DE102018207010B3 - Brennkraftmaschine und Hybrid-Fahrzeug - Google Patents

Brennkraftmaschine und Hybrid-Fahrzeug Download PDF

Info

Publication number
DE102018207010B3
DE102018207010B3 DE102018207010.5A DE102018207010A DE102018207010B3 DE 102018207010 B3 DE102018207010 B3 DE 102018207010B3 DE 102018207010 A DE102018207010 A DE 102018207010A DE 102018207010 B3 DE102018207010 B3 DE 102018207010B3
Authority
DE
Germany
Prior art keywords
fuel
internal combustion
combustion engine
liquid
fuel tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102018207010.5A
Other languages
English (en)
Inventor
Johannes Weiss
Michael Mauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Priority to DE102018207010.5A priority Critical patent/DE102018207010B3/de
Priority to PCT/DE2019/200032 priority patent/WO2019214782A1/de
Application granted granted Critical
Publication of DE102018207010B3 publication Critical patent/DE102018207010B3/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/089Layout of the fuel vapour installation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K15/03504Fuel tanks characterised by venting means adapted to avoid loss of fuel or fuel vapour, e.g. with vapour recovery systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M33/00Other apparatus for treating combustion-air, fuel or fuel-air mixture
    • F02M33/02Other apparatus for treating combustion-air, fuel or fuel-air mixture for collecting and returning condensed fuel
    • F02M33/08Other apparatus for treating combustion-air, fuel or fuel-air mixture for collecting and returning condensed fuel returning to the fuel tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0047Layout or arrangement of systems for feeding fuel
    • F02M37/0052Details on the fuel return circuit; Arrangement of pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0076Details of the fuel feeding system related to the fuel tank
    • F02M37/0082Devices inside the fuel tank other than fuel pumps or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/02Feeding by means of suction apparatus, e.g. by air flow through carburettors
    • F02M37/025Feeding by means of a liquid fuel-driven jet pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/14Feeding by means of driven pumps the pumps being combined with other apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/18Feeding by means of driven pumps characterised by provision of main and auxiliary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/20Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines characterised by means for preventing vapour lock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K15/03504Fuel tanks characterised by venting means adapted to avoid loss of fuel or fuel vapour, e.g. with vapour recovery systems
    • B60K2015/03514Fuel tanks characterised by venting means adapted to avoid loss of fuel or fuel vapour, e.g. with vapour recovery systems with vapor recovery means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

Die Erfindung betrifft eine Brennkraftmaschine (10) mit einem Kraftstoffbehälter (18) und einer Entlüftungseinrichtung (50) für den Kraftstoffbehälter (18) die eine Abscheideeinrichtung (64) mit einer kohlenwasserstoffundurchlässigen Membran (68) aufweist, die über einen Kraftstoffbehälterrücklauf (47) mit dem Kraftstoffbehälter (18), verbunden ist. Weiter betrifft die Erfindung ein Hybrid-Fahrzeug (48), das eine solche Brennkraftmaschine (10) als erste Antriebsmaschine (42) und eine zweite Antriebsmaschine (44) aufweist, die im Betrieb kinetische Energie aus unterschiedlichen Energiequellen gewinnen.

Description

  • Die Erfindung betrifft eine Brennkraftmaschine mit einem Kraftstoffbehälter, in dem Kraftstoff, der in der Brennkraftmaschine verbrannt werden soll, gespeichert wird, wobei die Brennkraftmaschine weiter eine Entlüftungseinrichtung aufweist, mit der Kraftstoffgase aus dem Kraftstoffbehälter abgeführt werden können. Weiter betrifft die Erfindung ein Hybrid-Fahrzeug, das sowohl die Brennkraftmaschine als eine erste Antriebsmaschine als auch eine zweite Antriebsmaschine aufweist, die kinetische Energie aus einer anderen Art von Energiequelle als flüssigem Kraftstoff bezieht.
  • In einem Kraftstoffbehälter bildet sich nach der Befüllung des Kraftstoffbehälters mit flüssigem Kraftstoff durch den sich ausbildenden Sättigungsdampfdruck abhängig von der Temperatur ein Gleichgewicht aus zwei Phasen des Kraftstoffes, nämlich einerseits eine Kraftstoff-Flüssigphase und andererseits eine Kraftstoff-Gasphase aus. In der Kraftstoff-Flüssigphase liegt der Kraftstoff im flüssigen Aggregatzustand vor, während sich oberhalb der Kraftstoff-Flüssigphase in der Kraftstoff-Gasphase verdampfter Kraftstoff ansammelt.
  • Durch die Entstehung der Kraftstoff-Gasphase kann Kraftstoff, insbesondere wenn sich der Sättigungsdampfdruck durch eine sich erhöhende Temperatur in dem Kraftstoffbehälter erhöht, aus dem Kraftstoffbehälter austreten. Eine solche Emission von Kraftstoff in die Umgebung ist jedoch nicht gewünscht.
  • Um dies zu verhindern, werden gewöhnlich Entlüftungseinrichtungen vorgesehen, die Kraftstoffgase aus dem Kraftstoffbehälter abführen können, um zu verhindern, dass diese auf unerwünschte Weise in die Umgebung emittiert werden. Der typische Aufbau einer Entlüftungseinrichtung in einem Fahrzeug, beispielsweise in einem Ottomotor, sieht ein Aktivkohlefiltersystem vor, das durch die ausströmenden Kraftstoffgase aus dem Kraftstoffbehälter durchspült wird. Das Aktivkohlefiltersystem bindet die unerwünschten Emissionen, die insbesondere Kohlenwasserstoffe (HC) oder auch flüchtige organische Komponenten (VOC) aufweist, an einen Aktivkohlefilter. Um den Aktivkohlefilter rückspülen zu können, wird im Betrieb der Brennkraftmaschine über eine Spülleitung und über ein kennfeldgesteuertes Dosierventil der Aktivkohlefilter in umgekehrter Durchströmungsrichtung wieder entleert. Die Entleerung erfolgt dabei über die Brennkraftmaschine, das heißt über den Motor eines Fahrzeuges.
  • Es ist beispielsweise aus der DE 10 2008 045 010 A1 bekannt, mehrere solcher Aktivkohlefilter zu verwenden.
  • Ein solches Aktivkohlefiltersystem stellt jedoch keine ausreichende Rückführung bzw. Rückkondensierung von Kraftstoffgasen wie HC oder VOC in den Kraftstoffbehälter zurück dar. Speziell durch die selektive Betriebsart von Hybridfahrzeugen wird die Brennkraftmaschine lange Zeit nicht genutzt und die entstehenden Kraftstoffgasemissionen können nicht sicher entsorgt werden. Weiter führt der Anfall von großen Mengen an Kraftstoffgasemissionen zu Regelproblemen bei den immer kleiner werdenden Brennkraftmaschinen. Diese werden gestört durch die undefinierten Kohlenwasserstoffanteile in der Ansaugluft und können dann selbst wiederum die hohen Anforderungen an ihre eigentlichen Abgasemissionen nicht mehr einhalten.
  • Das Dokument US 2012/0085325 A1 offenbart ein Kraftstoffdampfrückgewinnungssystem mit einem Kraftstofftank, einem Adsorberbehälter und einem Separator auf, der fähig ist, Kraftstoffdampf von Luft zu trennen. Der Separator hat ein Gehäuse und eine Separationsmembran, die einen Innenraum des Gehäuses in eine Aufnahmekammer und eine Durchtrittskammer teilt und die so konfiguriert ist, dass der Kraftstoffdampf durch sie hindurchtreten kann.
  • Die Druckschrift US 2003/0121830 A1 offenbart ein Verfahren und eine Vorrichtung zum Behandeln von Benzindampf . Das Verfahren und die Vorrichtung umfassen eine Trennvorrichtung zum Einführen des flüssigen Benzins in einen Kraftstofftank und dessen Auftrennung in eine Komponente mit niedrigem Siedepunkt und eine Komponente mit hohem Siedepunkt. Das Verfahren und die Vorrichtung umfassen weiter eine Gas-Flüssigkeits-Kontaktvorrichtung zum Einbringen des Benzindampfes in den Kraftstofftank.
  • In der Druckschrift US 2011/0120425 A1 ist eine Vorrichtung zum Verarbeiten von verdampften Kraftstoff beschrieben, welche ein Elektromagnetschaltventil umfasst, das an einem Gasrohr mit niedriger Kraftstoffkonzentration vorgesehen, welches Gas von einer Trennfilmeinheit zu einem Kanister führt. Eine Rückflussleitung, die durch das Elektromagnetschaltventil von der Niederkonzentrationsgasleitung abgezweigt wird, geht in eine mit der Trennfilmeinheit gekoppelte Mittelkonzentrationsgasleitung über.
  • In dem Dokument US 2011/0146491 A1 ist ein Trennmembranmodul offenbart zum Abtrennen einer spezifischen Komponente aus einer Mischung, die eine Vielzahl von Komponenten enthält. Das Modul umfasst eine Vielzahl von Trennstufen, die jeweils eine Vielzahl von Hohlfasermembranen umfassen, die parallel zueinander angeordnet sind. Die Trennstufen sind über Verbindungsabschnitte in Reihe geschaltet, die den Durchgang der Mischung ermöglichen. Mindestens ein Parameter, der sich auf die Trennung durch die Hohlfasermembran oder Membranen in jeder Trennstufe bezieht, wird bestimmt, um eine effektive Trennung über die Trennstufen hinweg bereitzustellen.
  • Aufgabe der Erfindung ist es, eine verbesserte Brennkraftmaschine mit einer Entlüftungseinrichtung zum Abführen von Kraftstoffgasen aus dem Kraftstoffbehälter bereitzustellen, die eine sichere Entsorgung von aus dem Kraftstoffbehälter emittierten Kraftstoffgasen sicherstellt.
  • Diese Aufgabe wird mit einer Brennkraftmaschine mit der Merkmalskombination des Anspruches 1 gelöst.
  • Ein Hybrid-Fahrzeug, das eine solche Brennkraftmaschine aufweist, ist Gegenstand des nebengeordneten Anspruches 7.
  • Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
  • Eine Brennkraftmaschine weist einen Kraftstoffbehälter zum Speichern von in der Brennkraftmaschine zu verbrennendem Kraftstoff auf, wobei der Kraftstoff in dem Kraftstoffbehälter derart gespeichert ist, dass sich eine Kraftstoff-Flüssigphase und eine Kraftstoff-Gasphase ausbilden. Weiter weist die Brennkraftmaschine ein Kraftstoffeinspritzsystem zum Beaufschlagen des Kraftstoffes aus dem Kraftstoffbehälter mit Hochdruck und zum Einspritzen des druckbeaufschlagten Kraftstoffes in Brennkammern der Brennkraftmaschine auf. Zusätzlich ist ein Zulauf zum Zuführen von Kraftstoff aus der Kraftstoff-Flüssigphase des Kraftstoffbehälters zu dem Kraftstoff- feinspritzsystem vorgesehen. Weiter weist die Brennkraftmaschine eine Entlüftungseinrichtung zum Abführen von Kraftstoffgasen aus der Kraftstoff-Gasphase des Kraftstoffbehälters auf. Die Entlüftungseinrichtung weist ein in dem Zulauf angeordnetes Ansaugelement zum Ansaugen von Kraftstoffgasen aus der Kraftstoff-Gasphase in den Zulauf, der flüssigen Kraftstoff aus der Kraftstoff-Flüssigphase führt, auf, sodass sich ein Gemisch aus flüssigem und gasförmigem Kraftstoff bildet. Weiter weist die Entlüftungseinrichtung eine Abscheideeinrichtung mit einer kohlenwasserstoffundurchlässigen Membran und eine Fluidverbindung zwischen dem Kraftstoffeinspritzsystem und der Abscheideeinrichtung zum Zuführen des Gemischs aus flüssigem und gasförmigem Kraftstoff zu der Abscheideeinrichtung auf. Außerdem weist die Entlüftungseinheit ein Entgasungselement zum Abtrennen eines weitestgehend gasfreien Kraftstoffes von dem Gemisch aus flüssigem und gasförmigem Kraftstoff auf, das in einer Kraftstoffhochdruckpumpe des Kraftstoffeinspritzsystems und zwischen der Fluidverbindung und dem Zulauf angeordnet ist. Zusätzlich ist ein Kraftstoffbehälterrücklauf zum Rückführen von flüssigem Kraftstoff aus der Abscheideeinrichtung in den Kraftstoffbehälter vorgesehen.
  • Kernelement der Entlüftungseinrichtung ist die Abscheideeinrichtung, die eine kohlenwasserstoffundurchlässige Membran aufweist, welche selektiv für Kohlenwasserstoffe (HC) und flüchtige organische Komponenten (VOC) ist. Diese Abscheideeinrichtung scheidet aus einem Kraftstoffstrom, der aus flüssigem Kraftstoff und beigemengten Kraftstoffgasen zusammengesetzt ist, die in den Kraftstoffgasen vorhandenen Kohlenwasserstoffgase bzw. flüchtigen organischen Komponenten ab. Über den Kraftstoffbehälterrücklauf wird aus der Abscheideeinrichtung der flüssige Kraftstoff und die durch die Membran zurückgehaltenen Kohlenwasserstoffemissionen bzw. Emissionen von flüchtigen organischen Komponenten in flüssiger Form wieder dem Kraftstoffbehälter zugeführt.
  • Damit kann eine aktive und unabhängige Rückführung der VOC/HC-Emissionen in den Kraftstoffbehälter zurück erfolgen, wobei größtenteils bereits vorhandene Komponenten des Kraft- stoffeinspritzsystems verwendet werden können und keine aktiven Funktionsgruppen wie beispielsweise Verdichtereinheiten mit Rückkühlung zur Kondensation angeschafft werden müssen.
  • Die Kraftstoffhochdruckpumpe ist durch das Entgasungselement mit einem Funktionselement zur Entgasung des in dem Zulauf geführten Kraftstoffes ausgestattet, um möglichst gasfreien bzw. blasenfreien Kraftstoff in das sich anschließende Hochdrucksystem zu fördern.
  • Vorzugsweise weist das Ansaugelement eine in der Kraftstoff-Flüssigphase angeordnete Vorförderpumpe des Kraftstoffeinspritzsystems und eine in der Kraftstoff-Gasphase angeordnete Venturidüse auf. Eine solche Vorförderpumpe ist beispielsweise in klassischen Benzin-Kraftstoffeinspritzsystemen ohnehin in dem Kraftstoffbehälter vorhanden und fördert den flüssigen Kraftstoff aus der Kraftstoff-Flüssigphase zu nachgeschalteten Elementen des Kraftstoffeinspritzsystems wie beispielsweise zu einer Kraftstoffhochdruckpumpe. Diese Vorförderpumpe wird nun um ein Ansaugelement ergänzt, welches aus der Kraftstoff-Gasphase, die sich über der Kraftstoff-Flüssigphase bildet, eine gewisse Menge an Kraftstoffgasen einsaugt. Die eingesaugte Menge an Kraftstoffgasen sollte möglichst hoch angesetzt werden, muss jedoch so gewählt sein, dass sie für die nachgeschalteten Komponenten verträglich ist.
  • Daher weist das Ansaugelement vorteilhaft ein Regelventil zum Regeln einer Gasmenge des angesaugten Kraftstoffgases aus der Kraftstoff-Flüssigphase auf. Dieses Regelventil kann dazu beispielsweise als Schaltventil ausgebildet sein. Dadurch kann die Menge an Kraftstoffgasen, die über das Ansaugelement in den flüssigen Kraftstoff eingesaugt wird, genauer bzw. bedarfsgerecht geregelt werden.
  • Um einen unabhängigen Betrieb der Entlüftungseinrichtung von einem Betrieb der Brennkraftmaschine bzw. der Kraftstoffhochdruckpumpe zu erzielen, ist vorteilhaft ein Shut-off-Ventil zwischen der Kraftstoffhochdruckpumpe und dem Entgasungselement angeordnet. Ist dieses Shut-off-Ventil geschlossen, werden über die Vorförderpumpe weiterhin sowohl flüssiger Kraftstoff als auch Kraftstoffgase aus dem Kraftstoffbehälter in der Entlüftungseinrichtung transportiert, um so eine unabhängige Entlüftung des Kraftstoffbehälters zu realisieren. Im Betrieb der Kraftstoffhochdruckpumpe und bei geöffnetem Shut-off-Ventil unterstützt ein durch die Kraftstoffhochdruckpumpe erzeugter Unterdruck das Ansaugen des Kraftstoffgases aus der Kraftstoff-Gasphase.
  • Vorteilhaft unterteilt die kohlenwasserstoffundurchlässige Membran die Abscheideeinrichtung in ein erstes Volumen und in ein zweites Volumen, wobei die Fluidverbindung in das erste Volumen mündet, und wobei der Kraftstoffbehälterrücklauf das erste Volumen und die Kraftstoff-Flüssigphase fluidisch miteinander verbindet. Die Kraftstoff-Hochdruckpumpe ist demgemäß mit einem Anschluss für die Fluidverbindung zu der Abscheideeinrichtung in das erste Volumen hin ausgestattet, mit der der Kraftstoffstrom, welche die VOC- bzw. HC-Gase enthält, der Abscheideeinrichtung zugeführt wird.
  • Alternativ ist es möglich, dass die Fluidverbindung direkt von dem Zulauf aus in das erste Volumen der Abscheideeinrichtung mündet.
  • Vorzugsweise weist die Entlüftungseinrichtung zusätzlich ein Aktivkohlefiltersystem zum Absorbieren von Kraftstoffmolekülen auf.
  • Das Aktivkohlefiltersystem ist vorzugsweise fluidisch mit dem zweiten Volumen der Abscheideeinrichtung verbunden.
  • Alternativ ist jedoch auch denkbar, das Aktivkohlefiltersystem fluidisch mit der Kraftstoff-Gasphase zu verbinden. Weiter alternativ kann das Aktivkohlefiltersystem jedoch sowohl mit dem zweiten Volumen als auch mit der Kraftstoff-Gasphase in dem Kraftstoffbehälter fluidisch verbunden sein.
  • Die Einleitung von Kraftstoffgasen, welche durch die kohlenwasserstoffundurchlässige Membran aus dem ersten Volumen in das zweite Volumen eingetreten sind, und die daher eine deutlich reduzierte Menge an VOC-/HC-Gasen aufweisen, werden zweckmäßigerweise in das Aktivkohlefiltersystem, und zwar direkt in einen Aktivkohlefilter selbst, eingeleitet, um dort eine weitere Anreicherung an VOC-/HC-Gasen zu erreichen.
  • Der beschriebene Aufbau der Brennkraftmaschine stellt daher eine modulare Erweiterung der schon heute genutzten Systeme zur Entlüftung des Kraftstoffbehälters über einen Aktivkohlefilter bei Fahrzeugen dar. Damit kann eine aktive und unabhängige Rückführung der VOC-/HC-Emissionen in den flüssigen Kraftstoff in dem Kraftstoffbehälter erfolgen, um somit den ansteigenden Anforderungen von beispielsweise Hybrid-Fahrzeugen gerecht zu werden. Der Systemaufbau nutzt größtenteils die schon heute vorhandenen Komponenten und es müssen keine aktiven Funktionsgruppen wie beispielsweise Verdichtereinheiten mit Rückkühlung zur Kondensation angeschafft werden.
  • Ein Hybrid-Fahrzeug weist eine erste Antriebsmaschine, die im Betrieb kinetische Energie aus einer ersten Energiequelle gewinnt, und eine zweite Antriebsmaschine auf, die im Betrieb kinetische Energie aus einer zweiten Energiequelle gewinnt. Die erste und die zweite Energiequelle unterscheiden sich in ihrer Art. Die erste Antriebsmaschine ist dabei eine oben beschriebene Brennkraftmaschine.
  • Die zweite Antriebsmaschine kann beispielsweise ein Elektromotor sein. Durch die verbesserte Entlüftung des Kraftstoffbehälters der Brennkraftmaschine ist ein Stillstand der Brennkraftmaschine über einen langen Zeitraum nicht mehr kritisch, und die entstehenden VOC/HC-Emissionen in dem Kraftstoffbehälter können sicher entsorgt werden. Zusätzlich werden bei dem Hybrid-Fahrzeug nur noch geringe Mengen an VOC-/HC-Emissionen über die Brennkraftmaschine entsorgt, sodass diese in weniger hoher Konzentration in der Ansaugluft der Brennkraftmaschine vorhanden sind. Dadurch können die Brennkraftmaschinen eines Hybrid-Fahrzeuges die hohen Anforderungen an ihre Abgasemissionen einhalten.
  • Eine vorteilhafte Ausgestaltung der Erfindung wird nachfolgend anhand der beigefügten Figur näher erläutert.
  • Die Figur zeigt eine schematische Übersichtsdarstellung einer Brennkraftmaschine 10, die als klassische Brennkraftmaschine 10 aufgebaut ist, wie sie beispielsweise zur Verbrennung von Ottokraftstoffen eingesetzt wird. Die Brennkraftmaschine 10 umfasst dabei ein Kraftstoffeinspritzsystem 12, mit dem Brennkammern 14 der Brennkraftmaschine 10 Kraftstoff 16 aus einem Kraftstoffbehälter 18 zur Verbrennung zugeführt wird.
  • Der Kraftstoff 16 ist in dem Kraftstoffbehälter 18 gespeichert und bildet in dem Kraftstoffbehälter 18 eine Kraftstoff-Flüssigphase 20 und eine Kraftstoff-Gasphase 22 aus, die als Gaspolster oberhalb der Kraftstoff-Flüssigphase 20 angeordnet ist. Eine Oberfläche der Kraftstoff-Flüssigphase 20 bildet dabei eine Grenzfläche 24 zwischen der Kraftstoff-Flüssigphase 20 und der Kraftstoff-Gasphase 22. Je nach Temperatur, die in dem Kraftstoffbehälter 18 herrscht, bildet sich zwischen den beiden Phasen 20, 22 ein Gleichgewicht aus, in dem eine der Temperatur entsprechende Menge an Kraftstoffmolekülen als Kraftstoffgas 25 aus der Kraftstoff-Flüssigphase 20 in die Kraftstoff-Gasphase 22 übergeht.
  • Der flüssige Kraftstoff 16 aus der Kraftstoff-Flüssigphase 20 wird über eine Vorförderpumpe 26 und einen Filter 28 in einen Zulauf 30 gefördert, der den flüssigen Kraftstoff 16 zu einer Kraftstoffhochdruckpumpe 32 transportiert. Dort wird im Betrieb der Kraftstoff 16 mit Hochdruck beaufschlagt und zu einem sogenannten „Rail“ 34 geführt, wo der druckbeaufschlagte Kraftstoff 16 gespeichert wird. Über Injektoren 36 wird der druckbeaufschlagte Kraftstoff 16 dann in die Brennkammern 14 der Brennkraftmaschine 10 eingespritzt, um dort verbrannt zu werden. An die Brennkammern 14 schließt sich eine Abgasnachbehandlungseinrichtung 38 an, der über einen Abgaskrümmer 40 die durch die Verbrennung des Kraftstoffes 16 in den Brennkammern 14 entstehenden Abgase zugeführt werden.
  • In der vorliegenden Ausführungsform ist neben der Brennkraftmaschine 10 als erste Antriebsmaschine 42 noch eine zweite Antriebsmaschine 44 vorgesehen, die als Elektromotor 46 ausgebildet ist. Im Betrieb gewinnt die Brennkraftmaschine 10 aus dem Kraftstoff 16 kinetische Energie, die zuvor in Form von chemischer Energie in dem Kraftstoff 16 gespeichert war. Der Elektromotor 46 gewinnt kinetische Energie aus einer Batterie, in der die Energie in Form von elektrischer Energie gespeichert ist. Die beiden Antriebsmaschinen 42, 44 gewinnen die kinetische Energie daher aus Energiequellen, die sich in ihrer Art unterscheiden.
  • Insgesamt zeigt die Figur daher einen Antriebsbereich eines Hybrid-Fahrzeuges 48.
  • Das Hybrid-Fahrzeug 48 kann in einem Modus betrieben werden, in dem die Brennkraftmaschine 10 nicht aktiv ist.
  • In diesem Fall wird das Hybrid-Fahrzeug 48 lediglich durch den Elektromotor 46 angetrieben. Eine Verbrennung von Kraftstoff 16 in der Brennkraftmaschine 10 erfolgt nicht.
  • Der in dem Kraftstoffbehälter 18 gespeicherte Kraftstoff 16 liegt wie bereits beschrieben sowohl in flüssiger Form als auch in gasförmiger Form vor. Wie viel Kraftstoff 16 dabei als Kraftstoffgas 25 vorliegt, wird durch den Sättigungsdampfdruck des Zweiphasensystems im Kraftstoffbehälter 18 bestimmt. Dieser Sättigungsdampfdruck ist temperaturabhängig. Je nach Temperatur entstehen somit mehr oder weniger Kraftstoffgase 25. Die Menge der Kraftstoffgase 25 in dem Kraftstoffbehälter 18 kann je nach Sättigungsdampfdruck einen kritischen Bereich überschreiten, sodass die Gefahr besteht, dass die Kraftstoffgase 25 in unerwünschter Weise in eine Umgebung 49 austreten.
  • Daher weist die Brennkraftmaschine 10 eine Entlüftungseinrichtung 50 auf, die dies verhindern soll. Mit der Entlüftungseinrichtung 50 werden überflüssige Kraftstoffgase 16 aus dem Kraftstoffbehälter 18 abgeführt und sicher entsorgt. Die Entlüftungseinrichtung 50 weist ein Ansaugelement 52 auf, mit dem die Kraftstoffgase 25 aus der Kraftstoff-Gasphase 22 in den Zulauf 30 eingesaugt werden, um sich dort mit flüssigem Kraftstoff 16, der über die Vorförderpumpe 26 aus der Kraftstoff-Flüssigphase 20 in den Zulauf 30 gefördert worden ist, zu einem Gemisch 54 aus flüssigem und gasförmigem Kraftstoff 16 zu vermischen. Das Ansaugelement 52 wird dabei einerseits gebildet aus der ohnehin in dem Kraftstofffeinspritzsystem 12 vorhandenen Vorförderpumpe 26 und andererseits aus einer zusätzlich in dem Zulauf 30 untergebrachten Venturidüse 56, wobei sich die Vorförderpumpe 26 in der Kraftstoff-Flüssigphase 20 und die Venturidüse 56 in der Kraftstoff-Gasphase 22 befindet.
  • Über den Zulauf 30 wird dieses Gemisch 54 dann zu einem Hochdrucksystem 58 des Kraftstoffeinspritzsystems 12, welches gebildet ist durch die Kraftstoffhochdruckpumpe 32, das Rail 34 und die Injektoren 36, transportiert.
  • Um möglichst effizient überflüssige Kraftstoffgase 25 aus dem Kraftstoffbehälter 18 abführen zu können, sollte das Ansaugelement 52 eine möglichst hoch angesetzte Gasmenge einsaugen. Diese Gasmenge muss jedoch so gewählt sein, dass sie für die nachgeschalteten Komponenten des Hochdrucksystems 58 verträglich ist.
  • Daher ist in dem Zulauf 30 zusätzlich ein Regelventil 60 angeordnet, das beispielsweise als Schaltventil ausgeführt sein kann, und mit dem die eingesaugte Gasmenge genauer bzw. bedarfsgerecht geregelt werden kann.
  • Der Zulauf 30, in dem das Gemisch 54 geführt ist, führt in der vorliegenden Ausführungsform direkt in die Kraftstoffhochdruckpumpe 32 hinein. Die Kraftstoffhochdruckpumpe 32 weist eine Fluidverbindung 62 zu einer Abscheideeinrichtung 64 auf. Über diese Fluidverbindung 62 kann das Gemisch 54 aus flüssigem und gasförmigem Kraftstoff 16 der Abscheideeinrichtung 64 zugeführt werden.
  • Zwischengeschaltet zwischen dem Zulauf 30 zu der Kraftstoffhochdruckpumpe 32 und der Fluidverbindung 62 von der Kraftstoffhochdruckpumpe 32 zu der Abscheideeinrichtung 64 ist ein Entgasungselement 66, über das das Gemisch 54 in zwei Teile aufgeteilt werden kann, nämlich einen Teil, der weitestgehend blasen- bzw. gasfreien Kraftstoff 16 aufweist, und der einem nicht gezeigten Druckraum der Kraftstoffhochdruckpumpe 32 zugeführt wird, und andererseits ein Gemisch 54 aus flüssigem und gasförmigem Kraftstoff, das über die Fluidverbindung 62 der Abscheideeinrichtung 64 zugeführt wird. So kann sichergestellt werden, dass die Elemente des Hochdrucksystems 58 in ihrem Betrieb nicht durch ein zweiphasiges Gemisch 54 aus flüssigem und gasförmigem Kraftstoff 16 gestört werden, was beispielsweise zu Kavitation in dem Hochdrucksystem 58 führen könnte.
  • In der in der Figur gezeigten Ausführungsform ist das Entgasungselement 66 direkt in der Kraftstoffhochdruckpumpe 32 angeordnet, und auch der Zulauf 30 mündet zunächst in die Kraftstoffhochdruckpumpe 32, wobei erst von dort die Fluidverbindung 62 zu der Abscheideeinrichtung 64 abzweigt.
  • Es gibt eine zweite mögliche Ausführungsform, die nicht gezeigt ist, bei der die Verbindung des Zulaufs 30 zu der Fluidverbindung 62 und somit zu der Abscheideeinrichtung 64 vor der Kraftstoffhochdruckpumpe 32 angeordnet sein kann.
  • In der Abscheideeinrichtung 64 ist eine kohlenwasserstoffundurchlässige Membran 68 angeordnet, die die Abscheideeinrichtung 64 in ein erstes Volumen 70 und ein zweites Volumen 72 unterteilt. Die Membran 68 ist insbesondere selektiv für flüchtige organische Komponenten (VOC) und Kohlenwasserstoffe (HC), sodass diese nicht durch die Membran 68 hindurchtreten können, sondern in dem ersten Volumen 70 verbleiben. Lediglich von diesen schädlichen Molekülen befreite Gase können durch die Membran 68 hindurchtreten und in das zweite Volumen 72 eintreten. Das über die Fluidverbindung 62 in das erste Volumen 70 eintretende Gemisch 54 wird demnach getrennt in Kraftstoffgase 25, die durch die Membran 68 in das zweite Volumen 72 hindurchtreten, und eine Kraftstoff-Flüssigphase 20, die einerseits weiterhin den zugeführten flüssigen Kraftstoff 16 und andererseits verflüssigte Kohlenwasserstoffe wie ursprünglich gasförmige VOC und HC enthält. Von der Abscheideeinrichtung 64 führt ein Kraftstoffbehälterrücklauf 74 zurück in den Kraftstoffbehälter 18, und zwar insbesondere in die Kraftstoff-Flüssigphase 20.
  • Somit ist es möglich, einen Großteil der unerwünschten VOC-/HC-Emissionen zu kondensieren und wieder in den Kraftstoffbehälter 18 zurückzuführen.
  • Die Entlüftungseinrichtung 50 weist weiterhin, wie dies bereits aus Standard-Brennkraftmaschinen 10 bekannt ist, ein Aktivkohlefiltersystem 76 auf, durch das die abgereicherten Kraftstoffgase 25 aus dem zweiten Volumen 72 der Abscheideeinrichtung 64 geleitet werden. Das Aktivkohlefiltersystem 76 weist einen Aktivkohlefilter auf, in dem Kraftstoffmoleküle absorbiert werden. Erst nach Durchlaufen durch das Aktivkohlefiltersystem 76 gelangen die vollkommen abgereicherten Kraftstoffgase 25 in die Umgebung 49.
  • Das Aktivkohlefiltersystem 76 ist in der vorliegenden Ausführungsform fluidisch sowohl mit dem zweiten Volumen 72 der Abscheideeinrichtung 64 als auch mit der Kraftstoff-Gasphase 22 in dem Kraftstoffbehälter 18 verbunden. Es ist jedoch auch denkbar, das zweite Volumen 72 der Abscheideeinrichtung 64 ebenfalls statt direkt mit dem Aktivkohlefiltersystem 67 mit der Kraftstoff-Gasphase 22 in dem Kraftstoffbehälter 18 zu verbinden.
  • In der Figur ist weiter ein Rückspülsystem 80 gezeigt, mit dem das Aktivkohlefiltersystem 76 gereinigt werden kann. Dazu ist das Aktivkohlefiltersystem 76 über eine Rückspülleitung 82 mit einem Luftansaugungsstrang 84, beispielsweise bestehend aus einem Turbolader 86 und einem Saugrohr 88, verbunden. Wird ein entsprechendes Regelventil 90 in der Rückspülleitung 82 geöffnet, wird Luft aus der Umgebung 49 durch das Aktivkohlefiltersystem 76 gesaugt, die in dem Aktivkohlefiltersystem 76 absorbierten Kraftstoffmoleküle werden freigesetzt, über das Luftansaugsystem 84 in die Brennkraftmaschine 10 eingesaugt und dort verbrannt.
  • Da das in der Figur gezeigte Fahrzeug ein Hybrid-Fahrzeug 48 ist, wird die Brennkraftmaschine 10 nicht permanent in Betrieb gesetzt, sodass die Rückführung und Entsorgung der unerwünschten VOC-/HC-Emissionen nicht über die Brennkraftmaschine 10 erfolgen kann. Deshalb ist es wichtig, dass die Entlüftungseinrichtung 50 unabhängig von der Brennkraftmaschine 10 arbeiten kann. Dies wird über die Anordnung des Ansaugelementes 52 in dem Kraftstoffbehälter 18 und die Abscheideeinrichtung 64 realisiert. Diese kann unabhängig von der Brennkraftmaschine 10 arbeiten. Arbeitet die Brennkraftmaschine 10 nicht, wird ein entsprechendes Shut-off-Ventil 92 vor der Kraftstoffhochdruckpumpe 32 geschlossen, wobei durch den Betrieb des Ansaugelementes 52 weiterhin ein Reinigungskreislauf wie oben beschrieben durchgeführt wird. So kann auch während des reinen Betriebs des Elektromotors 46 eine sichere Entsorgung unerwünschter Kraftstoffgasemissionen gewährleistet werden.

Claims (7)

  1. Brennkraftmaschine (10), aufweisend: - einen Kraftstoffbehälter (18) zum Speichern von in der Brennkraftmaschine (10) zu verbrennendem Kraftstoff (16), wobei der Kraftstoff (16) in dem Kraftstoffbehälter (18) derart gespeichert ist, dass sich eine Kraftstoff-Flüssigphase (20) und eine Kraftstoff-Gasphase (22) ausbilden; - ein Kraftstoffeinspritzsystem (12) zum Beaufschlagen des Kraftstoffes (16) aus dem Kraftstoffbehälter (18) mit Hochdruck und zum Einspritzen des druckbeaufschlagten Kraftstoffes (16) in Brennkammern (14) der Brennkraftmaschine (10); - einen Zulauf (30) zum Zuführen von Kraftstoff (16) aus der Kraftstoff-Flüssigphase (20) des Kraftstoffbehälters (18) zu dem Kraftstoffeinspritzsystem (12); - eine Entlüftungseinrichtung (50) zum Abführen von Kraftstoffgasen (25) aus der Kraftstoff-Gasphase (22) des Kraftstoffbehälters (18); wobei die Entlüftungseinrichtung (50) aufweist: - ein in dem Zulauf (30) angeordnetes Ansaugelement (52) zum Ansaugen von Kraftstoffgasen (25) aus der Kraftstoff-Gasphase (22) in den Zulauf (30), der flüssigen Kraftstoff (16) aus der Kraftstoff-Flüssigphase (20) führt, sodass sich ein Gemisch (54) aus flüssigem und gasförmigem Kraftstoff (16, 25) bildet; - eine Abscheideeinrichtung (64) mit einer kohlenwasserstoffundurchlässigen Membran (68); - eine Fluidverbindung (62) zwischen dem Kraftstoffeinspritzsystem (12) und der Abscheideeinrichtung (64) zum Zuführen des Gemischs aus flüssigem und gasförmigem Kraftstoff (16, 25) zu der Abscheideeinrichtung (64); - ein Entgasungselement (66) zum Abtrennen eines weitestgehend gasfreien Kraftstoffes (16) von dem Gemisch (54) aus flüssigem und gasförmigem Kraftstoff (16, 25), wobei das Entgasungselement (66) in einer Kraftstoffhochdruckpumpe (32) des Kraftstoffeinspritzsystems (12) und zwischen der Fluidverbindung (62) und dem Zulauf (30) angeordnet ist; und - einen Kraftstoffbehälterrücklauf (74) zum Rückführen von flüssigem Kraftstoff (16) aus der Abscheideeinrichtung (64) in den Kraftstoffbehälter (18).
  2. Brennkraftmaschine (10) nach Anspruch 1, dadurch gekennzeichnet, dass das Ansaugelement (52) eine in der Kraftstoff-Flüssigphase (20) angeordnete Vorförderpumpe (26) des Kraftstoffeinspritzsystems (12) und eine in der Kraftstoff-Gasphase (22) angeordnete Venturidüse (56) aufweist.
  3. Brennkraftmaschine (10) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Ansaugelement (52) ein Regelventil (60) zum Regeln einer Gasmenge des angesaugten Kraftstoffgases (25) aus der Kraftstoff-Gasphase (22) aufweist.
  4. Brennkraftmaschine (10) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die kohlenwasserstoffundurchlässige Membran (68) die Abscheideeinrichtung(64) in ein erstes Volumen (70) und in ein zweites Volumen (72) unterteilt, wobei die Fluidverbindung (62) in das erste Volumen (70) mündet, und wobei der Kraftstoffbehälterrücklauf (74) das erste Volumen (70) und die Kraftstoff-Flüssigphase (20) fluidisch miteinander verbindet.
  5. Brennkraftmaschine (10) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Entlüftungseinrichtung (50) ein Aktivkohlefiltersystem (76) zum Absorbieren von Kraftstoffmolekülen aufweist.
  6. Brennkraftmaschine (10) nach Anspruch 5 in Verbindung mit Anspruch 4, dadurch gekennzeichnet, dass das Aktivkohlefiltersystem (76) fluidisch mit dem zweiten Volumen (72) und/oder mit der Kraftstoff-Gasphase (22) verbunden ist.
  7. Hybrid-Fahrzeug (48), aufweisend: - eine erste Antriebsmaschine (42), die im Betrieb kinetische Energie aus einer ersten Energiequelle gewinnt; - eine zweite Antriebmaschine (44), die im Betrieb kinetische Energie aus einer zweiten Energiequelle gewinnt, wobei die erste und die zweite Energiequelle sich in ihrer Art unterscheiden, wobei die erste Antriebsmaschine (42) eine Brennkraftmaschine (10) nach einem der voranstehenden Ansprüche ist.
DE102018207010.5A 2018-05-07 2018-05-07 Brennkraftmaschine und Hybrid-Fahrzeug Active DE102018207010B3 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102018207010.5A DE102018207010B3 (de) 2018-05-07 2018-05-07 Brennkraftmaschine und Hybrid-Fahrzeug
PCT/DE2019/200032 WO2019214782A1 (de) 2018-05-07 2019-04-18 Brennkraftmaschine und hybrid-fahrzeug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018207010.5A DE102018207010B3 (de) 2018-05-07 2018-05-07 Brennkraftmaschine und Hybrid-Fahrzeug

Publications (1)

Publication Number Publication Date
DE102018207010B3 true DE102018207010B3 (de) 2019-07-04

Family

ID=66476340

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018207010.5A Active DE102018207010B3 (de) 2018-05-07 2018-05-07 Brennkraftmaschine und Hybrid-Fahrzeug

Country Status (2)

Country Link
DE (1) DE102018207010B3 (de)
WO (1) WO2019214782A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210062772A1 (en) * 2019-09-03 2021-03-04 Pratt & Whitney Canada Corp. Common-rail fuel system with ejector pump and method of use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030121830A1 (en) 2001-12-27 2003-07-03 Kojiro Kuroyanagi Method for treating gasoline vapor and apparatus therefor
DE102008045010A1 (de) 2008-08-29 2010-03-04 Bayerische Motoren Werke Aktiengesellschaft Entlüftungseinrichtung für einen Kraftstoffbehälter eines Kraftfahrzeugs
US20110120425A1 (en) 2009-11-24 2011-05-26 Aisan Kogyo Kabushiki Kaisha Evaporated Fuel Processing Device
US20110146491A1 (en) 2009-12-02 2011-06-23 Aisan Kogyo Kabushiki Kaisha Separation membrane module and fuel vapor processing apparatus equipped with the same
US20120085325A1 (en) 2010-10-12 2012-04-12 Aisan Kogyo Kabushiki Kaisha Fuel vapor recovery system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5957113A (en) * 1997-03-31 1999-09-28 Nok Corporation Fuel vapor recovery apparatus
JPH1193784A (ja) * 1997-09-18 1999-04-06 Nok Corp 燃料蒸気回収装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030121830A1 (en) 2001-12-27 2003-07-03 Kojiro Kuroyanagi Method for treating gasoline vapor and apparatus therefor
DE102008045010A1 (de) 2008-08-29 2010-03-04 Bayerische Motoren Werke Aktiengesellschaft Entlüftungseinrichtung für einen Kraftstoffbehälter eines Kraftfahrzeugs
US20110120425A1 (en) 2009-11-24 2011-05-26 Aisan Kogyo Kabushiki Kaisha Evaporated Fuel Processing Device
US20110146491A1 (en) 2009-12-02 2011-06-23 Aisan Kogyo Kabushiki Kaisha Separation membrane module and fuel vapor processing apparatus equipped with the same
US20120085325A1 (en) 2010-10-12 2012-04-12 Aisan Kogyo Kabushiki Kaisha Fuel vapor recovery system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210062772A1 (en) * 2019-09-03 2021-03-04 Pratt & Whitney Canada Corp. Common-rail fuel system with ejector pump and method of use thereof
US11092126B2 (en) * 2019-09-03 2021-08-17 Pratt & Whitney Canada Corp. Common-rail fuel system with ejector pump and method of use thereof

Also Published As

Publication number Publication date
WO2019214782A1 (de) 2019-11-14

Similar Documents

Publication Publication Date Title
DE102007017547B4 (de) Kraftstoffdampf-Verarbeitungssystem
DE102012201208B4 (de) Verfahren und System zur Kraftstoffdampfsteuerung
DE102013017853B4 (de) Verfahren zur Ausführung mit einem Dual-Fuel-Kraftstoffeinspritzsystem
DE10317583B4 (de) Vorrichtung und Verfahren zur Behandlung von verdampftem Kraftstoff für einen Verbrennungsmotor
DE2639837C3 (de) Anfahrvorrichtung für eine Brennstoffversorgungsanlage für Gasturbinen
DE102013206052A1 (de) Modulares Design zur Kraftstoffdampfentleerung bei aufgeladenen Maschinen
DE19645382A1 (de) Tankanlage für ein Fahrzeug mit Verbrennungsmotor
WO2008014939A1 (de) Ölabscheider für gasbetriebene brennkraftmaschinen
WO2006034889A1 (de) Kraftstoffversorgungseinrichtung für eine brennkraftmaschine
DE102012200706A1 (de) Kraftstoffeinspritzvorrichtung für eine Brennkraftmaschine
DE102017102367A1 (de) Verfahren zur Anhebung der Tankentlüftungsspülmenge durch Vollausblendung der Einspritzung mindestens eines Zylinders
DE102012206979A1 (de) Kraftstoffeinspritzsystem für eine Brennkraftmaschine und Verfahren zum Betreiben des Kraftstoffeinspritzsystems
DE102018108363B4 (de) Spülsystem für einen verdunstungsemissionskontrollbehälter
DE102013109459B4 (de) Tankentlüftungsvorrichtung
DE102019112110A1 (de) Kraftstoffdampfgasspülsystem
DE102018207010B3 (de) Brennkraftmaschine und Hybrid-Fahrzeug
DE102009052597A1 (de) Kraftstoffeinspritzanlage
EP1625963B1 (de) Kraftstoffbehälter für ein Kfz
WO2014139813A1 (de) Im abstellfall druckloser kraftstofffilter mit entlüftung über saugstrahlpumpe oder über entlüftungsventil
DE19947063A1 (de) Einspritzanlage für eine Brennkraftmaschine
DE3935612A1 (de) Einer brennkraftmaschine zugeordnete einrichtung zur rueckgewinnung in einem kraftstoffdampffilter gespeicherter kraftstoffdaempfe
DE102018107902B3 (de) Prüfstandanordnung zur Durchführung von Tests mit flüssigen Prüfmedien
DE10148057A1 (de) Vorrichtung zum Verflüssigen von dampfförmigen Kraftstoff-Fraktionen in Kraftstoffbehältern
DE102019101181A1 (de) Verfahren zur Regeneration eines Aktivkohlefilters sowie Verbrennungsmotor
DE19946659C2 (de) Einspritzanlage für eine Brennkraftmaschine

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R081 Change of applicant/patentee

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

R081 Change of applicant/patentee

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE