DE102018220667A1 - Drehwinkelsensor mit zwei Sensorsignalen und Betriebsverfahren - Google Patents

Drehwinkelsensor mit zwei Sensorsignalen und Betriebsverfahren Download PDF

Info

Publication number
DE102018220667A1
DE102018220667A1 DE102018220667.8A DE102018220667A DE102018220667A1 DE 102018220667 A1 DE102018220667 A1 DE 102018220667A1 DE 102018220667 A DE102018220667 A DE 102018220667A DE 102018220667 A1 DE102018220667 A1 DE 102018220667A1
Authority
DE
Germany
Prior art keywords
rotation
angle
axis
sensor
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102018220667.8A
Other languages
English (en)
Inventor
Manuel Kwandt
Jürgen Gries
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SIGNATA GMBH, DE
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Priority to DE102018220667.8A priority Critical patent/DE102018220667A1/de
Priority to US17/298,465 priority patent/US20220034644A1/en
Priority to EP19816226.5A priority patent/EP3887764A1/de
Priority to PCT/EP2019/082742 priority patent/WO2020109383A1/de
Priority to CN201980079273.0A priority patent/CN113227715A/zh
Publication of DE102018220667A1 publication Critical patent/DE102018220667A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24428Error prevention
    • G01D5/24433Error prevention by mechanical means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

Eine Sensoranordnung (8) zur Ermittlung eines Drehwinkels (WE) eines diametral magnetisierten Magneten (6) um eine Drehachse (12) relativ zu einem Grundträger (14), enthält zwei Sensoren (18a,b) an unterschiedlichen Umfangspositionen (UPaa,b) mit Radialabstand (Ara,b) zur Drehachse (12) zur Erfassung von Tangential-(KTa,b) und Axialkomponenten (KAa,b) des Messfeldes (16) des Magneten (6), und eine Auswerteeinheit (28) zur Ermittlung des Drehwinkels (WE) aus den Komponenten anhand einer Arcustangens-Funktion.
Bei einem Verfahren zur Ermittlung des Drehwinkels (WE) werden mit den Sensoren (18a,b) die Komponenten erfasst und aus diesen anhand einer Arcustangens-Funktion der Drehwinkel (WE) ermittelt.

Description

  • Die Erfindung betrifft eine Sensoranordnung zur Ermittlung eines Drehwinkels eines Magneten um eine Drehachse relativ zu einem Grundträger sowie ein Verfahren zur Ermittlung des Drehwinkels des Magneten um die Drehachse relativ zum Grundträger in der Sensoranordnung.
  • 4 zeigt eine derartige, aus der Praxis bekannte Sensoranordnung 100. Ein Sensor 102 ist auf einem Grundträger 104 ortsfest angeordnet. Ein Magnet 106 ist um eine Drehachse 108 relativ zum Grundträger 104 drehbar gelagert (angedeutet durch einen Doppelpfeil) und erzeugt ein magnetisches Messfeld 110 (nur symbolisch angedeutet). Der Magnet 106 nimmt dabei einen (tatsächlichen) Drehwinkel WT um die Drehachse 108 ein. Der Sensor 102 erfasst das Messfeld 110 und die Sensoranordnung 100 ermittelt anhand einer Arcustangens-Funktion mit Hilfe einer Auswerteeinheit 112 den aktuellen (ermittelten) Drehwinkel WE des Sensors.
  • 5 zeigt über dem tatsächlichen Drehwinkel WT aufgetragen den anhand der Arcustangens-Funktion ermittelten Drehwinkel WE. Idealerweise sollte der ermittelte Drehwinkel WE gleich dem tatsächlichen Drehwinkel WT sein. In der Praxis ist der ermittelte Drehwinkel WE jedoch fehlerbehaftet.
  • Aufgabe der Erfindung ist es, Verbesserungen in Bezug auf eine Drehwinkelerfassung anzugeben.
  • Die Aufgabe wird gelöst durch eine Sensoranordnung gemäß Patentanspruch 1. Bevorzugte oder vorteilhafte Ausführungsformen der Erfindung sowie anderer Erfindungskategorien ergeben sich aus den weiteren Ansprüchen, der nachfolgenden Beschreibung sowie den beigefügten Figuren.
  • Die Sensoranordnung dient zur Ermittlung eines (ermittelten) Drehwinkels eines Magneten um eine Drehachse. Der Drehwinkel ist derjenige des Magneten um die Drehachse relativ zu einem Grundträger. Die Sensoranordnung enthält den Grundträger und den Magneten. Der Magnet ist relativ zum Grundträger um die Drehachse drehbar. Der Magnet ist insbesondere bezüglich der Drehachse diametral magnetisiert. Der Magnet dient zur Erzeugung eines magnetischen Messfeldes bzw. erzeugt der Magnet zumindest im Betrieb der Sensoranordnung das Messfeld. Der Magnet ist insbesondere ein Dauermagnet.
  • Die Sensoranordnung enthält einen Sensor. Der Sensor ist insbesondere ein Hall-Sensor. Der Sensor ist relativ zum Grundträger ortsfest angeordnet. Der Sensor dient zur Erfassung einer ersten Tangentialkomponente und einer ersten Axialkomponente des Messfeldes. Die entsprechende Tangentialrichtung und Axialrichtung sind bezüglich der Drehachse zu verstehen. Der erste Sensor ist an einer ersten Umfangsposition bezüglich der Drehachse angeordnet und weist dabei einen ersten Radialabstand zur Drehachse auf.
  • Die Sensoranordnung enthält mindestens ein zweiter Sensor zur Erfassung einer zweiten Tangentialkomponente und einer zweiten Axialkomponente des Messfeldes, wobei die Komponenten wie oben bezüglich der Drehachse zu verstehen sind. Der zweite Sensor ist an einer zweiten Umfangsposition bezüglich der Drehachse und mit einem zweiten Radialabstand zur Drehachse angeordnet. Die zweite Umfangsposition ist insbesondere von der ersten Umfangsposition verschieden. Hierdurch können gezielt in Bezug auf die Magnetdrehung nach Art einer Phasenverschiebung versetzte bzw. verschobene Messsignale in den Sensoren erzeugt werden. Diese Verschiebung kann später zur Kompensation der Nichtlinearitäten genutzt werden, wie unten erläutert wird.
  • Die Sensoranordnung enthält eine Auswerteeinheit. Diese dient zur Ermittlung des Drehwinkels aus den am Ort der Sensoren von den Sensoren erfassten o.g. Komponenten des Messfeldes. Dabei werden verwendet: mindestens eine der erfassten Tangentialkomponenten und mindestens eine der erfassten Axialkomponenten. Außerdem wird noch mindestens eine weitere der erfassten Tangentialkomponenten oder mindestens eine der erfassten Axialkomponenten verwendet. Die Ermittlung durch die Auswerteeinheit aus den mindestens drei genannten Komponenten erfolgt anhand einer Arcustangens-Funktion (atan-Funktion).
  • Es werden also mindestens die drei genannten Komponenten zur Berechnung verwendet. Insbesondere werden alle von den Sensoren erfassten Komponenten verwendet.
  • Die Erfindung beruht auf der folgenden Beobachtung: Wird bei einer bekannten Drehwinkelsensorik (Sensoranordnung), wie sie eingangs bzgl. 4 genannt wurde, der Sensor außerhalb der Rotationsachse (Drehachse) des Magneten positioniert, so ergibt sich über dem (tatsächlichen) Drehwinkel ein nichtlinearer Verlauf des Sensorsignals, wie er in 5 dargestellt ist. Die Ausprägung der Signal-Nichtlinearität ist stark abhängig vom Luftspalt zwischen Magnet und Sensor und vom Abstand des Sensors gegenüber der Magnet-Drehachse.
  • Die Erfindung beruht weiterhin auf der Erkenntnis, dass diese Nichtlinearität bei der o.g. herkömmlichen Vorgehensweise durch Anlernen des Magnet-Sensorsystems (Sensoranordnung) in einem Produktionsprozess linearisiert werden könnte. Dies könnte z.B. dadurch erreicht werden, dass zur Atan-Berechnung die Einzelfeldkomponenten (vom Sensor erfasste Axial-/Radial-/Tangentialkomponenten, hier beispielsweise Bx und By) mit Faktoren (kx, ky) gemäß der Formel atan ( B x k x B y k y )
    Figure DE102018220667A1_0001
    belegt werden könnten.
  • Die Erfindung beruht auf der Idee, die geometrisch induzierte Nichtlinearität auf alternative Weise zu kompensieren.
  • Hierzu werden mindestens zwei Sensoren verwendet, die optional bzw. idealerweise um 60 bis 120 Grad, insbesondere um 80 bis 100 Grad, insbesondere um 90° gegeneinander versetzt auf einem Kreis um die Drehachse unterhalb bzw. oberhalb (also in Axialrichtung bezüglich der Drehachse versetzt) des Magneten angeordnet sind.
  • Optional kann auch ein anderes Winkelverhältnis oder eine andere Platzierung der Sensoren auf verschiedenen Radien gewählt werden. Die gewählte Anordnung ist abhängig von der Form und Magnetisierung des verwendeten Magneten und der gewählten Anzahl von Sensoren.
  • Die Anordnung der Sensoren ist optional so zu wählen, dass die gemessenen nichtlinearen Winkelsignale (Rohwinkel, siehe unten) gegenüber der idealen, linearen Sensor-Winkel-Gerade (idealer fehlerfreier ermittelter Drehwinkel über dem tatsächlichen Drehwinkel) im Arbeitsbereich einen nahezu achssymmetrischen Verlauf aufweisen.
  • Da die Abweichung der Sensorsignale (Rohwinkel) von der idealen Gerade jeweils größer bzw. oberhalb der Geraden oder kleiner bzw. unterhalb der Geraden ist, kann durch Mittelwertbildung der beiden Sensorsignale (Rohwinkel) der Restfehler gegenüber der idealen, linearen Gerade auf ein Minimum gesenkt werden. Diese Methode führt in einem weiten Parameterbereich unabhängig von den verschiedenen Luftspalten zu einem nahezu linearen Sensorsignal (ermittelter Drehwinkel) mit geringem Restfehler (zur idealen Geraden).
  • Hierdurch muss nicht in die Atan-Berechnung des Sensorsignals (Rohwinkel) eingegriffen werden, um den Winkelverlauf des Sensorausgangssignals (ermittelter Drehwinkel) für verschiedene Luftspalte und Radien zu linearisieren. Aufwändige und zeitintensive Anlernprozesse (z.B.: EndOfLine) sowie luftspaltabhängige Korrekturmaßnahmen im laufenden Messbetrieb bleiben hierdurch erspart. Weiterhin ist der exakte Luftspalt zwischen Sensor und Magnet oft unbekannt und kann nur mit großer Unsicherheit gemessen werden. Die hierfür zuvor berechneten und in einer Tabelle abgelegten Korrekturfaktoren für die Luftspaltkorrektur der Sensorkennlinie würden folglich auch immer nur mit der Ungenauigkeit der Luftspaltmessung appliziert werden können, was trotz hohem Aufwand zu einem deutlichen Restfehler des Messsignals führt. Diesen Nachteil behebt diese Erfindung.
  • Die vorliegende Anordnung ist daher besonders geeignet für Magnet-Sensorsysteme bei denen der Sensor weit außerhalb der Drehachse des Gebermagneten liegt. Dies ist insbesondere bei Ringmagneten der Fall, wenn der innere Bereich des Magneten für Kabeldurchführungen o.ä. benutzt wird und der Sensor nur unterhalb des äußeren Bereiches des Magneten auf der Leiterplatte (Grundträger) Platz findet.
  • Die Reduktion des nichtlinearen Messfehlers durch Mittelwertbildung mehrerer Sensoren ist stark abhängig von der Platzierung der Sensoren unterhalb des Magneten. Durch moderne magnetische Feldberechnungsprogramme können die idealen Positionen der Sensoren, die zu einer möglichst guten Fehlerkompensation über dem Parameterbereich führen, ermittelt werden.
  • Durch diese Methode erhält man ein robustes, inhärent stabiles Messsignal (ermittelter Drehwinkel) mit wenig Fehler über dem (tatsächlichen) Drehwinkel und Luftspalt, das ohne Anlern- bzw. Kompensationsprozesse im laufendenden Messbetrieb auskommt. Daher ist diese Anordnung sehr vorteilhaft für eine Drehwinkelerfassung mit Drück- bzw. Zugfunktion (Verschiebung des Magneten zwischen unterschiedlichen Axialpositionen relativ zum Grundträger bzw. zu den Sensoren), welche den Drehwinkel eines Bedienelementes bei verschiedenen Abständen (Luftspalten) mit minimalem Fehler erfassen muss.
  • Weiterhin wird durch die Mittelwertbildung des Messsignals der Störeinfluss eines externen Störfeldes deutlich reduziert, da der Störfeldgradient zwischen den benachbarten Sensoren im Allgemeinen aufgrund des größeren Abstandes der Störfeldquelle zur Sensorik gering ist.
  • Diese Anordnung ist für beliebig geformte Permanentmagnete anwendbar, aber besonders wirksam bei rotationssymmetrischen Geometrien wie z.B. bei Ringmagneten und rondenförmigen Magneten.
  • Die Vorgehensweise kann für herkömmliche hallbasierte 2D-Winkelsensoren oder 3D-Sensoren angewendet werden.
  • In einer bevorzugten Ausführungsform der Erfindung ist mindestens einer der Sensoren gegenüber einer quer zur Drehachse liegenden Zentralebene des Magneten in Axialrichtung der Drehachse um einen Axialabstand versetzt angeordnet. Insbesondere gilt dies für alle Sensoren. Insbesondere befinden sich mindestens zwei oder alle Sensoren in einer gemeinsamen Parallelebene zur Zentralebene bezüglich der Drehachse. Insbesondere liegt dabei ein Luftspalt zwischen Magnet und einem entsprechenden Sensor vor. Dies entspricht der oben angegebenen Anordnung „unterhalb bzw. oberhalb“ des Magneten. Für eine entsprechende Anordnung ist die Erfindung besonders geeignet.
  • In einer bevorzugten Ausführungsform der Erfindung weisen mindestens zwei, insbesondere alle der Sensoren einen gleichen Axialabstand und/oder einen gleichen Radialabstand zur Drehachse auf. Somit ergeben sich symmetrische bzw. regelmäßige Anordnungen, für die die Erfindung besonders wirksam einsetzbar ist.
  • In einer bevorzugten Ausführungsform sind zwei der Umfangspositionen rechtwinklig zueinander versetzt. Für diese beiden Umfangspositionen ergeben sich damit jeweilige um den entsprechenden Winkel, z.B. 90°, phasenversetzte Sensorsignale, was zu einer besonders einfachen Fehlerkompensation durch Mittelwertbildung zwischen den beiden Sensoren führt.
  • In einer bevorzugten Ausführungsform ist der Magnet rotationssymmetrisch zur Drehachse ausgebildet. Hierdurch ergeben sich besonders ähnliche, lediglich phasenversetzte Signale in den Sensoren.
  • In einer bevorzugten Ausführungsform ist der Magnet ein konzentrisch zur Drehachse angeordneter Ringmagnet. Dieser besitzt also eine zentrale Öffnung, die insbesondere als Kabeldurchführung dienen kann. So lässt sich die Sensoranordnung besonders günstig in radial wenig ausladenden Anwendungen einsetzen.
  • In einer bevorzugten Ausführungsform ist eine Axialposition des Magneten entlang der Drehachse bezüglich des Grundträgers veränderlich. Auch die Veränderung einer entsprechenden Axialposition ist durch die Sensoren detektierbar. Die Sensoranordnung eignet sich somit zur Detektion von Axialbewegungen, insbesondere der oben genannten Drück- bzw. Zugfunktion. Die Axialpositionen der Sensoren relativ zum Magneten ändern sich dabei also gleichmäßig.
  • In einer bevorzugten Ausführungsform enthält die Auswerteeinheit ein Rohwinkelmodul, das dazu eingerichtet ist, aus einer jeweiligen Axialkomponente und Tangentialkomponente des selben Sensors anhand einer Arcustangens-Funktion einen Rohwinkel für den jeweiligen Sensor zu bilden, der dann zum Drehwinkel verarbeitbar ist.
  • Somit werden innerhalb der Auswerteeinheit die beiden Komponentensignale eines jeweiligen Sensors separat für sich bereits zu einem Rohwinkel vorverarbeitet, was die anschließende weitere Verarbeitung des Rohwinkels in der Auswerteeinheit ermöglicht. Ansonsten wird auf die Ausführungen oben zu entsprechenden Rohwinkeln verwiesen.
  • In einer bevorzugten Ausführungsform enthält die Auswerteeinheit ein Mittelwertmodul, das dazu eingerichtet ist, einen Mittelwert aus mindestens zwei der Axialkomponenten und/oder Tangentialkomponenten zu bilden und/oder - falls vorhanden - aus ermittelten Rohwinkeln zu bilden, der dann zum Drehwinkel verarbeitbar ist. Wie oben erläutert, können durch entsprechende Mittelwertbildungen besonders einfach die Nichtlinearitäten in den Rohwinkeln kompensiert werden, wobei die Nichtlinearitäten durch den Axialabstand der Sensoren zur Drehachse verursacht sind.
  • Die Aufgabe der Erfindung wird auch gelöst durch ein Verfahren gemäß Patentanspruch 10 zur Ermittlung des Drehwinkels des Magneten um die Drehachse relativ zu dem Grundträger in der erfindungsgemäßen Sensoranordnung. Bei dem Verfahren werden mit den Sensoren mindestens eine der Tangentialkomponenten und mindestens eine der Axialkomponenten und mindestens eine weitere der Tangentialkomponenten oder der Axialkomponenten erfasst, wie oben sinngemäß erläutert. Aus mindestens den erfassten Komponenten (je nach Ermittlung: Axial / Tangential) wird der Drehwinkel anhand einer Arcustangens-Funktion ermittelt. Dies kann in der Auswerteeinheit der Sensoranordnung geschehen. Alternativ kann jedoch auch eine reduzierte Sensoranordnung ohne Auswerteeinheit in dem Verfahren verwendet werden. Die entsprechende Auswertung findet dann in einer alternativen Auswerteeinheit statt, welche sich auch außerhalb der Sensoranordnung befinden kann.
  • Das Verfahren und zumindest ein Teil dessen Ausführungsformen sowie die jeweiligen Vorteile wurden sinngemäß bereits im Zusammenhang mit der erfindungsgemäßen Sensoranordnung erläutert.
  • In einer bevorzugten Ausführungsform wird aus einer jeweiligen Axialkomponente und Tangentialkomponente des selben Sensors anhand einer Arcustangens-Funktion ein Rohwinkel für den jeweiligen Sensor gebildet. Der Rohwinkel wird - vorzugsweise in der Auswerteeinheit - dann zum Drehwinkel verarbeitet. Das entsprechende Vorgehen und dessen Vorteile wurden oben sinngemäß bereits im Zusammenhang mit dem Rohwinkel bzw. dem Rohwinkelmodul erläutert.
  • In einer bevorzugten Ausführungsform wird der Rohwinkel anhand einer ungewichteten Arcustangens-Funktion gebildet. Wie oben ausführlich erläutert, muss so in die Berechnung der eigentlichen Arcustangens-Funktion nicht eingegriffen werden, d.h. die oben erläuterte Erweiterung um die Faktoren (kx, ky) kann entfallen.
  • In einer bevorzugten Ausführungsform der Erfindung wird mindestens ein Mittelwert aus mindestens zwei der Axialkomponenten und/oder Tangentialkomponenten gebildet. Alternativ oder zusätzlich wird der Mittelwert aus - falls vorhanden - ermittelten Rohwinkeln gebildet. Der Mittelwert wird - vorzugsweise in der Auswerteeinheit - dann zum Drehwinkel verarbeitet. Das entsprechende Vorgehen wurde sinngemäß oben bereits erläutert.
  • In einer bevorzugten Ausführungsform werden für mindestens zwei der Sensoren individuelle Rohwinkel gebildet, wobei die Positionen (Axial- und/oder Radial- und/oder Umfangs-Position) der Sensoren so gewählt werden, dass die individuellen Rohwinkel gegenüber einer idealen Winkelgeraden (ermittelter Drehwinkel über tatsächlichem Drehwinkel) einen axialsymmetrischen Verlauf aufweisen. Der Drehwinkel wird dann anhand einer Mittelwertbildung der beiden Rohwinkel ermittelt.
  • Das entsprechende Vorgehen wurde sinngemäß oben bereits erläutert. Insbesondere kann hierbei ein Winkelversatz von 90° der Sensoren bezüglich der Drehachse in Umfangsrichtung gewählt werden, sodass sich die oben erläuterte günstige Beziehung zwischen den Rohwinkeln (Symmetrie bezüglich einer idealen Geraden) einstellt.
  • In einer bevorzugten Ausführungsform wird der Verlauf des ermittelten Drehwinkels über dem tatsächlichen Drehwinkel anhand einer FEM-Analyse des Messfeldes zumindest am Ort mindestens eines Sensors optimiert. Die Optimierung wird insbesondere derart durchgeführt, dass anhand einer gerasterten FEM-Analyse vorgebbarer Axialabstände und Radialabstände und Winkelversätze solche gewählt werden, die eine vergleichsweise optimale Linearität des Verlaufs liefern.
  • Durch Variation von Parametern der Anordnung, zumindest von Axialabstand und/oder Radialabstand und/oder Umfangsposition der Sensoren, verändert sich der Verlauf des tatsächlich ermittelten Drehwinkels. Gemäß der Erfindung werden die Parameter derart bzw. so lange variiert, bis im Rahmen der entsprechenden Variation (also im Rahmen der in Erwägung gezogenen Möglichkeiten von Platzierungen, insbesondere einer begrenzten Auswahl) eine Kombination gefunden ist, bei der die Abweichung zwischen ermitteltem Drehwinkel und tatsächlichem Drehwinkel (insbesondere innerhalb aller getesteten Platzierungen) minimiert ist. Insbesondere werden hierbei in einer Radial-Axial-Ebene der Drehachse gitterförmig mit geeignetem Gitterabstand und einer geeigneten Anzahl von Gitterpunkten an allen Gitterpunkten die entsprechenden Größen überprüft und der optimale Gitterpunkt (Radialabstand/Axialabstand) für die Platzierung des Sensors ausgewählt. Dabei wird außerdem der Umfangsversatz zwischen den Sensoren variiert. Sowohl für einen entsprechenden Optimierungsvorgang als auch für ein entsprechendes zu optimierendes Maß der Abweichung zwischen ermitteltem und tatsächlichem Drehwinkel verfügt der Fachmann über eine Vielzahl von Auswahlmöglichkeiten. Der Fachmann ist hierbei in der Lage, eine geeignete Auswahl für eine konkret vorliegende Sensoranordnung zu treffen.
  • Unter „vorgebbar“ sind hierbei insbesondere eine technisch praxisgerechte, möglichst kleine, aber hinreichende Anzahl von zu untersuchenden Gitterpunkten zu verstehen, die jedoch ausreichend dicht bzw. in technisch sinnvoll abgestuften Abständen in einem entsprechend sinnvoll erscheinenden Radial-Axial-Umfangs-Bereich platziert sind.
  • Die entsprechende Optimierung kann dann theoretisch bzw. an einem Rechner durchgeführt werden, Versuche bzw. Messungen sind hierfür nicht notwendig.
  • Weitere Merkmale, Wirkungen und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung sowie der beigefügten Figuren. Dabei zeigen, jeweils in einer schematischen Prinzipskizze:
    • 1 eine erfindungsgemäße Sensoranordnung in Draufsicht und
    • 2 in Seitenansicht,
    • 3 die Rohwinkel beider Sensoren aus 1 und 2 sowie den tatsächlichen und den ermittelten Drehwinkel, aufgetragen über dem tatsächlichen Drehwinkel,
    • 4 eine Sensoranordnung gemäß Stand der Technik
    • 5 den Rohwinkel des Sensors aus 4, aufgetragen über dem tatsächlichen Drehwinkel gemäß Stand der Technik.
  • 1 (Draufsicht in Richtung des Pfeils I in 2) und 2 (Schnitt in Richtung der Pfeile II-II in 1) zeigen eine Sensoranordnung 8 gemäß der Erfindung. Diese dient zur Ermittlung eines (ermittelten) Drehwinkels WE eines Magneten 6 um eine Drehachse 12 relativ zu einem Grundträger 14. Der ermittelte Drehwinkel WE soll dabei idealerweise dem tatsächlichen Drehwinkel WT des Magneten 6 um die Drehachse 12 entsprechen. Grundträger 14 und Magnet 6 sind hierbei Teil der Sensoranordnung 8. Der Magnet 6 ist also um die Drehachse 12 drehbar (durch einen Doppelpfeil angedeutet) und hier bezüglich der Drehachse 12 diametral magnetisiert. Somit erzeugt der Magnet 6 ein magnetisches Messfeld 16, welches hier lediglich symbolisch durch Feldlinien angedeutet ist.
  • Ortsfest relativ zum Grundträger 14 ist ein erster Sensor 18a der Sensoranordnung 8 angeordnet. Dieser dient zur Erfassung einer ersten Tangentialkomponente KTa und einer ersten Axialkomponente KAa des Messfeldes 16. „Axial“, „Tangential“ usw. ist hier bezüglich der Drehachse 12 zu verstehen. Der erste Sensor 18a ist dabei an einer ersten Umfangsposition UPa bezüglich der Drehachse 12 und mit einem ersten Radialabstand ARa zur Drehachse 12 angeordnet.
  • Die Sensoranordnung 8 enthält außerdem einen zweiten Sensor 18b zur Erfassung einer zweiten Tangentialkomponente KTb und einer zweiten Axialkomponente KAb des Messfeldes 16. Der zweite Sensor 18b ist an einer zweiten Umfangsposition UPb bezüglich der Drehachse 12 und mit einem zweiten Radialabstand RAb zur Drehachse 12 angeordnet.
  • Die Sensoranordnung 8 enthält außerdem eine Auswerteeinheit 28 zur Ermittlung des Drehwinkels WE. Im Beispiel verwendet die Auswerteeinheit 28 hierzu beide Tangentialkomponenten KTa,b und Axialkomponenten KAa,b von erstem Sensor 18a und zweitem Sensor 18b, wie weiter unten erläutert wird.
  • Beide Sensoren 18a,b sind gegenüber einer quer zur Drehachse 12 liegenden Zentralebene 24 des Magneten 6 in Axialrichtung der Drehachse 12 um einen - hier gleichen - ersten und zweiten Axialabstand AAa,b versetzt angeordnet. Außerdem weisen beide Sensoren18a,b gegenüber der Drehachse 12 den gleichen Radialabstand ARa,b auf. Die zwei Umfangspositionen UPa,b schließen außerdem hier einen rechten Winkel bezüglich der Drehachse 12 ein.
  • Der Magnet 6 ist außerdem rotationssymmetrisch zur Drehachse 12 ausgebildet, hier als konzentrisch zur Drehachse 12 angeordneter Ringmagnet. Daher weist dieser eine zentrale Öffnung 10 auf, die als Durchführung für nicht dargestellte Kabel beim Verbauen des Sensors in einer nicht dargestellten Anwendung, z.B. einem Schalthebei eines Automobils, dient.
  • Die Axialposition PA des Magneten 6 auf der Drehachse 12 ist veränderlich, d.h. der Magnet 6 ist in Richtung des dargestellten Doppelpfeils bewegbar. Die Axialabstände AAa,b ändern sich bei einer derartigen Bewegung gleichmäßig.
  • Die Auswerteeinheit 28 enthält ein Rohwinkelmodul 32. Dieses dient dazu, aus einer jeweiligen Axialkomponente KAa,b und Tangentialkomponente KTa,b des selben Sensors 18a,b anhand einer Arcustangens-Funktion einen Rohwinkel WRa,b für den jeweiligen Sensor 18a,b zu bilden, der dann zum Drehwinkel WE verarbeitet wird.
  • Die Auswerteeinheit 28 enthält außerdem ein Mittelwertmodul 30. Dieses dient hier dazu, einen Mittelwert M aus den beiden ermittelten Rohwinkeln WRa,b zu bilden, der dann zum Drehwinkel WE verarbeitet wird, bzw. hier den ermittelten Drehwinkel WE darstellt.
  • 3 veranschaulicht, wie die beiden Rohwinkel WRa,b durch eine reine Arcustangens-Funktion, also ohne die o.g. Faktoren kx, ky bzw. mit kx=ky=1 einfach ermittelt werden und daher einen nichtlinearen Verlauf 26 über dem tatsächlichen Drehwinkel WT aufweisen. Die Abweichungen der Verläufe 26 vom tatsächlichen Drehwinkel WT sind im Beispiel stark vergrößert dargestellt. In der Praxis bewegen sich diese im Bereich einstelliger Grade, in der Regel unterhalb 1°. Die Abweichungen bzw. Verzerrungen vom tatsächlichen Drehwinkel WT sind jeweils prinzipiell positiv und negativ sinusförmig.
  • Durch eine Mittelwertbildung W E = W R a + W R b 2
    Figure DE102018220667A1_0002
    zwischen den beiden Rohwinkeln WRa,b ergibt sich jedoch dann der ermittelte Drehwinkel WE auf der idealen Gerade, die der absolute Drehwinkel WT beschreibt. Restfehler entstehen durch Nichtlinearitäten des Gesamtsystems.
  • Bezugszeichenliste
  • 6
    Magnet
    8
    Sensoranordnung
    10
    Öffnung
    12
    Drehachse
    14
    Grundträger
    16
    Messfeld
    18a,b
    Sensor
    24
    Zentralebene
    26
    Verlauf
    28
    Auswerteeinheit
    30
    Mittelwertmodul
    32
    Rohwinkelmodul
    100
    Sensoranordnung
    102
    Sensor
    104
    Grundträger
    106
    Magnet
    108
    Drehachse
    110
    Messfeld
    112
    Auswerteeinheit
    WT
    Drehwinkel (tatsächlich)
    WE
    Drehwinkel (ermittelt)
    N
    Nordpol
    S
    Südpol
    KAa,b
    Axialkomponente
    KTa,b
    Tangentialkomponente
    AAa,b
    Axialabstand
    ARa,b
    Radialabstand
    UPa,b
    Umfangsposition
    M
    Mittelwert
    PA
    Axialposition
    WRa,b
    Rohwinkel

Claims (15)

  1. Sensoranordnung (8) zur Ermittlung eines Drehwinkels (WE) eines Magneten (6) um eine Drehachse (12) relativ zu einem Grundträger (14), - mit dem Grundträger (14), - mit dem relativ zum Grundträger (14) um die Drehachse (12) drehbaren Magneten (6) zur Erzeugung eines magnetischen Messfeldes (16), - mit einem relativ zum Grundträger (14) ortsfesten ersten Sensor (18a) zur Erfassung einer ersten Tangentialkomponente (KTa) und einer ersten Axialkomponente (KAa) des Messfeldes (16) bezüglich der Drehachse (12), - wobei der erste Sensor (18a) an einer ersten Umfangsposition (UPa) bezüglich der Drehachse (12) und mit einem ersten Radialabstand (ARa) zur Drehachse (12) angeordnet ist, dadurch gekennzeichnet, dass - mindestens ein zweiter Sensor (18b) zur Erfassung einer zweiten Tangentialkomponente (KTb) und einer zweiten Axialkomponente (KAb) des Messfeldes (16) bezüglich der Drehachse (12), an einer zweiten Umfangsposition (UPb) bezüglich der Drehachse (12) und mit einem zweiten Radialabstand (RAb) zur Drehachse (12) angeordnet ist, - mit einer Auswerteeinheit (28) zur Ermittlung des Drehwinkels (WE) aus mindestens einer der erfassten Tangentialkomponenten (KTa-b) und mindestens einer der erfassten Axialkomponenten (KAa-b) und mindestens einer weiteren der erfassten Tangentialkomponente (KTa-b) oder Axialkomponenten (KAa-b) anhand einer Arcustangens-Funktion.
  2. Sensoranordnung (8) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens einer der Sensoren (18a,b) gegenüber einer quer zur Drehachse (12) liegenden Zentralebene (24) des Magneten (6) in Axialrichtung der Drehachse (12) um einen Axialabstand (AAa,b) versetzt angeordnet ist.
  3. Sensoranordnung (8) nach Anspruch 2, dadurch gekennzeichnet, dass mindestens zwei der Sensoren (18a,b) einen gleichen Axialabstand (AAa,b) und/oder einen gleichen Radialabstand (ARa,b) zur Drehachse (12) aufweisen.
  4. Sensoranordnung (8) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwei der Umfangspositionen (UPa,b) rechtwinklig zueinander versetzt sind.
  5. Sensoranordnung (8) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Magnet (6) rotationssymmetrisch zur Drehachse (12) ausgebildet ist.
  6. Sensoranordnung (8) nach Anspruch 5, dadurch gekennzeichnet, dass der Magnet (6) ein konzentrisch zur Drehachse (12) angeordneter Ringmagnet ist.
  7. Sensoranordnung (8) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Axialposition (PA) des Magneten (6) entlang der Drehachse (12) bezüglich des Grundträgers (14) veränderlich ist.
  8. Sensoranordnung (8) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Auswerteeinheit (28) ein Rohwinkelmodul (32) enthält, das dazu eingerichtet ist, aus einer jeweiligen Axialkomponente (KAa,b) und Tangentialkomponente (KTa,b) des selben Sensors (18a,b) anhand einer Arcustangens-Funktion einen Rohwinkel (WRa,b) für den jeweiligen Sensor (18a,b) zu bilden, der dann zum Drehwinkel (WE) verarbeitbar ist.
  9. Sensoranordnung (8) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Auswerteeinheit (28) ein Mittelwertmodul (30) enthält, das dazu eingerichtet ist, einen Mittelwert (M) aus mindestens zwei der Axialkomponenten (KAa,b) und/oder Tangentialkomponenten (KTa,b) zu bilden und/oder - falls vorhanden - aus ermittelten Rohwinkeln (WRa,b) zu bilden, der dann zum Drehwinkel (WE) verarbeitbar ist.
  10. Verfahren zur Ermittlung eines Drehwinkels (WE) eines Magneten (6) um eine Drehachse (12) relativ zu einem Grundträger (14) in einer Sensoranordnung (8) nach einem der vorhergehenden Ansprüche, bei dem - mit den Sensoren (18a,b) mindestens eine der Tangentialkomponenten (KTa-b) und mindestens eine der Axialkomponenten (KAa-b) und mindestens eine weitere der Tangentialkomponenten (KTa-b) oder Axialkomponenten (KAa-b) erfasst werden, - aus mindestens den erfassten Komponenten anhand einer Arcustangens-Funktion der Drehwinkel (WE) ermittelt wird.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass aus einer jeweiligen Axialkomponente (KAa,b) und Tangentialkomponente (KTa,b) des selben Sensors (18a,b) anhand einer Arcustangens-Funktion ein Rohwinkel (WRa,b) für den jeweiligen Sensor (18a,b) gebildet wird, der in der Auswerteeinheit (28) dann zum Drehwinkel (WE) verarbeitet wird.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass der Rohwinkel (WRa,b) anhand einer ungewichteten Arcustangens -Funktion gebildet wird.
  13. Verfahren nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass mindestens ein Mittelwert (M) aus mindestens zwei der Axialkomponenten (KAa,b) und/oder Tangentialkomponenten (KTa,b) gebildet wird und/oder - falls vorhanden - aus ermittelten Rohwinkeln (WRa,b) gebildet wird, der dann zum Drehwinkel (WE) verarbeitet wird.
  14. Verfahren nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass für mindestens zwei der Sensoren (18a,b) individuelle Rohwinkel gebildet werden, wobei die Positionen der Sensoren (18a,b) so gewählt werden, dass die individuellen Rohwinkel (18a,b) gegenüber einer idealen Winkelgeraden einen axialsymmetrischen Verlauf (26) aufweisen und der Drehwinkel (WE) anhand einer Mittelwertbildung der beiden Rohwinkel (18a,b) ermittelt ist
  15. Verfahren nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass der Verlauf (26) des ermittelten Drehwinkels (WE) über dem tatsächlichen Drehwinkel (WT) anhand einer FEM-Analyse des Messfeldes (16) zumindest am Ort des Sensors (18) optimiert wird.
DE102018220667.8A 2018-11-30 2018-11-30 Drehwinkelsensor mit zwei Sensorsignalen und Betriebsverfahren Pending DE102018220667A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102018220667.8A DE102018220667A1 (de) 2018-11-30 2018-11-30 Drehwinkelsensor mit zwei Sensorsignalen und Betriebsverfahren
US17/298,465 US20220034644A1 (en) 2018-11-30 2019-11-27 Rotation angle sensor having two sensor signals and operating method
EP19816226.5A EP3887764A1 (de) 2018-11-30 2019-11-27 Drehwinkelsensor mit zwei sensorsignalen und betriebsverfahren
PCT/EP2019/082742 WO2020109383A1 (de) 2018-11-30 2019-11-27 Drehwinkelsensor mit zwei sensorsignalen und betriebsverfahren
CN201980079273.0A CN113227715A (zh) 2018-11-30 2019-11-27 具有两个传感器信号的旋转角度传感器和操作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018220667.8A DE102018220667A1 (de) 2018-11-30 2018-11-30 Drehwinkelsensor mit zwei Sensorsignalen und Betriebsverfahren

Publications (1)

Publication Number Publication Date
DE102018220667A1 true DE102018220667A1 (de) 2020-06-04

Family

ID=68806718

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018220667.8A Pending DE102018220667A1 (de) 2018-11-30 2018-11-30 Drehwinkelsensor mit zwei Sensorsignalen und Betriebsverfahren

Country Status (5)

Country Link
US (1) US20220034644A1 (de)
EP (1) EP3887764A1 (de)
CN (1) CN113227715A (de)
DE (1) DE102018220667A1 (de)
WO (1) WO2020109383A1 (de)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006051720A1 (de) * 2006-03-02 2007-09-06 Continental Teves Ag & Co. Ohg Absolut messende Winkelsensoranordnung und Verfahren zur Winkelberechnung
US20070296411A1 (en) * 2006-06-21 2007-12-27 Thomas Monica J Methods and apparatus for an analog rotational sensor
US20090206827A1 (en) * 2006-11-21 2009-08-20 Hitachi Metals, Ltd. Rotation-angle-detecting apparatus, rotating machine, and rotation-angle-detecting method
US20130179117A1 (en) * 2010-09-29 2013-07-11 Moving Magnet Technologies (Mmt) Position sensor
US20140028294A1 (en) * 2012-07-25 2014-01-30 Infineon Technologies Ag Magnetic Out-of-Axis Angle Sensing Principle
EP2784450A1 (de) * 2011-11-24 2014-10-01 Toyota Jidosha Kabushiki Kaisha Drehwinkelerkennungsvorrichtung und elektrische lenkvorrichtung mit der drehwinkelerkennungsvorrichtung
US20150022192A1 (en) * 2013-07-17 2015-01-22 Infineon Technologies Ag Discrete magnetic angle sensor device, a magnetic angle sensor arrangement, a method for generating an angle signal and a method for providing a sensor signal
DE102014109950A1 (de) * 2013-07-17 2015-01-22 Infineon Technologies Ag Winkelsensoren, Systeme und Verfahren

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006061701A1 (de) * 2006-12-28 2008-07-03 Robert Bosch Gmbh Vorrichtung zur Detektion der absoluten Winkellage einer Drehachse
DE102007029817B9 (de) * 2007-06-28 2017-01-12 Infineon Technologies Ag Magnetfeldsensor und Verfahren zur Kalibration eines Magnetfeldsensors
US10704925B2 (en) * 2009-01-12 2020-07-07 Infineon Technologies Ag Sensor and method for determining angular position including measuring magnetic field lines at a distance greater than the inner radius and less than the outer radius of a ring magnet, and at a distance greater than the outer radius or less than the inner radius
GB2505226A (en) * 2012-08-23 2014-02-26 Melexis Technologies Nv Arrangement, method and sensor for measuring an absolute angular position using a multi-pole magnet
DE102015105854A1 (de) * 2015-04-16 2016-10-20 Max Baermann Gmbh Hallsensor
EP3144639A1 (de) * 2015-09-16 2017-03-22 Monolithic Power Systems, Inc. Magnetisches winkelmesssystem mit seitenwellenmontiertem sensor und verfahren dafür
DE102017003075B4 (de) * 2017-03-30 2021-09-23 Tdk-Micronas Gmbh Messsystem zur Drehwinkelbestimmung
US11243095B2 (en) * 2018-04-13 2022-02-08 Asahi Kasei Microdevices Corporation Rotational angle detection apparatus and rotational angle detection method
JP6947194B2 (ja) * 2019-02-13 2021-10-13 Tdk株式会社 信号処理回路および磁気センサシステム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006051720A1 (de) * 2006-03-02 2007-09-06 Continental Teves Ag & Co. Ohg Absolut messende Winkelsensoranordnung und Verfahren zur Winkelberechnung
US20070296411A1 (en) * 2006-06-21 2007-12-27 Thomas Monica J Methods and apparatus for an analog rotational sensor
US20090206827A1 (en) * 2006-11-21 2009-08-20 Hitachi Metals, Ltd. Rotation-angle-detecting apparatus, rotating machine, and rotation-angle-detecting method
US20130179117A1 (en) * 2010-09-29 2013-07-11 Moving Magnet Technologies (Mmt) Position sensor
EP2784450A1 (de) * 2011-11-24 2014-10-01 Toyota Jidosha Kabushiki Kaisha Drehwinkelerkennungsvorrichtung und elektrische lenkvorrichtung mit der drehwinkelerkennungsvorrichtung
US20140028294A1 (en) * 2012-07-25 2014-01-30 Infineon Technologies Ag Magnetic Out-of-Axis Angle Sensing Principle
US20150022192A1 (en) * 2013-07-17 2015-01-22 Infineon Technologies Ag Discrete magnetic angle sensor device, a magnetic angle sensor arrangement, a method for generating an angle signal and a method for providing a sensor signal
DE102014109950A1 (de) * 2013-07-17 2015-01-22 Infineon Technologies Ag Winkelsensoren, Systeme und Verfahren

Also Published As

Publication number Publication date
CN113227715A (zh) 2021-08-06
US20220034644A1 (en) 2022-02-03
WO2020109383A1 (de) 2020-06-04
EP3887764A1 (de) 2021-10-06

Similar Documents

Publication Publication Date Title
EP2354769B1 (de) Winkelgeber und Verfahren zur Bestimmung eines Winkels zwischen einer Sensoranordnung und einem Magnetfeld
EP3479071B1 (de) Drehwinkelsensor, statorelement sowie rotorelement für diesen
DE10334869B3 (de) Drehwinkelsensor
EP2616778B1 (de) Verfahren und vorrichtung zur absoluten positionsbestimmung eines beweglichen körpers
DE102017111895B3 (de) Verfahren zur Bestimmung einer Winkelposition eines sich drehenden Bauteiles, insbesondere eines Elektromotors für ein Kupplungsbetätigungssystem eines Fahrzeuges
DE112011101696T5 (de) Selbstkompensierender Winkelcodierer
DE102013205901B4 (de) Schaltvorrichtung eines Fahrzeuggangräderwechselgetriebes
DE102019209474A1 (de) Skalierungskonfiguration für induktiven Positionscodierer
DE102010025170A1 (de) Vorrichtung zum Erzeugen eines Sensorsignals und Verfahren zur Bestimmung der Position eines Gebers
EP0836080B2 (de) Kontrollvorrichtung und Verfahren zur Prüfung von positionsabhängigen Abtastsignalen
DE102013221943A1 (de) Sensorsystem zur Drehzahlmessung mit einem Polrad mit linearisiertem Magnetfeld
DE102015013022A1 (de) Magnetfeldmessvorrichtung
DE102016217856B4 (de) Verfahren zur Einrichtung eines Sensorsystems mit einem Multiturnsensor
DE102018220667A1 (de) Drehwinkelsensor mit zwei Sensorsignalen und Betriebsverfahren
EP2385353A1 (de) Magnetischer Encoder, insbesondere zur Verwendung in einem Messsystem zur Messung der Absolut-Position eines gegenüber einem Referenzkörper verschiebbaren oder verdrehbaren Körpers, und Messsystem
DE102017222508B4 (de) Verfahren und Vorrichtung zur Korrektur von Messsystemabweichungen
DE102014226604A1 (de) Verfahren und Vorrichtung zum Ausgleichen einer Anordnungstoleranz zwischen zwei Sensorelementen einer Lagesensoranordnung
DE102014114135A1 (de) Verfahren und Vorrichtung zur Kalibrierung eines Winkel-Messsystems
DE102008010374A1 (de) Winkelmesseinrichtung für ein rotierendes Gebersystem
DE102018220665A1 (de) Drehwinkel-Erfassung mit 3-D-Sensor und Leiterplatten-paralleler Drehachse
DE102018004645B3 (de) Verfahren zum Reduzieren von Oberwellen und Vorrichtung zur Positionserfassung
DE112019000434B4 (de) Drehwinkelerfassungsvorrichtung
DE202016005708U1 (de) Zahnradvermessungsvorrichtung
DE102020105253A1 (de) Verfahren zum Bestimmen einer Winkelposition einer Welle bei einem vorhandenen Störfeld
DE102022122599B3 (de) Verfahren zur Erfassung einer Position eines Ziels mittels eines linearen magnetischen Positionssensors

Legal Events

Date Code Title Description
R163 Identified publications notified
R081 Change of applicant/patentee

Owner name: SIGNATA GMBH, DE

Free format text: FORMER OWNER: ZF FRIEDRICHSHAFEN AG, 88046 FRIEDRICHSHAFEN, DE