WO2011076534A1 - Verfahren und vorrichtung zur verteilung eines antriebsmomentes auf die räder einer elektrisch angetriebenen achse eines kraftfahrzeuges - Google Patents

Verfahren und vorrichtung zur verteilung eines antriebsmomentes auf die räder einer elektrisch angetriebenen achse eines kraftfahrzeuges Download PDF

Info

Publication number
WO2011076534A1
WO2011076534A1 PCT/EP2010/068619 EP2010068619W WO2011076534A1 WO 2011076534 A1 WO2011076534 A1 WO 2011076534A1 EP 2010068619 W EP2010068619 W EP 2010068619W WO 2011076534 A1 WO2011076534 A1 WO 2011076534A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
wheels
drive
wheel
differential
Prior art date
Application number
PCT/EP2010/068619
Other languages
English (en)
French (fr)
Inventor
Andreas Erban
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2011076534A1 publication Critical patent/WO2011076534A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0046Disposition of motor in, or adjacent to, traction wheel the motor moving together with the vehicle body, i.e. moving independently from the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0061Disposition of motor in, or adjacent to, traction wheel the motor axle being parallel to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/20Acceleration angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0022Gains, weighting coefficients or weighting functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/10Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/406Torque distribution between left and right wheel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to a method for distributing a drive torque to the wheels of an electrically driven axle of a motor vehicle, wherein an electrical signal is converted by a drive unit into a torque which is transmitted from an electrically driven axle to the wheels of the axle and a device for implementation of the procedure.
  • the inventive method for distributing a drive torque to the wheels of an electrically driven axle of a motor vehicle having the features of claim 1 has the advantage that a wheel-individual adjustment of the drive torque is possible.
  • the desired drive torque (set by the driver or set automatically) is represented by a sum and a difference torque component.
  • the wheels arranged on the electrically driven axle are superimposed independently with a driving torque acting on each with a differential rotation motor. ment. Characterized in that the arranged on the electrically driven axle wheels are driven individually, a division of the desired drive torque to the two wheels can be made so that the desired difference torque component on this axis is ideally transmitted to the ground.
  • the proposed wheel-individual the traction on a roadway in which a drive wheel on a normal road, the other drive wheel but moves to ice, to optimize traction and driving dynamics with high quality with minimal losses can be realized.
  • an electrical drive torque for each driven wheel is formed by adding or subtracting the differential torque to the drive torque.
  • the additional differential torque on the basis of a precontrol serves for the basic distribution of the drive torque to the driven wheels of an axle.
  • the electric drive torque is determined from a torque of the drive unit driving a wheel by multiplication with a respectively effective torque transmission ratio, which is acted upon by at least one weighting factor, from which a precontrol value for an additional differential torque during cornering is determined.
  • the differential torque arises in particular when cornering, whereby it acts as an additional yaw moment and supports the insertion of the vehicle in the curve.
  • the traction i. the implementation of the driving force in a propulsion of the vehicle is improved when cornering and increases the driving stability in the curve.
  • the steering effort of the driver is significantly reduced, while the vehicle reacts spontaneously to changes in steering angle of the driver.
  • the weighting factor is determined as a function of a wheel load change during acceleration and / or cornering. Both the longitudinal direction (acceleration) and the transverse direction (cornering) of the vehicle are sufficiently considered.
  • the weighting factor is determined as a function of the vehicle speed. By means of this weighting factor, the maximum permissible differential described torque. This ensures that at a certain vehicle speed, the asymmetrical distribution of the drive torque is reduced to the two wheels of the driven axle.
  • a resulting weighting factor is formed from the sum of the wheel load-dependent weighting factors, which is multiplied by the vehicle speed-dependent weighting factor.
  • the resulting weighting factor maps the operating mode of the vehicle, depending on whether the vehicle is in normal operation, in sports mode or in an operating state in which the vehicle has already reached its stability limits. This mode of operation is sufficiently taken into account in the formation of the additional differential torque.
  • a deviation of a yaw angular velocity from a nominal yaw angular velocity and an actual yaw angular velocity is determined, a stabilizing differential torque being determined from the determined deviation.
  • the use of the stabilizing differential torque contributes to the stabilization of the vehicle.
  • the deviation between the desired yaw rate and the actual value of the yaw rate and their change are limited to an allowable range.
  • the differential torque and the stabilizing differential torque determined on the basis of the pilot control value are added to a driving dynamic drive torque.
  • Difference torque the amount of the value determined differential torque reduced by the amount of the stabilizing differential torque. Based on this, in the case of an oversteering vehicle, an increase in the drive torque on the inside drive wheel takes place in the drive case, while the outside drive wheel is lowered approximately simultaneously. This generates a reverse yaw moment against the oversteering tendency and at the same time increases the lateral force potential on the outer wheel. In contrast, when the vehicle is understeered, the drive torque of the outside wheel increases in the drive case on the driven axle and a corresponding reduction of the drive torque takes place at the same time approximately at the same time
  • a drive slip of the vehicle is limited by a wheel slip control system, preferably a TCS system. If the yaw moment generated by the additional differential torque is insufficient to ensure the stability of the vehicle, a stabilization system inherent in the vehicle intervenes in order to support the vehicle stabilization.
  • the vehicle also contains an ABS system and an ESP system as additional stabilization systems.
  • a further development of the invention relates to a method for distributing a drive torque to the wheels of an electrically driven axle of a motor vehicle, wherein an electrical signal is converted by a drive unit into a regeneration torque transmitted from an electrically driven axle to the wheels of the axle becomes.
  • an electrical signal is converted by a drive unit into a regeneration torque transmitted from an electrically driven axle to the wheels of the axle becomes.
  • braking acting wheel torques which are arranged on the electrically driven axle wheels are each superimposed with a braking torque acting drive torque superimposed with a differential torque applied.
  • a drive unit for individual drive only one wheel on the driven axle is available.
  • impairments in the driving dynamics are minimized.
  • the Recouperationspotential is on low friction coefficients of the drive wheels against the ground, as in Ice or snow, expanded.
  • the stability of the vehicle is also improved at high coefficients of friction with a corresponding forced driving style.
  • a Differenzrecouperationsanteil is formed in Recouperations
  • the vehicle for distributing the Recouperationsmoments on the two wheels of the driven axle for precontrol which depends on the vehicle speed and the lateral acceleration of the vehicle and which in particular a Stabil confusesrecouperationsmoment is superimposed. Due to this procedure, the recovery of electrical energy can be better adapted to the current driving situation.
  • cornering can be better coordinated by the wheel-individual drive, the distribution of the braking torque with the additional Differenzrecouperationsmoment.
  • the entire Recouperationsmoment is already distributed by the feedforward control on the wheels that a stabilizing effect is achieved.
  • the Recouperationsmoment increases on the outside wheel and reduced almost simultaneously on the inside wheel.
  • a further development of the invention relates to a device for distributing a drive torque to the wheels of an electrically driven axle of a motor vehicle, wherein an electrical signal is converted by a drive unit into a torque which is transmitted from the driven axle to the wheels of the axle.
  • means are provided which act on the electrically driven axle wheels independently superimposed with a driving or braking torque acting on each superposed with a differential torque.
  • the electric axle drive can thus realize in addition to the actual drive torque and differential moments that would be needed for traction and driving dynamics interventions.
  • the classic axle differential is eliminated.
  • the wheel-individual adjustment of the drive torque is now possible for driving as well as for braking-acting wheel torques.
  • the wheels of two positioned on the axis, driven independently of each other drive units are driven, wherein a drive unit in each case drives a wheel.
  • the approximately central arrangement of the two electric drive units on the electrically driven axle allows the minimization of unsprung masses on the drive axle, whereby the ride comfort of the motor vehicle is substantially improved.
  • the chassis quality is improved by reducing the unsprung masses.
  • Figure 1 Schematic representation of a double rotor drive unit
  • FIG. 3 shows a schematic flow diagram for an exemplary embodiment of the method according to the invention
  • the double rotor drive unit 1 shows an electric drive in the form of a double-rotor drive unit 1, which is installed in the drive train of a motor vehicle with an electrically driven rear axle.
  • the double rotor drive unit 1 is arranged approximately axially and is located at the position where normally a conventional axle differential is installed, which is replaced in the present example by the double rotor drive unit 1.
  • the double-rotor drive unit 1 is arranged in a housing 2 and consists of two electric motor part drives 3 and 4. Each electric motor part drive 3 and 4 in this case has a stator winding 5a and 5b, which surrounds a rotor 6a and 6b.
  • the rotor 6a or 6b is in each case arranged on a rotor shaft 7a, 7b, wherein the two rotor shafts 7a and 7b can be connected via a coupling 8 positioned between the two rotor shafts 7a, 7b.
  • the rotor shaft 7a, 7b leads to a gear 9a, 9b, which in each case has a predetermined gear ratio to the necessary speed adjustment.
  • the transmission 9a, 9b in turn is connected to a side shaft 10a, 10b, which leads to the drive wheel 1 1 a, 1 1 b.
  • each side shaft 10a, 10b is in operative connection with the suspension or a shock absorber leg 12a, 12b of a shock absorber of the motor vehicle.
  • the drive train starting from the double-rotor drive unit 1 in the direction of the driven wheel 1 1 a, 1 1 b constructed symmetrically.
  • the gears 9a, 9b are arranged to improve the mass distribution of the motor vehicle in the vicinity of the arranged approximately to the center of the axis double rotor drive unit 1 and can connect the electric motor part drive 3 or 4 with the drive wheel 1 1 a or 1 1 b as needed or interrupt this.
  • the electrical interconnection of the double rotor drive unit 1 will be explained in more detail with reference to FIG 2.
  • Each electric motor part drive 3 or 4 is connected to a power semiconductor module 13a or 13b, by means of which a three-phase current for driving the electric motor part drives 3, 4 is generated.
  • Both power semiconductor modules 13a, 13b lead to an inverter 14, which is also known as
  • Pulse inverter is called and which converts a supplied from a high-voltage battery 15 DC voltage of about 230 V in an AC voltage, which are further processed by the two power semiconductor modules 13a, 13b.
  • the pulse-controlled inverter 14 from the electric motor part drives 3, 4 applied AC voltage in the reverse direction into a DC voltage, by means of which the high-voltage battery 15 is charged. In this process, the
  • a DC / DC converter 16 is arranged, which supplies a low-voltage battery 17 with voltage.
  • the low-voltage battery 17 is at a voltage level of about 14 V, wherein the DC / DC converter converts the voltage applied to the high-voltage battery 15 from 230 V to 14 V. By means of this voltage of 14 volts, the low-voltage battery 17 supplies all control devices of the motor vehicle with energy.
  • the electronic control of the electric motor part drives 3 and 4 is carried out by a control unit 18 which is connected via a vehicle-specific communication network 19, preferably a CAN bus with other, not shown Steu- er sheepn the motor vehicle and receives information about the current driving situation of the motor vehicle , In evaluation of this information, the control unit 18 controls the two electric motor part drives 3, 4 separately or together, wherein the open in normal operation case clutch 7 is closed by a signal from the control unit 18, when generated by both electric motor part drives 3, 4 in the state of startup Torque on only one drive wheel 1 1 a, 1 1 b to be redirected.
  • the control unit 18 comprises a driving dynamics control system, which consists of a pilot control unit and a control unit.
  • the Stability Control of the ESP (Electronic Stability Program) and the traction control of the ESP use the Electric Double Rotor Drive Unit 1 as an actuator with extended capabilities. The influence of the driving dynamics will be described in detail with the aid of FIG.
  • the drive torques at the two driven wheels 1 1 a, 1 1 b are initially the same when driving straight ahead and in total correspond to a drive desired torque which is specified by the driver or the control unit 18 for the driven axle 10a, 10b.
  • the drive torque EMProp is determined by superimposition and multiplication of the electric motor torques with the respectively effective torque transmission ratio iG_L or iG_R between the respective electric motor part drive 3, 4 and the wheel 11a, 11b driven by the latter.
  • EMProp EMmotJ. * iG_L + EMmot_R * iG_R
  • the reference symbol L corresponds to the electric motor part drive 3 and the drive wheel 1 1 a
  • the reference symbol R corresponds to the electric motor part drive 4 and the drive wheel 1 1 b.
  • a limitation of the drive torque EMProp is due to traction and / or driving dynamic reasons by the TCS system or the ESP. Thereby applies
  • EMProp Min (EMPropTar, EMPropTCS), where
  • EMPropTar the specified electrical target drive torque and EMPropTCS represent a maximum permissible nominal electrical drive torque.
  • KoFn x P_KoFn x * P_GewA x * AFn X R A FnoRA, where
  • P_KoFn x and AFn XRA are calculated as a function of the measured or estimated longitudinal acceleration.
  • the weighting factor P_GewA x is specified as a function of the lateral acceleration. It controls the influence of the weighting factor KoFn x when driving straight ahead and cornering.
  • KoFn y P_KoFn y * AFn Y R A FnoRA, where P_KoFn y gain parameters
  • Fn 0 RA static wheel load P_KoFn y and AFn YRA are used as a function of measured or estimated
  • the gain parameter P_KoFn y can be parameterized for three different operating states:
  • the focus is on the agility and traction of the vehicle.
  • the emphasis is on stability and traction, as the stability limit has been reached, and in sports the focus is on
  • a further weighting factor KoFn vFz is formed in block 102, which describes the maximum permissible difference torque EMDifPreProp as a function of the vehicle speed:
  • the weighting factor KoFn vFz can be parameterized for two different operating modes: In normal operation, the asymmetrical distribution of the drive torque EMProp is gradually reduced from a certain first vehicle speed. Above a second limit of the vehicle speed, the drive torque EMProp is symmetrically distributed to the drive wheels 1 1 a, 1 1 b.
  • the asymmetrical distribution of the drive torque EMProp is fully preserved up to a first limit. Above a second limit, the drive torque EMProp is distributed symmetrically to the drive wheels. In between there is a linear transition.
  • KoFn MIN ((KoFn x + KoFn y ), 1) * KoFn vFz
  • the differential torque EMDifPreProp necessary for cornering serves on the basis of the precontrol value for the basic distribution of the drive torque EMProp to the driven wheels 11a, 11b of the axle 10a, 10b.
  • EMDifPreProp sign (ay) * KoFn * max (EMprop, EMPropMin), where sign (ay) represents the sign of lateral acceleration.
  • EMPropMin provides a certain minimum value for the pre-controlled differential torque EMDifPreProp.
  • the feedforward control supports the drive case, the freewheeling case and the operation with Recouperation in such a way that adjusts the most harmonious, stable driving behavior according to the character of the vehicle.
  • the differential torque EMDifPreProp is set to zero in cases when the vehicle is reversing, in an oversteering vehicle, the estimated slip angles at front and rear axle have different signs or the temperature of at least one component of the Doppelro- drive unit 1 has exceeded a critical temperature limit.
  • difference torque EMDifProp is limited to a permissible range.
  • a stabilizing differential drive torque EMDifStab is determined by a controller from a control deviation of a yaw rate of the vehicle.
  • devgi (k) evGi (k) - evGi (K-1), where vGiSo is the desired yaw angular velocity
  • evGi represent deviation of the yaw angular velocity.
  • the stabilizing differential drive torque EMDifStab a control method with PDT characteristic is used, taking into account a controller parameter with a P-gain parameter and a controller parameter with a D-gain parameter, which depends on the estimated coefficient of friction, the driving situation (whether the vehicle oversteer or understeer is) and the vehicle speed are determined.
  • the differential torque EMDifPreProp formed on the basis of the precontrol is compared with the stabilizing differential torque EMDifStab.
  • the amount of the difference moment EMDifPreProp is reduced by the amount of the stabilizing difference moment EMDifStab.
  • the stabilizing differential moment EMdifStab calculated from driving stability considerations thus retains the decisive function. With the same sign of the difference moment EMDifPreProp and the stabilizing difference moment EMDifStab, the moments from the precontrol and stabilization add up
  • EMProp_a 0.5 * (EMprop - EMDif), where
  • EMProp_i 0.5 * (EMProp - EMDif)
  • EMProp_a 0.5 * (EMprop + EMDif)
  • Adherence to permissible wheel slip values applies both to the regulation of overdriven and understeered conditions. If too strong a dynamic difference torque EMDif leads to an excessive increase of the wheel drive slip on a wheel, then the differential drive torque EMDif is initially limited as a function of the wheel slip. At the same time, the non-deductible portion of the differential drive torque EMDif on the other drive wheel of the axle is compensated by an increased lowering of the drive torque EMProp or by a corresponding braking torque. Drive slip values which are too high are limited by the TCS system, while excessively high brake slip values are limited by the ABS controller on the respective wheel. If the stabilizing effect is insufficient by superposition of the differential moment, a known per se intervention of the ESP system to reduce the total drive torque EMProp.
  • a controller with PID structure If this condition is fulfilled, a controller with PID structure generates a differential drive torque EMDifProp
  • EMDifProp EMDifPropP + EMDifPropl + EMDifPropD, where
  • EMDifPropD Represent D component of the differential drive torque. Too high differential drive slip between the wheels 1 1 a, 1 1 b of the driven axle 10a, 10b is compensated by a wheel dynamic differential drive torque EMDifProp. Assuming that the inside wheel has a much larger traction than the wheel outside the curve, one obtains 1 1 a, 1 1 b for the two desired drive torques of the wheels
  • EMPropj 0.5 * (EMProp - EMDifProp)
  • EMProp_a 0.5 * (EMProp + EMDifProp)
  • the drive torque is reduced by half the amount of the wheel dynamic differential drive torque EMDifProp and simultaneously raised at the other stable running wheel by half the amount of the wheel dynamic differential drive torque EMDifProp. This is the synchronization of the two Radantriebsschlupfute.
  • a well-known master slip controller monitors compliance with the required axle-sum slip values. Excessive axle slip values are limited by the TCS system by lowering the total drive torque EMProp.
  • the wheel-individual drive also makes it possible to better adapt the return of electrical energy (recuperation) to the current driving situation.
  • An energy recovery takes place when the electric motor part drives 3, 4 in the
  • the sum value of the braking effect Recou- Operating torque EMRecoupTar is specified by the control unit 18 and initially distributed in equal parts when driving straight ahead on both driven wheels 1 1 a, 1 1 b.
  • the setpoint of the total permissible recuperation torque EMRecoup is limited in advance by the ESP system for driving stability reasons.
  • EMRecoupVDC represents the upper limit of the permissible regeneration torque.
  • a pilot control for the distribution of the total Recouperationsmomentes EM Recoup forms a difference portion EMDifRecoupPre, which is determined when cornering as a function of the vehicle speed and the lateral acceleration or the wheelbase forces.
  • EMDifRecoupPre the stabilizing recuperation torque EMDifRecoupstab is additionally superimposed.
  • EMRecoup_a 0.5 * (EMRecoup + EMDifRecoup).
  • Excessive brake slip values are limited by the ABS controller on the respective wheel by limiting the respective regeneration torque EMRecoup_i or EMRecup_a.
  • the Recouperations- or braking torque EMRecoup_i is increased at the inside wheel, while the Recouperations- or braking torque EMRecoup_a is reduced at the outside wheel. This creates a turning yaw moment against the tendency to understeer.
  • Excessive brake slip values are also limited in this case by the ABS controller on the respective wheel by limiting the respective Recouperationsmomentes EM Recoup_i or EMRecoup_a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Verteilung eines Antriebsmomentes auf die Räder einer elektrisch angetriebenen Achse eines Kraftfahrzeuges, wobei ein elektrisches Signal von einem Antriebsaggregat (3, 4) in ein Drehmoment (EMProp) umgesetzt wird, welches von einer elektrisch angetriebenen Achse (10a, 10b) auf die Räder (11a, 11b) der Achse (10a, 10b) übertragen wird, Um nicht nur antreibende, sondern auch bremsend wirkende Radmomente voneinander erzeugen zu können, werden die an der elektrisch angetriebenen Achse (10a, 10b) angeordneten Räder (11a, 11b) unabhängig voneinander mit einem antreibend oder bremsend wirkenden Antriebsmoment jeweils überlagert mit einem Differenzdrehmoment (EMDif) beaufschlagt.

Description

Beschreibung Titel
Verfahren und Vorrichtung zur Verteilung eines Antriebsmomentes auf die Räder einer elektrisch angetriebenen Achse eines Kraftfahrzeuges
Stand der Technik
Die Erfindung betrifft ein Verfahren zur Verteilung eines Antriebsmomentes auf die Räder einer elektrisch angetriebenen Achse eines Kraftfahrzeuges, wobei ein elektrisches Signal von einem Antriebsaggregat in ein Drehmoment umgesetzt wird, welches von einer elektrisch angetriebenen Achse auf die Räder der Achse übertragen wird sowie eine Vorrichtung zur Durchführung des Verfahrens.
Bei elektrischen Antrieben eines Kraftfahrzeuges werden zwei Gruppen unterschieden. Zum einen gibt es elektrische Radantriebe, bei welchen jeweils ein Elektromotor einem anzutreibenden Rad zugeordnet ist. Darüber hinaus existieren elektrische Achsantriebe, bei welchen über ein auf der angetriebenen Achse angeordnetes Differential das Antriebsmoment eines Elektromotors gleichmäßig auf beide Räder übertragen wird, welche an der angetriebenen Achse befestigt sind.
Offenbarung der Erfindung
Das erfindungsgemäße Verfahren zur Verteilung eines Antriebsmomentes auf die Räder einer elektrisch angetriebenen Achse eines Kraftfahrzeuges mit den Merkmalen des Anspruchs 1 weist den Vorteil auf, dass eine radindividuelle Einstellung des Antriebsmomentes möglich ist. Das gewünschte Antriebsmoment (vom Fahrer oder automatisch eingestellt) wird durch einen Summen- und einen Differenzdrehmoment-Anteil dargestellt. Die an der elektrisch angetriebenen Achse angordneten Räder werden unabhängig voneinander mit einem antreibend wirkenden Antriebsmoment jeweils überlagert mit einem Differenzdreh mo- ment beaufschlagt. Dadurch, dass die an der elektrisch angetriebenen Achse angeordneten Räder individuell angetrieben werden, kann eine Aufteilung des gewünschten Antriebsmomentes auf die beiden Räder so vorgenommen werden, dass der gewünschte Differenzdrehmoment-Anteil an dieser Achse ideal auf den Untergrund übertragen wird. Durch den vorgeschlagenen radindividuellen Antrieb kann die Traktion auf einer Fahrbahn, bei welcher sich ein Antriebsrad auf einer normalen Fahrbahn, das andere Antriebsrad aber auf Eis bewegt, zur Optimierung von Traktion und Fahrdynamik mit hoher Güte bei minimierten Verlusten realisiert werden.
Vorteilhafterweise wird ein elektrisches Antriebsmoment für jedes angetriebene Rad durch Addition oder Subtraktion des Differenzdrehmoment zu dem Antriebdrehmoment gebildet. Das zusätzliche Differenzdrehmoment auf der Grundlage einer Vorsteuerung dient dabei zur Grundverteilung des Antriebsmomentes auf die angetriebenen Räder einer Achse.
In einer Weiterbildung wird das elektrische Antriebsmoment aus einem Drehmoment des ein Rad antreibenden Antriebsaggregates durch Multiplikation mit einem jeweils wirksamen Momentenübersetzungsverhältnis bestimmt, welches mit mindestens einem Gewichtungsfaktor beaufschlagt wird, woraus ein Vorsteuerwert für ein zusätzliches Differenzdrehmoment in Kurvenfahrten ermittelt wird. Dadurch wird die Fahrdynamik des Fahrzeuges positiv beeinflusst. Das Differenzdrehmoment entsteht insbesondere bei Kurvenfahrten, wobei es als zusätzliches Giermoment wirkt und das Eindrehen des Fahrzeuges in der Kurve unter- stützt. Gegen ein untersteuerndes Fahrzeug wird so bereits im Ansatz interveniert. Die Traktion, d.h. die Umsetzung der Antriebskraft in einen Vortrieb des Fahrzeuges, wird bei Kurvenfahrten verbessert und die Fahrstabilität in der Kurve erhöht. Weiterhin wird der Lenkaufwand des Fahrers deutlich reduziert, während das Fahrzeug spontaner auf Lenkwinkeländerungen des Fahrers reagiert.
In einer Ausgestaltung wird der Gewichtungsfaktor in Abhängigkeit einer Radlaständerung beim Beschleunigen und/oder bei Kurvenfahrt bestimmt. Dabei werden sowohl die Längsrichtung (Beschleunigen) als auch die Querrichtung (Kurvenfahrt) des Fahrzeuges ausreichend berücksichtigt.
Ferner wird der Gewichtungsfaktor in Abhängigkeit der Fahrzeuggeschwindigkeit bestimmt. Mittels dieses Gewichtungsfaktors wird das maximal zulässige Diffe- renzdrehmoment beschrieben. Damit wird sichergestellt, dass ab einer bestimmten Fahrzeuggeschwindigkeit die asymmetrische Verteilung der Antriebsmomente auf die beiden Räder der angetriebenen Achse zurückgenommen wird. Insbesondere wird ein resultierender Gewichtungsfaktor aus der Summe der rad- lastabhängigen Gewichtungsfaktoren gebildet, welche mit dem fahrzeugge- schwindigkeitsabhängigen Gewichtungsfaktor multipliziert wird. Durch den resultierenden Gewichtungsfaktor wird die Betriebsart des Fahrzeugs abgebildet, je nach dem, ob sich das Fahrzeug im Normalbetrieb, im Sportbetrieb oder in ei- nem Betriebszustand befindet, bei welchem das Fahrzeug seine Stabilitätsgrenzen bereits erreicht hat. Diese Betriebsart wird bei der Bildung des zusätzlichen Differenzdrehmomentes ausreichend berücksichtigt.
In einer Weiterbildung wird der Vorsteuerwert für das zusätzliche Differenzdreh- moment während des Antriebs, des Freilaufes und im Recouperationsbetrieb des
Kraftfahrzeuges eingesetzt und ist somit in jedem Fahrzustand des Fahrzeuges realisierbar.
Vorteilhafterweise wird eine Abweichung einer Gierwinkelgeschwindigkeit aus ei- ner Sollgierwinkelgeschwindigkeit und einem Istwert der Gierwinkelgeschwindigkeit bestimmt, wobei aus der ermittelten Abweichung ein stabilisierendes Differenzdrehmoment ermittelt wird. Die Verwendung des stabilisierenden Differenzdrehmomentes trägt zur Stabilisierung des Fahrzeuges bei. Vorteilhafterweise werden die Abweichung zwischen der Sollgierwinkelgeschwindigkeit und dem Istwert der Gierwinkelgeschwindigkeit sowie deren Änderung auf einen zulässigen Bereich begrenzt.
In einer Ausgestaltung werden bei gleichen Vorzeichen des auf der Grundlage des Vorsteuerungswertes ermittelten Differenzdrehmomentes und des stabilisie- renden Differenzdrehmomentes das auf der Grundlage des Vorsteuerungswertes ermittelte Differenzdrehmoment und das stabilisierende Differenzdrehmoment zu einem fahrdynamischen Antriebsmoment addiert.
Alternativ wird bei unterschiedlichen Vorzeichen des auf der Grundlage des Vor- steuerungswertes ermittelten Differenzdrehmomentes und des stabilisierenden
Differenzdrehmomentes der Betrag des auf der Grundlage des Vorsteuerungs- wertes ermittelten Differenzdrehmomentes um den Betrag des stabilisierenden Differenzdrehmomentes reduziert. Davon ausgehend, erfolgt bei einem übersteuernden Fahrzeug somit im Antriebsfall eine Erhöhung des Antriebsmomentes am kurveninneren Antriebsrad, während das kurvenäußere Antriebsrad annä- hernd gleichzeitig abgesenkt wird. Dadurch wird ein rückdrehendes Giermoment entgegen der Übersteuertendenz erzeugt und gleichzeitig das Seitenkraftpotenti- al am kurvenäußeren Rad erhöht. Im Gegensatz dazu wird bei einem tendenziell untersteuerten Fahrzeug im Antriebsfall an der angetriebenen Achse das Antriebsmoment des kurvenäußeren Rades erhöht und annähernd gleichzeitig er- folgt eine entsprechende Absenkung des Antriebsmomentes am kurveninneren
Rad. Hiermit wird ein eindrehendes Giermoment entgegen der Untersteuerungstendenz erzeugt.
In einer Variante wird bei Überschreitung eines Grenzwertes durch das fahrdy- namische Differenzantriebsmoment ein Antriebsschlupf des Fahrzeuges durch ein Radschlupfregelsystem, vorzugsweise einem TCS-System, limitiert. Reicht das durch das zusätzliche Differenzdrehmoment erzeugte Giermoment nicht aus, um die Stabilität des Fahrzeuges zu gewährleisten, greift ein im Fahrzeug an sich vorhandenes Stabilisierungssystem ein, um die Fahrzeugstabilisierung zu unter- stützen. Neben dem TCS-System enthält das Fahrzeug als weitere Stabilisierungssysteme ein ABS- System und ein ESP- System.
Eine Weiterbildung der Erfindung betrifft ein Verfahren zur Verteilung eines Antriebsmomentes auf die Räder einer elektrisch angetriebenen Achse eines Kraft- fahrzeuges, wobei ein elektrisches Signal von einem Antriebsaggregat in ein Re- couperationsmoment umgesetzt wird, welches von einer elektrisch angetriebenen Achse auf die Räder der Achse übertragen wird. Um nicht nur antreibende, sondern auch bremsend wirkende Radmomente erzeugen zu können, werden die an der elektrisch angetriebenen Achse angeordneten Räder unabhängig voneinander mit einem bremsend wirkenden Antriebsmoment jeweils überlagert mit einem Differenzdrehmoment beaufschlagt. Dabei steht jeweils ein Antriebsaggregat zum individuellen Antrieb nur eines Rades an der angetriebenen Achse zur Verfügung. Auch bei der radindividuellen Recouperation, welche die Grundlage zur Realisierung von Differenzdrehmomenten bildet, werden Beeinträchti- gungen in der Fahrdynamik minimiert. Das Recouperationspotential wird dabei auf niedrige Reibwerte der Antriebsräder gegenüber dem Untergrund, wie bei Eis oder Schnee, erweitert. Die Stabilität des Fahrzeuges wird aber auch bei hohen Reibwerten bei einer entsprechenden forcierten Fahrweise verbessert.
Unter Recouperation wird allgemein der Betriebszustand eines Elektromotors verstanden, bei welchem dieser als Generator arbeitet und die in der Fahrbewegung des Fahrzeuges enthaltene Energie in elektrische Energie zur Aufladung einer Batterie umwandelt. Dabei wird das Fahrzeug durch den Elektromotor in seiner Bewegung abgebremst. Ein solcher Bremsvorgang erfolgt ohne Inbetriebnahme des mechanischen Bremssystems des Fahrzeuges, welches durch diese Vorgehensweise entlastet wird, wodurch die Lebensdauer des mechanischen Bremssystems erhöht und der Aufwand für die Bremshydraulik reduziert wird.
Mit der radindividuellen Recouperation lässt sich der Konflikt zwischen einer hohen Recouperationsleistung und einer günstigen Auslegung der auf das Fahrzeug stabilisierend wirkenden Giermomente besser ausgleichen.
Vorteilhafterweise wird im Recouperationsbetrieb des Fahrzeuges zur Verteilung des Recouperationsmoments auf die beiden Räder der angetriebenen Achse zur Vorsteuerung ein Differenzrecouperationsanteil gebildet, welcher von der Fahrzeuggeschwindigkeit und der Querbeschleunigung des Fahrzeuges abhängt und welchem insbesondere ein Stabilisierungsrecouperationsmoment überlagert wird. Auf Grund dieser Vorgehensweise kann auch die Rückspeicherung der elektrischen Energie besser an die momentane Fahrsituation angepasst werden. Bei Kurvenfahrt kann durch den radindividuellen Antrieb die Verteilung der Bremsmomente mit dem zusätzlichen Differenzrecouperationsmoment besser koordiniert werden. Somit kann bereits im Vorfeld der Gefahr eines unter- oder übersteuernden Verhaltens des Fahrzeuges Einhalt geboten werden, da das gesamte Recouperationsmoment bereits durch die Vorsteuerung so auf die Räder verteilt wird, dass eine stabilisierende Wirkung erzielt wird.
In einer weiteren Ausgestaltung wird bei einem tendenziell übersteuernden Fahrzeug das Recouperationsmoment am kurvenäußeren Rad erhöht und annähernd gleichzeitig am kurveninneren Rad vermindert.
Alternativ dazu erfolgen bei einem tendenziell untersteuerten Fahrzeug eine Erhöhung des Recouperationsmoments am kurveninneren Rad und annähernd gleichzeitig eine Absenkung des Recouprationsmomentes am kurvenäußeren Rad.
Eine weitere Weiterbildung der Erfindung betrifft eine Vorrichtung zur Verteilung eines Antriebsmomentes auf die Räder einer elektrisch angetriebenen Achse eines Kraftfahrzeuges, wobei ein elektrisches Signal von einem Antriebsaggregat in ein Drehmoment umgesetzt wird, welches von der angetriebenen Achse auf die Räder der Achse übertragen wird. Um eine radindividuelle Einstellung des Antriebsmomentes zu ermöglichen, sind Mittel vorhanden, welche die an der elektrisch angetriebenen Achse angeordneten Räder unabhängig voneinander mit einem antreibend oder bremsend wirkenden Antriebsmoment jeweils überlagert mit einem Differenzdrehmoment beaufschlagen. Der elektrische Achsantrieb kann somit neben dem eigentlichen Antriebsmoment auch Differenzmomente realisieren, die für Traktions- und Fahrdynamikeingriffe benötigt werde. Das klassi- sehe Achsdifferential entfällt. Die radindividuelle Einstellung des Antriebsmomentes ist nun für antreibend als auch für bremsend wirkende Radmomente möglich.
Vorteilhafterweise werden die Räder von zwei auf der Achse positionierten, unabhängig voneinander arbeitenden Antriebsaggregaten angetrieben, wobei ein Antriebsaggregat jeweils ein Rad antreibt. Die annähernd mittige Anordnung der beiden elektrischen Antriebsaggregate auf der elektrisch angetriebenen Achse ermöglicht die Minimierung der ungefederten Massen an der Antriebsachse, wodurch der Fahrkomfort des Kraftfahrzeuges wesentlich verbessert wird. Die Fahrwerksqualität wird durch die Reduzierung der ungefederten Massen verbes- sert.
Die Erfindung lässt zahlreiche Ausführungsformen zu. Eine davon soll anhand der in der Zeichnung dargestellten Figuren näher erläutert werden. Es zeigt:
Figur 1 : Prinzipdarstellung einer Doppelrotorantriebseinheit
Figur 2: ein Beispiel für die elektrische Verschaltung der Doppelrotorantriebseinheit Figur 3: schematisches Ablaufdiagramm für ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens
Gleiche Merkmale sind mit gleichen Bezugszeichen gekennzeichnet.
In Figur 1 ist ein elektrischer Antrieb in Form einer Doppelrotorantriebseinheit 1 dargestellt, die im Antriebsstrang eines Kraftfahrzeuges mit einer elektrisch angetriebenen Hinterachse verbaut ist. Dies soll jedoch keine Einschränkung darstellen, da auch ein Einsatz der Doppelrotorantriebseinheit 1 an einer angetriebenen Vorderachse möglich ist. Die Doppelrotorantriebseinheit 1 ist dabei annähernd achsmittig angeordnet und befindet sich an der Position, wo normalerweise ein konventionelles Achs-Differential eingebaut ist, welches im vorliegenden Beispiel durch die Doppelrotorantriebseinheit 1 ersetzt wird.
Die Doppelrotorantriebseinheit 1 ist in einem Gehäuse 2 angeordnet und besteht aus zwei Elektromotorteilantrieben 3 und 4. Jeder Elektromotorteilantrieb 3 und 4 weist dabei eine Statorwicklung 5a bzw. 5b auf, die einen Rotor 6a bzw. 6b umgibt. Der Rotor 6a bzw. 6b ist jeweils auf einer Rotorwelle 7a, 7b angeordnet, wobei die beiden Rotorwellen 7a und 7b über eine zwischen beiden Rotorwellen 7a, 7b positionierte Kupplung 8 verbindbar sind. Die Rotorwelle 7a, 7b führt an ein Getriebe 9a, 9b, welches jeweils ein vorgegebenes Übersetzungsverhältnis zur notwendigen Drehzahlanpassung aufweist. Das Getriebe 9a, 9b wiederum ist mit einer Seitenwelle 10a, 10b verbunden, die an das Antriebsrad 1 1 a, 1 1 b führt. Außerdem steht jede Seitenwelle 10a, 10b in einer Wirkverbindung mit der Radaufhängung bzw. einem Dämpferbein 12a, 12b eines Stoßdämpfers des Kraftfahrzeugs.
Wie aus der vorhergehenden Beschreibung ersichtlich, ist der Antriebstrang ausgehend von der Doppelrotorantriebseinheit 1 in Richtung des angetriebenen Rades 1 1 a, 1 1 b symmetrisch aufgebaut. Die Getriebe 9a, 9b sind zur Verbesserung der Massenverteilung des Kraftfahrzeuges in der Nähe der annähernd zur Mitte der Achse angeordneten Doppelrotorantriebseinheit 1 angeordnet und können je nach Bedarf die Verbindung des Elektromotorteilantriebes 3 bzw. 4 mit dem Antriebsrad 1 1 a bzw. 1 1 b herstellen oder diese unterbrechen. Die elektrische Verschaltung der Doppelrotorantriebseinheit 1 soll anhand von Figur 2 näher erläutert werden. Jeder Elektromotorteilantrieb 3 bzw. 4 ist mit einem Leistungshalbleitermodul 13a bzw. 13b verbunden, mittels welchem ein Drehstrom zum Antrieb der Elektromotorteilantriebe 3, 4 erzeugt wird. Beide Leistungshalbleitermodule 13a, 13b führen auf einen Inverter 14, der auch als
Pulswechselrichter bezeichnet wird und welcher eine von einer Hochvoltbatterie 15 gelieferte Gleichspannung von ungefähr 230 V in eine Wechselspannung umwandelt, die von den beiden Leistungshalbleitermodulen 13a, 13b weiter verarbeitet werden. Der Vollständigkeit halber soll noch erwähnt werden, dass, wenn die Elektromotorteilantriebe 3, 4 in einem Generatorbetrieb arbeiten, in welchem die vom Fahrzeug aufgebrachte mechanische Energie durch die Elektromotorteilantriebe 3, 4 in elektrische Energie umgewandelt wird, der Pulswechselrichter 14 diese von den Elektromotorteilantrieben 3, 4 aufgebrachte Wechselspannung in umgekehrter Richtung in eine Gleichspannung umwandelt, mittels welcher die Hochvoltbatterie 15 aufgeladen wird. Bei diesem Vorgang wird das
Fahrzeug ohne Einsatz eines nicht weiter dargestellten mechanischen Bremssystems des Fahrzeuges abgebremst.
Zwischen dem Pulswechselrichter 14 und der Hochvoltbatterie 15 ist ein DC/DC- Wandler 16 angeordnet, welcher eine Niedervoltbatterie 17 mit Spannung versorgt. Die Niedervoltbatterie 17 liegt auf einem Spannungsniveau von ungefähr 14 V, wobei der DC/DC-Wandler die an der Hochvoltbatterie 15 anliegende Spannung von 230 V in 14 V umwandelt. Mittels dieser Spannung von 14 Volt versorgt die Niedervoltbatterie 17 alle Steuergeräte des Kraftfahrzeuges mit Energie.
Die elektronische Ansteuerung der Elektromotorteilantriebe 3 und 4 erfolgt durch ein Steuergerät 18, welches über ein fahrzeugspezifisches Kommunikationsnetz 19, vorzugsweise einem CAN-Bus mit anderen, nicht weiter dargestellten Steu- ergeräten des Kraftfahrzeuges verbunden ist und von diesen Informationen über die aktuelle Fahrsituation des Kraftfahrzeuges erhält. In Auswertung dieser Informationen steuert das Steuergerät 18 die beiden Elektromotorteilantriebe 3, 4 getrennt voneinander oder gemeinsam an, wobei die im normalen Betriebsfall geöffnete Kupplung 7 durch ein Signal des Steuergerätes 18 geschlossen wird, wenn im Zustand des Anfahrens das von beiden Elektromotorteilantrieben 3, 4 erzeugte Drehmoment auf nur ein Antriebsrad 1 1 a, 1 1 b umgeleitet werden soll. Das Steuergerät 18 umfasst ein fahrdynamisches Regelsystem, welches aus einer Vorsteuereinheit und einer Reglereinheit besteht. Die Fahrstabilitatsregelung des ESP (Elektronisches Stabilitätsprogramm) und die Traktionsregelung des ESP nutzen die elektrischen Doppelrotorantriebseinheit 1 als Stellglied mit erweiterten Möglichkeiten. Die Beeinflussung der Fahrdynamik soll mit Hilfe von Figur 3 näher beschrieben werden.
Die Antriebsmomente an den beiden angetriebenen Rädern 1 1 a, 1 1 b sind bei einer Geradeausfahrt zunächst gleich und entsprechen in Summe einem Antriebssollmoment, das vom Fahrer bzw. dem Steuergerät 18 für die angetriebene Achse 10a, 10b vorgegeben wird. In Block 100 wird das Antriebsmoment EMProp durch Überlagerung und Multiplikation der Elektromotormomente mit dem jeweils wirksamen Momentenübersetzungsverhältnis iG_L bzw. iG_R zwischen dem jeweiligen Elektromotorteilantrieb 3, 4 und dem von diesem angetriebenen Rad 1 1 a, 1 1 b bestimmt.
EMProp = EMmotJ. * iG_L + EMmot_R * iG_R
Das Bezugszeichen L entspricht dabei dem Elektromotorteilantrieb 3 und dem Antriebsrad 1 1 a, während das Bezugszeichen R dem Elektromotorteilantrieb 4 und dem Antriebsrad 1 1 b entspricht.
Üblicherweise ist iG_L = iG_R = iG
Eine Limitierung des Antriebsmomentes EMProp erfolgt aus Traktions- und/oder fahrdynamischen Gründen durch das TCS-System bzw. das ESP. Dadurch gilt
EMProp = Min (EMPropTar, EMPropTCS), wobei
EMPropTar das vorgegebene elektrische Sollantriebsmoment und EMPropTCS ein maximal zulässiges elektrisches Sollantriebsmoment darstellen.
Im Block 101 werden in der Vorsteuereinheit Gewichtungsfaktoren KoFnx bzw. KoFny berechnet. KoFnx = P_KoFnx * P_GewAx * AFnXRA FnoRA , wobei
P_KoFnx Verstärkungsparameter
P_GewAx Gewichtungsfaktor Kurve
AFnXRA Radlaständerung durch Längsbeschleunigung
Fn0RA statische Radlast
P_KoFnx und AFnXRA werden als Funktion der gemessenen oder geschätzten Längsbeschleunigung berechnet. Der Gewichtungsfaktor P_GewAx wird als Funktion der Querbeschleunigung vorgegeben. Er steuert den Einfluss des Gewichtungsfaktors KoFnx bei Geradeausfahrt und Kurvenfahrt.
KoFny = P_KoFny * AFnYRA FnoRA , wobei P_KoFny Verstärkungsparameter
AFnYRA Radlaständerung bei Querbeschleunigung oder aus Einfederwegen
Fn0RA statische Radlast P_KoFny und AFnYRA werden als Funktion der gemessenen oder geschätzten
Querbeschleunigung berechnet. Der Verstärkungsparameter P_KoFny kann für drei unterschiedliche Betriebszustände parametriert werden:
Im Normalbetrieb stehen Agilität und Traktion des Fahrzeuges im Mittelpunkt. Während des TCS-Betriebs liegt der Schwerpunkt auf der Stabilität und der Trak- tion, da die Stabilitätsgrenze erreicht ist und im Sportbetrieb wird der Focus auf
Traktion, Agilität und Fahrspass gelegt.
Als nächster Schritt wird im Block 102 ein weiterer Gewichtungsfaktor KoFnvFz gebildet, der das maximal zulässige Differenzmoment EMDifPreProp als Funkti- on der Fahrzeuggeschwindigkeit beschreibt:
KoFnvFz = f(vFz)
Der Gewichtungsfaktor KoFnvFz kann für zwei unterschiedliche Betriebsarten parametriert werden: Im Normalbetrieb wird ab einer bestimmten ersten Fahrzeuggeschwindigkeit die asymmetrische Verteilung des Antriebsmomentes EMProp sukzessive zurückgenommen. Oberhalb einer zweiten Grenze der Fahrzeuggeschwindigkeit wird das Antriebsmoment EMProp symmetrisch auf die Antriebsräder 1 1 a, 1 1 b verteilt.
Im Sportbetrieb bleibt die asymmetrische Verteilung des Antriebsmomentes EMProp bis zu einer ersten Grenze voll erhalten. Oberhalb einer zweiten Grenze wird das Antriebsmoment EMProp symmetrisch auf die Antriebsräder verteilt. Dazwischen erfolgt ein linearer Übergang.
Im Block 103 werden die einzelnen Gewichtungsfaktoren KoFnx, KoFny und KoFnvFzzu einem resultierenden Gewichtungsfaktor KoFn zusammengefügt. Es gilt:
KoFn = MIN ((KoFnx + KoFny), 1 ) * KoFnvFz
Das für Kurvenfahrten notwendige Differenzmoment EMDifPreProp dient auf der Grundlage des Vorsteuerwertes zur Grundverteilung des Antriebsmomentes EMProp auf die angetriebenen Räder 1 1 a, 1 1 b der Achse 10a, 10b.
EMDifPreProp = sign (ay) * KoFn * max (EMprop, EMPropMin), wobei sign (ay) das Vorzeichen der Querbeschleunigung darstellt.
Im sogenannten Freilauffall gilt:
EMmotJ. = - EMmot_R => EMProp = 0
Als Sonderfall kann im Recouperationsbetrieb gelten:
EMmot_L = EMmot_R => EMProp = 0.
Um auch in diesen Situationen mit EMProp = 0 fahrdynamisch wirksame Differenzmomente erzeugen zu können, wird mit EMPropMin ein gewisser Mindestwert für das vorgesteuerte Differenzmoment EMDifPreProp bereitgestellt. Die Vorsteuerung unterstützt den Antriebsfall, den Freilauffall und den Betrieb mit Recouperation in der Weise, dass sich ein möglichst harmonisches, stabiles Fahrverhalten entsprechend dem Charakter des Fahrzeugs einstellt.
Das Differenzmoment EMDifPreProp wird in den Fällen zu Null gesetzt, wenn das Fahrzeug rückwärts fährt, bei einem übersteuernden Fahrzeug, die geschätzten Schräglaufwinkel an Vorder- und Hinterachse unterschiedliche Vorzeichen haben oder die Temperatur mindestens einer Komponente der Doppelro- torantriebseinheit 1 eine kritische Temperaturgrenze überschritten hat.
Darüber hinaus wird das Differenzmoment EMDifProp auf einen zulässigen Bereich begrenzt.
EMDifPrePropMin <= EMDifPreProp <= EMDifPrePropMax
Im Block 104 wird durch einen Regler aus einer Regelabweichung einer Gierwinkelgeschwindigkeit des Fahrzeuges ein stabilisierendes Differenzantriebsmoment EMDifStab bestimmt. Die Regelabweichung der Gierwinkelgeschwindigkeit wird bestimmt aus evGi(k) = vGiSo(k) - vGi(k)
devgi(k) = evGi(k) - evGi(K-1 ), wobei vGiSo Sollgierwinkelgeschwindigkeit
vGi Istwert der Gierwinkelgeschwindigkeit
evGi Regelabweichung der Gierwinkelgeschwindigkeit darstellen.
devGi Änderung der Regelabweichung der Gierwinkelgeschwindigkeit.
Zur Bestimmung des stabilisierenden Differenzantriebsmomentes EMDifStab wird ein Regelverfahren mit PDT Charakteristik verwendet, wobei ein Reglerparameter mit einem P-Verstärkungsparameter und ein Reglerparameter mit einem D-Verstärkungsparameter berücksichtigt werden, welche in Abhängigkeit des geschätzten Reibwertes, der Fahrsituation (ob das Fahrzeug über- oder untersteuert ist) und der Fahrzeuggeschwindigkeit bestimmt werden. Im Block 105 wird das auf der Grundlage der Vorsteuerung gebildete Differenzmoment EMDifPreProp mit dem stabilisierenden Differenzmoment EMDifStab verglichen. Bei ungleichen Vorzeichen des Differenzmomentes EMDifPreProp und des stabilisierenden Differenzmomentes EMDifStab wird der Betrag des Dif- ferenzmomentes EMDifPreProp um den Betrag des stabilisierenden Differenzmomentes EMDifStab reduziert. Das aus Fahrstabilitatsbetrachtungen berechnete stabilisierende Differenzmoment EMdifStab behält somit die entscheidende Funktion. Bei gleichen Vorzeichen des Differenzmomentes EMDifPreProp und des stabilisierenden Differenzmomentes EMDifStab addieren sich die Momente aus der Vorsteuerung und Stabilisierung zu
EMDif = EMDifPreProp + EMDifStab
Im Block 106 wird nun geprüft, ob sich das Fahrzeug in einem übersteuernden Zustand oder einem untersteuernden Zustand befindet, wobei durch Überlagerung des Differenzmomentes EMDif dem jeweiligen Zustand entgegengewirkt wird. Das Fahrzeug ist übersteuert, wenn betragsmäßig die Gierwinkelgeschwindigkeit größer ist als die Sollgiergeschwindigkeit: I vGi I > I vGiSo I.
Bei dem beschriebenen Fahrzeug mit der angetriebenen Hinterachse 10a, 10b erfolgt im Antriebsfall eine Erhöhung des Antriebsmomentes am kurveninneren Rad und gleichzeitig eine entsprechende Absenkung am kurvenäußeren Rad. Dadurch wird ein rückdrehendes Giermoment entgegen der Übersteuerungstendenz erzeugt und gleichzeitig das Seitenkraftpotential des kurvenäußeren Rades erhöht.
EMPropj = 0.5 * (EMProp + EMDif)
EMProp_a = 0.5 * (EMprop - EMDif), wobei
EMPropj Antriebsmoment am kurveninneren Rad
EMProp_a Antriebsmoment am kurvenäußeren Rad
Für einen untersteuerten Zustand des Fahrzeuges gilt I vGi I < I vGiSo I
Befindet sich das Fahrzeug in einem solchen untersteuerten Zustand, erfolgt eine Erhöhung des Antriebsmomentes am kurvenäußeren Rad und annähernd gleichzeitig eine entsprechende Absenkung am kurveninneren Rad. Dadurch wird ein eindrehendes Giermoment entgegen der Untersteuertendenz erzeugt.
EMProp_i = 0.5 * (EMProp - EMDif)
EMProp_a = 0.5 * (EMprop + EMDif)
Sowohl bei der Regulierung des übersteuerten als auch des untersteuerten Zu- standes gilt die Einhaltung zulässiger Radschlupfwerte. Führt ein zu starkes fahrdynamisches Differenzmoment EMDif zu einer zu starken Erhöhung des Radantriebsschlupfes an einem Rad, so wird das Differenzantriebsmoment EMDif zunächst in Abhängigkeit des Radschlupfes begrenzt. Gleichzeitig wird der nicht absetzbare Anteil des Differenzantriebsmomentes EMDif am anderen Antriebsrad der Achse durch ein verstärktes Absenken des Antriebsmomentes EMProp bzw. durch ein entsprechendes Bremsmoment kompensiert. Zu hohe Antriebsschlupfwerte werden vom TCS-System limitiert, während zu hohe Bremsschlupfwerte vom ABS-Regler am jeweiligen Rad begrenzt werden. Sollte die stabilisierende Wirkung durch Überlagerung des Differenzmomentes nicht ausreichen, erfolgt ein an sich bekannter Eingriff des ESP-Systems zur Reduktion des gesamten Antriebsmomentes EMProp.
Als Spezialfall soll nun betrachtet werden, ob ein Rad durchdreht, was bei einer forcierten Kurvenfahrt oder dem Fahren auf einer Fahrbahn vorkommt, die teilweise mit Eis bedeckt ist und wo ein Rad des Fahrzeuges sich auf dem eisigen Untergrund bewegt, während das andere Rad auf einer trockenen Fahrbahn fährt. Das durchdrehende Rad ist üblicherweise das entlastete kurveninnere Rad bzw. das Rad, das sich auf dem niederen Reibwert mit der Fahrbahn befindet. Zur Erkennung des durchdrehenden Rades wird die Differenzgeschwindigkeit zwischen beiden angetriebenen Rädern 1 1 a, 1 1 b ausgewertet. Diese Differenzgeschwindigkeit wird um den Betrag einer kinematischen Differenzgeschwindigkeit korrigiert, wodurch eine Regelabweichung der Differenzgeschwindigkeit erhalten wird, die wegen eines Überschusses am gesamten Antriebsmoment EMProp entstanden ist. Für die Regelabweichung evDif der Differenzgeschwindigkeit gilt
I evDif I > 0.
Wird diese Bedingung erfüllt, erzeugt ein Regler mit PID-Struktur ein Differenzantriebsmoment EMDifProp
EMDifProp = EMDifPropP + EMDifPropl + EMDifPropD, wobei
EMDifPropP P-Anteil des Differenzantriebsmomentes
EMDifPropl I-Anteil des Differenzantriebsmomentes
EMDifPropD D-Anteil des Differenzantriebsmomentes darstellen. Ein zu hoher Differenzantriebsschlupf zwischen den Rädern 1 1 a, 1 1 b der angetriebenen Achse 10a, 10b wird durch ein raddynamisches Differenzantriebmoment EMDifProp kompensiert. Unter der Annahme, dass das kurveninnere Rad einen wesentlich größeren Antriebsschlupf als das kurvenäußere Rad aufweist, erhält man für die beiden Sollantriebmomente der Räder 1 1 a, 1 1 b
EMPropj = 0.5 * (EMProp - EMDifProp)
EMProp_a = 0.5 * (EMProp + EMDifProp)
Am durchdrehenden Rad wird das Antriebsmoment um den halben Betrag des raddynamischen Differenzantriebsmoments EMDifProp reduziert und gleichzeitig am anderen stabil laufenden Rad um den halben Betrag des raddynamischen Differenzantriebsmomentes EMDifProp angehoben. Damit erfolgt die Synchronisation der beiden Radantriebsschlupfwerte. Ein bekannter Summenschlupfregler überwacht die Einhaltung der geforderten Achssummenschlupfwerte. Zu hohe Achssummenschlupfwerte werden vom TCS-System durch Absenken des gesamten Antriebsmomentes EMProp begrenzt.
Durch den radindividuellen Antrieb kann auch die Rückspeisung der elektrischen Energie (Recouperation) an die aktuelle Fahrsituation besser angepasst werden. Eine Energierückspeisung erfolgt, wenn die Elektromotorteilantriebe 3, 4 sich im
Generatorbetrieb befinden. Der Summenwert des bremsend wirkenden Recou- perationsmomentes EMRecoupTar wird von dem Steuergerät 18 vorgegeben und zunächst zu gleichen Teilen bei Geradeausfahrt auf beide angetriebene Räder 1 1 a, 1 1 b verteilt. Der Sollwert des gesamten zulässigen Recouperationsmo- mentes EMRecoup wird im Voraus aus Fahrstabilitätsgründen vom ESP-System limitiert.
EMRecoup = Min (EMRecoupTar, EMRecoupVDC), wobei
EMRecoupVDC die Obergrenze des zulässigen Recouperationsmomentes darstellt. Bei Kurvenfahrten kann durch den radindividuellen Antrieb die Verteilung der Bremsmomente im Teilbremsbereich mit dem geforderten Recouperationsmoment besser koordiniert werden.
Eine Vorsteuerung zur Verteilung des gesamten Recouperationsmomentes EM- Recoup bildet einen Differenzanteil EMDifRecoupPre, der bei Kurvenfahrt in Abhängigkeit von der Fahrzeuggeschwindigkeit und der Querbeschleunigung bzw. der Radstandskräfte bestimmt wird. Somit kann bereits im Vorfeld der Gefahr eines Unter- oder Übersteuerns des Fahrzeuges während des Rückspeisung Einhalt geboten werden. Bei vorhandener Fahrzeuginstabilität wird das stabilisieren- de Recouperationsmoment EMDifRecoupstab zusätzlich überlagert. Das resultierende Differenzmoment bei Recouperation EMDifRecoup wird wie folgt gebildet: EMDifRecoup = EMDifRecoupPre + EMDifRecoupstab
Bei einem tendenziell übersteuernden Fahrzeug wird das Recouperationsmoment bzw. Bremsmoment EMRecoup_a am kurvenäußeren Rad erhöht und annähernd gleichzeitig am kurveninneren Rad (EMRcoup_i) vermindert. Dadurch wird ein rückdrehendes Giermoment entgegen der Übersteuerungstendenz erzeugt. EMRecoup_i = 0.5 * ( EMRecoup - EMDifRecoup)
EMRecoup_a = 0.5 * (EMRecoup + EMDifRecoup).
Zu hohe Bremsschlupfwerte werden vom ABS-Regler am jeweiligen Rad durch Limitierung des jeweiligen Recouperationsmomentes EMRecoup_i bzw. EMRe- coup_a begrenzt. Bei einem untersteuernden Fahrzeug wird das Recouperations- bzw. Bremsmoment EMRecoup_i am kurveninneren Rad erhöht, während das Recouperations- bzw. Bremsmoment EMRecoup_a am kurvenäußeren Rad vermindert wird. Dadurch wird ein eindrehendes Giermoment entgegen der Untersteuertendenz erzeugt.
EMRecoup_i = 0.5 (EMRecoup + EMDifRecoup)
EMRecoup_a = 0.5 (EMRecoup - EMDifRecoup)
Zu hohe Bremsschlupfwerte werden auch in diesem Fall vom ABS-Regler am jeweiligen Rad durch Limitierung des jeweiligen Recouperationsmomentes EM- Recoup_i bzw. EMRecoup_a begrenzt.

Claims

Ansprüche
1 . Verfahren zur Verteilung eines Antriebsmomentes auf die Räder einer elektrisch angetriebenen Achse eines Kraftfahrzeuges, wobei ein elektrisches Signal von einem Antriebsaggregat (3, 4) in ein Drehmoment (EMProp_i, EMProp_a) umgesetzt wird, welches von einer elektrisch angetriebenen Achse (1 Oa, 10b) auf die Räder (1 1 a, 1 1 b) der Achse (1 Oa, 10b) übertragen wird, dadurch gekennzeichnet, dass die an der elektrisch angetriebenen Achse (1 Oa, 10b) angeordneten Räder (1 1 a, 1 1 b) unabhängig voneinander mit einem antreibend wirkenden Antriebsmoment (EMProp) jeweils überlagert mit einem Differenzdrehmoment (EMDif) beaufschlagt werden.
2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass ein elektrisches Antriebsmoment (EMProp_a, EMProp_i) für jedes angetriebene Rad (1 1 a, 1 1 b) durch Addition oder Subtraktion des Differenzdrehmoment (EMDifProp) aus dem Antriebsdrehmoment (EMProp) gebildet wird.
3. Verfahren nach Anspruch 2 dadurch gekennzeichnet, dass das elektrische Antriebsmoment (EMProp) aus dem Drehmoment (EMmot_L, EMmot_R) des ein Rad antreibenden Antriebsaggregates (3, 4) durch Überlagerung mit einem jeweils wirksamen Momentenübersetzungsverhältnis bestimmt wird, welches mit mindestens einem Gewichtungsfaktor (KoFnx, KoFny, KoFnvFz) beaufschlagt wird, woraus ein Vorsteuerwert für ein zusätzliches Differenzdrehmoment (EMDifPreProp) in Kurvenfahrten ermittelt wird.
4. Verfahren nach Anspruch 3 dadurch gekennzeichnet, dass der Gewichtungsfaktor (KoFnx, KoFny) in Abhängigkeit einer Radlaständerung beim Beschleunigen und/oder bei Kurvenfahrt bestimmt wird.
5. Verfahren nach Anspruch 3 dadurch gekennzeichnet, dass der Gewichtungsfaktor (KoFnvFz) in Abhängigkeit der Fahrzeuggeschwindigkeit bestimmt wird.
6. Verfahren nach Anspruch 3, 4 und 5 dadurch gekennzeichnet, dass ein resultierender Gewichtungsfaktor (KoFn) aus der Summe der radlastabhängi- gen Gewichtungsfaktoren (KoFnx, KoFny) gebildet wird, welche mit dem fahr- zeuggeschwindigkeitsabhängigen Gewichtungsfaktor (KoFnvFz) multipliziert wird.
Verfahren nach mindestens einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass eine Abweichung einer Gierwinkelgeschwindigkeit (evGi) aus einer Sollgierwinkelgeschwindigkeit (vGiSo) und einem Istwert (vGi) der Gierwinkelgeschwindigkeit bestimmt wird, wobei aus der resultierenden Abweichung (devGi) ein stabilisierendes Differenzdrehmoment (EM- DifStab) ermittelt wird. 8. Verfahren nach Anspruch 7 dadurch gekennzeichnet, dass bei gleichen Vorzeichen des auf der Grundlage des Vorsteuerungswertes ermittelten Differenzdrehmomentes (EMDifPreProp) und des stabilisierenden Differenzdrehmomentes (EMDifStab) das auf der Grundlage des Vorsteuerungswertes ermittelte Differenzdrehmoment (EMDifPreProp) und das stabilisierende Differenzdrehmoment (EMDifStab) zu einem fahrdynamischen Differenzantriebsmoment (EMDif) addiert werden.
Verfahren nach Anspruch 7 dadurch gekennzeichnet, dass bei unterschiedlichen Vorzeichen des auf der Grundlage des Vorsteuerungswertes ermittelten Differenzdrehmomentes (EMDifPreProp) und des stabilisierenden Differenzdrehmomentes (EMDifStab) der Betrag des auf der Grundlage des Vorsteuerwertes ermittelten Differenzdrehmomentes (EMDifPreProp) um den Betrag des stabilisierenden Differenzdrehmomentes (EMDifStab) reduziert wird.
Verfahren nach Anspruch 8 dadurch gekennzeichnet, dass bei Überschreitung eines Grenzwertes durch das fahrdynamische Differenzantriebsmoment (EMDif) ein Antriebsschlupf des Fahrzeuges durch ein Radschlupfregelsystem, vorzugsweise einem ABS-System, reduziert wird.
1 . Verfahren zur Verteilung eines Antriebsmomentes auf die Räder einer elektrisch angetriebenen Achse eines Kraftfahrzeuges, wobei ein elektrisches Signal von einem Antriebsaggregat (3, 4) in ein Recouperationsmoment umgesetzt wird, welches von einer elektrisch angetriebenen Achse (10a, 10b) auf die Räder (1 1 a, 1 1 b) der Achse (10a, 10b) übertragen wird, dadurch gekennzeichnet, dass die an der elektrisch angetriebenen Achse (10a, 10b) angeordneten Räder (1 1 a, 1 1 b) unabhängig voneinander mit einem bremsend wirkenden Antriebsmoment jeweils überlagert mit einem Differenzdrehmoment (EMDif) beaufschlagt werden.
2. Verfahren nach Anspruch 1 1 dadurch gekennzeichnet, dass im Recoupera- tionsbetrieb des Fahrzeuges zur Verteilung des Recouperationsmoments (EMRecoup) auf die beiden Räder (1 1 a, 1 1 b) der angetriebenen Achse (10a, 10b) zur Vorsteuerung ein Differenzrecouperationsanteil (EMDifRecoupPre) gebildet wird, welcher von der Fahrzeuggeschwindigkeit und der Querbeschleunigung des Fahrzeuges abhängt und welchem insbesondere ein Sta- bilisierungsrecouperationsmoment (EMDifRecoupStab) überlagert wird.
13. Verfahren nach Anspruch 12 dadurch gekennzeichnet, dass bei einem tendenziell übersteuernden Fahrzeug das Recouperationsmoment (EMRe- coup_a, EMRecoup_i) am kurvenäußeren Rad erhöht und annähernd gleichzeitig am kurveninneren Rad vermindert wird.
14. Verfahren nach Anspruch 12 dadurch gekennzeichnet, dass bei einem tendenziell untersteuernden Fahrzeug das Recouperationsmoment (EMRe- coupj, EMRecoup_a) am kurveninneren Rad erhöht und annähernd gleichzeitig am kurvenäußeren Rad vermindert wird.
5. Vorrichtung zur Verteilung eines Antriebsmomentes auf die Räder einer elektrisch angetriebenen Achse eines Kraftfahrzeuges, wobei ein elektrisches Signal von einem Antriebsaggregat in ein Drehmoment umgesetzt wird, welches von einer elektrisch angetriebenen Achse auf die Räder der Achse übertragen wird, dadurch gekennzeichnet, dass Mittel vorhanden sind, welche die an der elektrisch angetriebenen Achse (10a, 10b) angeordneten Räder (1 1 a, 1 1 b) unabhängig voneinander mit einem antreibend oder bremsend wirkenden Antriebsmoment jeweils überlagert mit einem Differenzdrehmoment (EMDif) beaufschlagen.
16. Vorrichtung nach Anspruch 15 dadurch gekennzeichnet, dass die Räder (1 1 a, 1 1 b) von zwei auf der Achse (10a, 10b) positionierten, unabhängig voneinander arbeitenden Antriebsaggregaten (3, 4) angetrieben werden, wobei ein Antriebsaggregat (3, 4) jeweils ein Rad (1 1 a, 1 1 b) antreibt.
PCT/EP2010/068619 2009-12-22 2010-12-01 Verfahren und vorrichtung zur verteilung eines antriebsmomentes auf die räder einer elektrisch angetriebenen achse eines kraftfahrzeuges WO2011076534A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009055160.3 2009-12-22
DE102009055160A DE102009055160A1 (de) 2009-12-22 2009-12-22 Verfahren und Vorrichtung zur Verteilung eines Antriebsmomentes auf die Räder einer elektrisch angetriebenen Achse eines Kraftfahrzeuges

Publications (1)

Publication Number Publication Date
WO2011076534A1 true WO2011076534A1 (de) 2011-06-30

Family

ID=43532734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/068619 WO2011076534A1 (de) 2009-12-22 2010-12-01 Verfahren und vorrichtung zur verteilung eines antriebsmomentes auf die räder einer elektrisch angetriebenen achse eines kraftfahrzeuges

Country Status (2)

Country Link
DE (1) DE102009055160A1 (de)
WO (1) WO2011076534A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204083A (zh) * 2013-04-08 2013-07-17 浙江吉利汽车研究院有限公司杭州分公司 一种电动汽车及其动力驱动***
CN104290721A (zh) * 2013-07-16 2015-01-21 简式国际汽车设计(北京)有限公司 一种新能源汽车轮边电机驱动桥
CN105383274A (zh) * 2014-09-04 2016-03-09 罗伯特·博世有限公司 车辆驱动***以及其控制方法
CN106004516A (zh) * 2016-05-26 2016-10-12 三门峡速达交通节能科技股份有限公司 一种包含主减速器与差速器的四轮纯电力驱动的电动汽车
CN106042945A (zh) * 2016-05-23 2016-10-26 刘霄 一种机械差速纯电力驱动的电动汽车
CN106080222A (zh) * 2016-05-23 2016-11-09 刘霄 一种串联式纯电力驱动的电动汽车
CN107107908A (zh) * 2015-01-13 2017-08-29 本田技研工业株式会社 驱动装置的控制装置及控制方法以及记录介质
WO2018150010A1 (de) * 2017-02-20 2018-08-23 Thyssenkrupp Ag Achsantriebseinheit mit induktivem ladeempfänger, antriebsachse und kraftfahrzeug
US11420514B2 (en) 2020-07-14 2022-08-23 Allison Transmission, Inc. Multispeed transaxle with sprung powertrain mounting and methods therefor
EP4160898A1 (de) * 2021-09-30 2023-04-05 ZF Friedrichshafen AG Inverter mit optimiertem elektromagnetischem verhalten

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013019907B4 (de) 2013-11-28 2021-02-04 Audi Ag Aktives Differential und Kraftfahrzeug
DE102016214925A1 (de) * 2016-08-11 2018-02-15 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Kraftfahrzeugs, Kraftfahrzeug
DE102016217550B4 (de) * 2016-09-14 2018-08-23 Magna powertrain gmbh & co kg Verfahren zur verbesserung der fahrdynamik eines fahrzeugs sowie zur durchführung des verfahrens geeignete antriebsvorrichtung
CN108528269B (zh) 2017-02-21 2021-05-14 丰田自动车株式会社 驱动力控制装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002000462A1 (en) * 2000-06-28 2002-01-03 Prodrive 2000 Limited Hybrid vehicle drive system
EP1480031A2 (de) * 2003-05-19 2004-11-24 Toyoda Koki Kabushiki Kaisha Vorrichtung zur Bestimmung des Reibwerts einer Fahrbahn und Antriebsverteilungssytem für Fahrzeuge mit Vierradantieb
WO2007118082A2 (en) * 2006-04-03 2007-10-18 Bluwav Systems, Llc Vehicle power unit designed as retrofittable axle comprising motor, battery and suspension

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002000462A1 (en) * 2000-06-28 2002-01-03 Prodrive 2000 Limited Hybrid vehicle drive system
EP1480031A2 (de) * 2003-05-19 2004-11-24 Toyoda Koki Kabushiki Kaisha Vorrichtung zur Bestimmung des Reibwerts einer Fahrbahn und Antriebsverteilungssytem für Fahrzeuge mit Vierradantieb
WO2007118082A2 (en) * 2006-04-03 2007-10-18 Bluwav Systems, Llc Vehicle power unit designed as retrofittable axle comprising motor, battery and suspension

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PUSCA R ET AL: "Fuzzy logic based control for electric vehicle with four separate traction drives", VTC SPRING 2002. IEEE 55TH. VEHICULAR TECHNOLOGY CONFERENCE. PROCEEDINGS. BIRMINGHAM, AL, MAY 6 - 9, 2002; [IEEE VEHICULAR TECHNOLGY CONFERENCE], NEW YORK, NY : IEEE, US, vol. 4, 6 May 2002 (2002-05-06), pages 2089 - 2096, XP010622184, ISBN: 978-0-7803-7484-3, DOI: DOI:10.1109/VTC.2002.1002991 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204083A (zh) * 2013-04-08 2013-07-17 浙江吉利汽车研究院有限公司杭州分公司 一种电动汽车及其动力驱动***
CN103204083B (zh) * 2013-04-08 2015-09-30 浙江吉利汽车研究院有限公司杭州分公司 一种电动汽车及其动力驱动***
CN104290721A (zh) * 2013-07-16 2015-01-21 简式国际汽车设计(北京)有限公司 一种新能源汽车轮边电机驱动桥
CN104290721B (zh) * 2013-07-16 2016-02-10 简式国际汽车设计(北京)有限公司 一种新能源汽车轮边电机驱动桥
CN105383274A (zh) * 2014-09-04 2016-03-09 罗伯特·博世有限公司 车辆驱动***以及其控制方法
CN107107908A (zh) * 2015-01-13 2017-08-29 本田技研工业株式会社 驱动装置的控制装置及控制方法以及记录介质
CN107107908B (zh) * 2015-01-13 2020-02-07 本田技研工业株式会社 驱动装置的控制装置及控制方法以及记录介质
CN106042945A (zh) * 2016-05-23 2016-10-26 刘霄 一种机械差速纯电力驱动的电动汽车
CN106080222A (zh) * 2016-05-23 2016-11-09 刘霄 一种串联式纯电力驱动的电动汽车
CN106042945B (zh) * 2016-05-23 2018-11-23 中山市小象新能源有限公司 一种机械差速纯电力驱动的电动汽车
CN106080222B (zh) * 2016-05-23 2018-12-21 中山市小象新能源有限公司 一种串联式纯电力驱动的电动汽车
CN106004516A (zh) * 2016-05-26 2016-10-12 三门峡速达交通节能科技股份有限公司 一种包含主减速器与差速器的四轮纯电力驱动的电动汽车
CN106004516B (zh) * 2016-05-26 2019-10-25 三门峡速达交通节能科技股份有限公司 一种包含主减速器与差速器的四轮纯电力驱动的电动汽车
WO2018150010A1 (de) * 2017-02-20 2018-08-23 Thyssenkrupp Ag Achsantriebseinheit mit induktivem ladeempfänger, antriebsachse und kraftfahrzeug
US11117457B2 (en) 2017-02-20 2021-09-14 Jheeco E-Drive Ag Axle drive unit comprising a brake system, drive axle and motor vehicle
US11161399B2 (en) 2017-02-20 2021-11-02 Jheeco E-Drive Ag Axle drive unit comprising an inductive charging receiver, drive axle and motor vehicle
US11420514B2 (en) 2020-07-14 2022-08-23 Allison Transmission, Inc. Multispeed transaxle with sprung powertrain mounting and methods therefor
EP4160898A1 (de) * 2021-09-30 2023-04-05 ZF Friedrichshafen AG Inverter mit optimiertem elektromagnetischem verhalten

Also Published As

Publication number Publication date
DE102009055160A1 (de) 2011-06-30

Similar Documents

Publication Publication Date Title
WO2011076534A1 (de) Verfahren und vorrichtung zur verteilung eines antriebsmomentes auf die räder einer elektrisch angetriebenen achse eines kraftfahrzeuges
DE102016123071B4 (de) Antriebskraftsteuersystem für ein Fahrzeug
DE10341676B4 (de) Regelverfahren und System zum Bremsen und zur Steuerbarkeit eines Fahrzeuges mit Nutzbremsung
DE10327502B4 (de) Regelung für Nutzbremsung
DE102005033354B4 (de) Verfahren zur Abdämpfung von Schwingungen im Antriebsstrang eines Elektrofahrzeugs
DE102016123691A1 (de) Steuersystem für eine Antriebseinheit
DE102009000044A1 (de) Verfahren und Vorrichtung zum Betreiben eines Fahrzeuges, insbesondere eines Hybridfahrzeuges
DE102007051590A1 (de) Verfahren zum Verteilen von Antriebs- oder Schleppmomenten auf die angetriebenen Räder eines Kfz
DE102019127034A1 (de) Schätzung der fahrzeuggeschwindigkeit bei fahrzeugen mit allradantrieb
DE102010012153A1 (de) Fahrzeug mit zumindest zwei Einzelradantriebseinheit
EP3544849A1 (de) Allradsystem für ein elektrisches kraftfahrzeug und verfahren zum betreiben eines allradsystems eines solchen fahrzeugs
WO2016037837A1 (de) Verfahren zum betreiben eines kraftfahrzeugs
DE102004049324A1 (de) Verfahren zur Steuerung und Regelung der Fahrdynamik bei Kraftfahrzeugen mit Hybridantrieb
EP3110651B1 (de) Steuereinrichtung und verfahren zur antriebsschlupfregelung für ein elektrisches antriebssystem
DE4431698C1 (de) Verfahren zur Begrenzung des Knickwinkels zwischen dem Vorderwagen und dem Nachläufer eines Gelenkomnibusses
EP3030451B1 (de) Verfahren zum abbremsen eines fahrzeugs sowie fahrzeug
DE102016214925A1 (de) Verfahren und Vorrichtung zum Betreiben eines Kraftfahrzeugs, Kraftfahrzeug
WO2020193054A1 (de) Verfahren zum betreiben eines antriebssystems eines elektrofahrzeugs und antriebssystem für ein elektrofahrzeug
DE102021121914A1 (de) Fahrzeugbremssystem und Fahrzeugbremsverfahren
WO2015185242A1 (de) Steuervorrichtung für ein rekuperatives bremssystem und verfahren zum betreiben eines rekuperativen bremssystems
EP3793871B1 (de) System für ein elektrisch angetriebenes fahrzeug sowie fahrzeug damit
DE102008020410B4 (de) Verfahren zum gezielten Abbremsen eines angetriebenen Rades einer Antriebsachse eines Kraftfahrzeuges
DE102019205215B3 (de) Verfahren zum Betreiben eines Hybridfahrzeuges
WO2012130356A1 (de) Verfahren zur antriebsschlupfregelung für fahrzeuge mit einzelradantrieb
DE102020112597A1 (de) Zentrale Steuereinheit zur Vorgabe radselektiver Soll-Antriebs- und/oder Soll-Bremsmomente

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10787398

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10787398

Country of ref document: EP

Kind code of ref document: A1