DE102016221126A1 - Verfahren zum Durchführen eines Kaltstarts - Google Patents

Verfahren zum Durchführen eines Kaltstarts Download PDF

Info

Publication number
DE102016221126A1
DE102016221126A1 DE102016221126.9A DE102016221126A DE102016221126A1 DE 102016221126 A1 DE102016221126 A1 DE 102016221126A1 DE 102016221126 A DE102016221126 A DE 102016221126A DE 102016221126 A1 DE102016221126 A1 DE 102016221126A1
Authority
DE
Germany
Prior art keywords
split transmission
power split
cold start
pressure
depending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102016221126.9A
Other languages
English (en)
Inventor
Rico Glöckner
Andreas Weber
Jan-Frederik Kuhn
Marcus Hiemer
Robert Morrison
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Priority to DE102016221126.9A priority Critical patent/DE102016221126A1/de
Priority to US16/344,474 priority patent/US20200055520A1/en
Priority to EP17771423.5A priority patent/EP3532751B1/de
Priority to CN201780065956.1A priority patent/CN109891134A/zh
Priority to PCT/EP2017/073655 priority patent/WO2018077538A1/de
Publication of DE102016221126A1 publication Critical patent/DE102016221126A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • B60W30/194Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine related to low temperature conditions, e.g. high viscosity of hydraulic fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/103Infinitely variable gearings of fluid type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/107Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1072Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1077Change speed gearings fluid pressure, e.g. oil pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/088Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft
    • F16H2037/0886Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft with switching means, e.g. to change ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • F16H2061/0232Selecting ratios for bringing engine into a particular state, e.g. for fast warming up or for reducing exhaust emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/02Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type
    • F16H47/04Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type the mechanical gearing being of the type with members having orbital motion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Transmission Device (AREA)

Abstract

Verfahren zum Durchführen eines Kaltstarts bei einem Fahrzeug, welches ein Leistungsverzweigungsgetriebe mit einem hydrostatische Einheiten umfassenden Hydrostat aufweist, wobei zum Kaltstart mehrere Kaltstartschritte nacheinander durchgeführt werden, wobei die Länge mindestens eines der Kaltstartschritte abhängig von einer die Starttemperatur des Leistungsverzweigungsgetriebes repräsentierenden Temperatur angepasst wird, wobei während der Ausführung zumindest eines der Kaltstartschritte ein von der Temperatur des Leistungsverzweigungsgetriebes abweichender Zustand des Leistungsverzweigungsgetriebes überwacht wird, und wobei abhängig von diesem Zustand ein Wechsel von dem jeweiligen Kaltstartschritt auf einen nachfolgenden Kaltstartschritt durchgeführt und damit die Zeitdauer des jeweiligen Kaltstartschritts angepasst wird.

Description

  • Die Erfindung betrifft ein Verfahren zum Durchführen eines Kaltstarts bei einem Fahrzeug, welches ein Leistungsverzweigungsgetriebe mit einem hydrostatische Einheiten umfassenden Hydrostat aufweist.
  • Der grundsätzliche Aufbau eines Fahrzeugs mit einem Leistungsverzweigungsgetriebe, welches einen hydrostatische Einheiten umfassenden Hydrostat aufweist, ist dem Fachmann bekannt. So offenbart die DE 10 2007 047 194 A1 den Aufbau eines Antriebsstrangs eines solchen Kraftfahrzeugs. Das Antriebsaggregat bzw. eine Antriebsmaschine ist an eine Eingangswelle des Leistungsverzweigungsgetriebes gekoppelt. Das Leistungsverzweigungsgetriebe verfügt über einen hydrostatischen Zweig und einen mechanischen Zweig, die über ein als Planetenradgetriebe ausgebildetes Summiergetriebe summiert werden. Das Leistungsverzweigungsgetriebe stellt mindestens zwei Fahrbereiche in einer Vorwärtsfahrtrichtung und mindestens zwei Fahrbereiche in einer Rückwärtsfahrtrichtung bereit. Hierzu umfasst das Leistungsverzweigungsgetriebe eine Kupplung für eine Vorwärtsfahrt und eine Kupplung für eine Rückwärtsfahrt, wobei die Kupplung für die Vorwärtsfahrt und die Kupplung für die Rückwärtsfahrt auch als Wendekupplungen bezeichnet werden. Die Fahrbereiche bzw. Gänge in der Vorwärtsfahrtrichtung und der Rückwärtsfahrtrichtung werden über Gangkupplungen, die auch als Bereichskupplungen bezeichnet werden, bereitgestellt. Der hydrostatische Zweig des Leistungsverzweigungsgetriebes umfasst einen Hydrostat. Ein solcher Hydrostat wird von einer ersten hydrostatischen Einheit und einer zweiten hydrostatischen Einheit bereitgestellt, wobei eine der hydrostatischen Einheiten als Pumpe und die anderen hydrostatischen Einheiten als Motor wirkt.
  • Aus der DE 10 2009 045 510 sind weitere Details eines Hydrostat bekannt, wobei auch dieser Hydrostat zwei hydrostatische Einheiten umfasst. Die hydrostatischen Einheiten des Hydrostats wirken mit einem Positionsregelventil zusammen. Über das Positionsregelventil können die hydrostatischen Einheiten des Hydrostats mit einem hydraulischen Druck beaufschlagt werden, um dieselben anzusteuern.
  • In der DE 2009 045 510 A1 wirkt mit dem Positionsregelventil weiterhin ein Hochdruckregelventil zusammen. Es ist jedoch auch ein Hydrostat bekannt, der kein derartiges Hochdruckregelventil benötigt, sondern lediglich ein Positionsregelventil aufweist.
  • Aus der Praxis ist es ferner bekannt, im Bereich des Hydrostats Drucksensoren zu verbauen. In einem Hydrostat sind typischerweise zwei Drucksensoren verbaut, wobei unter anderem in Abhängigkeit der Messwerte dieser Drucksensoren die Beaufschlagung und Regelung der hydrostatischen Einheiten des Hydrostats erfolgt.
  • Bei Leistungsverzweigungsgetrieben mit einem Hydrostat besteht der Nachteil, dass im Gegensatz zu Wandlergetrieben keine ausreichende Wärmeenergie in dem Getriebe erzeugt wird, um das Hydraulikmittel in dem Leistungsverzweigungsgetriebe ausreichend zu erwärmen.
  • Aus der DE 10 2015 200 682 A1 ist ein Verfahren zum Durchführen eines Kaltstarts bei einem Fahrzeug mit einem Leistungsverzweigungsgetriebe, das einen Hydrostat umfasst, bekannt. Dabei werden mehrere Kaltstartschritte durchlaufen, wobei die Reihenfolge und die Länge der Kaltstartschritte von der Starttemperatur des Hydraulikmittels zu Beginn des Kaltstarts abhängig ist und verändert wird. Obwohl mit dem aus der DE 10 2015 200 682 A1 bekannten Verfahren bereits ein wirkungsvolles Verfahren für einen Kaltstart eines Fahrzeugs mit einem Leistungsverzweigungsgetriebe, welches einen Hydrostat umfasst, vorliegt, besteht Bedarf daran, den Kaltstart eines solchen Fahrzeugs weiter zu verbessern.
  • Aus der DE 10 2010 007 987 A1 ist ein Verfahren für einen Kaltstart eines ein Automatikgetriebe umfassenden Kraftfahrzeugs bekannt.
  • Hiervon ausgehend liegt der Erfindung die Aufgabe zu Grunde, ein neuartiges Verfahren zum Durchführen eines Kaltstarts bei einem Fahrzeug mit einem Leistungsverzweigungsgetriebe mit einem Hydrostat zu schaffen.
  • Diese Aufgabe wird durch ein Verfahren gemäß Patentanspruch 1 gelöst.
  • Erfindungsgemäß wird während der Ausführung zumindest eines Kaltstartschritts ein von der Temperatur des Leistungsverzweigungsgetriebes abweichender Zustand des Leistungsverzweigungsgetriebes überwacht, wobei abhängig von diesem Zustand ein Wechsel von dem jeweiligen Kaltstartschritt auf einen nachfolgenden Kaltstartschritt durchgeführt und damit die Zeitdauer des jeweiligen Kaltstartschritts angepasst wird.
  • Beim erfindungsgemäßen Verfahren zum Durchführen eines Kaltstarts eines Fahrzeugs mit einem Leistungsverzweigungsgetriebe, welches einen Hydrostat aufweist, wird bei der Durchführung zumindest eines Kaltstartschritts ein Zustand des Leistungsverzweigungsgetriebes überwacht, der von der Temperatur desselben abweicht, vorzugsweise mit Hilfe eines getriebeinternen Sensors. Abhängig von diesem Zustand, also abhängig davon, ob Bedingungen in einem Kaltstartschritt erfüllt sind, erfolgt ein Wechsel von dem jeweiligen Kaltstartschritt auf einen nachfolgenden Kaltstartschritt, wodurch die Zeitdauer des jeweiligen Kaltstartschritts, in dem der von der Temperatur des Leistungsverzweigungsgetriebes abweichende Zustand überwacht wird, angepasst wird. Hierdurch kann der Kaltstart eines Fahrzeugs mit Leistungsverzweigungsgetriebe innerhalb kürzerer Zeit durchgeführt werden.
  • Neben der kurzen Zeitdauer, in welcher der erfindungsgemäße Kaltstart möglich ist, werden weitere Vorteile durch das erfindungsgemäße Verfahren bereitgestellt. So ist das erfindungsgemäße Verfahren zum Durchführen eines Kaltstarts robust gegenüber den vorliegenden Randbedingungen, sodass insbesondere keine Anpassung des Verfahrens in Bezug auf unterschiedliche Durchkühlungsvarianten des Leistungsverzweigungsgetriebes, in Bezug auf unterschiedliche Viskositäten des Hydrauliköls, sowie in Bezug auf bautechnische Veränderungen im Getriebe erfolgen muss. Das Verfahren kann demnach unabhängig davon, über welchen Zeitraum sich das Leistungsverzweigungsgetriebe abgekühlt hat, unabhängig davon, ob das Leistungsverzweigungsgetriebe ein Winteröl oder ein Sommeröl verwendet, und unabhängig von der konkreten Bauform des Getriebes genutzt werden, um innerhalb kurzer Zeit und demnach mit geringen Komforteinbußen einen Kaltstart durchzuführen.
  • Nach einer vorteilhaften Weiterbildung der Erfindung werden zum Kaltstart die folgenden Kaltstartschritte nacheinander durchgeführt: Zunächst ein Druckaufbauschritt, um im Leistungsverzweigungsgetriebe definiert Druck aufzubauen und dasselbe über den Betrieb einer Getriebepumpe zu erwärmen. Anschließend ein Druckkontrollschritt, um den Druckaufbau im Getriebe zu überprüfen. Nachfolgend ein erster Heizschritt, um im Leistungsverzweigungsgetriebe mindestens eine Wendekupplung zu schließen und dasselbe über im Leistungsverzweigungsgetriebe anfallende Verlustleistung zu erwärmen. Anschließend ein Pulsationsschritt, um im Leistungsverzweigungsgetriebe Bereichskupplungen desselben gepulst zu schließen und zu öffnen. Nachfolgend ein zweiter Heizschritt, um im Leistungsverzweigungsgetriebe mindestens ein Positionsregelventil des Hydrostats zu erwärmen. Anschließend ein Antriebsvorbereitungsschritt, um ein Verhalten der Wendekupplungen und des Hydrostats des Leistungsverzweigungsgetriebes zu überprüfen und das Leistungsverzweigungsgetriebe auf einen Anfahrvorgang des Fahrzeugs vorzubereiten. Durch das nacheinander folgende, sequentielle Durchlaufen dieser Kaltstartschritte kann der Kaltstart besonders effektiv innerhalb kurzer Zeit erfolgen. Während zumindest einiger der obigen Kaltstartschritte wird die Funktion des Leistungsverzweigungsgetriebes fortlaufend überprüft. Anhand dieser Überprüfungen wird zumindest für einige Kaltstartschritte des Kaltstarts die Dauer des jeweiligen Kaltstartschritts festgelegt.
  • Vorzugsweise wird während des Druckaufbauschritts von einem ersten Druckaufbauteilschritt, in welchem ein Antriebsaggregat bei einer relativ geringen Antriebsaggregatdrehzahl betrieben wird, auf einen zweiten Druckaufbauteilschritt, in welchem das Antriebsaggregat bei einer relativ großen Antriebsaggregatdrehzahl betrieben wird, gewechselt, wobei vom ersten Druckaufbauteilschritt auf den zweiten Druckaufbauteilschritt abhängig von mindestens zwei Drücken im Hydrostat gewechselt wird.
  • Vorzugsweise wird vom Druckaufbauschritt auf den Druckkontrollschritt abhängig von einer Mindestdauer des Druckaufbauschritts gewechselt. Es erlaubt einen besonders vorteilhaften Übergang vom Druckaufbauschritt auf den Druckkontrollschritt.
  • Vorzugsweise wird vom Druckkontrollschritt auf den ersten Heizschritt abhängig von mindestens zwei Drücken im Hydrostat gewechselt. Hiermit ist ein besonders vorteilhafter Übergang vom Druckkontrollschritt auf den ersten Heizschritt möglich. Vorzugsweise wird vom ersten Heizschritt auf den Pulsationsschritt abhängig von einem Vergleich eines Ist-Verhaltens des Hydrostats auf eine definierte Ansteuerung desselben und einem entsprechenden Soll-Verhalten des Hydrostats gewechselt. Dies ermöglicht einen besonders vorteilhaften Übergang vom ersten Heizschritt auf den Pulsationsschritt.
  • Vorzugsweise wird vom Pulsationsschritt auf den zweiten Heizschritt abhängig von einer definiten Pulsationsanzahl gewechselt, die zu Beginn des Kaltstarts abhängig von der die Starttemperatur des Leistungsverzweigungsgetriebes repräsentierenden Temperatur gewählt wird. Damit ist ein besonders vorteilhafter Übergang vom Pulsationsschritt auf den zweiten Heizschritt möglich.
  • Vorzugsweise wird vom zweiten Heizschritt auf den Antriebsvorbereitungsschritt abhängig von einer definierten Zeitspanne gewechselt, die unabhängig von der die Starttemperatur des Leistungsverzweigungsgetriebes repräsentierenden Temperatur ist. Dies ermöglicht einen vorteilhaften Übergang vom zweiten Heizschritt auf den Antriebsvorbereitungsschritt.
  • Vorzugsweise werden der Antriebsvorbereitungsschritt und damit der Kaltstart abhängig von einem sich bei einem Schließvorgang der Wendekupplungen an denselben ausbildenden Abbaus der Differenzdrehzahl und abhängig von einer sich bei Ansteuerung des Hydrostats ausbildenden Reaktionszeit beendet. Dies ermöglicht eine besonders vorteilhafte Beendigung des Antriebsvorbereitungsschritts und damit des eigentlichen Kaltstarts.
  • Bevorzugte Weiterbildungen ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung. Ausführungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. Dabei zeigt:
    • 1 ein Signalflussdiagramm zur Verdeutlichung der Abfolge von Kaltstartschritten des erfindungsgemäßen Verfahrens zum Durchführen eines Kaltstarts bei einem Fahrzeug mit einem Leistungsverzweigungsgetriebe, welches hydrostatischen Einheiten aufweist;
    • 2 ein Zeitdiagramm zur Verdeutlichung von Details eines Druckaufbauschritt des erfindungsgemäßen Verfahrens;
    • 3 ein Zeitdiagramm zur Verdeutlichung weiterer Details eines Druckaufbauschritt des erfindungsgemäßen Verfahrens;
    • 4 ein Zeitdiagramm zur Verdeutlichung von Details eines Druckkontrollschritts des erfindungsgemäßen Verfahrens;
    • 5 ein Zeitdiagramm zur Verdeutlichung von Details eines ersten Heizschritts des erfindungsgemäßen Verfahrens;
    • 6 ein Zeitdiagramm zur Verdeutlichung weiterer Details des ersten Heizschritts des erfindungsgemäßen Verfahrens;
    • 7 ein Zeitdiagramm zur Verdeutlichung von Details eines Pulsationsschritts des erfindungsgemäßen Verfahrens;
    • 8 ein Zeitdiagramm zur Verdeutlichung von Details eines zweiten Heizschritts des erfindungsgemäßen Verfahrens;
    • 9 ein Zeitdiagramm zur Verdeutlichung von Details Antriebsvorbereitungsschritts des erfindungsgemäßen Verfahrens;
    • 10 ein Zeitdiagramm zur Verdeutlichung weiterer Details des Antriebsvorbereitungsschritts des erfindungsgemäßen Verfahrens;
    • 11 ein Zeitdiagramm zur Verdeutlichung weiterer Details des Antriebsvorbereitungsschritts des erfindungsgemäßen Verfahrens; und
    • 12 ein Blockschaltbild eines Fahrzeugs mit einem Leistungsverzweigungsgetriebe, welches einen Hydrostat aufweist.
  • Die Erfindung betrifft ein Verfahren zum Durchführen eines Kaltstarts bei einem Fahrzeug mit einem Leistungsverzweigungsgetriebe, welches einen Hydrostat aufweist.
  • Bei einem solchen Fahrzeug ist ein Antriebsaggregat an eine Eingangswelle des Leistungsverzweigungsgetriebes gekoppelt.
  • Das Leistungsverzweigungsgetriebe umfasst zusätzlich zu einem hydrostatischen Zweig, in den der Hydrostat eingebunden ist, einen mechanischen Zweig. Der mechanische Zweig und der hydrostatische Zweig werden summiert bzw. aufgeteilt. Das Leistungsverzweigungsgetriebe kann sowohl für eine Vorwärtsfahrtrichtung als auch für eine Rückwärtsfahrtrichtung jeweils mindestens zwei Fahrbereiche und damit Gänge bereitstellen, wobei das Leistungsverzweigungsgetriebe hierzu Wendekupplungen und Bereichskupplungen aufweist. Der Hydrostat, der auch als Hydrostat bezeichnet wird, ist ausgehend von einem Positionsregelventil desselben steuerbar. Der Druck im Hydrostat, der zwei als Pumpe und Motor wirkende hydrostatische Einheiten umfasst, ist mit Drucksensoren überwachbar.
  • 1 zeigt schematisiert ein exemplarisches Blockschaltbild eines Fahrzeugs mit einem Antriebsaggregat 45, einem Power-Take-Out 44, einem Abtrieb 52 und einem Leistungsverzeigungsgetriebe 47 mit sogenannter sekundärer Kopplung. Das Leistungsverzweigungsgetriebe 47 umfasst einen Hydrostat 48, der mit einem Planetenradgetriebe 49 und einem Summierungsgetriebe 50 zusammenwirkt, wobei das Summierungsgetriebe 50 Zahnradstufen aufweist. Der Hydrostat 48 umfasst die als Pumpe und Motor wirkenden hydrostatischen Einheiten. Antriebsseitig ist zwischen das Planetenradgetriebe 49 sowie das Antriebsaggregat 45 und den Power-Take-Out 44 eine Wendegetriebe 46 mit den Wendekupplungen zum Wechsel zwischen der Vorwärtsfahrtrichtung und der Rückwärtsfahrtrichtung geschaltet. Abtriebsseitig ist zwischen das Summierungsgetriebe 50 und den Abtrieb 52 ein Fahrbereichsgetriebe 51 mit den Bereichskupplungen zur Bereitstellung der mindestens zwei Fahrbereiche geschaltet. Innerhalb jedes Fahrbereichs sowie in der Vorwärtsfahrtrichtung und in der Rückwärtsfahrtrichtung kann stufenlos am Abtrieb 52 Antriebsleistung bereitgestellt werden. Das Leistungsverzweigungsgetriebe 47 umfasst den Hydrostat 48, das Planetenradgetriebe 49, das Summierungsgetriebe 50, das Wendegetriebe 46 und das Fahrbereichsgetriebe 51. Die eigentliche Leistungsverzweigung erfolgt in Hydrostat 48, Planetenradgetriebe 49 und Summierungsgetriebe 50.
  • Dieser grundsätzliche Aufbau ist dem Fachmann geläufig und insbesondere aus der DE 10 2007 047 194 A1 sowie aus der DE 10 2009 045 510 A1 bekannt.
  • Um einen Kaltstart an einem solchen Kraftfahrzeug durchzuführen, werden nacheinander mehrere Kaltstartschritte durchgeführt. Die Länge mindestens eines der Kaltstartschritte ist von einer die Starttemperatur des Leistungsverzweigungsgetriebes repräsentierenden Temperatur, so zum Beispiel von der Starttemperatur des Hydrauliköls des Leistungsverzweigungsgetriebes, abhängig.
  • Bei der Starttemperatur handelt es sich vorzugsweise um eine zum Zeitpunkt des Motorstarts bzw. zum Einschalten der Zündung gemessene Temperatur, zum Beispiel um die entsprechende Hydrauliköltemperatur des Leistungsverzweigungsgetriebes.
  • Erfindungsgemäß wird während der Ausführung mindestens eines Kaltstartschritts ein von der Temperatur des Leistungsverzweigungsgetriebes, insbesondere von der Temperatur des Hydrauliköls, abweichender Zustand des Leistungsverzweigungsgetriebes überwacht. Abhängig von diesem Zustand wird dann ein Wechsel von dem jeweiligen Kaltstartschritt, in dem der von der Temperatur des Leistungsverzweigungsgetriebes abweichende Zustand überwacht wird, auf den jeweiligen nachfolgenden Kaltstartschritt gewechselt, wobei hierdurch die Zeitdauer des jeweiligen Kaltstartschritts, in dem der von der Temperatur des Leistungsverzweigungsgetriebes abweichende Zustand überwacht wird, angepasst wird.
  • Das erfindungsgemäße Verfahren zum Durchführen eines Kaltstarts wird nachfolgende unter Bezugnahme auf 1 bis 11 im Detail beschrieben, wobei 1 ein die einzelnen Kaltstartschritte in ihrer Abfolge repräsentierendes Signalflussdiagramm zeigt, und wobei 2 bis 11 jeweils Details unterschiedlicher Kaltstartschritte des Verfahrens zeigen.
  • Beim erfindungsgemäßen Kaltstart wird zunächst ein Druckaufbauschritt 1 durchgeführt, um im Leistungsverzweigungsgetriebe definiert Druck aufzubauen, und um das Leistungsverzweigungsgetriebe über den Betriebe einer Getriebepump desselben zu erwärmen. Im Druckaufbauschritt 1 wird das Leistungsverzweigungsgetriebe ausschließlich mit Hilfe der Getriebepumpe desselben erwärmt.
  • Gemäß 1 untergliedert sich der Druckaufbauschritt 1 in einen ersten Druckaufbauteilschritt 2 und einen zweiten Druckaufbauteilschritt 3. Im ersten Druckaufbauteilschritt 2 wird das Antriebsaggregat des Fahrzeugs mit einer relativ geringen Antriebsaggregatdrehzahl betrieben, wohingegen in dem zweiten Druckaufbauteilschritt 3 das Antriebsaggregat des Fahrzeugs mit einer relativ großen Antriebsaggregatdrehzahl betrieben wird. Hiervon ist die Drehzahl der Getriebepumpe abhängig.
  • Im ersten Druckaufbauteilschritt 2 ist demnach die Drehzahl des Antriebsaggregats und damit der Getriebepumpe kleiner als im zweiten Druckaufbauteilschritt 3.
  • In Block 4 des Signalflussdiagramms der 1 wird das Vorliegen einer Übergangsbedingung 4 überprüft, um vom ersten Druckaufbauteilschritt 2 auf den zweiten Druckaufbauteilschritt 3 zu wechseln, wobei dieser Übergang vom ersten Druckaufbauteilschritt 2 auf den zweiten Druckaufbauteilschritt 3 abhängig von mindestens zwei Drücken im Hydrostat ist. Wie bereits erwähnt, sind im Hydrostat zwei Drucksensoren verbaut. Dann, wenn die von den Drucksensoren bereitgestellten Druckmesswerte, also die Druckmesswerte beider Drucksensoren, einen entsprechenden Schwellwert oder Grenzwert erreichen oder übersteigen, wird ausgehend vom ersten Druckaufbauteilschritt 2 des Druckaufbauschritts 1 auf den zweiten Druckaufbauteilschritt 3 des Druckaufbauschritts 1 gewechselt und entsprechend die Antriebsaggregatdrehzahl erhöht.
  • Dabei ist insbesondere vorgesehen, dass auch eine Mindestverweilzeit bzw. Mindestdauer des ersten Druckaufbauteilschritts 2 vorgegeben wird, sodass dann nur dann vom ersten Druckaufbauteilschritt 2 auf den zweiten Druckaufbauteilschritt 3 gewechselt wird, wenn die Mindestdauer des ersten Druckaufbauteilschritts 2 erreicht ist und ferner beide Drucksensoren Messwerte bereitstellen, die über einem definierten Schwellwert bzw. Grenzwert liegen.
  • Während des Druckaufbauschritts 1 wird überprüft, ob auch für den zweiten Druckaufbauteilschritt 3 eine Mindestverweilzeit bzw. Mindestdauer erreicht wird. Ist dies der Fall und die entsprechende Übergangsbedingung 5 erfüllt, so wird ausgehend vom Druckaufbauschritt 1, also vom zweiten Druckaufbauteilschritt 3, auf einen Druckkontrollschritt 6 gewechselt.
  • An dieser Stelle sei darauf hingewiesen, dass die Mindestverweilzeiten bzw. Mindestdauern für den ersten Druckaufbauteilschritt 2 sowie den zweiten Druckaufbauteilschritt 3 von der Starttemperatur des Leistungsverzweigungsgetriebes bzw. von der Starttemperatur des Hydrauliköls abhängig sein können.
  • Je tiefer die Starttemperatur ist, desto größer werden die entsprechenden Mindestverweilzeiten gewählt.
  • 2 verdeutlicht in einem Zeitdiagramm über der Zeit t weitere Details des ersten Druckaufbauteilschritts 2 des Druckaufbauschritts 1, wobei in 2 über der Zeit t drei zeitliche Kurvenverläufe 19, 20 und 21 gezeigt sind, nämlich mit dem zeitlichen Kurvenverlauf 19 ein Drehzahlverlauf des Antriebsaggregats und mit den Kurvenverläufen 20 und 21 von den beiden Sensoren des hydrostatischen Antriebs bereitgestellte Messwerte. Dann, wenn zum Zeitpunkt t1 des ersten Druckaufbauteilschritts 2 der 2 die Antriebsaggregatdrehzahl 19 ein definiertes Niveau erreicht hat, welches der relativ geringen Drehzahl des ersten Druckaufbauteilschritts 2 entspricht, stellen nachfolgend die beiden Drucksensoren des Hydrostats die Messsignale 20, 21 bereit, wobei ein Zeitversatz Δt zwischen den von den Drucksensoren bereitgestellten Messsignalen 20, 21 dadurch bewirkt wird, dass der das Messsignal 20 bereitstellende Drucksensor ungedämpft ist, also keine hydraulische Blende aufweist, wohingegen der das Messsignal 21 bereitstellende Drucksensor gedämpft ist und eine hydraulische Blende aufweist.
  • Anhand der Größe des Zeitversatzes Δt kann auf die Viskosität des Hydrauliköls geschlossen werden, insbesondere darauf, ob hochviskoses oder niederviskoses Hydrauliköl vorliegt.
  • Weitere Details der Druckaufbauphase 1 zeigen die zeitlichen Kurvenverläufe der 3, wobei in 3 über der Zeit t mit dem Signalverlauf 22 wiederum ein zeitlicher Verlauf der Antriebsaggregatdrehzahl gezeigt ist, und wobei die Kurvenverläufe 23 und 24 wiederum die von den beiden Drucksensoren des Hydrostats bereitgestellten Messwerte visualisieren.
  • Bei dem das Messsignal 23 bereitstellenden Drucksensor handelt es sich demnach wiederum um einen ungedämpften Drucksensor ohne hydraulische Blende und bei dem das Messsignal 24 bereitstellenden Drucksensor um einen gedämpften Drucksensor mit hydraulischer Blende.
  • In 3 beginnt zum Zeitpunkt t1 die Druckaufbauphase 1, nämlich die erste Druckaufbauteilphase 2, wozu hierzu zwischen den Zeitpunkten t1 und t2 die Antriebsaggregatdrehzahl 22 auf ein definiertes Drehzahlniveau angehoben wird und nachfolgend zwischen den Zeitpunkten t2 und t3 der 3 konstant bleibt. Zwischen den Zeitpunkten t1 und t3 liegt demnach die erste Druckaufbauteilphase 2 vor.
  • Zum Zeitpunkt t3 erreichen die Messwerte 23 und 24 beider Drucksensoren einen Schwellwert S, sodass dann grundsätzlich beginnend mit dem Zeitpunkt t3 ein Übergang vom ersten Druckaufbauteilschritt 2 in den zweiten Druckaufbauteilschritt 3 und Erhöhung der Antriebsaggregatdrehzahl erfolgen kann, wobei jedoch in 3 erst zum Zeitpunkt t4 unter Anhebung der Antriebsaggregatdrehzahl 22 vom ersten Druckaufbauteilschritt 2 auf den zweiten Druckaufbauteilschritt 3 gewechselt wird, nämlich abhängig von einer Mindestverweilzeit bzw. Mindestdauer der ersten Druckaufbauteilphase 2, um die Getriebepumpe zu schützen.
  • Die erste Druckaufbauteilphase 2 der Druckaufbauphase 1 erstreckt sich demnach in 3 ausgehend vom Zeitpunkt t1 bis zum Zeitpunkt t4. Zum Zeitpunkt t4 erfolgt der Wechsel von der ersten Druckaufbauteilphase 2 auf die zweite Druckaufbauteilphase 3 unter Anheben der Antriebsaggregatdrehzahl 22. Dann, wenn auch für die zweite Druckaufbauteilphase 3 eine entsprechende Mindestdauer bzw. Mindestverweilzeit erreicht wurde, wird entsprechend dieser Übergangsbedingung 5 des Blocks 5 der 1 vom Druckaufbauschritt 1 auf den Druckkontrollschritt 6 gewechselt.
  • Im Druckkontrollschritt 6 wird der von den beiden Drucksensoren des Hydrostats bereitgestellte Messwert überprüft. Insbesondere wird überprüft, ob der Messwert beider Drucksensoren oberhalb eines definierten Schwellwerts bzw. Grenzwerts liegt. Dann, wenn dies der Fall ist, wenn also die entsprechende Übergangsbedingung 7 des Blocks 7 der 1 vorliegt, wird vom Druckkontrollschritt 6 auf einen ersten Heizschritt 8 wechselt.
  • Details des Druckkontrollschritts 6 folgen aus dem Zeitdiagramm der 4, wobei in 4 über Zeit t als erster Signalverlauf 25 eine Antriebsaggregatdrehzahl und mit den Kurvenverläufen 26 und 27 wiederum Messwerte der Drucksensoren gezeigt sind. Zum Zeitpunkt t1 der 4 beginnt der Druckkontrollschritt 6, wobei zum Zeitpunkt t1 die Messwerte 26, 27 beider Drucksensoren des Hydrostaten größer als ein entsprechender Schwellwert bzw. Grenzwert S2 sind. Der Zeitpunkt t1 stimmt nicht mit dem Zeitpunkt t1 der 2, 3 überein. Für jeden Kaltstartschritt beziehen sich die jeweiligen Zeitpunkte immer nur auf den jeweiligen Kaltstartschritt. In der Druckkontrollphase muss für eine definierte Zeitdauer Δt, die in 4 durch die Zeitpunkte t1 und t2 begrenzt wird, das Messsignal 26, 27 der beiden Drucksensoren permanent oberhalb des Schwellwerts S2 des Druckkontrollschritts 6 liegen, sodass dann zum Zeitpunkt t2 der 4 die Übergangsbedingung 7 erfüllt ist und vom Druckkontrollschritt 6 auf den ersten Heizschritt 8 gewechselt werden kann.
  • Im ersten Heizschritt 8 wird erstmalig eine Wendekupplung des Leistungsverzweigungsgetriebes geschlossen, und zwar entweder die Kupplung für die Rückwärtsfahrt oder die Kupplung für die Vorwärtsfahrt. Durch dieses Schließen der jeweiligen Wendekupplung besteht ein Kraftfluss zum Planetenradgetriebe bzw. zum Überlagerungsgetriebe und damit zum Hydrostaten, wodurch Verlustleistung generiert wird, sodass über die anfallende Verlustleistung das Leistungsverzweigungsgetriebe im ersten Heizschritt erwärmt werden kann. Während die jeweilige Wendekupplung in der ersten Heizphase 8 geschlossen ist, wird der Hydrostat zunächst gering und später mit einer größeren Stromamplitude über das Positionsregelventil beaufschlagt. Durch diese Ansteuerung wird der Hydrostat zwischen einem bestimmten Winkel bzw. einer bestimmten Übersetzung bewegt.
  • Im ersten Heizschritt 8 wird demnach der Hydrostat definiert angesteuert und hierbei ein Ist-Verhalten des Hydrostats ermittelt. Bei der definierten Ansteuerung handelt es sich um die Beaufschlagung desselben mit einer wechselnden Stromamplitude, bei der Reaktion bzw. beim sich einstellenden Ist-Verhalten um die Übersetzung, die mit Hilfe von am Hydrostaten verbauten Drehzahlsensoren ermittelt werden kann.
  • Dann, wenn das sich ausbildende Ist-Verhalten einem vorgegebenen Soll-Verhalten entspricht bzw. um nicht mehr als einen definierten Grenzwert vom Soll-Verhalten abweicht, liegt die Übergangsbedingung 9 vor und es wird dann vom ersten Heizschritt 8 auf einen Pulsationsschritt 10 gewechselt. Während des ersten Heizschritts 8 kann die Antriebsaggregatdrehzahl verändert, vorzugsweise erhöht, werden.
  • Details der ersten Heizphase 8 ergeben sich aus 5 und 6. In 5 sind über der Zeit t zwei zeitliche Signalverläufe 28 und 29 aufgetragen, wobei der Signalverlauf 29 die Ansteuerung des Hydrostats mit einer wechselnden Stromamplitude visualisiert, und wobei der Signalverlauf 28 die sich ausbildende Übersetzung des Hydrostats zeigt. Mit dem Ansteuerstrom 29 wird das Positionsregelventil des Hydrostats angesteuert.
  • In 6 sind weitere Details der ersten Heizphase 8 gezeigt, wobei in 6 über der Zeit t ein Ausschnitt der Signalverläufe 28 und 29 gezeigt ist, wobei der Signalverlauf 29 der Bestromung des Positionsregelventils des Hydrostats entspricht, und wobei der Signalverlauf 28 die sich infolge dieser Bestromung des Positionsregelventils ausbildende Übersetzung des Hydrostats zeigt.
  • Zum Zeitpunkt t1 erreicht die Bestromung des Positionsregelventils des Hydrostats ein Minimum. Nachfolgend erreicht zum Zeitpunkt t2 die Übersetzung des Hydrostats ein entsprechendes Minimum. Der Zeitversatz Δt1 der durch diese beiden Zeitpunkte t1 und t2 bestimmt wird, entspricht einer ersten Kenngröße für das Ist-Verhalten des Hydrostats infolge der definierten Ansteuerung des Positionsregelventils.
  • Zum Zeitpunkt t3 der 6 erreicht die Bestromung bzw. der Ansteuerstrom für das Positionsregelventil des Hydrostats ein Maximum, zum nachfolgenden Zeitpunkt t4 erreicht die sich hierdurch ausbildende Übersetzung 28 des Hydrostats ein entsprechendes Maximum, wobei auch die Zeitspanne Δt2 zwischen den Zeitpunkten t3 und t4 das Ist-Verhalten des Hydrostats beschreibt.
  • Dann, wenn für diese Zeitversätze Δt1 und Δt2 festgestellt wird, dass die Ist-Zeitversätze entsprechenden Soll-Zeitversätzen entsprechen bzw. um nicht mehr als einen Grenzwert von denselben abweichen, ist die Übergangsbedingung 9 erfüllt und es wird vom ersten Heizschritt 8 auf den Pulsationsschritt 10 gewechselt.
  • Im Pulsationsschritt 10 werden im Leistungsverzweigungsgetriebe Bereichskupplungen desselben abwechselnd und damit gepulst geschlossen und geöffnet. Das Pulsen der Bereichskupplung des Leistungsverzweigungsgetriebes erfolgt nach einer festen Anzahl. Dann, wenn die feste Anzahl der Pulse für das Schließen und Öffnen der Bereichskupplungen des Leistungsverzweigungsgetriebes erreicht ist, liegt die Übergangsbedingung 11 vor, und es wird vom Pulsationsschritt 10 auf einen zweiten Heizschritt 12 gewechselt.
  • 7 zeigt mit einem Zeitdiagramm über der Zeit t Ansteuerströme 30, 31 und 32 für drei Bereichskupplungen des Leistungsverzweigungsgetriebes. Die Anzahl der Pulse für den Ansteuerstrom zum Öffnen und Schließen der Bereichskupplungen wird zu Beginn des Kaltstarts abhängig von der Starttemperatur des Leistungsverzweigungsgetriebes bzw. der die Starttemperatur des Leistungsverzweigungsgetriebes repräsentierenden Temperatur bestimmt. Dies kann abhängig von einem Kennfeld oder einer Kennlinie erfolgen. Dann, wenn jede der Bereichskupplungen des Leistungsverzweigungsgetriebes im Pulsationsschritt 10 mit der entsprechenden Anzahl an Bestromungspulsen definiert geschlossen und geöffnet wurde, liegt die Übergangsbedingung 11 vor, und es wird vom Pulsationsschritt 10 auf den zweiten Heizschritt 12 gewechselt. Das Pulsen wird durchgeführt, um die Bereichskupplungen des Leistungsverzweigungsgetriebes während des Kaltstarts zu betätigen, damit das Hydrauliköl aus Zuleitungen der Bereichskupplungen sowie aus den Bereichskupplungen als solchen herausgefördert wird.
  • Im zweiten Heizschritt 12 des Kaltstarts wird das Positionsregelventil des Hydrostats aufgewärmt und überschwenkt, und zwar in einer festen zeitlichen Abfolge. Die Dauer des zweiten Heizschritts ist für alle Temperaturbereiche gleich, also unabhängig von der Starttemperatur des Leistungsverzweigungsgetriebes bzw. der die Starttemperatur desselben entsprechenden bzw. repräsentierenden Temperatur.
  • Der zweite Heizschritt 12 wird genutzt, um das Positionsregelventil des Hydrostaten mit einem entsprechenden Magneten in seinen beiden Endlagen zu überstrecken und so ggf. vorhandenes, hochviskoses Öl aus dem Positionsregelventil heraus zu spülen. Mit dem zweiten Heizschritt 12 wird sichergestellt, dass im Verstellsystem des Hydrostaten, welches aus Verstellzylinder, Verstellventil, Verstellmagnet und Rückmeldesystem besteht, komplett durchbetätigt wurde und somit kein unerwünschtes Verhalten in seinen Endlagen zu erwarten ist.
  • Weitere Details des zweiten Heizschritts 12 folgen aus 8, wobei in 8 über der Zeit t die zeitlichen Kurvenverläufe 33 und 34 gezeigt sind, nämlich mit dem Kurvenverlauf 33 eine Bestromung des Positionsregelventils des Hydrostaten und mit dem Kurvenverlauf 34 eine sich hierbei ausbildende Reaktion, nämlich eine Übersetzung des Hydrostaten. Während des zweiten Heizschritts 12, der für eine vorgegebene Zeitspanne Δt durchgeführt wird, wird demnach das Gesamtverstellsystem in seine Endlagen überführt, um dasselbe über seinen kompletten Verstellweg zu betätigen.
  • Vom zweiten Heizschritt 12 wird bei Vorliegen einer Übergangsbedingung 13 auf einen Antriebsvorbereitungsschritt 14 gewechselt, und zwar abhängig von einer definierten Zeitspanne, die unabhängig von der Starttemperatur des Leistungsverzweigungsgetriebes bzw. der die Starttemperatur des Leistungsverzweigungsgetriebes repräsentierenden Temperatur ist.
  • Bei der Übergangsbedingung 13 für den Wechsel vom zweiten Heizschritt 12 auf den Antriebsvorbereitungsschritt 14 handelt es sich demnach um die temperaturunabhängige, definierte Zeitspanne für den zweiten Heizschritt, nach deren Ablauf vom zweiten Heizschritt 12 auf den Antriebsvorbereitungsschritt 14 gewechselt wird.
  • In dem Antriebsvorbereitungsschritt 14 wird ein Verhalten der Wendekupplungen und des Hydrostats des Leistungsverzweigungsgetriebes überprüft und das Leistungsverzweigungsgetriebe auf einen nachfolgenden Anfahrvorgang des Fahrzeugs vorbereitet.
  • Dann, wenn sich bei einem Schließvorgang der Wendekupplungen denselben ein definierter Differenzdrehzahlabbau ausbildet, und dann, wenn sich abhängig von einer Ansteuerung des Hydrostaten an demselben eine definierte Reaktionszeit einstellt, wird der Antriebsvorbereitungsschritt bei Vorliegen der entsprechenden Übergangsbedingung 15 und damit der eigentliche Kaltstart beendet, um so vom Antriebsvorbereitungsschritt 14 in einen Wartezustand oder einen Bereitschaftzustand für eine Anfahranforderung zu wechseln, wobei dieser Wartezustand bzw. Bereitschaftszustand in 1 durch den Block 16 visualisiert ist.
  • Details des Antriebsvorbereitungsschritts 14 werden nachfolgend unter Bezugnahme auf 9 bis 11 beschrieben. In 9 sind über der Zeit t mehrere zeitliche Kurvenverläufe aufgetragen, und zwar mit dem Kurvenverlauf 35 die Ansteuerung einer ersten Wendekupplung und mit dem Kurvenverlauf 36 die Ansteuerung einer zweiten Wendekupplung. Der zeitliche Kurvenverlauf 37 visualisiert eine Bestromung des Positionsregelventils des Hydrostaten und der Kurvenverlauf 38 eine sich hierbei ausbildende Reaktion des Hydrostaten, nämlich eine sich ausbildende Übersetzung. Während des Antriebsvorbereitungsschritts 14 erfolgt eine Überprüfung des Verhaltens der Wendekupplungen sowie des Hydrostats. Die Wendekupplungen werden über eine definierte Schließrampe geschlossen. Wird erkannt, dass sich hierbei eine Sekundärdrehzahl an der jeweiligen über die Schließrampe zum Schließen angesteuerten Wendekupplung ausbildet, so wird die Wendekupplung weiter definiert geschlossen. Während dieses Schließvorgangs wird eine Zeitdauer erfasst und bewertet, wie lange die jeweilige Wendekupplung benötigt, bis eine Differenzdrehzahl an der Wendekupplung abgebaut wurde. Die Schließrampe für das Schließen der jeweiligen Wendekupplung wird so gewählt, dass es zu keiner Überfüllung und damit zu keiner Beschädigung der jeweiligen Wendekupplung kommen kann. Dann, wenn die Differenzdrehzahl entsprechend abgebaut wurde und die hierfür benötigte Zeit innerhalb eines Grenzwerts liegt, wird die jeweilige Wendekupplung als ordnungsgemäß erkannt. Die Wendekupplungen werden solange wechselseitig alternierend beaufschlagt, also geschlossen, bis beide Wendekupplungen ein gewünschtes Zeitverhalten beim Differenzdrehzahlabbau zeigen und demnach ordnungsgemäß arbeiten. Für die Bewertung einer Wendekupplung sind die primäre sowie die sekundäre Drehzahl der Wendekupplung, und zwar die Differenz zwischen der primären und der sekundären Drehzahl, von Relevanz.
  • 10 verdeutlicht in einem Zeitdiagramm über der Zeit t die Überprüfung einer Wendekupplung während des Antriebsvorbereitungsschritts 14. Der Signalverlauf 39 visualisiert die Bestromung der jeweiligen Wendekupplung und der Signalverlauf 40 eine sich ausbildende Reaktion, nämlich eine Drehzahl an der jeweiligen Wendekupplung. Zum Zeitpunkt t1 der 10 beginnt das Schließen der jeweiligen Wendekupplung, wobei zum Zeitpunkt t2 eine definierte Sekundärdrehzahl an der Wendekupplung erkannt wird. Zum Zeitpunkt t2 wird dann die entsprechende Wendekupplung weiter gezielt geschlossen, wobei zum Zeitpunkt t3 die Differenzdrehzahl an der Wendekupplung definiert abgebaut hat. Die Zeitspanne Δt zwischen den Zeitpunkten t1 und t3 der 10 entspricht einer Zeitspanne, die nach Beginn der Ansteuerung derselben zum Zeitpunkt t1 benötigt, um die Differenzdrehzahl an derselben definiert abzubauen. Anhand dieser Zeitdifferenz Δt wird bewertet, ob die jeweilige Wendekupplung ordnungsgemäß arbeitet und demnach ein gewünschtes Verhalten zeigt.
  • Wie bereits ausgeführt, wird im Antriebsvorbereitungsschritt 14 nicht nur das Verhalten der Wendekupplungen bewertet, sondern auch das Verhalten des Hydrostaten, nämlich sobald die jeweilige Wendekupplung geschlossen ist und ein vollständiger Kraftfluss zum Hydrostaten hin besteht. Sobald die jeweilige Wendekupplung geschlossen ist, wird der Hydrostat durch Bestromen des Positionsregelventils desselben definiert angesteuert. Hierbei wird die Bestromung ausgehend von einem Ruhestrom, der leicht oberhalb eines sogenannten Diagnosestroms liegt, auf einen Strom leicht oberhalb eines sogenannten Nullwinkelstroms erhöht, wobei der Nullwinkelstrom aus einer Kalibrierung des Hydrostaten abgeleitet wurde. Hierbei wird bewertet, wie lange ein Zeitversatz bzw. eine Differenzzeit zwischen der Ansteuerung des Hydrostaten und der Reaktion desselben beträgt. Dabei erfolgt die Auswertung analog einer Sprungantwort.
  • Dieser Vorgang wird mehrmalig bei geschlossener Wendekupplung wiederholt bzw. durchgeführt. Liegt der Zeitversatz zwischen der Ansteuerung und der Reaktion des Hydrostaten innerhalb eines definierten Wertebereichs, so wird der Hydrostat als ordnungsgemäß funktionierend bewertet und erkannt.
  • 11 zeigt über der Zeit t wiederum mehrere zeitliche Kurvenverläufe, welche die Diagnose des Hydrostaten während des Antriebsvorbereitungsschritts 14 visualisieren. So zeigt ein Kurvenverlauf 41 einen Schließzustand einer Wendekupplung, die während der Überprüfung des Hydrostaten vollständig geschlossen ist. Ein Kurvenverlauf 42 visualisiert die Bestromung des Positionsregelventils des Hydrostaten und ein Kurvenverlauf 43 die sich infolge dieser Bestromung ausbildende Reaktion, nämlich eine sich ausbildende Übersetzung. Sobald nach Erkennen einer ordnungsgemäßen Wendekupplung sowie bei geschlossener Wendekupplung bekannt wird, dass gemäß dem Kurvenverlauf 42 die Bestromung des Positionsregelventils auf einen definierten Wert abgesenkt wurde, wird zum Zeitpunkt t1 die Bestromung des Positionsregelventils sprunghaft auf einen definierten Wert erhöht, und es wird überprüft, wann nachfolgend gemäß dem Kurvenverlauf 43 als Reaktion des Hydrostaten die Übersetzung desselben oberhalb eines definierten Werts X liegt. Dieser Zeitversatz Δt, der durch die Zeitpunkte t1 und t2 definiert wird, also der Zeitversatz, nach dem die Bestromung des Positionsregelventils sprunghaft erhöht wurde und sich in Reaktion hierauf die Übersetzung des Hydrostaten oberhalb des Werts x verändert hat, wird erfasst und bewertet. Liegt dieser Zeitversatz Δt innerhalb eines definierten Wertebereichs, so wird der Hydrostat als ordnungsgemäß funktionierend erkannt.
  • Dann, wenn sowohl die Wendekupplungen als auch der Hydrostat im Antriebsvorbereitungsschritt 14 als ordnungsgemäß arbeitend erkannt wurden, liegt die Übergangsbedingung 15 vor, und es wird vom Antriebsvorbereitungsschritt 14 auf den Wartezustand 16 bzw. auf den Anfahrbereitschaftszustand 16 gewechselt.
  • Während des Wartezustands 16, also nach Abschluss des Kaltstarts, wird gewartet, ob fahrerseitig ein Anfahrvorgang angefordert wird. Hierbei wird dann die Antriebsaggregatdrehzahl durch ein Motorsteuergerät vorgegeben und nicht mehr durch ein den Kaltstartvorgang steuerungsseitig ausführendes Getriebesteuergerät. Während des Wartezustands 16 wird demnach das Vorliegen einer Übergangsbedingung 17 überprüft, bei welcher es sich um eine fahrseitige Anforderung eines Anfahrvorgangs handelt, wobei bei Vorliegen dieser Übergangsbedingung auf den Anfahrzustand 18 der 1 gewechselt und ein Anfahrvorgang durchgeführt wird.
  • Sollte während des Wartezustands 16 kein fahrerseitiger Anfahrvorgang für eine definierte Zeitspanne vorliegen, kann während des Wartezustands mindestens eine Wendekupplung definiert geschlossen werden, um Verlustleistung im Leistungsverzweigungsgetriebe zu erzeugen und somit ein Wiederabkühlen des Leistungsverzweigungsgetriebes zu vermeiden.
  • Mit dem erfindungsgemäßen, eventbasierten Kaltstartverfahren kann ein Kaltstart eines Fahrzeugs mit einem Leistungsverzweigungsgetriebe, welches einen Hydrostaten umfasst, innerhalb kurzer Zeit sowie äußerst robust durchgeführt werden. Wendekupplungen und Hydrostat können auf eine ordnungsgemäße Funktion überprüft werden.
  • Das erfindungsgemäße Verfahren zum Durchführen eines Kaltstarts bei einem Fahrzeug stellt eine Art Felddiagnose für das Getriebe bereit, mit welcher der ordungsgemäße Betrieb des Getriebes im Feld überwacht werden kann. Es werden alle Schritte oder Phasen des Verfahrens durchlaufen, wodurch die sichere Funktion des Getriebes gewährleistet wird. Nach Beendigung des Verfahrens steht ein Fahrzeug mit einem Getriebe mit gesteigerter oder voller Dynamik und mit verringerter oder ohne Komforteinbußen zur Verfügung. Das Verfahren ist robust und demnach nicht anfällig gegenüber einem Antriebsaggregatfehlstart bei tiefen Temperaturen, einer Kaltstartwiederholung des Antriebsaggregats und der Viskosität des verwendeten Getriebeöls.
  • Bezugszeichenliste
  • 1
    Druckaufbauschritt
    2
    Druckaufbauteilschritt
    3
    Druckaufbausteilschritt
    4
    Übergangsbedingung
    5
    Übergangsbedingung
    6
    Druckkontrollschritt
    7
    Übergangsbedingung
    8
    erster Heizschritt
    9
    Übergangsbedingung
    10
    Pulsationsschritt
    11
    Übergangsbedingung
    12
    zweiter Heizschritt
    13
    Übergangsbedingung
    14
    Antriebsvorbereitungsschritt
    15
    Übergangsbedingung
    16
    Wartezustand
    17
    Übergangsbedingung
    18
    Anfahrzustand
    19
    Kurvenverlauf
    20
    Kurvenverlauf
    21
    Kurvenverlauf
    22
    Kurvenverlauf
    23
    Kurvenverlauf
    24
    Kurvenverlauf
    25
    Kurvenverlauf
    26
    Kurvenverlauf
    27
    Kurvenverlauf
    28
    Kurvenverlauf
    29
    Kurvenverlauf
    30
    Kurvenverlauf
    31
    Kurvenverlauf
    32
    Kurvenverlauf
    33
    Kurvenverlauf
    34
    Kurvenverlauf
    35
    Kurvenverlauf
    36
    Kurvenverlauf
    37
    Kurvenverlauf
    38
    Kurvenverlauf
    39
    Kurvenverlauf
    40
    Kurvenverlauf
    41
    Kurvenverlauf
    42
    Kurvenverlauf
    43
    Kurvenverlauf
    44
    Power-Take-Out
    45
    Antriebsaggregat
    46
    Wendegetriebe
    47
    Leistungsverzeigungsgetriebe
    48
    Hydrostat
    49
    Planetenradgetriebe
    50
    Summierungsgetriebe
    51
    Fahrbereichsgetriebe
    52
    Abtrieb
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102007047194 A1 [0002, 0026]
    • DE 102009045510 [0003]
    • DE 2009045510 A1 [0004]
    • DE 102015200682 A1 [0007]
    • DE 102010007987 A1 [0008]
    • DE 102009045510 A1 [0026]

Claims (10)

  1. Verfahren zum Durchführen eines Kaltstarts bei einem Fahrzeug, welches ein Leistungsverzweigungsgetriebe mit einem hydrostatische Einheiten umfassenden Hydrostat aufweist, wobei zum Kaltstart mehrere Kaltstartschritte nacheinander durchgeführt werden, wobei die Länge mindestens eines der Kaltstartschritte abhängig von einer die Starttemperatur des Leistungsverzweigungsgetriebes repräsentierenden Temperatur angepasst wird, dadurch gekennzeichnet, dass während der Ausführung zumindest eines der Kaltstartschritte ein von der Temperatur des Leistungsverzweigungsgetriebes abweichender Zustand des Leistungsverzweigungsgetriebes überwacht wird, und dass abhängig von diesem Zustand ein Wechsel von dem jeweiligen Kaltstartschritt auf einen nachfolgenden Kaltstartschritt durchgeführt und damit die Zeitdauer des jeweiligen Kaltstartschritts angepasst wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zum Kaltstart die folgenden Kaltstartschritte nacheinander durchgeführt werden: zunächst ein Druckaufbauschritt, um im Leistungsverzweigungsgetriebe definiert Druck aufzubauen und dasselbe über den Betrieb einer Getriebepumpe zu erwärmen, anschließend ein Druckkontrollschritt, um den Druckaufbau im Getriebe zu überprüfen, nachfolgend ein erster Heizschritt, um im Leistungsverzweigungsgetriebe mindestens eine Wendekupplung zu schließen und dasselbe über im Leistungsverzweigungsgetriebe anfallende Verlustleistung zu erwärmen, anschließend ein Pulsationsschritt, um im Leistungsverzweigungsgetriebe Bereichskupplungen desselben gepulst zu schließen und zu öffnen, nachfolgend ein zweiter Heizschritt, um im Leistungsverzweigungsgetriebe mindestens ein Positionsregelventil des Hydrostats zu erwärmen, anschließend ein Antriebsvorbereitungsschritt, um ein Verhalten der Wendekupplungen und des Hydrostats des Leistungsverzweigungsgetriebes zu überprüfen und das Leistungsverzweigungsgetriebe auf einen Anfahrvorgang des Fahrzeugs vorzubereiten.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass während des Druckaufbauschritts von einem ersten Druckaufbauteilschritt, in welchem ein Antriebsaggregat bei einer relativ geringen Antriebsaggregatdrehzahl betrieben wird, auf einen zweiten Druckaufbauteilschritt, in welchem das Antriebsaggregat bei einer relativ großen Antriebsaggregatdrehzahl betrieben wird, gewechselt wird.
  4. Verfahren nach 3, dadurch gekennzeichnet, dass vom ersten Druckaufbauteilschritt auf den zweiten Druckaufbauteilschritt abhängig von mindestens zwei Drücken im Hydrostat gewechselt wird.
  5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass vom Druckaufbauschritt auf den Druckkontrollschritt abhängig von einer Mindestdauer des Druckaufbauschritts gewechselt wird.
  6. Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass vom Druckkontrollschritt auf den ersten Heizschritt abhängig von mindestens zwei Drücken im Hydrostat gewechselt wird.
  7. Verfahren nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass vom ersten Heizschritt auf den Pulsationsschritt abhängig von einem Vergleich eines Ist-Verhaltens des Hydrostats auf eine definierte Ansteuerung desselben und einem entsprechenden Soll-Verhalten des Hydrostats gewechselt wird.
  8. Verfahren nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass vom Pulsationsschritt auf den zweiten Heizschritt abhängig von einer definiten Pulsationsanzahl gewechselt wird, die zu Beginn des Kaltstarts abhängig von der die Starttemperatur des Leistungsverzweigungsgetriebes repräsentierenden Temperatur gewählt wird.
  9. Verfahren nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass vom zweiten Heizschritt auf den Antriebsvorbereitungsschritt abhängig von einer definierten Zeitspanne, die unabhängig von der die Starttemperatur des Leistungsverzweigungsgetriebes repräsentierenden Temperatur ist, gewechselt wird.
  10. Verfahren nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass der Antriebsvorbereitungsschritt und damit der Kaltstart abhängig von einem sich bei einem Schließvorgang der Wendekupplungen an denselben ausbildenden Abbaus der Differenzdrehzahl und abhängig von einer sich bei Ansteuerung des Hydrostats ausbildenden Reaktionszeit beendet wird.
DE102016221126.9A 2016-10-26 2016-10-26 Verfahren zum Durchführen eines Kaltstarts Withdrawn DE102016221126A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102016221126.9A DE102016221126A1 (de) 2016-10-26 2016-10-26 Verfahren zum Durchführen eines Kaltstarts
US16/344,474 US20200055520A1 (en) 2016-10-26 2017-09-19 Method for carrying out cold-starting
EP17771423.5A EP3532751B1 (de) 2016-10-26 2017-09-19 Verfahren zum durchführen eines kaltstarts
CN201780065956.1A CN109891134A (zh) 2016-10-26 2017-09-19 用于执行冷启动的方法
PCT/EP2017/073655 WO2018077538A1 (de) 2016-10-26 2017-09-19 Verfahren zum durchführen eines kaltstarts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016221126.9A DE102016221126A1 (de) 2016-10-26 2016-10-26 Verfahren zum Durchführen eines Kaltstarts

Publications (1)

Publication Number Publication Date
DE102016221126A1 true DE102016221126A1 (de) 2018-04-26

Family

ID=59923440

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016221126.9A Withdrawn DE102016221126A1 (de) 2016-10-26 2016-10-26 Verfahren zum Durchführen eines Kaltstarts

Country Status (5)

Country Link
US (1) US20200055520A1 (de)
EP (1) EP3532751B1 (de)
CN (1) CN109891134A (de)
DE (1) DE102016221126A1 (de)
WO (1) WO2018077538A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019201135A1 (de) 2019-01-29 2020-07-30 Zf Friedrichshafen Ag Verfahren zum Aufwärmen eines hydrostatisch-mechanischen Leistungsverzweigungsgetriebes
DE102019214605A1 (de) * 2019-09-24 2021-03-25 Zf Friedrichshafen Ag Verfahren zum Durchführen einer Kaltstartstrategie bei einem Fahrzeug mit einem hydrostatisch mechanisch leistungsverzweigten Getriebe
EP4083472A4 (de) * 2019-12-27 2024-01-17 Kubota Corporation Nutzfahrzeug
DE102023203332A1 (de) 2023-04-13 2024-02-29 Zf Friedrichshafen Ag Verfahren zum Erwärmen eines Getriebes für eine Arbeitsmaschine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3351447A1 (de) * 2017-01-18 2018-07-25 Deere & Company Steuerungsanordnung für einen motor und hydrostatisches getriebe eines fahrzeugs
US10836397B1 (en) * 2019-07-03 2020-11-17 Ford Global Technologies, Llc System and method for increasing catalyst temperature
SE2051456A1 (en) * 2020-12-14 2022-06-14 A method for automatically warming up a clutch actuator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090011901A1 (en) * 2005-12-19 2009-01-08 Caterpillar Inc. Oil warming strategy for transmission
DE102007047194A1 (de) 2007-10-02 2009-04-09 Zf Friedrichshafen Ag Leistungsverzweigungsgetriebe
DE102009045510A1 (de) 2009-10-09 2011-04-14 Zf Friedrichshafen Ag Vorrichtung zum Variieren der Hubvolumina einer ersten Hydraulikmaschine und einer zweiten Hydraulikmaschine
DE102010007987A1 (de) 2010-02-15 2011-08-18 GM Global Technology Operations LLC, ( n. d. Ges. d. Staates Delaware ), Mich. Verfahren zur Steuerung eines Automatikgetriebes eines Kraftfahrzeugs nach einem Kaltstart sowie Getriebestrang
DE102012005824A1 (de) * 2012-03-22 2013-09-26 Robert Bosch Gmbh Hydrostatischer Antrieb
DE102015200682A1 (de) 2015-01-19 2016-07-21 Zf Friedrichshafen Ag Verfahren zum Durchführen einer Kaltstartstrategie

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6453668B1 (en) * 2000-07-12 2002-09-24 Deere & Company Transmission with cold start valve
DE10303206A1 (de) * 2003-01-28 2004-07-29 Zf Friedrichshafen Ag Hydrostatisches Getriebe
FR2913226B1 (fr) * 2007-03-02 2009-06-05 Equip Systemes Et Mecanismes S Dispositif de transmission pour engin chenille motorise.
DE102008027424A1 (de) * 2008-06-10 2009-12-17 Hydac S.A. Fluidkühlvorrichtung
US8961347B2 (en) * 2012-04-18 2015-02-24 Caterpillar Inc. Cold start clutch for CVT transmission
US9020740B2 (en) * 2012-10-15 2015-04-28 GM Global Technology Operations LLC Fluid pump speed control
DE102012111296A1 (de) * 2012-11-22 2014-05-22 Linde Hydraulics Gmbh & Co. Kg Antriebsstrang eines Fahrzeugs, insbesondere einer mobilen Arbeitsmaschine
US9346451B2 (en) * 2014-04-04 2016-05-24 Ford Global Technologies, Llc Method and system for engine control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090011901A1 (en) * 2005-12-19 2009-01-08 Caterpillar Inc. Oil warming strategy for transmission
DE102007047194A1 (de) 2007-10-02 2009-04-09 Zf Friedrichshafen Ag Leistungsverzweigungsgetriebe
DE102009045510A1 (de) 2009-10-09 2011-04-14 Zf Friedrichshafen Ag Vorrichtung zum Variieren der Hubvolumina einer ersten Hydraulikmaschine und einer zweiten Hydraulikmaschine
DE102010007987A1 (de) 2010-02-15 2011-08-18 GM Global Technology Operations LLC, ( n. d. Ges. d. Staates Delaware ), Mich. Verfahren zur Steuerung eines Automatikgetriebes eines Kraftfahrzeugs nach einem Kaltstart sowie Getriebestrang
DE102012005824A1 (de) * 2012-03-22 2013-09-26 Robert Bosch Gmbh Hydrostatischer Antrieb
DE102015200682A1 (de) 2015-01-19 2016-07-21 Zf Friedrichshafen Ag Verfahren zum Durchführen einer Kaltstartstrategie

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019201135A1 (de) 2019-01-29 2020-07-30 Zf Friedrichshafen Ag Verfahren zum Aufwärmen eines hydrostatisch-mechanischen Leistungsverzweigungsgetriebes
DE102019214605A1 (de) * 2019-09-24 2021-03-25 Zf Friedrichshafen Ag Verfahren zum Durchführen einer Kaltstartstrategie bei einem Fahrzeug mit einem hydrostatisch mechanisch leistungsverzweigten Getriebe
EP4083472A4 (de) * 2019-12-27 2024-01-17 Kubota Corporation Nutzfahrzeug
DE102023203332A1 (de) 2023-04-13 2024-02-29 Zf Friedrichshafen Ag Verfahren zum Erwärmen eines Getriebes für eine Arbeitsmaschine

Also Published As

Publication number Publication date
EP3532751A1 (de) 2019-09-04
WO2018077538A1 (de) 2018-05-03
EP3532751B1 (de) 2020-07-15
CN109891134A (zh) 2019-06-14
US20200055520A1 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
EP3532751B1 (de) Verfahren zum durchführen eines kaltstarts
EP2376815B1 (de) Verfahren zum betreiben einer getriebevorrichtung eines fahrzeugantriebsstranges
DE112013005229B4 (de) Verfahren zur automatisierten Betätigung einer Reibungskupplung
DE102013008740A1 (de) Verfahren für ein Hydrauliksystem für ein Doppelkupplungsgetriebe
DE29714652U1 (de) Stellantrieb mit Ventileinheiten zur Betätigung einer Reibungskupplung und eines automatisierten Schaltgetriebes
DE102011017516B4 (de) Verfahren zur Bestimmung von Kenngrößen eines Automatikgetriebes
DE102007013018A1 (de) Verfahren zum Lernen der Strömungsrate eines hydraulischen Fluids in einem Automatikgetriebe
EP2141378A2 (de) Verfahren zum Ansteuern einer Kupplungsanordnung
EP3494328A1 (de) Hydrauliksystem für ein automatikgetriebe eines kraftfahrzeugs
DE102014215753A1 (de) Steuern eines Kupplungsaktuators
EP2464886B1 (de) Verfahren zur steuerung der kühlmittelzufuhr und der schmiermittelzufuhr einer kupplung eines kraftfahrzeuges mit einem automatischen schaltgetriebe
DE102018220161A1 (de) Verfahren zum Regeln eines Schaltsystems eines Getriebes
DE102018215848B4 (de) Verfahren zur Bestimmung des Touchpoints, Steuerungseinrichtung sowie Kraftfahrzeug
DE102017223049A1 (de) Verfahren zum Ansteuern eines pneumatischen Betätigungsmittels
DE102017223046A1 (de) Verfahren zum Aufwärmen eines pneumatischen Kupplungsstellers
DE102019200077A1 (de) Verfahren zur Adaption einer Wandlerüberbrückungskupplung eines Automatgetriebes eines Kraftfahrzeugs
DE10204183A1 (de) Verfahren zum Ermitteln einer fehlerbehafteten Ansteuerung eines über einen Stellantrieb angetriebenen Bauteils
DE102019215033A1 (de) Verfahren zum Betreiben einer Getriebebremse
DE102005058511A1 (de) Verfahren und Einrichtung zur Erkennung eines Fehlers in einem Steuerungssystem einer Drehmomentübertragungseinrichtung
DE102016215224B4 (de) Verfahren zum Betreiben eines Fahrzeugantriebsstranges mit einer Antriebsmaschine, mit einem hydraulisch betätigbaren Getriebe und mit einem Abtrieb
DE102015225215B4 (de) Verfahren zur initialen Bestimmung eines Reibwertes einer Hybridtrennkupplung eines Hybridfahrzeuges
DE102019216612A1 (de) Hydrostatisches Antriebssystem
DE102015220758B4 (de) Verfahren und Steuergerät zum Betreiben eines Kraftfahrzeugs
DE102022204633A1 (de) Verfahren zum Verhindern des Abwürgens einer Verbrennungskraftmaschine eines Kraftfahrzeuges
DE102020200383B4 (de) Verfahren zum Betätigen einer Reibkupplung eines Antriebsstranges eines motorbetriebenen Wasserfahrzeugs, sowie Steuergerät zur Regelung einer Betätigung einer Reibkupplung

Legal Events

Date Code Title Description
R163 Identified publications notified
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee