DE102014217387A1 - Verfahren zum Betrieb eines Neigefahrwerks sowie aktives Neigefahrwerk für ein schienenungebundenes Fahrzeug - Google Patents

Verfahren zum Betrieb eines Neigefahrwerks sowie aktives Neigefahrwerk für ein schienenungebundenes Fahrzeug Download PDF

Info

Publication number
DE102014217387A1
DE102014217387A1 DE102014217387.6A DE102014217387A DE102014217387A1 DE 102014217387 A1 DE102014217387 A1 DE 102014217387A1 DE 102014217387 A DE102014217387 A DE 102014217387A DE 102014217387 A1 DE102014217387 A1 DE 102014217387A1
Authority
DE
Germany
Prior art keywords
vehicle
inclination angle
actuator
inclination
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102014217387.6A
Other languages
English (en)
Inventor
Martin Saeger
Marc Simon
Advait Valluri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to DE102014217387.6A priority Critical patent/DE102014217387A1/de
Priority to DE202014104120.6U priority patent/DE202014104120U1/de
Publication of DE102014217387A1 publication Critical patent/DE102014217387A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D9/00Steering deflectable wheels not otherwise provided for
    • B62D9/02Steering deflectable wheels not otherwise provided for combined with means for inwardly inclining vehicle body on bends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/10Cycles with handlebars, equipped with three or more main road wheels with means for inwardly inclining the vehicle body on bends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/45Rolling frame vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betrieb eines Neigefahrwerks (2) für ein schienenungebundenes Fahrzeug (1) mit wenigstens einem Aktuator. Hierzu wird ein aufgrund einer Zentrifugalbeschleunigung (ay) in einer Kurve erforderlicher Neigungswinkel (φ) des Fahrzeugs (1) gegenüber einem globalen Koordinatensystem (x, y, z) um eine Drehachse (P) herum zumindest teilweise durch eine von dem Aktuator erzeugbare Stellkraft (F) eingestellt. Erfindungsgemäß wird der Neigungswinkel (φ) auf Basis aktueller Werte der Zentrifugalbeschleunigung (ay) und der Erdbeschleunigung (g) derart berechnet, dass ein aus diesen resultierender Wert einer Querbeschleunigung (ay') in Bezug auf ein gegenüber dem globalen Koordinatensystem (x, y, z) um den Neigungswinkel (φ) geneigtes Fahrzeugkoordinatensystem (x', y', z') gleich null ist. Nach dem Einstellen des berechneten Neigungswinkels (φ) wird der zur Einsparung von Energie Aktuator deaktiviert. Weiterhin ist die Erfindung auf ein Neigefahrwerk (2) zur Durchführung des Verfahrens gerichtet.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Betrieb eines Neigefahrwerks für ein schienenungebundenes Fahrzeug mit wenigstens einem Aktuator nach dem Oberbegriff von Anspruch 1.
  • Einspurige Fahrzeuge – wie etwa ein Motorrad – weisen die Eigenart auf, dass diese in Kurven eine angemessene Querneigung in die jeweilige Lenkrichtung verlangen. Durch das sogenannte "Legen" des Fahrzeugs in Richtung Kurvenmittelpunkt wird ein Kippmoment erzeugt, welche der auf das Fahrzeug einwirkenden und sich mit zunehmender Geschwindigkeit erhöhenden Fliehkraft entgegenwirkt. Ohne dessen Neigung würde das Fahrzeug aus der Kurve heraus quasi umfallen.
  • Zukünftige Verkehrsszenarien sehen auch für mehrspurige Fahrzeuge deutlich schmalere Fahrzeugkonzepte gegenüber heutigen Personenfahrzeugen vor. Bei derartigen, insbesondere an wenigstens einer Achse zweispurigen Fahrzeugen mit geringer Spurbreite ergibt sich ein ähnliches Stabilitätsproblem wie bei einspurigen Fahrzeugen. Hier reicht das sich auf Basis der Gewichtskraft und der Spurbreite ergebende Gegenmoment ab einer individuellen Kurvengeschwindigkeit nicht mehr aus. Im Ergebnis kann das kurveninnere Rad der Achse während eines Lenkmanövers seinen Kontakt zum Untergrund verlieren. In diesem Zustand droht das Fahrzeug dann ab einer bestimmten Geschwindigkeit ebenfalls gegen die Kurvenrichtung und somit aus der Kurve heraus umzukippen.
  • Neben dem Herabsetzen des Fahrzeugschwerpunktes wurden derartige Fahrzeuge daher bereits mit einer Neigetechnik ausgestattet, wodurch deren Aufbau wie der eines Motorrades in die Kurve gelegt werden kann. Die auf diese Weise wie bei einspurigen Fahrzeugen mögliche Stabilisierung kann beispielsweise durch die das Fahrzeug lenkende Person und/oder über ein geeignetes Neigemittel erfolgen. Bei sogenannten passiven Neigefahrwerken beschränken sich die Anregungen zur Einnahme oder Veränderung der Fahrzeugneigung rein auf manuelle Lenkeingaben und/oder die Gewichtsverlagerung der Person. Demgegenüber sehen aktive Neigefahrwerke deren direkte Verstellung durch das jeweilige Neigemittel vor.
  • Im Stand der Technik sind bereits diverse Ausgestaltungen für mit einem Neigefahrwerk ausgestattete Fahrzeuge bekannt. Mit einem Neigefahrwerk ausgestattete Fahrzeuge werden im Rahmen der Erfindung auch als Neigefahrzeuge bezeichnet.
  • So geht beispielsweise aus der WO 2011/102108 A1 ein Neigefahrzeug hervor, dessen Fahrzeugkarosserie mit einer Antriebseinheit und mit einer Lenkeinheit verbunden ist. Über eine Neigeeinrichtung kann entweder das Lenkrad oder das Antriebsrad in die erforderliche Drehrichtung geneigt werden, um ein Gleichgewicht gegenüber einer seitlichen Beschleunigungskomponente einzustellen. Ein Querbeschleunigungssensor, ein Neigungsdetektor und ein Geschwindigkeitsmesser dienen der Erfassung der jeweiligen Zustände des Fahrzeugs. Um die Neigung des Fahrzeugs zu steuern, wird eine Feedback-Regelung auf Basis der Querbeschleunigung und eine Forward-Regelung auf Basis des erforderlichen Drehbetrags für die Neigung sowie der Fahrzeuggeschwindigkeit durchgeführt.
  • Auch die JP 2011-230727 A zeigt ein Fahrzeug mit einer einen Aktuator aufweisenden Neigeeinrichtung. Dieses umfasst eine Fahrzeugkarosserie mit Rädern sowie eine Lenkanordnung mit einem Lenkelement, einem Lenkrad und einer Lenkwelle. Weiterhin sind eine Erfassungsanordnung für eine Querbeschleunigung sowie eine Regeleinheit für die Ansteuerung des Aktuators auf Basis der Querbeschleunigung vorgesehen. Um ein unstimmiges Fahrgefühl beim Abbiegen zu verhindern, ist ein Lenkrückstellglied vorgesehen. Dieses verbindet einen bestimmten Bereich eines Fahrteils und einen bestimmten Bereich des Lenkteils derart miteinander, dass das Lenkteil in eine neutrale Position rückführbar ist. Sobald das Abbiegen erfolgt ist und der Lenkteil mit der Beschleunigung des Fahrzeugs in seine neutrale Position zurückgekehrt ist, wird ein zur Ansteuerung des Aktuators dienender Wert reduziert. Auf diese Weise kann eine Erhöhung des Winkels der Fahrzeugneigung verhindert werden.
  • Ein ähnlicher Aufbau geht aus der JP 2012-153349 A hervor, welche zusätzlich eine Verarbeitungseinrichtung zur Unterdrückung der Kraftbereitstellung durch den Aktuator enthält. Sobald sich das Fahrzeug über einen zulässigen Bereich hinaus neigt, wird die Kraftbereitstellung durch den Aktuator unterdrückt. Hierdurch soll eine genauere Neigungssteuerung ermöglicht werden.
  • Die JP 2006-248489 A ist auf ein Verfahren zum aktiven Kontrollieren des Wankens eines vierrädrigen Fahrzeugs gerichtet, welches kein Neigefahrzeug ist. Hierfür wird ein Stabilisierungssystem mit wenigstens einem ansteuerbaren Aktuator vorgeschlagen. Ziel ist die Senkung des Energieverbrauchs durch den Aktuator, indem dessen Betrieb geregelt wird. Hierzu wird bei abnehmendem Anstieg der Geschwindigkeit der Querbeschleunigung das mit der Querbeschleunigung korrespondierende Abtriebsdrehmoments eines Elektromotors zu einem bestimmten Zeitpunkt auf einen umgekehrten Wirkungsgrad des Aktuators gesetzt und die Steuerung zur Aufrechterhaltung des Abtriebsdrehmoments ausgeführt. Danach wird der Stromverbrauch des Elektromotors reduziert, indem die Steuerung zur Aufrechterhaltung des Abtriebsdrehmoments solange ausgeführt wird, bis die Querbeschleunigung eine Obergrenze für die Querbeschleunigung überschreitet oder unter einen Wert für die minimale Querbeschleunigung fällt.
  • Auch die EP 1 600 313 B1 ist auf ein solches Stabilisierungssystem für ein Nicht-Neigefahrzeug gerichtet. Diese sieht eine Stabilisatorregelung vor, welche die Torsionssteifigkeit des Stabilisators derart verändert, dass dessen Fahrverhalten stabilisiert ist.
  • Der US 2006/0180372 A1 ist Fahrzeug mit drei Rädern zu entnehmen, welches ein hinteres Rad und eine entsprechend mehrspurig ausgelegte vordere Fahrzeugachse umfasst. Ferner ist ein elektronisches Stabilitätssystem vorhanden, welches mit dem Bremssystem des Fahrzeugs verbunden ist. Gegenüber einer sich während Kurvenfahrten einstellenden Neigung des Fahrzeugs aufgrund seiner Querbeschleunigung ist vorgesehen, dass ein dieser Neigung entgegen gerichtetes Moment um eine Neigeachse herum erzeugbar ist. Das Fahrzeug besitzt ein konventionelles Fahrwerk, welches keine aktive Querneigung in eine Kurve hinein ermöglicht. Hiernach wird ein der Querbeschleunigung entgegenwirkendes Moment erzeugt, indem einzelne Räder gezielt durch das elektronische Stabilitätssystem abgebremst werden.
  • Die Kontrolle sowie die Betätigung von mit einem Neigemittel – wie beispielsweise einem Aktuator – ausgestatteten aktiven Neigefahrwerken stellt eine Vielzahl an Herausforderungen dar. Zur Erfassung der Fahrdynamik eines in Fahrt befindlichen Fahrzeugs können beispielsweise die insbesondere in Kurven auftretende Zentrifugalbeschleunigung oder die Gierrate herangezogen werden. Deren Erfassung erfolgt allerdings nur innerhalb eines Fahrzeugkoordinatensystems, welches sich aufgrund der wechselnden Neigung des Fahrzeugs beständig gegenüber dem globalen Koordinatensystem verändert.
  • Für ein Fahrzeug ohne Neigefahrwerk, welches nur kleine Winkel für seine mögliche Neigung aufweist, kann die Genauigkeit dieser Signale als ausreichend angesehen werden. Bei einem Fahrzeug mit einem Neigefahrwerk sind die vorzunehmenden Messungen allerdings komplizierter sowie ungenauer und verlangen beispielsweise zusätzliche Informationen über den Neigungswinkel und die Veränderungen der Koordinaten. Hinzu kommt, dass die eingesetzten Aktuatoren durch deren ständige Kraftbereitstellung einen mitunter hohen Energieverbrauch aufweisen. Dies gilt sowohl während des aktiven Eingreifens mit dem Ziel einer Neigungsverlagerung als auch während des Haltens einer bereits eingenommenen Neigung. Dies widerspricht bisweilen dem Effizienzgedanken solcher kleineren und schmaleren Fahrzeuge.
  • Angesichts der bisherigen mitunter aufwendigen Ausgestaltungen für die Steuerung und Regelung von aktiven Neigesystemen für Fahrzeuge sowie dem mitunter hohen Verbrauch an Energie bietet der Betrieb solcher Neigefahrwerke daher durchaus noch Raum für Verbesserungen.
  • Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zum Betrieb eines Neigefahrwerks sowie ein aktives Neigefahrwerk für ein Fahrzeug aufzuzeigen, durch welches neben einer einfacheren und damit kostengünstigeren Regelung sowie Steuerung insbesondere ein energieeffizienterer Einsatz des aktiven Neigemittels ermöglicht wird.
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Weitere, besonders vorteilhafte Ausgestaltungen der Erfindung offenbaren die Unteransprüche.
  • Es ist darauf hinzuweisen, dass die in der nachfolgenden Beschreibung einzeln aufgeführten Merkmale sowie Maßnahmen in beliebiger, technisch sinnvoller Weise miteinander kombiniert werden können und weitere Ausgestaltungen der Erfindung aufzeigen. Die Beschreibung charakterisiert und spezifiziert die Erfindung insbesondere im Zusammenhang mit den Figuren zusätzlich.
  • Hiernach wird nachfolgend ein Verfahren zum Betrieb eines aktiven Neigefahrwerks aufgezeigt, welche sich insbesondere für ein schienenungebundenes Fahrzeug eignet.
  • Hierzu umfasst das Neigefahrwerk wenigstens ein Neigemittel, bei welchem es sich in bevorzugter Weise um einen Aktuator handeln kann. Dieser wird zur aktiven Einstellung sowie Veränderung des jeweils erforderlichen Neigungswinkels des Fahrzeugs um eine Drehachse herum angesteuert. Ziel ist die Kompensierung der in Kurven auftretenden Zentrifugalbeschleunigung, durch welche sich das Fahrzeug ohne Gegenkraft um die Drehachse herum radial aus der Kurve heraus neigen würde. Die jeweilige Höhe der Zentrifugalbeschleunigung hängt dabei insbesondere von der aktuellen Geschwindigkeit des Fahrzeugs und/oder dessen Lenkwinkel ab. Um nun die benötigte Gegenkraft zu erhalten, wird das Fahrzeug aktiv in die der Zentrifugalbeschleunigung entgegengesetzte Richtung um die Drehachse herum und somit in die jeweilige Kurve hinein geneigt. Der Neigungswinkel wird dabei durch den Aktuator eingestellt, indem dieser eine entsprechende Stellkraft erzeugt.
  • Selbstverständlich kann die das Fahrzeug steuernde Person ebenfalls einen entsprechenden Beitrag wie etwa eine Gewichtsverlagerung zum Erreichen des benötigten Neigungswinkels leisten. Hierdurch kann sich die durch den Aktuator zu erzeugende Stellkraft auf eine dann noch vorhandene Differenz reduziert werden.
  • Erfindungsgemäß erfolgt die Berechnung des jeweiligen Neigungswinkels so, dass als Basis hierfür die aktuellen Werte für die Zentrifugalbeschleunigung und die Erdbeschleunigung herangezogen werden. Deren jeweiligen Richtungen werden in Bezug auf ein globales Koordinatensystem angenommen, welches von dem jeweiligen Neigungswinkel des Fahrzeugs unabhängig ist. Damit ist die gemessene Zentrifugalbeschleunigung in eine horizontale Richtung gerichtet, während die angenommene oder ebenfalls gemessene Erdbeschleunigung senkrecht hierzu in Richtung des zu befahrenden Untergrundes weist.
  • Zielführend hierbei ist, dass sowohl die Zentrifugalbeschleunigung als auch die Erdbeschleunigung in ihre Komponenten zerlegt werden, welche sich bei einer Neigung des Fahrzeugs aus seiner aufrechten Position heraus ergeben. Mit anderen Worten erstreckt sich das Fahrzeug oder dessen Aufbau in einem eigenen Fahrzeugkoordinatensystem, welches in Abhängigkeit von dem jeweiligen Neigungswinkel gegenüber dem globalen Koordinatensystem gekippt ist. Hierbei sind insbesondere die sich senkrecht zur um die Drehachse neigbaren Hochachse des Fahrzeugs erstreckende Komponenten der Zentrifugalbeschleunigung und der Erdbeschleunigung relevant. Diese weisen gewöhnlich in voneinander entgegengesetzte Richtungen. Der hieraus resultierende Wert in Bezug auf das Fahrzeugkoordinatensystem wird als Querbeschleunigung des Fahrzeugs senkrecht zu seiner dabei geneigten Hochachse definiert.
  • Nach der Erfindung wird nun der zu berechnende Neigungswinkel des Fahrzeugs bzw. des Aufbaus grundsätzlich so gewählt, dass sich für die Querbeschleunigung senkrecht zur Hochachse (des gegenüber dem globalen Koordinatensystem geneigten Fahrzeugkoordinatensystems) ein Wert von null ergibt. Auf diese Weise wird bei einem Neigefahrzeug mit einer nah des zu befahrenden Untergrundes gelegenen Drehachse ein Gleichgewicht der Momente um diese Drehachse herum erzeugt.
  • Der jeweils erforderliche Neigungswinkel "φ" kann näherungsweise wie folgt berechnet werden: φ = arctan(ay/g), wobei "ay" für die Zentrifugalbeschleunigung und "g" für die Erdbeschleunigung mit jeweiligem Bezug auf das globale Koordinatensystem stehen.
  • Bei Einstellung des so berechneten Neigungswinkels ist der Wert für die Querbeschleunigung senkrecht zur Hochachse des geneigten Fahrzeugs gleich null. Dies meint, dass bei einer so eingenommenen Neigung des Fahrzeugs während seiner Kurvenfahrt kein Moment um die Drehachse herum vorhanden ist.
  • Vor diesem Hintergrund wird weiter vorgeschlagen, dass der Aktuator im Zustand dieses Gleichgewichtes deaktiviert werden kann. Dies meint, dass die durch den Aktuator erzeugte Stellkraft nach dem Einstellen des berechneten Neigungswinkels zumindest teilweise, besonders bevorzugt vollständig abgestellt werden kann. Da das Fahrzeug beim Erreichen des berechneten Neigungswinkels im Kräftegleichgewicht hinsichtlich etwaiger Momente um die Drehachse herum und somit stabil ist, besteht insofern keine Notwendigkeit mehr zur Aufrechterhaltung der Stellkraft seitens des Aktuators. Hiernach wird die aktuelle Neigung des Fahrzeugs zumindest temporär von selbst beibehalten, ohne dass es einer Aktivität des Aktuators erfordert.
  • Der sich hieraus ergebende Vorteil liegt zunächst in einer überaus einfachen und damit günstigen Möglichkeit zur Regelung sowie Steuerung des Neigefahrwerks. Aufgrund der nur geringen Anforderungen hinsichtlich der notwendigen Erfassungsmittel kann eine entsprechend günstige Sensorkonfiguration gewählt werden. Durch den Wegfall mitunter aufwendiger und entsprechende Rechenleistung erfordernder Umrechnungen zwischen dem globalen Koordinatensystem und dem Fahrzeugkoordinatensystem ist eine insgesamt vereinfachte und insbesondere schnellere Kontrolle des Neigungswinkels ermöglicht, bei gleichzeitiger Kontrollschleifenstabilität. Hierzu kann beispielsweise ein einfacher PID-Regler Verwendung finden.
  • Der erfindungsgemäße Ansatz kann daher vorsehen, das Fahrzeug grundsätzlich in eine Position zu regeln, in der keine stationäre Stellkraft durch den Aktuator benötigt wird. Dieser Ansatz kann auch als "umgekehrte Pendelsteuerung" bezeichnet werden.
  • Als weiterer Vorteil der Erfindung ist die Möglichkeit zur Deaktivierung des Aktuators während stabiler Fahrzustände. Mit einer der Gründe für den hohen Energieverbrauch ist die derzeitige Bereitstellung einer stationären Stellkraft durch den Aktuator, beispielsweise in Form eines stationären Unterstützungsmoments. Selbstverständlich können hierzu auch mechanische Reibungen zwischen verschiedenen bei einer Neigung des Fahrzeugs relativ zueinander verlagerbaren Teile gezählt werden. Neben der Optimierung liegt insbesondere in der zumindest temporär möglichen Abschaltung des Aktuators ein hohes Potential an Energieeinsparung.
  • Die Ausgestaltung des Aktuators selbst kann hinsichtlich seiner maximal zu erzeugenden Stellkraft erfolgen. So sollte der Aktuator in der Lage sein, den Neigungswinkel beispielsweise bei einem Not-Ausweichmanöver allein einzustellen. Dies mitunter auch gegen eine entgegengesetzte Kraft oder Last durch die aufsitzende Person/en. Selbiges gilt für ein etwaiges Aufrichten des Fahrzeugs bzw. dessen Aufbaus im Stillstand. Gleichwohl muss die erzeugbare Stellkraft keinen Wert übersteigen, welcher sich bei einem die Spurbreite des Fahrzeugs übersteigenden, aus der Zentrifugalbeschleunigung und der Erdbeschleunigung resultierenden Kraftvektor heraus ergibt. Denn dieser würde unweigerlich zu einem Kippen des Fahrzeugs führen, was auch eine höhere mögliche Stellkraft des Aktuators dann nicht mehr verhindern kann. Als weitere Einflussfaktoren zur Festlegung der erzeugbaren Stellkraft wären die maximal mögliche Zentrifugalbeschleunigung und/oder der baulich maximal mögliche Neigungswinkel und/oder die benötigte Dynamik zur Beschleunigung um die Drehachse hinsichtlich der Neigung zu nennen.
  • Gemäß einer besonders bevorzugten Ausgestaltung kann eine Feed-Back-Steuerung vorgesehen sein. Dies meint, dass der Neigungswinkel des Fahrzeugs entlang des zuvor eingestellten Gleichgewichts kontrolliert wird, sobald sich die Zentrifugalbeschleunigung ay im globalen Koordinatensystem ändert. Mit anderen Worten wird hiernach bei einer Veränderung der Zentrifugalbeschleunigung ein zum beibehalten des Wertes null für die Querbeschleunigung erforderlicher neuer Neigungswinkel berechnet. Folglich wird hierbei die Querbeschleunigung in Bezug auf das Fahrzeugkoordinatensystem als Regel-Input für die Feed-Back-Steuerung verwendet.
  • Mögliche Auslöser für die Veränderung der Zentrifugalbeschleunigung sind beispielsweise Beschleunigungs- oder Abbremsvorgänge des Fahrzeugs sowie eine Veränderung des Kurvenradius und damit des Lenkwinkels.
  • Besagter neu berechneter Neigungswinkel kann dann in vorteilhafter Weise zumindest teilweise durch Aktivieren des Aktuators zur Erzeugung einer hierfür erforderlichen Stellkraft eingestellt werden. Hierfür ist eine bestimmte Menge an Energie erforderlich, um das Fahrzeug bzw. dessen Aufbau um die Neigungsachse herum zu beschleunigen. Selbiges gilt für ein etwaiges Abbremsen der Beschleunigung durch den Aktuator, damit die Verlagerung in dem erforderlichen Neigungswinkel beendet werden kann.
  • Alternativ hierzu kann eine Feed-Forward-Steuerung vorgesehen werden. Dies meint, dass zunächst eine Fahrsituation prognostiziert werden kann, welche eine bestimmte Zentrifugalbeschleunigung erwarten lässt. Daraufhin kann dann bereits im Vorfeld einer tatsächlich eintretenden Fahrsituation ein aufgrund der zu erwartenden Zentrifugalbeschleunigung einzunehmender idealer Neigungswinkel vorberechnet und eingestellt werden. Anschließend kann die eigentliche Steuerung dann gegen diesen vorberechneten idealen Neigungswinkel erfolgen. Hierzu kann auf Basis einer möglichen Abweichung zwischen dem vorberechneten idealen Neigungswinkel und dem aufgrund der tatsächlichen Fahrsituation aktuell erforderlichen Neigungswinkel ein neuer Neigungswinkel berechnet werden. Dieser kann dann in vorteilhafter Weise zumindest teilweise durch Aktivieren des Aktuators zur Erzeugung einer hierfür erforderlichen Stellkraft eingestellt werden.
  • Selbstverständlich können die zuvor aufgezeigten Ansätze für den Betrieb des Neigefahrwerks in Form der Feed-Back-Steuerung oder Feed-Forward-Steuerung auch miteinander kombiniert werden. Die Kombination kann dabei von den jeweiligen Fahrsituationen abhängig gemacht werden. Weiterhin kann die Vermischung beider Ansätze über Gewichtungsfaktoren erfolgen. Bei den Gewichtungsfaktoren kann es sich um feste Werte handeln. In vorteilhafter Weise können besagte Gewichtungsfaktoren auch variieren, beispielsweise in Abhängigkeit der jeweiligen Fahrzustände.
  • Die Erfindung sieht vor, dass der Aktuator ein Elektromotor sein kann. Alternativ hierzu kann der Aktuator auch wenigstens einen Elektromotor umfassen. Der Elektromotor ist im Wesentlichen dazu vorgesehen, damit das Fahrzeug bzw. dessen Aufbau um die Drehachse herum beschleunigt werden kann, um den gewünschten Neigungswinkel einzunehmen. In Ergänzung hierzu kann der Elektromotor auch dazu genutzt werden, um die bereits erfolgte Beschleunigung um die Drehachse herum entsprechend zu verzögern und/oder abzubremsen.
  • In Bezug auf die Anordnung des Elektromotors wird weiterhin vorgeschlagen, diesen als Verbraucher und/oder als Erzeuger elektrischer Energie einzusetzen. Hierzu kann die während des Neigens um die Drehachse herum insbesondere bei der Verzögerung der Beschleunigung vorhandene kinetische Energie genutzt werden. So kann besagte kinetische Energie aus der Drehung auf den Elektromotor übertragen werden, welcher hierdurch in eine Rotation versetzt wird. Diese Rotation kann wiederum herangezogen werden, um elektrische Energie über den somit passiv drehenden Elektromotor zu gewinnen. Besonders bevorzugt kann der Elektromotor sowohl zur aktiven Beschleunigung als auch zur Gewinnung elektrischer Energie eingesetzt werden. Bei der Gewinnung elektrischer Energie durch den Elektromotor erzeugt dieser gleichzeitig einen Widerstand, durch welchen die gewünschte Verzögerung der vorherigen Beschleunigung um die Drehachse herum erfolgt.
  • Insofern kann der Elektromotor nicht nur die benötigte kinetische Energie als Stellkraft für den Neigungswinkel während der rotierenden Beschleunigung bereitstellen, sondern auch die kinetische Energie aus dem Verzögern oder Abbremsen der Rotation innerhalb des möglichen Neigungswinkels quasi zurückerlangen. Die so (zurück-)gewonnene elektrische Energie kann dann in geeigneter Weise akkumuliert werden, beispielsweise über einen Akkumulator. Wenngleich verschiedene Energieverluste während des Betriebs des Neigefahrwerks unvermeidlich sind, kann der Energieverbrauch auf diese Art in Summe dennoch in vorteilhafter Weise weiter reduziert werden.
  • Je nach Höhe der erfassten Zentrifugalbeschleunigung ist es denkbar, dass ein erforderlicher Neigungswinkel für das Fahrzeug berechnet wird, welcher den maximalen baulichen Neigungswinkel übersteigt. Nach einer vorteilhaften Weiterentwicklung kann in diesem Fall der zuvor eingestellte maximal mögliche Neigungswinkel gehalten werden, indem der Aktuator zur Erzeugung einer hierfür erforderlichen Stellkraft aktiviert wird. Eine derartige Maßnahme wird insbesondere für einen kurzen Zeitraum als vorteilhaft angesehen. Demgegenüber sieht die Erfindung für derartige Zustände mit andauernder Notwendigkeit zum Halten des maximal möglichen Neigungswinkels andere Lösungen vor, welche entsprechend genutzt werden können.
  • So kann nach einer besonders bevorzugten Weiterbildung der Erfindung ferner eine Bremseinrichtung vorgesehen sein, deren Verzögerungs- und/oder Bremsleistung sich auf die Rotation des Fahrzeugs bzw. dessen Aufbau um die Drehachse herum auswirkt. Mit anderen Worten kann aufgrund des Vorhandenseins einer solchen vorteilhaften Bremseinrichtung ein Neigen des Fahrzeugs um die Drehachse herum wenigstens zum Teil blockiert werden, indem die Bremseinrichtung zumindest teilweise betätigt wird. Auf diese Weise kann beispielsweise ein zu schnelles Umschlagen zwischen unterschiedlichen Neigungswinkel gezielt abgebremst werden.
  • Gemäß einer vorteilhaften Weiterentwicklung in Bezug auf die Anordnung der Bremseinrichtung ist vorgesehen, diese zum tatsächlichen Arretieren des aktuell eingestellten Neigungswinkels zu nutzen. Grundsätzlich kann der Aktuator auf diese Weise immer dann deaktiviert werden, wenn die Bremseinrichtung das Arretieren des Fahrzeugs bzw. seines Aufbaus in der jeweils aktuellen Lage um die Drehachse herum übernimmt.
  • So kann besagte Arretierung beispielsweise bei kleinen Geschwindigkeiten (beispielsweise < 5 km/h) und/oder kleinen Lenkwinkeln erfolgen, während sich das Fahrzeug in seiner aufrechten Ausrichtung befindet. In der aufrechten Ausrichtung liegen die Hochachse der globalen Koordinatensystems und des Fahrzeugkoordinatensystems entsprechend aufeinander oder verlaufen zumindest parallel. Mit anderen Worten kann so das Fahrzeug bis zum Erreichen eines Wertes für die eine Neigung des Fahrzeugs erfordernde Zentrifugalbeschleunigung in seiner aufrechten Ausrichtung durch die Bremseinrichtung arretiert werden. In dieser Ausrichtung weist der Neigungswinkel einen entsprechenden Wert von null auf.
  • Durch die gleichzeitige oder zeitlich versetzte Deaktivierung des Aktuators sowie der gesamten Neigungsregelung kann eine mitunter hohe Energieeinsparung erzielt werden. Je nach Ausgestaltung der Bremseinrichtung liegt deren Verbrauch an Energie in vorteilhafter Weise dann unterhalb des so möglichen Einsparpotentials.
  • Weiterhin ist vorgesehen, dass das Fahrzeug solange in seiner Neigung mit einem aktuellen Neigungswinkel von ungleich null durch betätigen der Bremseinrichtung arretiert werden kann, bis eine Verstellung des aktuellen Neigungswinkels erforderlich wird. Da auf diese Weise auch in einer geneigten Lage das Halten des aktuellen Neigungswinkels durch die Arretierung über die Bremseinrichtung erfolgt, kann auch während dieser Phase der Aktuator in vorteilhafter Weise deaktiviert werden.
  • Als weitere vorteilhafte Weiterbildung des Erfindungsgedankens kann die Bremseinrichtung selbstverständlich auch dazu genutzt werden, um das Fahrzeug bzw. dessen Aufbau in dem maximal möglichen Neigungswinkel zu arretieren. Auf diese Weise kann das Fahrzeug auch beim Erreichen des baulich maximal möglichen Neigungswinkels von ungleich null in diesem arretiert werden, indem die Bremseinrichtung entsprechend betätigt wird. Selbiges kann bevorzugt auch für den Fall gelten, dass ein rechnerisch erforderlicher Neigungswinkel berechnet wird, welcher den maximal möglichen Neigungswinkel übersteigt. Auch in diesem Fall wird der maximal mögliche Neigungswinkel zunächst eingestellt und anschließend über die Bremseinrichtung arretiert.
  • Vor dem Hintergrund der vorgenannten Ausführungen kann somit ein beständiges Zusammenspiel von Aktuator und Bremseinrichtung erfolgen, welche sich in ihrer jeweiligen Aktivität abwechseln. Die Übergabe zwischen den beiden Einrichtungen ist dann entsprechend auszuführen, um keine unangenehmen oder gar die Bedienung des Fahrzeugs gefährdenden Übergänge zu erhalten.
  • Insgesamt ist festzustellen, dass die Neigung des Fahrzeugs bzw. dessen Aufbaus nur bis zu einem baulich festgelegten maximalen Neigungswinkel möglich ist. Insofern ist auch der maximale Wert für die aufgrund der Neigung kompensierbare Zentrifugalbeschleunigung begrenzt. Der maximal mögliche Neigungswinkel kann beispielsweise so eingestellt sein, dass eine maximale Zentrifugalbeschleunigung von 4,0 m/s2 kompensierbar ist. Über diesem Wert ist mitunter auch eine maximal mögliche Haftung der Räder auf dem jeweiligen Untergrund nicht mehr zweifelsfrei gegeben.
  • Im Folgenden werden beispielhafte Szenarien für die Übergabe zwischen Aktuator und Bremseinrichtung näher erläutert:
    Sofern die maximal kompensierbare Zentrifugalbeschleunigung und der maximal erreichbare Neigungswinkel rechnerisch überschritten sind, kann die Bremseinrichtung während eines konstanten Wertes für den Neigungswinkel betätigt werden. Im Ergebnis wird das Fahrzeug in seiner aktuellen Neigung arretiert.
  • Sobald die Bremseinrichtung aktiviert und das Fahrzeug arretiert ist, kann der Aktuator entsprechend heruntergefahren werden und/oder hinsichtlich seiner zuvor erzeugten Stellkraft auslaufen.
  • Wird ein Absinken der Zentrifugalbeschleunigung erfasst, deren aktueller Wert sich der maximal kompensierbaren Zentrifugalbeschleunigung nähert, kann der Aktuator erneut aktiviert werden. In diesem Zustand ist der Aktuator in einer Art Bereitschaft, während die Bremseinrichtung noch weiterhin aktiv ist.
  • Fällt der erfasste Wert für die aktuelle Zentrifugalbeschleunigung unterhalb des Wertes für die maximal kompensierbare Zentrifugalbeschleunigung und wird ein unterhalb des eingestellten maximalen Neigungswinkels liegender Wert für den jetzt noch erforderlichen Neigungswinkel berechnet, kann die Bremseinrichtung deaktiviert und damit gelöst werden. Hiernach übernimmt nun der bereits in Bereitschaft stehende Aktuator die Einstellung des neuen berechneten Neigungswinkels.
  • Anschließend erfolgt wieder der weitere Standardbetrieb für das Neigefahrwerk, bei dem der Wert für die Querbeschleunigung senkrecht zur Fahrzeughochachse bei null gehalten wird.
  • Das nunmehr vorgestellte Verfahren zum Betrieb eines aktiven Neigefahrwerks ermöglicht dessen überaus einfache und damit kostengünstige Regelung sowie Steuerung. Dank der einfachen Regelvorgaben sind keine aufwendigen Regelungen notwendig, so dass das Verfahren mit der Verarbeitung von nur wenigen Daten zur aktuellen Fahrdynamik auskommt. Insbesondere der Einsatz einer zusätzlichen Bremseinrichtung zur Arretierung der aktuellen Neigung wirkt sich derart entlastend auf den Aktuator aus, dass dieser überaus energieeffizient eingesetzt werden kann.
  • Hier ist es insbesondere das Zusammenspiel von Aktuator und Bremseinrichtung, welches den im Betrieb ansonsten üblichen beständigen Energieverbrauch des Aktuators auf ein Minimum reduziert. Tatsächlich wird so der Aktuator im Wesentlichen nur für das zumindest teilweise Einstellen des jeweils erforderlichen Neigungswinkels aktiviert, während das Beibehalten einer stationären Neigung über eine Arretierung durch die Bremseinrichtung erfolgt. Allenfalls in kurzen Zeitabschnitten wird der Aktuator auch zum reinen Halten der aktuellen Neigung genutzt, in denen eine Aktivierung der Bremseinrichtung nicht sinnvoll erscheint. Durch die Nutzung der auf den Aktuator einwirkenden kinetischen Energie kann dieser ferner auch zur Gewinnung von elektrischer Energie eingesetzt werden, wodurch der Energieverbrauch insgesamt deutlich abgesenkt werden kann.
  • Weiterhin ist die Erfindung auf ein Neigefahrwerk für ein schienenungebundenes Fahrzeug mit wenigstens einem Aktuator gerichtet, welches mindestens drei Räder aufweisen kann. Besonders bevorzugt kann das erfindungsgemäße Neigefahrwerk zur Durchführung des zuvor beschriebenen erfindungsgemäßen Verfahrens genutzt werden.
  • Hierbei ist ein aufgrund einer Zentrifugalbeschleunigung in einer Kurve erforderlicher Neigungswinkel des Fahrzeugs gegenüber einem globalen Koordinatensystem um eine Drehachse herum zumindest teilweise durch eine von dem Aktuator erzeugbare Stellkraft einstellbar. Erfindungsgemäß ist der Neigungswinkel auf Basis aktueller Werte der Zentrifugalbeschleunigung und der Erdbeschleunigung derart berechenbar, dass ein aus diesen resultierender Wert einer Querbeschleunigung in Bezug auf ein gegenüber dem globalen Koordinatensystem um den Neigungswinkel geneigtes Fahrzeugkoordinatensystem gleich null. Weiterhin ist nach dem Einstellen des berechneten Neigungswinkels der Aktuator deaktivierbar.
  • Die sich daraus ergebenden Vorteile wurden bereits zuvor im Zusammenhang mit dem erfindungsgemäßen Verfahren näher erläutert und gelten für das erfindungsgemäße Neigefahrwerk entsprechend. Aus diesem Grund wird an dieser Stelle auf die vorherigen Ausführungen hierzu verwiesen.
  • Weitere vorteilhafte Einzelheiten und Wirkungen der Erfindung sind im Folgenden anhand von in den Figuren schematisch dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
  • 1 ein geneigtes Fahrzeug mit einem erfindungsgemäßen Neigefahrwerk mit Blick in Längsrichtung des Fahrzeugs,
  • 2 einen Aufbau einer Steuerung für das Neigefahrwerk aus 1 in Form einer Feed-Back-Steuerung sowie
  • 3 einen Aufbau für eine weitere Steuerung für das Neigefahrwerk aus 1 in Form einer Feed-Forward-Steuerung.
  • In den unterschiedlichen Figuren sind gleiche Teile stets mit denselben Bezugszeichen versehen, so dass diese in der Regel auch nur einmal beschrieben werden.
  • 1 zeigt die schematische Darstellung eines schienenungebundenen Fahrzeugs 1 mit einem nicht näher ersichtlichen erfindungsgemäßen aktiven Neigefahrwerk 2. Das Neigefahrwerk 2 beinhaltet einen ebenfalls nicht näher gezeigten Aktuator. Das Fahrzeug 1 befindet sich innerhalb eines globalen Koordinatensystems x, y, z. Wie zu erkennen, ist das Fahrzeug 1 gegenüber dem globalen Koordinatensystems x, y, z geneigt, so dass insbesondere eine Fahrzeughochachse z' eines Fahrzeugkoordinatensystems x', y', z' und eine Hochachse x des globalen Koordinatensystems einen Neigungswinkel φ zwischen sich einschließen.
  • In der hier gezeigten Vorder- oder Rückansicht fällt die Blickrichtung in Richtung einer globalen Längsachse x bzw. einer Fahrzeuglängsachse x' des Fahrzeugs 1. In dieser Ansicht ist zunächst ein waagerechter Untergrund 3 zu erkennen, welcher sich in eine globale Querrichtung x des globalen Koordinatensystems x, y, z erstreckt. Auf besagtem Untergrund 3 steht das Fahrzeug 1 mit zwei seiner an einer gemeinsamen (angedeuteten) Fahrzeugachse 4 angeordneten Räder 5, 6 auf. Die beiden Räder 5, 6 sind bezüglich ihrer jeweiligen Aufstandsebene auf dem Untergrund 3 parallel zur globalen Querachse x voneinander beabstandet. Jedes der Räder 5, 6 ist Bestandteil einer Aufhängungsseite 7, 8 der mehrspurigen Fahrzeugachse 4.
  • Zwischen dem in 1 links gelegenen linken Rad 5 und dem in 1 entsprechend rechts gelegenen rechten Rad 6 ist ein Aufbau 9 des Fahrzeugs 1 zu erkennen. Besagter Aufbau 9 ist vorliegend um den Neigungswinkel φ nach rechts geneigt. In oder auf diesem befindet sich in der Regel die das Fahrzeug 1 steuernde und hier nicht weiter gezeigte Person. Mittig des Aufbaus 9 ist ein Schwerpunkt S angedeutet. Bei diesem Schwerpunkt S kann es sich allein um den des Fahrzeugs 1 handeln oder aber um den Schwerpunkt S des Fahrzeugs 1 in Kombination mit der oder den nicht näher dargestellten Person/en.
  • Auf Höhe des Untergrundes 3 ist eine parallel zur globalen Längsachse x bzw. Fahrzeuglängsachse x' verlaufende Drehachse P ersichtlich, um welche herum sich das Fahrzeugs 1 bzw. dessen Aufbau 9 neigt. 1 zeigt das Fahrzeug 1 in Fahrt, in welcher es eine nicht näher gezeigte Kurve durchläuft. Vorliegend ist das Fahrzeug 1 in die Kurve hinein geneigt, so dass sich eine auf das Fahrzeug 1 bzw. dessen Aufbau 9 einwirkende Zentrifugalbeschleunigung ay in Richtung der globalen Querachse y ergibt. Besagte Zentrifugalbeschleunigung ay greift derart an dem Fahrzeug 1 an, das dieses aus der Kurve heraus gekippt wird (nicht gezeigt). Demgegenüber greift eine Erdbeschleunigung g an dem Fahrzeug 1 an, welche parallel zur globalen Hochachse z auf den Untergrund 3 gerichtet ist.
  • Die jeweils parallel zur Fahrzeugquerachse x' verlaufenden Komponenten der Zentrifugalbeschleunigung ay und der Erdbeschleunigung g sind zu einer resultierenden Querbeschleunigung ay' zusammengefasst, welche senkrecht zur Fahrzeughochachse z' ausgerichtet ist.
  • Aufgrund der auf das Fahrzeug 1 in einer Kurvenfahrt einwirkenden Zentrifugalbeschleunigung ay wird dieses in einen geeigneten Neigungswinkel φ um die Drehachse P herum geneigt. Hierzu wird das Fahrzeug 1 mit seiner Fahrzeughochachse z' gegenüber der globalen Hochachse z in die Kurve hinein gekippt. Die Neigung erfolgt dabei aktiv, wobei diese zumindest teilweise durch den nicht näher gezeigten Aktuator eingestellt wird, welcher hierfür eine entsprechende Stellkraft erzeugt.
  • Nach dem erfindungsgemäßen Verfahren zum Betrieb des Neigefahrwerks 2 wird der Neigungswinkel φ auf Basis aktueller Werte der Zentrifugalbeschleunigung ay und der Erdbeschleunigung g berechnet. Wie bereits zuvor erläutert sind hierfür deren jeweiligen in der resultierenden Querbeschleunigung ay' zusammengefassten Werte relevant, welche als einzige eine Neigung um die Drehachse P herum erzeugen kann. Die Steuerung sieht nun vor, dass der jeweils resultierende Wert der Querbeschleunigung ay' in Bezug auf das in der Kurve gegenüber dem globalen Koordinatensystem x, y, z um den Neigungswinkel φ geneigte Fahrzeugkoordinatensystem x', y', z' gleich null ist. Mit anderen Worten wird der Neigungswinkel φ hierbei so bestimmt, dass keine Querbeschleunigung ay' aus der Zentrifugalbeschleunigung ay und der Erdbeschleunigung g resultiert.
  • Erfindungsgemäß wird der Aktuator nach erfolgreichem Einstellen des berechneten Neigungswinkels φ deaktiviert, da sich das System zumindest temporär im Gleichgewicht befindet. Auf diese Weise kann ein mitunter hohes Einsparpotential an elektrischer Energie erreicht werden.
  • 2 ist eine schematische Darstellung für eine Feed-Back-Steuerung zu entnehmen. Diese umfasst einen "proportional-integral-derivative controller", welcher auch als PID-Regler bekannt ist. Als Führungsgröße (Sollwert) gilt der Wert "null" für die senkrecht zur Fahrzeughochachse z' des Fahrzeugs 1 verlaufende Querbeschleunigung ay'. Die Querbeschleunigung ay' dient insofern als Regelgröße (Istwert), welche mit der Führungsgröße "null" verglichen wird. Eine etwaige Regelabweichung wird dem PID-Regler zugeführt, welcher bei Bedarf eine Stellgröße als Stellkraft F bildet. Bei der Stellkraft F kann es sich beispielsweise um ein erforderliches Neigemoment handeln, welches durch den Aktuator erzeugt werden muss.
  • 3 ist eine weitere schematische Darstellung in Form einer Feed-Forward-Steuerung zu entnehmen. Diese beinhaltet ebenfalls einen PID-Regler. Auf Basis von erfassten Daten zur Fahrdynamik wie beispielsweise der Geschwindigkeit v des Fahrzeugs 1 und weiteren Faktoren δ wird zunächst eine demnächst zu erwartende Fahrsituation ψ prognostiziert. Aus dieser heraus wird eine zu erwartende Zentrifugalbeschleunigung ay angenommen, welche als Grundlage zur Vorberechnung eines einzunehmenden idealen Neigungswinkels φi herangezogen wird. Als Führungsgröße (Sollwert) wird der aktuell erfasste Neigungswinkel φa genutzt. Der ideale Neigungswinkel φi dient insofern als Regelgröße (Istwert), welcher mit dem aktuell erfasste Neigungswinkel φa als Führungsgröße verglichen wird. Eine etwaige Regelabweichung wird dem PID-Regler zugeführt, welcher bei Bedarf eine Stellgröße als Stellkraft F bildet. Bei der Stellkraft F kann es sich hier beispielsweise ebenfalls um ein erforderliches Neigemoment handeln, welches durch den Aktuator erzeugt werden muss.
  • Bezugszeichenliste
  • 1
    Fahrzeug (Neigefahrzeug)
    2
    Neigefahrwerk von 1
    3
    Untergrund
    4
    Fahrzeugachse von 2, mehrspurig
    5
    Rad von 2
    6
    Rad von 2
    7
    Aufhängungsseite links an 4
    8
    Aufhängungsseite rechts an 4
    9
    Aufbau von 1
    ay
    Zentrifugalbeschleunigung
    ay'
    Querbeschleunigung
    F
    Stellkraft
    g
    Erdbeschleunigung
    P
    Drehachse
    S
    Schwerpunkt
    δ
    Faktor
    φ
    Neigungswinkel zwischen z und z'
    φa
    Neigungswinkel aktuell
    φi
    Neigungswinkel ideal
    ψ
    Fahrsituation
    v
    Geschwindigkeit von 1
    x
    globale Längsachse
    x'
    Fahrzeuglängsachse
    y
    globale Querachse
    y'
    Fahrzeugquerachse
    z
    globale Hochachse
    z'
    Fahrzeughochachse
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • WO 2011/102108 A1 [0006]
    • JP 2011-230727 A [0007]
    • JP 2012-153349 A [0008]
    • JP 2006-248489 A [0009]
    • EP 1600313 B1 [0010]
    • US 2006/0180372 A1 [0011]

Claims (10)

  1. Verfahren zum Betrieb eines Neigefahrwerks (2) für ein schienenungebundenes Fahrzeug (1) mit wenigstens einem Aktuator, wobei ein aufgrund einer Zentrifugalbeschleunigung (ay) in einer Kurve erforderlicher Neigungswinkel (φ) des Fahrzeugs (1) gegenüber einem globalen Koordinatensystem (x, y, z) um eine Drehachse (P) herum zumindest teilweise durch eine von dem Aktuator erzeugbare Stellkraft (F) eingestellt wird, dadurch gekennzeichnet, dass der Neigungswinkel (φ) auf Basis aktueller Werte der Zentrifugalbeschleunigung (ay) und der Erdbeschleunigung (g) derart berechnet wird, dass ein aus diesen resultierender Wert einer Querbeschleunigung (ay') in Bezug auf ein gegenüber dem globalen Koordinatensystem (x, y, z) um den Neigungswinkel (φ) geneigtes Fahrzeugkoordinatensystem (x', y', z') gleich null ist, wobei nach dem Einstellen des berechneten Neigungswinkels (φ) der Aktuator deaktiviert wird.
  2. Verfahren nach Anspruch 1, gekennzeichnet durch eine Feed-Back-Steuerung, durch welche bei einer Veränderung der Zentrifugalbeschleunigung (ay) ein zum beibehalten des Wertes null für die Querbeschleunigung (ay') erforderlicher neuer Neigungswinkel (φ) berechnet wird, wobei der neue Neigungswinkel (φ) zumindest teilweise durch Aktivieren des Aktuators zur Erzeugung einer hierfür erforderlichen Stellkraft (F) eingestellt wird.
  3. Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch eine Feed-Forward-Steuerung, durch welche im Vorfeld einer prognostizierten Fahrsituation (ψ) ein aufgrund der zu erwartenden Zentrifugalbeschleunigung (ay) einzunehmende idealer Neigungswinkel (φi) vorberechnet und eingestellt wird, wobei auf Basis einer Abweichung zwischen dem vorberechneten idealen Neigungswinkel (φi) und dem aktuell tatsächlich erforderlichen Neigungswinkel (φa) ein neuer Neigungswinkel (φ) berechnet wird, wobei der neue Neigungswinkel (φ) zumindest teilweise durch Aktivieren des Aktuators zur Erzeugung einer hierfür erforderlichen Stellkraft (F) eingestellt wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Aktuator ein Elektromotor ist oder einen solchen umfasst, durch welchen das Fahrzeug (1) zum Einstellen des Neigungswinkels um die Drehachse (P) herum beschleunigt und/oder verzögert wird, wobei die beim Verzögern der Neigung vorhandene kinetische Energie zur Erzeugung elektrischer Energie durch den Elektromotor genutzt wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Fahrzeug (1) bei einem den maximal möglichen Neigungswinkel (φ) rechnerisch übersteigenden Wert für den erforderlichen Neigungswinkel (φ) in dem maximal möglichen Neigungswinkel (φ) gehalten wird, indem der Aktuator zur Erzeugung einer hierfür erforderlichen Stellkraft (F) aktiviert wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Neigen des Fahrzeugs (1) um die Drehachse (P) herum durch zumindest teilweises Betätigen einer Bremseinrichtung wenigstens zum Teil blockiert wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bis zum Erreichen einer die Neigung des Fahrzeugs (1) erfordernden Zentrifugalbeschleunigung (ay) das Fahrzeug (1) durch betätigen einer Bremseinrichtung in seiner aufrechten Ausrichtung mit einem Wert von null für den Neigungswinkel (φ) arretiert wird, wobei der Aktuator während der Arretierung des Neigungswinkels (φ) deaktiviert wird.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Fahrzeug (1) bis zu einer erforderlichen Verstellung seines aktuellen Neigungswinkels (φ) mit einem Wert von ungleich null durch betätigen einer Bremseinrichtung in dem aktuellen Neigungswinkel (φ) arretiert wird, wobei der Aktuator während der Arretierung des Neigungswinkels (φ) deaktiviert wird.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Fahrzeug (1) beim Erreichen eines maximalen Neigungswinkels (φ) und/oder bei einem den maximalen Neigungswinkel (φ) rechnerisch übersteigenden Wert für den erforderlichen Neigungswinkel (φ) durch betätigen einer Bremseinrichtung in dem maximalen Neigungswinkel (φ) von ungleich null arretiert wird, wobei der Aktuator während der Arretierung des Neigungswinkels (φ) durch die Bremseinrichtung deaktiviert wird.
  10. Neigefahrwerk für ein schienenungebundenes Fahrzeug (1) mit wenigstens einem Aktuator, insbesondere zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche, wobei ein aufgrund einer Zentrifugalbeschleunigung (ay) in einer Kurve erforderlicher Neigungswinkel (φ) des Fahrzeugs (1) gegenüber einem globalen Koordinatensystem (x, y, z) um eine Drehachse (P) herum zumindest teilweise durch eine von dem Aktuator erzeugbare Stellkraft (F) einstellbar ist, dadurch gekennzeichnet, dass der Neigungswinkel (φ) auf Basis aktueller Werte der Zentrifugalbeschleunigung (ay) und der Erdbeschleunigung (g) derart berechenbar ist, dass ein aus diesen resultierender Wert einer Querbeschleunigung (ay') in Bezug auf ein gegenüber dem globalen Koordinatensystem (x, y, z) um den Neigungswinkel (φ) geneigtes Fahrzeugkoordinatensystem (x', y', z') gleich null ist, wobei nach dem Einstellen des berechneten Neigungswinkels (φ) der Aktuator deaktivierbar ist.
DE102014217387.6A 2014-09-01 2014-09-01 Verfahren zum Betrieb eines Neigefahrwerks sowie aktives Neigefahrwerk für ein schienenungebundenes Fahrzeug Withdrawn DE102014217387A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102014217387.6A DE102014217387A1 (de) 2014-09-01 2014-09-01 Verfahren zum Betrieb eines Neigefahrwerks sowie aktives Neigefahrwerk für ein schienenungebundenes Fahrzeug
DE202014104120.6U DE202014104120U1 (de) 2014-09-01 2014-09-03 Aktives Neigefahrwerk für ein schienenungebundenes Fahrzeug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014217387.6A DE102014217387A1 (de) 2014-09-01 2014-09-01 Verfahren zum Betrieb eines Neigefahrwerks sowie aktives Neigefahrwerk für ein schienenungebundenes Fahrzeug

Publications (1)

Publication Number Publication Date
DE102014217387A1 true DE102014217387A1 (de) 2016-03-03

Family

ID=55312090

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014217387.6A Withdrawn DE102014217387A1 (de) 2014-09-01 2014-09-01 Verfahren zum Betrieb eines Neigefahrwerks sowie aktives Neigefahrwerk für ein schienenungebundenes Fahrzeug

Country Status (1)

Country Link
DE (1) DE102014217387A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017212165B4 (de) 2017-07-17 2023-11-30 Ford Global Technologies, Llc Neigefahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060180372A1 (en) 2003-08-22 2006-08-17 Bombardier Recreational Products Inc. Electronic stability system on a three-wheeled vehicle
JP2006248489A (ja) 2005-03-14 2006-09-21 Toyota Motor Corp 車両用スタビライザシステム
EP1600313B1 (de) 2004-05-26 2011-08-03 Toyota Jidosha Kabushiki Kaisha Stabilisatorregelungsvorrichtung für ein Fahrzeug
WO2011102108A1 (ja) 2010-02-16 2011-08-25 株式会社エクォス・リサーチ 車両
JP2011230727A (ja) 2010-04-30 2011-11-17 Equos Research Co Ltd 車両
JP2012153349A (ja) 2011-01-28 2012-08-16 Equos Research Co Ltd 車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060180372A1 (en) 2003-08-22 2006-08-17 Bombardier Recreational Products Inc. Electronic stability system on a three-wheeled vehicle
EP1600313B1 (de) 2004-05-26 2011-08-03 Toyota Jidosha Kabushiki Kaisha Stabilisatorregelungsvorrichtung für ein Fahrzeug
JP2006248489A (ja) 2005-03-14 2006-09-21 Toyota Motor Corp 車両用スタビライザシステム
WO2011102108A1 (ja) 2010-02-16 2011-08-25 株式会社エクォス・リサーチ 車両
JP2011230727A (ja) 2010-04-30 2011-11-17 Equos Research Co Ltd 車両
JP2012153349A (ja) 2011-01-28 2012-08-16 Equos Research Co Ltd 車両

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017212165B4 (de) 2017-07-17 2023-11-30 Ford Global Technologies, Llc Neigefahrzeug

Similar Documents

Publication Publication Date Title
DE102014217386A1 (de) Verfahren zum Betrieb eines Neigefahrwerks sowie aktives Neigefahrwerk für ein schienenungebundenes Fahrzeug
EP1758776B1 (de) Verfahren zur steuerung eines bremssystems eines allradgetriebenen kraftfahrzeuges
DE102011085423B4 (de) Vorrichtung zum Steuern eines Moments
WO2008037347A1 (de) Bremssystem und verfahren zum bremsen eines fahrzeugs mit einem hybridantrieb
EP1843906B1 (de) Fahrdynamik-steuerungs- oder regelsystem für ein zweispuriges zweiachsiges kraftfahrzeug
DE102007061900A1 (de) Spurhalteassistenzsystem und -verfahren für ein Kraftfahrzeug
DE112010005216T5 (de) Fahrzeugverhaltenssteuervorrichtung
DE112010005698T5 (de) Fahrbewegungs-Steuerungssystem
EP2004427A2 (de) System zur beeinflussung des fahrverhaltens eines fahrzeuges
DE102009019365A1 (de) System und Verfahren zum Zusammenschließen eines Torque-Vectoring-Differentials mit einem Stabilitätssteuerungssystem
DE102014202230A1 (de) Verfahren und Vorrichtung zum Verhindern eines Kippens eines lenkbaren Fahrzeugs
WO2011076534A1 (de) Verfahren und vorrichtung zur verteilung eines antriebsmomentes auf die räder einer elektrisch angetriebenen achse eines kraftfahrzeuges
EP3019377B1 (de) Steuersystem sowie verfahren zum betreiben eines kraftfahrzeugs
DE102015214176A1 (de) Verfahren zur Fahrerunterstützung bei Wasserglätte auf einem Fahrbahnuntergrund
DE102009007357A1 (de) Verfahren zur Ansteuerung eines aktiven Fahrwerks eines zweiachsigen zweispurigen Kraftfahrzeugs
DE112021005430T5 (de) Verfahren zum verwenden von bremsen und/oder einer radmotorgeschwindigkeit und/oder einer antriebsenergie, um ein fahrzeug zu lenken
EP2772374A1 (de) Betriebsverfahren für ein einachsiges Wankstabilisierungssystem eines zweiachsigen, zweispurigen Fahrzeugs
DE202014104120U1 (de) Aktives Neigefahrwerk für ein schienenungebundenes Fahrzeug
WO2007118588A1 (de) Verfahren und vorrichtung zur beeinflussung des fahrverhaltens eines fahrzeuges
DE102008034908A1 (de) Verfahren zur Stabilisierung eines Fahrzeuges bei Aquaplaning
EP2052884B1 (de) Verfahren und System zur Beeinflussung der Bewegung eines in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrzeugaufbaus eines Kraftfahrzeuges und Fahrzeug
DE102014217387A1 (de) Verfahren zum Betrieb eines Neigefahrwerks sowie aktives Neigefahrwerk für ein schienenungebundenes Fahrzeug
DE102012223984A1 (de) Verfahren und Vorrichtung zur Beeinflussung der Fahrdynamik eines Kraftfahrzeuges mit einem mittels aktiven Stellgliedern veränderbaren Fahrwerk
DE10236331B4 (de) Betriebsverfahren für ein Fahrzeug-Lenksystem
DE102018201190A1 (de) Verfahren zum Betrieb eines Fahrerassistenzsystems

Legal Events

Date Code Title Description
R005 Application deemed withdrawn due to failure to request examination