 V; 50-60 mA). Die eluierten Proteine wurden vorsichtig aus der Appartur entnommen. Schwebstoffe wurden durch kurze Zentrifugation entfernt. Der Überstand wurde 2-3 mal je eine Stunde bei 4°C gegen Dialysepuffer dialysiert. Anschließend wurde das Volumen der Proteinlösung bestimmt. Die Proteine wurden durch Zugabe von Ammoniumsulfat (90% Endkonzentration) gefällt. Die Zugabe erfolgte unter ständigem Rühren bei 0°C. Die gefällten Proteine wurden durch Zentrifugation pelletiert und in Proteinpuffer aufgenommen.
Beispiel 2 Identifizierung und Isolierung von cDNA-Sequenzen, die für Stärkekorn-gebundene Proteine kodieren
Die gemäß Beispiel 1 isolierten Proteine wurden zur Herstellung von polyclonalen Antikörpern aus Kaninchen verwendet, die spezifisch Stärkekorn-gebundene Proteine erkennen.
Mit Hilfe derartiger Antikörper wurde anschließend nach Standardmethoden eine cDNA-Expressionsbibliothek nach Sequenzen durchgemustert, die für Stärkekorn-gebundene Proteine kodieren.
Die Expressionsbibliothek wurde folgendermaßen hergestellt:
Aus Kartoffelknollen der Kartoffelvarietät "Berolina" wurde nach Standardmethoden poly(A⁺)-mRNA isoliert. Ausgehend von der poly(A⁺)-mRNA wurde nach der Methode von Gubler und Hoffmann (Gene 25 (1983), 263-269) unter Verwendung eines Xho I-Oligo d(t)₁₈-Primers cDNA hergestellt. Diese wurde nach EcoR I-Linkeraddition mit Xho I nachgeschnitten und orientiert in einen mit EcoR I und Xho I geschnittenen Lambda ZAP II-Vektor (Stratagene) ligiert. Ca. 500 000 Plaques einer derart konstruierten cDNA-Bibliothek wurden nach Sequenzen durchgemustert, die von polyclonalen Antikörpern, die gegen Stärkekorn-gebundene Proteine gerichtet sind, erkannt wurden.
Zur Analyse der Phagenplaques wurden diese auf Nitrozellulosefilter übertragen, die vorher für 30-60 min in einer 10 mM IPTG-Lösung inkubiert und anschließend auf Filterpapier getrocknet wurden. Der Transfer erfolgte für 3 h bei 37°C. Anschließend werden die Filter für 30 min bei Raumtemperatur in Blockreagenz inkubiert und zweimal für 5-10 min in TBST-Puffer gewaschen. Die Filter wurden mit den gegen Stärkekorn-gebundene Proteine gerichteten polyclonalen Antikörpern in geeigneter Verdünnung für 1 h bei Raumtemperatur oder für 16 h bei 4°C geschüttelt. Die Identifizierung von Plaques, die ein Protein exprimierten, das von den polyclonalen Antikörpern erkannt wurde, erfolgte mit Hilfe des "Blotting detection kit for rabbit antibodies RPN 23" (Amersham UK) nach den Angaben des Herstellers.
Phagenclone der cDNA-Bibliothek, die ein Protein exprimierten, das von den polyclonalen Antikörpern erkannt wurde, wurden unter Anwendung von Standardverfahren weiter gereinigt.
Mit Hilfe der in-vivo-excision-Methode wurden von positiven Phagenclonen E. coli-Klone gewonnen, die ein doppelsträngiges pBluescript-Plasmid mit der jeweiligen cDNA-Insertion enthalten. Nach Überprüfung der Größe und des Restriktionsmusters der Insertionen wurde ein geeigneter Clon, pRL1, weiter analysiert.
Beispiel 3 Sequenzanalyse der cDNA-Insertion des Plasmids pRL1
Aus einem entsprechend Beispiel 2 erhaltenen E. coli-Clon wurde das Plasmid pRL1 isoliert und ein Teil der Sequenz seiner cDNA-Insertion durch Standardverfahren mittels der Didesoxynukleotidmethode (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467) bestimmt. Die Insertion ist ca. 2450 bp lang. Ein Teil der Nukleotidsequenz sowie die daraus abgeleitete Aminosäuresequenz ist unter Seq ID No. 3 und Seq ID No. 4 angegeben.
Eine Sequenzanalyse und ein Sequenzvergleich mit bekannten DNA-Sequenzen zeigte, daß die unter Seq ID No. 3 dargestellte Sequenz neu ist und keine signifikante Homologie zu bisher bekannten DNA-Sequenzen aufweist. Die Sequenzanalyse zeigte weiterhin, daß es sich bei der cDNA-Insertion nur um eine partielle cDNA handelt, bei der ein Teil der codierenden Region am 5′-Ende fehlt.
Beispiel 4 Identifizierung und Isolierung einer vollständigen cDNA, die für ein Stärkekorn-gebundenes Protein aus Solanum tuberosum codiert
Zur Isolierung einer, der partiellen cDNA-Insertion des Plasmids pRL1 entsprechenden, vollständigen cDNA, wurde eine weitere cDNA-Bibliothek hergestellt. Dabei handelte es sich um eine Schließzellen-spezifische cDNA-Bibliothek aus Solanum tuberosum, die folgendermaßen konstruiert wurde:
Zunächst wurden Epidermisfragmente von Blättern von Kartoffelpflanzen der Varietät D´sir´e im wesentlichen nach der Methode von Hedrich et al. (Plant Physiol. 89 (1989), 148) hergestellt indem ca. 60 Blätter von sechs Wochen alten, im Gewächshaus gehaltenen Kartoffelpflanzen geerntet wurden. Aus den Blättern wurde die Mittelrippe entfernt. Anschließend wurden die Blätter in einem großen "Waring blender" (Volumen 1 Liter) in gekühltem destilliertem H₂O viermal für je 15 Sekunden auf höchster Stufe zerkleinert. Die Suspension wurde durch ein Nylonsieb mit einer Porengröße von 220 µm (Nybolt, Zürich, Schweiz) filtriert und mehrmals mit kaltem destilliertem Wasser gewaschen. Die Suspension wurde wiederum durch ein 220 µm-Nylonsieb filtriert und ausgiebig mit kaltem destilliertem Wasser gewaschen. Der Rückstand (Epidermisfragmente) wurde in einen kleineren "Waring blender" (Volumen 250 ml) gegeben und in destilliertem Wasser und Eis viermal für je 15 Sekunden bei auf kleiner Stufe zerkleinert. Die Suspension wurde durch ein 220 µm-Nylonsieb filtriert und ausgiebig mit kaltem destilliertem Wasser gewaschen. Die Epidermisfragmente (Rückstand) wurden mikroskopisch hinsichtlich einer Kontamination durch Mesophyllzellen untersucht. Wenn dies der Fall war, wurde der Zerkleinerungsschritt im kleinen "Waring blender" wiederholt.
Der Aufschluß der Schließzellen der Epidermisfragmente erfolgte durch Zermörsern in flüssigem Stickstoff in einem gekühlten Mörser für ca. 2 h. Zur Überprüfung des Aufschlusses der Schließzellen wurden regelmäßig Proben genommen und mikroskopisch überprüft. Nach 2 h oder wenn eine genügend große Anzahl von Schließzellen aufgeschlossen wurde, wurde das entstandene Pulver in ein Reaktionsgefäß (Volumen 50 ml) überführt und in einem Volumen GTC-Puffer (Chirgwin et al., Biochem. 18 (1979), 5294-5299) aufgenommen. Die Suspension wurde zentrifugiert und der Überstand durch Miracloth (Calbiochem, La Jolla, Kalifornien) filtriert. Das Filtrat wurde wie in Glisin et al. (Biochemistry 13 (1974), 2633-2637) und Mornex et al. (J. Clin. Inves. 77 (1986), 1952-1961) für 16 h einer Ultrazentrifugation unterzogen. Nach der Zentrifugation wurde der RNA-Niederschlag in 250 µl GTC-Puffer aufgenommen. Die RNA wurde durch Zugabe von 0,05 Volumen 1 M Essigsäure und 0,7 Volumen Ethanol gefällt. Die RNA wurde abzentrifugiert und der Niederschlag mit 3 M Natriumazetat (pH 4,8) und 70% Ethanol gewaschen. Die RNA wurde kurz getrocknet und in DEPC-behandeltem Wasser gelöst.
Aus der isolierten RNA wurde nach Standardverfahren poly A⁺-RNA isoliert. Ausgehend von der poly(A⁺)-mRNA wurde nach der Methode von Gubler und Hoffmann (Gene 25 (1983), 263-269) unter Verwendung eines Xho I-Oligo d(t)₁₈-Primers cDNA hergestellt. Diese wurde nach EcoR I-Linkeraddition mit Xho I nachgeschnitten und orientiert in einen mit EcoR I und Xho I geschnittenen Lambda ZAP II-Vektor (Stratagene, GmbH, Heidelberg, Deutschland) ligiert. Das Verpacken in Phagenköpfe erfolgte unter Verwendung des Gigapack II Gold kit′s (Stratagene, GmbH, Heidelberg, Deutschland) nach den Angaben des Herstellers.
Aus einer derartigen cDNA-Bibliothek wurden nach Standardverfahren Phagenclone isoliert und gereinigt, die mit der cDNA-Insertion aus dem Plasmid pRL1 hybridisieren. Mit Hilfe der in-vivo-excision-Methode wurden von positiven Phagenclonen E. coli-Klone gewonnen, die ein doppelsträngiges pBluescript-Plasmid mit der jeweiligen cDNA-Insertion enthalten. Nach Überprüfung der Größe und des Restriktionsmusters der Insertionen wurden geeignete Klone einer Restriktionskartierung und einer Sequenzanalyse unterzogen. Aus einem geeigneten Clon wurde das Plasmid pRL2 (DSM 10 225) isoliert, das eine vollständige cDNA enthält, die für ein Stärkekorn-gebundenes Protein aus Kartoffel codiert.
Beispiel 5 Sequenzanalyse der cDNA-Insertion des Plasmids pRL2
Die Nukleotidsequenz der cDNA-Insertion des Plasmids pRL2 wurde wie in Beispiel 3 beschrieben bestimmt. Die Insertion ist 4856 bp lang. Die Nukleotidsequenz sowie die daraus abgeleitete Aminosäuresequenz ist in Seq ID No. 1 bzw. Seq ID No. 2 angegeben. Das entsprechende Gen wird im folgenden RL-Gen genannt.
Beispiel 6 Konstruktion des Plasmids p35S-anti-RL und Einführung des Plasmids in das Genom von Kartoffelpflanzen
Aus dem Plasmid pRL1 wurde mit Hilfe der Restriktionsendonuklease Asp718 ein ca. 1800 bp langes DNA-Fragment isoliert. Dieses entspricht der unter Seq ID No. 3 dargestellten DNA-Sequenz und enthält einen Teil des offenen Leserahmens. Das Fragment wurde in den mit Asp718 geschnittenen binären Vektor pBinAR (Höfgen und Willmitzer, Plant Sci. 66 (1990), 221-230) ligiert. Bei diesem handelt es sich um ein Derivat des binären Vektors pBin19 (Bevan, Nucl. Acids Res. 12 (1984), 8711-8721). pBinAR wurde folgendermaßen konstruiert:
Ein 529 bp langes Fragment, das die Nukleotide 6909-7437 des 35S-Promotor des Cauliflowermosaic-Virus umfaßt (Franck et al., Cell 21 (1980), 285-294), wurde als EcoR I/Kpn I-Fragment aus dem Plasmid pDH51 (Pietrzak et al., Nucl. Acids Res. 14, 5857-5868) isoliert und zwischen die EcoR I- und die Kpn I-Schnittstellen des Polylinkers von pBin19 ligiert.
Dabei entstand das Plasmid pBin19-A.
Aus dem Plasmid pAGV40 (Herrera-Estrella et al., Nature 303, 209-213) wurde mit Hilfe der Restriktionsendonukleasen Pvu II und Hind III ein 192 bp langes Fragment isoliert, das das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3, 835-846) umfaßt (Nukleotide 11 749-11 939). Nach Addition von Sph I-Linkern an die Pvu I-Schnittstelle wurde das Fragment zwischen die Sph I- und Hind III-Schnittstellen pBin19-A ligiert. Dabei entstand pBinAR.
Mit Hilfe von Restriktions- und Sequenzanalysen wurden rekombinante Vektoren identifiziert, bei denen das DNA-Fragment derart in den Vektor inseriert ist, daß ein Teil der codierenden Region der cDNA-Insertion aus pRL1 in anti- sense-Orientierung mit dem 35S-Promotor verknüpft ist. Das resultierende Plasmid, p35S-anti-RL, ist in Fig. 1 dargestellt.
Durch die Insertion des cDNA-Fragmentes entsteht eine Expressionskassette, die folgendermaßen aus den Fragmenten A, B und C aufgebaut ist:
Das Fragment A (529 bp) enthält den 35S-Promotor des Cauliflower-Mosaik-Virus (CaMV). Das Fragment umfaßt die Nukleotide 6909 bis 7437 des CaMV (Franck et al., Cell 21 (1980), 285-294).
Das Fragment B enthält neben flankierenden Bereichen einen Teil der proteincodierenden Region der cDNA-Insertion aus dem Plasmid pRL1. Diese wurde wie oben beschrieben als Asp718-Fragment aus pRL1 isoliert und in anti-sense-Orientierung an den 35S-Promotor in pBinAR fusioniert.
Fragment C (192 bp) enthält das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984), 835-846)
Die Größe des Plasmids p35S-anti-RL beträgt ca. 12,8 kb.
Das Plasmid wurde mit Hilfe Agrobakterien-vermittelter Transformation in Kartoffelpflanzen transferiert wie oben beschrieben. Aus den transformierten Zellen wurden ganze Pflanzen regeneriert. Die transformierten Pflanzen wurden unter Gewächshausbedingungen kultiviert.
Die Überprüfung des Erfolges der genetischen Veränderung der Pflanzen erfolgte durch Analyse der Gesamt-RNA in einer Northern-Blot-Analyse bezüglich des Verschwindens der zu der cDNA komplementären Transkripte. Hierzu wurde Gesamt-RNA aus Blättern transformierter Pflanzen nach Standardmethoden isoliert, gelelektrophoretisch auf einem Agarosegel aufgetrennt, auf eine Nylonmembran transferiert und mit einer radioaktiv markierten Probe hybridisiert, die die unter Seq ID No. 1 dargestellte Sequenz oder einen Teil dieser Sequenz aufweist. In ca. 5-10% der transformierten Pflanzen fehlte in der Northern-Blot-Analyse die Bande, die das spezifische Transkript der unter Seq ID No. 1 dargestellten Sequenz darstellt. Diese Pflanzen wurden zur Analyse der Stärkequalität verwendet.
Beispiel 7 Konstruktion des Plasmids pB33-anti-RL und Einführung des Plasmids in das Genom von Kartoffelpflanzen
Aus dem Plasmid pRL1 wurde mit Hilfe der Restriktionsendonuklease Asp718 ein ca. 1800 bp langes DNA-Fragment isoliert, das einen Teil des offenen Leserahmens der cDNA-Insertion umfaßt, und in den mit Asp718 geschnittenen Vektor B33-Hyg ligiert. Dieser Vektor wurde folgendermaßen hergestellt:
Aus dem Vektor pBinAR Hyg (DSM 9505) wurde mit Hilfe der Restriktionsendonukleasen EcoR I und Asp718 der 35S-Promotor entfernt. Aus dem Plasmid p33-anti-BE (DSM 6146) wurde mit Hilfe von EcoR I und Asp718 ein ca. 1526 bp langes Fragment, das den B33-Promotor umfaßt, isoliert und in den mit EcoR I und Asp718 geschnittenen Vektor pBinAR Hyg (DSM 9505) inseriert.
Durch die Insertion des cDNA-Fragmentes in die Asp718-Schnittstelle des Plasmids B33-Hyg entsteht eine Expressionskassette, die folgendermaßen aus den Fragmenten A, B und C aufgebaut ist (Fig. 4):
Das Fragment A enthält den B33-Promotor aus Solanum tuberosum (EP 3775 092; Rocha-Sosa et al., EMBO J. 8 (1989), 23-29).
Das Fragment B enthält neben flankierenden Bereichen einen Teil der proteincodierenden Region der cDNA-Insertion aus dem Plasmid pRL1. Diese wurde wie oben beschrieben als Asp718-Fragment aus pRL1 isoliert und in anti-sense-Orientierung an den B33-Promotor in B33-Hyg fusioniert.
Fragment C (192 bp) enthält das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J, 3 (1984), 835-846).
Die Größe des Plasmids pB33-anti-RL beträgt ca. 12,8 kb.
Das Plasmid wurde mit Hilfe Agrobakterien-vermittelter Transformation in Kartoffelpflanzen transferiert wie oben beschrieben. Aus den transformierten Zellen wurden ganze Pflanzen regeneriert. Die transformierten Pflanzen wurden unter Gewächshausbedingungen kultiviert.
Die Überprüfung des Erfolges der genetischen Veränderung der Pflanzen erfolgte durch Analyse der Gesamt-RNA in einer Northern-Blot-Analyse bezüglich des Verschwindens der zu der cDNA komplementären Transkripte. Hierzu wurde Gesamt-RNA aus Knollen transformierter Pflanzen nach Standardmethoden isoliert, gelelektrophoretisch auf einem Agarosegel aufgetrennt, auf eine Nylonmembran transferiert und mit einer radioaktiv markierten Probe hybridisiert, die die unter Seq ID No. 1 dargestellte Sequenz oder einen Teil dieser Sequenz aufweist. In ca. 5-10% der transformierten Pflanzen fehlte in der Northern-Blot-Analyse die Bande, die Transkripte darstellt, die mit der erfindungsgemäßen cDNA hybridisieren. Aus diesen Pflanzen wurde aus Knollen die Stärke isoliert und wie in Beispiel 8 beschrieben analysiert.
Beispiel 8 Analyse der transformierten Kartoffelpflanzen
Die gemäß Beispiel 6 und Beispiel 7 transformierten Kartoffelpflanzen wurden hinsichtlich der Eigenschaften der synthetisierten Stärke untersucht. Die Analysen wurden an verschiedenen Linien von Kartoffelpflanzen durchgeführt, die mit dem Plasmid p35S-anti-RL bzw. mit dem Plasmid pB33-anti-RL transformiert worden waren und die in der Northern-Blot-Analyse die Bande nicht mehr aufwiesen, die Transkripte darstellt, die mit den erfindungsgemäßen DNA-Sequenzen hybridisieren.
a) Bestimmung der Viskosität wäßriger Lösungen der Stärke
Zur Bestimmung der Viskosität der wäßrigen Lösungen der in transformierten Kartoffelpflanzen synthetisierten Stärke wurde aus Knollen von Pflanzen, die mit dem Plasmid p35S-anti-RL bzw. mit dem Plasmid pB33-anti-RL transformiert worden waren, Stärke nach Standardverfahren isoliert. Es wurden jeweils 30 g Stärke in 450 ml H₂O aufgenommen und für die Analyse in einem Viskograph E (Brabender OHG Duisburg (Deutschland)) verwendet. Der Betrieb des Gerätes erfolgte nach den Angaben des Herstellers. Zur Bestimmung der Viskosität der wäßrigen Lösung der Stärke wurde die Stärkesuspension zunächst von 50°C auf 96°C erhitzt mit einer Geschwindigkeit von 3°C pro min. Anschließend wurde die Temperatur für 30 min bei 96°C gehalten. Danach wurde die Lösung von 96°C auf 50°C abgekühlt mit einer Geschwindigkeit von 3°C pro min. Während der gesamten Dauer wurde die Viskosität bestimmt. Repräsentative Ergebnisse derartiger Messungen sind in Form von Kurven, in denen die Viskosität in Abhängigkeit der Zeit dargestellt ist, in Fig. 3, Fig. 4 und Fig. 5 wiedergegeben. Fig. 3 zeigt eine typische Brabenderkurve für Stärke, die aus Wildtyp-Pflanzen der Kartoffelvarietät D´sir´e isoliert wurde. Fig. 4 und 5 zeigen eine typische Brabenderkurve für Stärke, die aus Kartoffelpflanzen isoliert wurde, die mit dem Plasmid p35S-anti-RL bzw. pB33-anti-RL transformiert worden waren. Aus den Kurven lassen sich verschiedene charakteristische Werte ableiten.
Für Wildtyppflanzen ergeben sich dabei folgende charakteristische Werte:
Tabelle 1
Die Werte geben Mittelwerte aus zwei verschiedenen Messungen wieder.
In der Tabelle 1 und den folgenden Tabellen 2 und 3 bedeuten:
A: Verkleisterungsbeginn
B: Maximale Viskosität
C: Start der Haltezeit
D: Start der Kühlzeit
E: Ende der Kühlzeit
F: Ende der End-Haltezeit.
Für Pflanzen, die mit dem Plasmid p35S-anti-RL transformiert worden waren (Linie P2), ergeben sich dabei folgende charakteristische Werte:
Tabelle 2
Für Pflanzen, die mit dem Plasmid pB33-anti-RL transformiert worden waren (Linie P3), ergeben sich dabei folgende Werte:
Tabelle 3
Aus den Fig. 3, 4 und 5 geht deutlich hervor, daß die Stärke aus transformierten Pflanzen sich von der aus Wildtyp-Pflanzen insbesondere dadurch unterscheidet, daß beim Aufkochen nur eine sehr geringe Viskositätszunahme erfolgt. So liegt die maximale Viskosität bei der modifizierten Stärke aus transformierten Pflanzen beim Aufkochen um mehr als 50% unter dem Wert der Wildtyp-Stärke.
Andererseits steigt die Viskosität der aus transformierten Pflanzen isolierten Stärke nach dem Abkühlen stärker an als bei Wildtyp-Stärke.
b) Bestimmung des Phosphatgehaltes der Stärke
Der Phosphatgehalt der Stärke wurde bestimmt, indem die Menge an Phosphat, das an der C-6-Position von Glucoseresten gebunden war, gemessen wurde. Hierzu wurde Stärke zunächst durch Säurehydrolyse gespalten und anschließend der Gehalt an Glucose-6-Phosphat mittels eines Enzymtests bestimmt, wie im folgenden beschrieben.
100 mg Stärke wurden in 500 µl 0,7 N HCl 4 h bei 100°C inkubiert. Nach der Säurehydrolyse wurden 10 µl des Ansatzes in 600 µl Imidazolpuffer (100 mM Imidazol, 5 mM MgCl₂, pH 6,9, 0,4 mM NAD⁺) gegeben. Die Bestimmung der Menge an Glucose-6-Phosphat in dem Ansatz erfolgte durch Umsetzung mit dem Enzym Glucose-6-Phosphat-Dehydrogenase. Dazu wurde dem Ansatz 1 U Glucose-6-Phosphat-Dehydrogenase (aus Leuconostoc mesenteroides (Boehringer Mannheim)) zugesetzt und die Menge an gebildetem NADH durch Messung der Absorption bei 340 nm bestimmt.
Der Gehalt an Glucose-6-Phosphat/Milligramm Stärke ist in der folgenden Tabelle für nicht-transformierte Kartoffelpflanzen der Varietät D´sir´e sowie für zwei Linien (P1 (35S-anti-RL; P2 (35S-anti-RL)) transgener Kartoffelpflanzen, die mit dem Plasmid p35S-anti-RL transformiert worden waren, angegeben.
Tabelle 4
Die folgende Tabelle zeigt den Glucose-6-Phosphat-Gehalt pro Milligramm Stärke bei Kartoffelpflanzen, die mit dem Plasmid pB33-anti-RL transformiert worden waren, im Vergleich zu Stärke aus nicht-transformierten Pflanzen (S. tuberosum c.v. D´sir´e).
Tabelle 5
Die Pflanzen 7, 37, 45 und 31 stellen unabhängige Transformanten dar, die mit dem Plasmid pB33-anti-RL transformiert worden waren. Die Pflanze 37 repräsentiert die Linie P3, für die in Fig. 5 eine Brabende 19797 00070 552 001000280000000200012000285911968600040 0002019547733 00004 19678rkurve dargestellt ist.
Die Werte zeigen, daß der Phosphatgehalt der modifizierten Stärke aus transgenen Kartoffelpflanzen um mindestens ca. 50% im Vergleich zu Stärke aus Wildtyp-Pflanzen verringert ist.
c) Bestimmung des Glucose-, Fructose- und Saccharosegehalts von Knollen nach Lagerung bei 4°C
Knollen von Pflanzen verschiedener transgener Linien, die mit dem antisense-Konstrukt p35S-anti-RL transformiert worden waren, und von Wildtyp-Pflanzen wurden für 2 Monate bei 4°C bzw. bei 20°C im Dunkeln gelagert. Anschließend wurden wie oben beschrieben die Mengen an Glucose, Fructose und Saccharose bestimmt. Dabei ergaben sich für zwei transgene Linien folgende repräsentative Werte:
Tabelle 6
Die Werte in der Tabelle sind in µmol Hexose bzw. Saccharose/g Frischgewicht angegeben.
Aus den Werten in Tabelle 6 wird deutlich, daß bei den transgenen Pflanzen bei einer Lagerung bei 4°C eine wesentlich geringere Akkumulation reduzierender Zucker in den Knollen stattfindet als bei Wildtyp-Pflanzen.
Insgesamt ähnelt die aus transgenen Kartoffelpflanzen isolierte modifizierte Stärke der Stärke aus Mais- Wildtyp-Pflanzen. Im Vergleich zu dieser besitzt sie den Vorteil, daß sie geschmacksneutral ist und so für ver­ schiedene Verwendungsmöglichkeiten im Nahrungsmittel­ bereich besser geeignet ist.
Beispiel 9 Expression der cDNA-Insertion des Plasmids pRL2 in E. coli (a) Transformation von Bakterienzellen
Zur Expression der cDNA-Insertion des Plasmids pRL2 wurden Zellen des E. coli-Stammes DH5α zunächst mit dem Plasmid pACAC transformiert. Dieses Plasmid enthält ein DNA-Fragment, das die ADP-Glucose-Pyrophosphorylase (AGPase) aus E. coli codiert, unter der Kontrolle des lac Z-Promotors. Das Fragment war als ca. 1,7 kb großes DraI/HaeII-Fragment aus dem Vektor pEcA-15 (siehe B. Müller-Röber (1992), Dissertation, FU Berlin) isoliert worden und nach Glättung der Enden in einen mit HindIII linearisierten pACAC184-Vektor cloniert worden. Die Expression der AGPase soll eine Steigerung der Glycogensynthese in transformierten E. coli Zellen bewirken. Die derart transformierten Zellen werden im folgenden als E. coli-K1-Zellen bezeichnet.
Zur Bestimmung der Enzymaktivität des durch die cDNA des Plasmids pRL2 codierten Proteins, wurden E. coli-K1-Zellen mit dem Plasmid pRL2 transformiert. Die transformierten E. coli-Zellen, die sowohl das Plasmid pACAC als auch das Plasmid pRL2 enthalten, werden im folgenden als E. coli-K2-Zellen bezeichnet.
Der Transfer der Plasmid-DNA in die Bakterienzellen erfolgte jeweils nach der Methode von Hanahan (J. Mol. Biol. 166 (1983), 557-580). Die transformierten E. coli Zellen wurden auf Agarkulturschalen mit folgender Zusammensetzung ausgestrichen:
YT-Medium mit
1,5% Bacto-Agar
50 mM Natriumphosphat-Puffer, pH 7,2
1% Glucose
10 µg/ml Chloramphenicol bei E. coli-KI-Zellen bzw.
10 µg/ml Chloramphenicol und
10 µg/ml Ampicillin bei E. coli-K2-Zellen.
Escherichia coli Zellen des Stammes DH5_, die mit dem Plasmid pRL2 + pACAC (E. coli-K2-Zellen) sowie als Kontrolle nur mit dem Plasmid pACAC (E. coli-K1-Zellen) transformiert worden sind, wurden auf Agarplatten angezogen. Das gebildete Glycogen der verschiedenen Kulturen wurde bezüglich des Phosphorylierungsgrades (an C-6-Position des Glucosemoleküls) hin untersucht, wie im folgenden beschrieben wird.
(b) Isolierung von bakteriellem Glycogen
Zur Isolierung von bakteriellem Glycogen wurde der nach der Transformation gewachsene Bakterienrasen von jeweils 6 Agarplatten (⌀ 135 mm) mit 5 ml YT-Medium/Platte abgeschwemmt. Die Bakteriensuspension wurde bei 4500 xg für 5 Minuten zentrifugiert. Der Bakterienniederschlag wurde in 10 ml YT-Medium resuspendiert. Der Aufschluß der Bakterien erfolgte durch Zugabe von 2 Volumen Aufschlußmedium (0,2 N NaOH; 1% SDS) und Inkubation für 5 Minuten bei RT. Durch Zugabe von 3 Volumen EtOH abs., 30 minütiger Inkubation bei 4°C und anschließender Zentrifugation von 15 Minuten bei 8000 gx wurde das Glycogen sedimentiert. Anschließend wurde der Niederschlag mit 100 ml 70%igem EtOH gewaschen und erneut durch einen Zentrifugationsschritt (10 Minuten bei 8000 xg) sedimentiert. Der Waschvorgang wurde 4 mal wiederholt.
(c) Bestimmung des Gesamtglycogengehaltes
Das isolierte und sedimentierte Glycogen wurde zunächst durch saure Hydrolyse (Lösen des Niederschlags in 2 ml 0,7 N HCl; Inkubation für 4 Stunden bei 100°C) in die einzelnen Glucosemoleküle aufgespalten. Der Glucosegehalt der Lösung wurde mittels gekoppelter enzymatischer Reaktion eines Stärke-Tests nach Angaben des Herstellers (Boehringer Mannheim) an einem Photometer (Firma Kontron) bei einer Wellenlänge von 340 nm bestimmt.
Der Reaktionspuffer enthält:
100 mM MOPS, pH 7,5
10 mM MgCl₂
2 mM EDTA
0,25 mM NADP
1 mM ATP
1 U/ml Glucose-6-Phosphat-Dehydrogenase
2 U/ml Hexokinase.
Die Messung erfolgte bei 25°C mit 10 µl Glucoselösung.
(d) Bestimmung des Glucose-6-Phosphat Gehaltes
Zur Bestimmung des Gehaltes der an C-6-Position phosphorylierten Glucosemoleküle wurden gleiche Stoffmengen an Glucose, jeweils der verschiedenen Bakterienkulturen, eingesetzt. Durch Zugabe von gleichen Volumina an 0,7 N KOH zu dem mittels saurer Hydrolyse (siehe oben) in seine Glucosemoleküle aufgespaltenen Glycogens, wurde die Lösung neutralisiert.
Der Reaktionspuffer enthält:
100 mM MOPS, pH 7,5
10 mM MgCl₂
2 mM EDTA
0,25 mM NADP
2 U/ml Glucose-6-Phosphat-Dehydrogenase.
Die Messung erfolgte bei 25°C mit 100-150 µl Glucoselösung.
(e) Nachweis einer bakterielles Glycogen phosphorylierenden Enzymaktivität
Die Ergebnisse der Bestimmung des Phosphatgehaltes des in den Bakterienzellen synthetisierten Glycogens zeigen, daß das Glycogen der E. coli Zellen, die mit den Plasmiden pACAC + pRL2 transformiert worden waren, eine bis zu 290 + 25% erhöhte Phosphorylierung an C-6-Position der Glucose aufweist, verglichen mit dem Kontrollansatz (E. coli Zellen transformiert mit dem Plasmid pACYC) (siehe folgende Tabelle):
E. coli-Zellen Glucose-6-Phosphat: Glucose im Glycogen
E. coli-Zellen
Glucose-6-Phosphat : Glucose im Glycogen
E. coli-K1 1 : (4600 ± 1150)
E. coli-K2 1 : (1570 ± 390)
Die hier dargestellten Phosphorylierungsgrade sind der Mittelwert aus mindestens 6 Messungen ausgehend von 6 unabhängigen Transformationen und Glycogenisolierungen.
Beispiel 10 Einführung des Plasmids p35S-anti-RL in Kombination mit dem Plasmid p35SH-anti-BE in das Genom von Kartoffelpflanzen
Das Plasmid p35S-anti-RL wurde konstruiert wie im Beispiel 6 beschrieben. Das Plasmid p35SH-anti-BE wurde konstruiert wie in der Anmeldung WO95/07355, Beispiel 3, beschrieben. Beide Plasmide wurden mit Hilfe der Agrobakterium vermittelter Transformation wie oben beschrieben sequentiell in Kartoffelpflanzen transferiert. Dazu wurde zunächst das Plasmid p35SH-anti-BE in Kartoffelpflanzen transformiert. Es wurden ganze Pflanzen regeneriert und auf eine verringerte Expression des branching-Enzymgens selektiert. Anschließend wurde das Plasmid p35S-anti-RL in die schon reduzierte Expression des branching-Enzyms aufweisenden transgenen Pflanzen transformiert. Aus den transformierten Zellen wurden wiederum transgene Pflanzen regeneriert, und die transformierten Pflanzen wurden unter Gewächshausbedingungen kultiviert. Die Überprüfung des Erfolges der genetischen Veränderung der Pflanzen in Bezug auf eine stark reduzierte Expression sowohl des branching-Enzymgens als auch in Bezug auf eine stark reduzierte Expression des RL-Gens erfolgte durch Analyse der gesamten RNA in einer RNA-Blot-Analyse bezüglich des Verschwindens der zu Verzweigungsenzym-cDNA bzw. RL-cDNA komplementären Transkripte. Hierzu wurde die Gesamt-RNA aus Blätter transformierten Pflanzen nach beschriebenen Methoden isoliert, gelelektrophoretisch aufgetrennt, auf eine Membran transferiert und mit einer radioaktiv markierten Probe hybridisiert, die die unter Seq ID No. 1 dargestellte Sequenz oder einen Teil dieser Sequenz aufweist und anschließend mit einer radioaktiv markierten Probe hybridisiert, die die Sequenz der Verzweigungsenzym-cDNA (vgl. WO92/14827, Beispiel 1) oder einen Teil derselben aufweist. In ca. 5%-10% der transformierten Pflanzen fehlte in der RNA-Blot-Analyse sowohl die Bande, die das spezifische Transkript der unter Seq. ID No. 1 dargestellten Sequenz darstellt als auch die Bande, die das spezifische Transkript der Verzweigungsenzym-cDNA (vgl. WO92/14827, Beispiel 1) darstellt. Diese Pflanzen, welche als R4-Pflanzen bezeichnet wurden, wurden zur Analyse der Qualität der in den Knollen enthaltenen Stärke eingesetzt.
Beispiel 11 Einführung des Plasmids pB33-anti-RL in Kombination mit dem Plasmid pB33-anti-GBSSI in das Genom von Kartoffelpflanzen
Das Plasmid pB33-anti-RL wurde konstruiert wie im Beispiel 7 beschrieben. Das Plasmid pB33-anti-GBSSI wurde wie folgt konstruiert:
Das DraI/DraI Fragment aus der Promotorregion des Patatin Klasse I Gens B33 von Solanum tuberosum, umfassend die Nukleotide -1512 bis +14 (Rocha-Sosa et al., EMBO J 8 (1989), 23-29) wurde in die Sinai Schnittstelle des Plasmids pUC19 ligiert. Aus dem entstandenen Plasmid wurde das Promotorfragment als EcoRI/HindIII Fragment in die polylinker Region des Plasmids pBin19 (Bevan, Nucleic Acids Research 12 (1984), 8711-8721) ligiert. Anschließend wurde das 3′ EcoRI Fragment 1181 bis 2511 des GBSSI-Gens von Solanum tuberosum (Hergersberg, Dissertation (1988) Universität zu Köln) in die EcoRI Schnittstelle des entstandenen Plasmids ligiert.
Beide Plasmide wurden mit Hilfe Agrobakterium vermittelter Transformation sequentiell in Kartoffelpflanzen transferiert wie unter Beispiel 10 beschrieben. Aus den transformierten Zellen wurden ganze Pflanzen regeneriert, und die transformierten Pflanzen wurden unter Gewächshausbedingungen kultiviert. Die Überprüfung des Erfolges der genetischen Veränderungen der Pflanzen erfolgte durch Analyse der Gesamt-RNA in einer RNA-Blot-Analyse bezüglich des Verschwindens der zu den beiden cDNAs komplementären Transkripte. Hierzu wurde die Gesamt-RNA aus Knollen transformierter Pflanzen nach Standardmethoden isoliert, gelelektrophoretisch auf einem Agarosegel aufgetrennt, auf eine Membran transferiert und mit einer radioaktiv markierten Probe hybridisiert, die die unter Seq ID No. 1 dargestellte Sequenz oder einen Teil der Sequenz aufweist. Danach wurde die gleiche Membran mit einer radioaktiv markierten Probe hybridisiert, die die Sequenz des GBSSI-Gens oder einen Teil dieser Sequenz aufweist (Hergersberg, Dissertation (1988) Universität zu Köln). In ca. 5% bis 10% der transformierten Pflanzen fehlte in der RNA-Blot-Analyse die Bande, die Transkripte darstellt, die mit der erfindungsgemäßen cDNA bzw. mit der GBSSI-cDNA hybridisierten. Aus den Knollen dieser Pflanzen, welche als R3-Pflanzen bezeichnet wurden, wurde Stärke isoliert und analysiert.
Beispiel 12 Stärkeanalyse der R4-Pflanzen
Die gemäß Beispiel 10 transformierten Kartoffelpflanzen wurden hinsichtlich der Eigenschaften der synthetisierten Stärke untersucht. Die Analysen wurden an verschiedenen Linien von Kartoffelpflanzen durchgeführt, die mit den beiden Plasmiden p35S-anti-RL und p35SH-anti-BE transformiert worden waren und die in der RNA-Blot-Analyse die Banden nicht mehr oder stark reduziert aufwiesen, die Transkripte darstellen, die mit den erfindungsgemäßen DNA-Sequenzen bzw. mit der Sequenz der Verzweigungs-cDNA hybridisieren.
a) Bestimmung der Viskosität wäßriger Lösungen der Stärke
Zur Bestimmung der Viskosität der wäßrigen Lösungen der in transformierten Kartoffelpflanzen synthetisierten Stärke wurde aus Knollen von Pflanzen, die mit dem Plasmid p35S-anti-RL und mit dem Plasmid p35SH-anti-BE transformiert worden waren, Stärke nach Standardverfahren isoliert. Es wurden jeweils 2 g Stärke in 25 ml H₂O aufgenommen und für die Analyse in einem Rapid Visco Analyser (Newport Scientific Pty Ltd, Investment Support Group, Warriewood NSW 2102, Australien) verwendet. Der Betrieb des Gerätes erfolgte nach den Angaben des Herstellers. Zur Bestimmung der Viskosität der wäßrigen Lösung der Stärke wurde die Stärkesuspension zunächst von 50°C auf 95°C erhitzt mit einer Geschwindigkeit von 12°C pro min. Anschließend wurde die Temperatur für 2,5 min bei 95°C gehalten. Danach wurde die Lösung von 95°C auf 50°C abgekühlt mit einer Geschwindigkeit von 12°C pro min. Während der gesamten Dauer wurde die Viskosität bestimmt. Repräsentative Ergebnisse derartiger Messungen sind in Form von Kurven, in denen die Viskosität in Abhängigkeit von der Zeit dargestellt ist, wiedergegeben. Fig. 6 zeigt unter 1 eine typische RVA-Kurve für Stärke, die aus Wildtyp-Pflanzen der Kartoffelvarietät D´sir´e isoliert wurde. Linie 2 bzw. 3 zeigen typische RVA-Kurven für Stärken, die aus Kartoffelpflanzen isoliert wurde, die mit dem Plasmid p35SH-anti-BE bzw. p35S-anti-RL transformiert worden waren. Linie 4 zeigt eine typische RVA-Kurve für Stärke, die aus den Knollen von Pflanzen isoliert worden ist, die mit dem Plasmid p35SH-anti-BE in Kombination mit dem Plasmid p35S-anti-RL transformiert worden ist. Linie 4 zeichnet sich durch das Fehlen jedweder Viskositätszunahme in Abhängigkeit von der Temperatur aus.
b) Bestimmung des Amylose/Amylopektinverhältnisses
Aus den Knollen von transformierten Kartoffelpflanzen isolierte Stärke wurde auf das Amylose zu Amylopektinverhältnis untersucht. Dabei ergab sich für die Pflanzenlinie R4-1 (dargestellt in Linie 4 der Fig. 6) ein Amylosegehalt von über 70%. Für die Pflanzenlinie R4-3 ergab sich ein Amylosewert von 27%, während der Amylosegehalt in Wildtypstärke aus der Sorte D´sir´e zwischen 19 und 22% liegt.
Beispiel 13 Stärkeanalyse der R3-Pflanzen
Die gemäß Beispiel 11 transformierten Kartoffelpflanzen wurden hinsichtlich der Eigenschaften der synthetisierten Stärke untersucht. Die Analysen wurden an verschiedenen Linien von Kartoffelpflanzen durchgeführt, die mit den beiden Plasmiden pB33-anti-RL und pB33-anti-GBSSI transformiert worden waren und die in der RNA-Blot-Analyse die Banden nicht mehr oder stark reduziert aufwiesen, die Transkripte darstellen, die mit den erfindungsgemäßen DNA-Sequenzen bzw. mit der Sequenz der GBSSI-cDNA hybridisieren.
a) Bestimmung der Viskosität wäßriger Lösungen der Stärke
Zur Bestimmung der Viskosität der wäßrigen Lösungen der in transformierten Kartoffelpflanzen synthetisierten Stärke wurde aus Knollen von Pflanzen, die mit dem Plasmid pB33-anti-RL in Kombination mit dem Plasmid pB33-anti-GBSSI transformiert worden waren, Stärke nach Standardverfahren isoliert. Die Bestimmung der Viskosität mittels eines Rapid Visco Analysers erfolgte nach der in Beispiel 12, Teil a, beschriebenen Methode. Die Ergebnisse sind in Fig. 7 dargestellt. Fig. 7 zeigt in Linie 1 eine typische RVA-Kurve für Stärke, die aus Wildtyp-Pflanzen der Kartoffelvarietät D´sir´e isoliert wurde. Linie 2 bzw. 3 zeigen typische RVA-Kurven für Stärken, die aus Kartoffelpflanzen isoliert wurde, die mit dem Plasmid pB33-anti-GBSSI bzw. p35S-anti-RL transformiert worden waren. Linie 4 zeigt eine typische RVA-Kurve für Stärke, die aus den Kartoffelpflanzen isoliert wurde, die mit dem Plasmid pB33-anti-GBSSI in Kombination mit dem Plasmid pB33-anti-RL transformiert worden waren. Diese Kurve zeichnet sich durch das Fehlen des Viskositätsmaximums sowie dem Fehlen des Anstiegs der Viskosität bei 50°C aus. Des weiteren zeichnet sich diese Stärke dadurch aus, daß der nach RVA-Behandlung erhaltene Kleister so gut wie keine Retrogradation nach mehrtägiger Inkubation bei Raumtemperatur aufweist.
b) Bestimmung des Amylose/Amylopektinverhältnisses
Aus den Knollen von transformierten Kartoffelpflanzen isolierte Stärke wurde auf das Amylose zu Amylopektinverhältnis untersucht. Dabei ergab sich für die Pflanzenlinie R3-5 (dargestellt in Linie 4 der Fig. 7) ein Amylosegehalt von unter 4%, für die Pflanzenlinie R3-6 ein Amylosegehalt von unter 3%. Der Amylosegehalt in Wildtypstärke aus der Sorte D´sir´e liegt zwischen 19 und 22% liegt.
c) Bestimmung des Phosphatgehaltes der Stärke
Der Phosphatgehalt der Stärke wurde bestimmt, indem die Menge an Phosphat, das an der C-6-Position von Glucoseresten gebunden war, gemessen wurde. Hierzu wurde Stärke zunächst durch Säurehydrolyse gespalten und anschließend der Gehalt an Glucose-6-Phosphat mittels eines Enzymtests bestimmt, wie im folgenden beschrieben.
100 mg Stärke wurden in 500 µl 0,7 N HCl 4 h bei 100°C inkubiert. Nach der Säurehydrolyse wurden 10 µl des Ansatzes in 600 µl Imidazolpuffer (100 mM Imidazol, 5 mM MgCl₂, pH 6,9, 0,4 mM NAD⁺) gegeben. Die Bestimmung der Menge an Glucose-6-Phosphat in dem Ansatz erfolgte durch Umsetzung mit dem Enzym Glucose-6-Phosphat-Dehydrogenase. Dazu wurde dem Ansatz 1 U Glucose-6-Phosphat-Dehydrogenase (aus Leuconostoc mesenteroides (Boehringer Mannheim)) zugesetzt und die Menge an gebildetem NADH durch Messung der Absorption bei 340 nm bestimmt.
Der Gehalt an Glucose-6-Phosphat/Milligramm Stärke ist in der folgenden Tabelle für nicht-transformierte Kartoffelpflanzen der Varietät D´sir´e sowie für die Linien R3-5 und R3-6 transgener Kartoffelpflanzen, die mit dem Plasmid pB33-anti-RL in Kombination mit dem Plasmid pB33-anti-GBSSI transformiert worden waren, angegeben. Zum Vergleich ist der Wert für die Stärke aus der sog. waxy-Kartoffel (US2-10) mit angegeben, die mit dem Plasmid pB33-anti-GBSSI transformiert worden war.
Tabelle 7

Claims (36)

1. DNA-Molekül, das für ein Protein codiert, das in pflanzlichen Zellen sowohl an Stärkekörner gebunden vorliegt, als auch in löslicher Form, ausgewählt aus der Gruppe bestehend aus:
  • (a) DNA-Molekülen, die für ein Protein mit der unter Seq ID No. 2 angegebenen Aminosäuresequenz codieren;
  • (b) DNA-Molekülen, die die codierende Region der unter Seq ID No. 1 angegebenen Nucleotidsequenz umfassen;
  • (c) DNA-Molekülen, die mit den unter (a) oder (b) genannten DNA-Molekülen hybridisieren;
  • (d) DNA-Molekülen, deren Sequenz aufgrund des genetischen Codes degeneriert ist im Vergleich zu den Sequenzen der unter (a), (b) oder (c) genannten DNA-Moleküle; und
  • (e) Fragmenten, Derivaten oder allelischen Varianten der unter (a) bis (d) genannten DNA-Moleküle.
2. Vektor enthaltend ein DNA-Molekül nach Anspruch 1.
3. Vektor nach Anspruch 2, wobei das DNA-Molekül verknüpft ist mit regulatorischen DNA-Elementen, die die Transkription in eukaryontischen oder prokaryontischen Zellen gewährleisten.
4. Prokaryontische Zelle enthaltend ein DNA-Molekül nach Anspruch 1 oder einen Vektor nach Anspruch 2 oder 3.
5. Transgene Pflanzenzelle enthaltend ein DNA-Molekül nach Anspruch 1 in Kombination mit einem heterologen Promotor, der die Transkription in pflanzlichen Zellen gewährleistet.
6. Pflanze erhältlich durch Regeneration einer Pflanzenzelle nach Anspruch 5.
7. Pflanzen enthaltend Pflanzenzellen nach Anspruch 5.
8. Stärke erhältlich aus Pflanzenzellen nach Anspruch 5 oder Pflanzen nach Anspruch 6 oder 7.
9. RNA-Molekül erhältlich durch Transkription eines DNA-Moleküls nach Anspruch 1.
10. Protein, das durch ein DNA-Molekül nach Anspruch 1 codiert wird.
11. Antikörper, der spezifisch ein Protein nach Anspruch 10 erkennt.
12. DNA-Molekül codierend eine antisense-RNA, die komplementär ist zu Transkripten eines DNA-Moleküls nach Anspruch 1.
13. DNA-Molekül codierend eine RNA mit Ribozymaktivität, die spezifisch Transkripte eines DNA-Moleküls nach Anspruch 1 spaltet.
14. Vektor enthaltend ein DNA-Molekül nach Anspruch 12 oder 13.
15. Vektor nach Anspruch 14, wobei das DNA-Molekül kombiniert ist mit regulatorischen DNA-Elementen, die die Transkription in pflanzlichen Zellen gewährleisten.
16. Wirtszelle enthaltend ein DNA-Molekül nach Anspruch 12 oder 13 oder einen Vektor nach Anspruch 14 oder 15.
17. Transgene Pflanzenzelle enthaltend ein DNA-Molekül nach Anspruch 12 oder 13 in Kombination mit regulatorischen DNA-Elementen, die die Transkription in pflanzlichen Zellen gewährleisten.
18. Transgene Pflanzenzelle nach Anspruch 17, bei der die Aktivität mindestens eines weiteren, an der Stärkebiosynthese oder -modifikation beteiligten Enzyms verringert ist im Vergleich zu nichttransformierten Pflanzen.
19. Transgene Pflanzenzelle nach Anspruch 18, bei der die Aktivität eines Verzweigungsenzyms verringert ist.
20. Transgene Pflanzenzelle nach Anspruch 19, bei der die Aktivität einer stärkekorngebundenen Stärkesynthase der Isoform I (GBSSI) verringert ist.
21. Transgene Pflanze erhältlich durch Regeneration einer Pflanzenzelle nach einem der Ansprüche 17 bis 20.
22. Stärke erhältlich aus Pflanzenzellen nach einem der Ansprüche 17 bis 20 oder Pflanzen nach Anspruch 21.
23. RNA-Molekül erhältlich durch Transkription eines DNA Moleküls nach Anspruch 12 oder 13.
24. Verfahren zur Herstellung von transgenen Pflanzenzellen, die eine modifizierte Stärke synthetisieren, dadurch gekennzeichnet, daß in den Zellen die Menge von Proteinen nach Anspruch 10 verringert wird, die endogen in der Zelle synthetisiert werden.
25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, daß die Verringerung der Menge der Proteine nach Anspruch 10 in den Zellen durch einen antisense-Effekt erzielt wird.
26. Verfahren nach Anspruch 24, dadurch gekennzeichnet, daß die Verringerung der Menge der Proteine nach Anspruch 10 in den Zellen durch einen Ribozymeffekt erzielt wird.
27. Verfahren nach Anspruch 24, dadurch gekennzeichnet, daß die Verringerung der Menge der Proteine nach Anspruch 10 in den Zellen durch einen Cosuppressions-Effekt erzielt wird.
28. Verfahren nach einem der Ansprüche 24 bis 27, wobei die Enzymaktivität mindestens eines weiteren an der Stärkebiosynthese und/oder Modifikation beteiligten Enzyms reduziert wird.
29. Verfahren nach Anspruch 28, wobei das Enzym ein Verzweigungsenzym ist.
30. Verfahren nach Anspruch 28, wobei das Enzym eine stärkekorngebundene Stärkesynthase der Isoform I (GBSSI) ist.
31. Pflanzenzelle erhältlich durch ein Verfahren nach einem der Ansprüche 24 bis 30.
32. Transgene Pflanze erhältlich durch Regeneration der Pflanzenzelle nach Anspruch 31.
33. Stärke erhältlich aus Pflanzenzellen nach Anspruch 31 oder einer Pflanze nach Anspruch 32.
34. Stärke nach Anspruch 33, dadurch gekennzeichnet, daß sie aus Kartoffel stammt.
35. Vermehrungsmaterial von Pflanzen nach Anspruch 6 oder 7 enthaltend Pflanzenzellen nach Anspruch 5.
36. Vermehrungsmaterial von Pflanzen nach Anspruch 20 oder 33 enthaltend Pflanzenzellen nach einem der Ansprüche 17 bis 19 oder nach Anspruch 31.
DE19547733A 1995-09-19 1995-12-20 Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zu ihrer Herstellung sowie modifizierte Stärke Withdrawn DE19547733A1 (de)

Priority Applications (29)

Application Number Priority Date Filing Date Title
DE19547733A DE19547733A1 (de) 1995-12-20 1995-12-20 Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zu ihrer Herstellung sowie modifizierte Stärke
CA2231774A CA2231774C (en) 1995-09-19 1996-09-19 Plants which synthesize a modified starch, process for the production thereof and modified starch
EP96932575A EP0851934B1 (de) 1995-09-19 1996-09-19 Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zu ihrer herstellung sowie modifizierte stärke
EP04002725A EP1435205B1 (de) 1995-09-19 1996-09-19 Verfahren zur Herstellung einer modifizierten Stärke
DE59611501T DE59611501D1 (de) 1995-09-19 1996-09-19 Verfahren zur Herstellung einer modifizierten Stärke
EP06013739A EP1728441A3 (de) 1995-09-19 1996-09-19 Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zu ihrer Herstellung sowie modifizierte Stärke
ES96932575T ES2264143T3 (es) 1995-09-19 1996-09-19 Plantas que sintetizan un almidon modificado, procedimiento para su preparacion asi como almidones modificados.
AU71313/96A AU715944B2 (en) 1995-09-19 1996-09-19 Plants which synthesize a modified starch, process for the production thereof and modified starch
PT96932575T PT851934E (pt) 1995-09-19 1996-09-19 Plantas que sintetizam um amido modificado, processo para a sua produção e amido modificado
JP51147997A JP4118330B2 (ja) 1995-09-19 1996-09-19 修飾澱粉を合成する植物、その産生プロセスおよび修飾澱粉
DE59611362T DE59611362D1 (de) 1995-09-19 1996-09-19 Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zu ihrer herstellung sowie modifizierte stärke
AT96932575T ATE332382T1 (de) 1995-09-19 1996-09-19 Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zu ihrer herstellung sowie modifizierte stärke
EP05024607A EP1702518A1 (de) 1995-09-19 1996-09-19 Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zu ihrer Herstellung sowie modifizierte Stärke
DK96932575T DK0851934T3 (da) 1995-09-19 1996-09-19 Planter, som syntetiserer en modificeret stivelse, fremgangsmåder til deres fremstilling samt modificeret stivelse
AT04002725T ATE447855T1 (de) 1995-09-19 1996-09-19 Verfahren zur herstellung einer modifizierten stärke
HU9900510A HU229777B1 (en) 1995-09-19 1996-09-19 Plants which synthesise a modified starch, process for the production thereof and modified starch
PCT/EP1996/004109 WO1997011188A1 (de) 1995-09-19 1996-09-19 Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zu ihrer herstellung sowie modifizierte stärke
ES04002725T ES2335494T3 (es) 1995-09-19 1996-09-19 Procedimiento para la produccion de un almidon modificado.
PT04002725T PT1435205E (pt) 1995-09-19 1996-09-19 Plantas que sintetizam um amido modificado, processo para a sua produção e amido modificado
DK04002725.2T DK1435205T3 (da) 1995-09-19 1996-09-19 Fremgangsmåde til fremstilling af en modificeret stivelse
US09/045,360 US6207880B1 (en) 1995-09-19 1998-03-19 Plants which synthesize a modified starch, process for the production thereof and modified starch
US09/746,390 US6815581B2 (en) 1995-09-19 2000-12-21 Plants which synthesize a modified starch, process for the production thereof and modified starch
US10/750,161 US7176190B2 (en) 1995-09-19 2003-12-30 Plants which synthesize a modified starch, process for the production thereof and modified starch
US11/281,861 US20060168691A1 (en) 1995-09-19 2005-11-18 Plants which synthesize a modified starch, process for the production thereof and modified starch
US11/583,077 US7897760B2 (en) 1995-09-19 2006-10-19 Plants which synthesize a modified starch, process for the production thereof and modified starch
US11/583,839 US7569744B2 (en) 1995-09-19 2006-10-20 Plants which synthesize a modified starch, process for the production thereof and modified starch
JP2008028262A JP2008173128A (ja) 1995-09-19 2008-02-08 修飾澱粉を合成する植物、その産生プロセスおよび修飾澱粉
US12/271,255 US20100174061A1 (en) 1995-09-19 2008-11-14 Plants which synthesize a modified starch, process for the production thereof and modified starch
US12/979,894 US8586722B2 (en) 1995-09-19 2010-12-28 Methods of using tubers having genetically modified potato plant cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19547733A DE19547733A1 (de) 1995-12-20 1995-12-20 Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zu ihrer Herstellung sowie modifizierte Stärke

Publications (1)

Publication Number Publication Date
DE19547733A1 true DE19547733A1 (de) 1997-06-26

Family

ID=7780764

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19547733A Withdrawn DE19547733A1 (de) 1995-09-19 1995-12-20 Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zu ihrer Herstellung sowie modifizierte Stärke

Country Status (1)

Country Link
DE (1) DE19547733A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19921681A1 (de) * 1999-05-12 2000-11-16 Aventis Cropscience Gmbh Panierte Lebensmittel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19921681A1 (de) * 1999-05-12 2000-11-16 Aventis Cropscience Gmbh Panierte Lebensmittel

Similar Documents

Publication Publication Date Title
EP1435205B1 (de) Verfahren zur Herstellung einer modifizierten Stärke
DE69737507T2 (de) Neue nukleinsäuremoleküle aus mais und deren verwendung zur herstellung modifizierter stärke
EP0791066B1 (de) Dna-moleküle codierend enzyme, die an der stärkesynthese beteiligt sind, vektoren, bakterien, transgene pflanzenzellen und pflanzen enthaltend diese moleküle
EP1203087B1 (de) Transgene pflanzenzellen und pflanzen mit veränderter aktivität des gbssi- und des be-proteins
EP0874908B1 (de) Nucleinsäuremoleküle aus pflanzen codierend enzyme, die an der stärkesynthese beteiligt sind
EP1200615B8 (de) Nukleinsäuremoleküle aus pflanzen codierend enzyme, die an der stärkesynthese beteiligt sind
WO2000008175A2 (de) NUKLEINSÄUREMOLEKÜLE KODIEREND FÜR EINE α-GLUKOSIDASE, PFLANZEN, DIE EINE MODIFIZIERTE STÄRKE SYNTHETISIEREN, VERFAHREN ZUR HERSTELLUNG DER PFLANZEN, IHRE VERWENDUNG SOWIE DIE MODIFIZIERTE STÄRKE
WO2000008184A1 (de) Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zur herstellung der pflanzen, ihre verwendung sowie die modifizierte stärke
DE19836099A1 (de) Nukleinsäuremoleküle kodierend für eine ß-Amylase, Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zur Herstellung der Pflanzen, ihre Verwendung sowie die modifizierte Stärke
EP0813605A1 (de) Modifizierte stärke aus pflanzen, pflanzen, die diese synthetisieren, sowie verfahren zu ihrer herstellung
WO1997042328A1 (de) Nucleinsäuremoleküle, die debranching-enzyme aus kartoffel codieren
EP0904389A1 (de) Nucleinsäuremoleküle codierend lösliche stärkesynthasen aus mais
DE19709775A1 (de) Nucleinsäuremoleküle codierend Stärkephosphorylase aus Mais
WO1999058688A2 (de) Nucleinsäuremoleküle codierend enzyme aus weizen, die an der stärkesynthese beteiligt sind
WO1997032985A1 (de) Nucleinsäuremoleküle, codierend debranching-enzyme aus mais
DE19547733A1 (de) Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zu ihrer Herstellung sowie modifizierte Stärke
DE19534759A1 (de) Pflanzen, die eine modifizierte Stärke synthetisieren, sowie Verfahren zu ihrer Herstellung
DE19636917A1 (de) Nucleinsäuremoleküle codierend Enzyme aus Weizen, die an der Stärkesynthese beteiligt sind

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: PLANTTEC BIOTECHNOLOGIE GMBH FORSCHUNG UND ENTWICK

8139 Disposal/non-payment of the annual fee