DE102012213595A1 - Process for the production of porous carbon - Google Patents

Process for the production of porous carbon Download PDF

Info

Publication number
DE102012213595A1
DE102012213595A1 DE201210213595 DE102012213595A DE102012213595A1 DE 102012213595 A1 DE102012213595 A1 DE 102012213595A1 DE 201210213595 DE201210213595 DE 201210213595 DE 102012213595 A DE102012213595 A DE 102012213595A DE 102012213595 A1 DE102012213595 A1 DE 102012213595A1
Authority
DE
Germany
Prior art keywords
porous carbon
carbon
halogen gas
nanoparticles
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE201210213595
Other languages
German (de)
Inventor
Martin Oschatz
Lars Borchardt
Stefan Kaskel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Dresden
Original Assignee
Technische Universitaet Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Dresden filed Critical Technische Universitaet Dresden
Priority to DE201210213595 priority Critical patent/DE102012213595A1/en
Priority to EP13741716.8A priority patent/EP2879991A1/en
Priority to PCT/EP2013/065426 priority patent/WO2014019880A1/en
Publication of DE102012213595A1 publication Critical patent/DE102012213595A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28076Pore volume, e.g. total pore volume, mesopore volume, micropore volume being more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • C04B38/0032Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors one of the precursor materials being a monolithic element having approximately the same dimensions as the final article, e.g. a paper sheet which after carbonisation will react with silicon to form a porous silicon carbide porous body
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Die Erfindung stellt ein Verfahren zur Herstellung von porösem Kohlenstoff durch Einbetten von anorganischen Nanopartikeln in eine kohlenstoffhaltige Matrix und anschließende Umsetzung mit einem Halogengas bereit. Durch die Größe der verwendeten Nanopartikel erlaubt das erfindungsgemäße Verfahren vorteilhaft eine präzise Kontrolle der Porengröße sowie der Porengößenverteilung der resultierenden Kohlenstoffmaterialien. Der mit dem Verfahren hergestellte poröse Kohlenstoff enthält vorteilhaft Mikroporen und bevorzugt Mesoporen definierter Größe und findet Anwendung in der Chemie, Medizin und Elektrotechnik und eignet sich insbesondere als Adsorbens, Filtrations- und als Elektrodenmaterial, z. B. in Lithiumbatterien.The invention provides a method for producing porous carbon by embedding inorganic nanoparticles in a carbon-containing matrix and then reacting them with a halogen gas. Due to the size of the nanoparticles used, the method according to the invention advantageously allows precise control of the pore size and the pore size distribution of the resulting carbon materials. The porous carbon produced by the process advantageously contains micropores and preferably mesopores of a defined size and is used in chemistry, medicine and electrical engineering and is particularly suitable as an adsorbent, filtration material and as an electrode material, e.g. B. in lithium batteries.

Description

Die Erfindung stellt ein Verfahren zur Herstellung von porösem Kohlenstoff bereit. Der mit dem Verfahren hergestellte poröse Kohlenstoff findet Anwendung in der Chemie, Medizin und Elektrotechnik und eignet sich insbesondere als Adsorbens, Filtrations- und als Elektrodenmaterial, z. B. in Lithium Ionen-Batterien.The invention provides a process for producing porous carbon. The porous carbon produced by the method finds application in chemistry, medicine and electrical engineering and is particularly suitable as an adsorbent, filtration and electrode material, for. B. in lithium ion batteries.

Poröse Kohlenstoffe oder Aktivkohlen sind bedeutende Materialien für die Reinigung von Gasen und Flüssigkeiten. Sie kommen als Adsorbentien in medizinischen Applikationen sowie als Elektrodenmaterialien in der Batterieforschung vor. In all diesen Bereichen ist oft eine präzise Steuerung der Porengröße notwendig, die optimal auf das zu filternde oder adsorbierende Substrat angepasst ist. Kommerziell erhältliche Aktivkohlen zeigen überwiegend nur sehr kleine Poren (Mikroporen; Porendurchmesser < 2nm) und sind somit nur für die Filtration ebenfalls sehr kleiner Materien dienlich. Größere Substanzen (Proteine etc.) können bisher nur unzureichend abgefiltert werden. Porous carbons or activated carbons are important materials for the purification of gases and liquids. They are used as adsorbents in medical applications and as electrode materials in battery research. In all these areas, precise control of the pore size is often necessary, which is optimally adapted to the substrate to be filtered or adsorbed. Commercially available activated carbons show predominantly only very small pores (micropores, pore diameter <2 nm) and are therefore only useful for the filtration of very small matter. Larger substances (proteins, etc.) can only be adequately filtered off.

Nach dem Stand der Technik werden poröse Kohlenstoffmaterialien hauptsächlich über die Verkokung und anschließender Aktivierung (mit H2O, CO2, Luft, KOH etc.) von Kohlenstoffvorläufern (Polymere, Moos, Pilze, Holz etc.) hergestellt. Die über diese klassische Aktivierung gewonnenen Materialien weisen allerdings vergleichsweise breite Porenradienverteilungen auf, wodurch sie für größenselektive Anwendungen wenig geeignet sind. Ein anderes Verfahren stellt die Herstellung von porösem Kohlenstoff aus Carbiden (sogenanntem „Carbid derived Carbon – (CDC)“ dar (s. z. B. US 6,579,833B2 , WO2005118471A1 , WO2006130706A1 , WO2007062095A1 ). Diese Materialklasse zeichnet sich durch vergleichsweise enge Porenradienverteilungen aus. Beide genannten Verfahren sind allerdings auf mikroporöse Materialien (Porendurchmesser < 2 nm) limitiert. Die Generierung größeneinheitlicher und zugänglicher Mesoporen über diese Verfahren ist nach dem gegenwärtigen Stand der Technik nicht möglich. According to the state of the art, porous carbon materials are mainly produced by coking and subsequent activation (with H 2 O, CO 2 , air, KOH, etc.) of carbon precursors (polymers, moss, fungi, wood, etc.). The materials obtained by this classical activation, however, have comparatively broad pore radius distributions, making them unsuitable for size-selective applications. Another method is the production of porous carbon from carbides (so-called "carbide derived carbon (CDC)" (see eg. US 6,579,833B2 . WO2005118471A1 . WO2006130706A1 . WO2007062095A1 ). This material class is characterized by comparatively narrow pore radius distributions. However, both methods mentioned are limited to microporous materials (pore diameter <2 nm). The generation of uniform size and accessible mesopores via these methods is not possible in the current state of the art.

Die Methoden der klassischen Aktivierung und der Herstellung von porösem Kohlenstoff aus Carbiden sind prinzipiell ungeeignet um größeneinheitliche Mesoporen zu generieren. The methods of classical activation and the production of porous carbon from carbides are in principle unsuitable for generating mesopores of uniform size.

Dafür geeignet sind allerdings Harttemplatverfahren die jedoch sehr aufwendige und teure Synthesen oxidischer Template und deren Auflösung unter harschen Bedingungen notwendig machen.However, hard templating methods are suitable for this, but they require very complex and expensive syntheses of oxidic templates and their dissolution under harsh conditions.

Materialien mit engen Mesoporenradienverteilungen werden derzeit über templatbasierte Methoden hergestellt. So können oxidische Template (SiO2) mit Kohlenstoffvorläufern (z. B. Saccharose oder Furfurylalkohol) infiltriert werden und nach Verkokung unter inerten Bedingungen sowie Auflösen des SiO2 mittles Flusssäure oder Natriumhydroxid Materialien mit größeneinheitlichen Mesoporen erhalten werden ( Lu AH, Schüth F, Adv. Mater. 2006, 18, 179 ). Dieses Verfahren wird als Harttemplatmethode bezeichnet. Weichtemplatbasierte Methoden erfordern große Mengen an Tensiden zur Generierung von Flüssigkristallen in polaren Lösungsmitteln (z. B. Wasser/Ethanol). Um diese mizellaren Strukturen werden monomere Moleküle polymerisiert und das Lösungsmittel verdampft. Über eine Hochtemperaturbehandlung unter inerten Bedingungen werden die Polymere Verkokt und die Flüssigkristalle entfernt ( Meng Y et al. Angew. Chem. Int. Ed. 2005 44, 7053 ). Das Weichtemplatverfahren wird in sehr großen Mengen an polaren Lösungsmitteln durchgeführt und erfordert den Einsatz großer Mengen an umweltschädlichen Tensiden.Materials with narrow mesopore radius distributions are currently produced via template-based methods. Thus, oxidic templates (SiO 2 ) can be infiltrated with carbon precursors (eg, sucrose or furfuryl alcohol), and after coking under inert conditions and dissolution of the SiO 2 using hydrofluoric acid or sodium hydroxide, materials having mesopores of uniform size can be obtained ( Lu AH, Schüth F, Adv. Mater. 2006, 18, 179 ). This method is called a hard-templating method. Soft-template-based methods require large amounts of surfactants to generate liquid crystals in polar solvents (eg, water / ethanol). Around these micellar structures, monomeric molecules are polymerized and the solvent is evaporated. By means of a high-temperature treatment under inert conditions, the polymers are coked and the liquid crystals are removed ( Meng Y et al. Angew. Chem. Int. Ed. 2005 44, 7053 ). The soft-template process is carried out in very large quantities of polar solvents and requires the use of large amounts of environmentally harmful surfactants.

Aus der Patentliteratur sind einige Verfahren zur Herstellung von porösem Kohlenstoff bekannt:
In der US2004202602 A1 wird ein Gel eines Oxids mit einem Kohlenstoffhaltigen Material vermischt und dieses anschließend zu porösem Kohlenstoff karbonisiert. Das anorganische Oxid verbleibt im porösen Kohlenstoff oder wird optional durch herauslösen mit einer Säure oder Base entfernt.
From the patent literature, some processes for the production of porous carbon are known:
In the US2004202602 A1 For example, a gel of an oxide is mixed with a carbonaceous material and then carbonized to porous carbon. The inorganic oxide remains in the porous carbon or is optionally removed by leaching with an acid or base.

In der EP2444369 A1 wird Magnesiumoxid (MgO) als Maske mit einem organischen Polymer als kohlenstoffhaltigem Material vermischt und dieses zu porösem Kohlenstoff karbonisiert. Parallel dazu erfolgt eine Metallabscheidung auf dem Kohlenstoff. Das MgO wird anschließend mit Säure herausgelöst.In the EP2444369 A1 For example, magnesium oxide (MgO) as a mask is mixed with an organic polymer as the carbonaceous material and carbonized to porous carbon. In parallel, a metal deposition takes place on the carbon. The MgO is then dissolved out with acid.

In der US2009136808 A1 wird eine Mischung von Mesoporen-bildenden Partikeln und mindestens zwei Makroporen-bildende Partikel mit unterschiedlichen Durchmessern vermischt und getrocknet. Nach Entfernen der Makroporen-bildenden Partikel wird ein kohlenstoffhaltiges Material in die erhaltenen Poren gegeben und das erhaltene Komposit karbonisiert. Anschließend werden die Mesoporen-bildende Partikel entfernt. Das Entfernen der Partikel erfolgt durch herauslösen oder ätzen oder auch durch erhitzen. In der US2011082024 A1 wird ein kolloides Siliziumtemplat mit einem wasserlöslichen kohlenstoffhaltigem Material vermisst und in kleinen Tropfen pyrolysiert (Ultraschall Sprühpyrolyse). Aus den erhaltenen sphärischen Karbon-Silizium-Partikeln wird das Silicium durch Säure oder Base herausgelöst.In the US2009136808 A1 For example, a mixture of mesopore-forming particles and at least two macroporous particles of different diameters are mixed and dried. After removal of the macropore-forming particles, a carbonaceous material is added to the resulting pores and the resulting composite carbonized. Subsequently, the mesopore-forming particles are removed. The removal of the particles is carried out by leaching or etching or by heating. In the US2011082024 A1 a colloidal silicon template is measured with a water-soluble carbonaceous material and pyrolyzed in small drops (ultrasonic spray pyrolysis). From the obtained spherical carbon-silicon particles, the silicon is dissolved out by acid or base.

In der US2011311873 und der DE102009033251 werden Zinn- oder Silicium-Nanopartikeln in eine organische Polymermatrix eingebettet und diese karbonisiert. Die Partikel verbleiben in dem Material um dessen Leitfähigkeit zu erhöhen. In the US2011311873 and the DE102009033251 Tin or silicon nanoparticles are embedded in an organic polymer matrix and these carbonized. The particles remain in the material to increase its conductivity.

US6475461 B1 offenbart ein Verfahren zu Herstellung von porösem kohlenstoffhaltigem Material durch eine Halogenierung und anschließende Dehalogenierung. Hier erfolgt eine Aktivierung der Kohle mit elementarem Chlor. Allerdings wird nicht beschrieben, dass das US6475461 B1 discloses a process for producing porous carbonaceous material by halogenation and subsequent dehalogenation. Here the coal is activated with elemental chlorine. However, that is not described

WO2011092149 A2 offenbart ein Verfahren zur Herstellung eines porösen Kohlenstofferzeugnisses, mit folgenden Verfahrensschritten: (a) Herstellen eines monolithischen Templats aus anorganischem Matrixmaterial, das miteinander verbundene Poren aufweist, durch einen Sootabscheideprozess, (b) Infiltrieren der Poren des Templats mit Kohlenstoff oder einer Kohlenstoff-Vorläufersubstanz und (c) Kalzinieren. WO2011092149 A2 discloses a process for producing a porous carbon product comprising the steps of: (a) preparing a monolithic template of inorganic matrix material having interconnected pores, by a soot deposition process, (b) infiltrating the pores of the template with carbon or a carbon precursor substance, and (c) calcining.

WO2012055731 A1 offenbart ein Verfahren zur Herstellung eines porösen Kohlenstofferzeugnisses mit folgenden Verfahrensschritten: (a) Bereitstellen einer porösen Kohlenstoffstruktur (12) mit einer ersten spezifischen Oberfläche, (b) Infiltrieren der Kohlenstoffstruktur (12) mit einer Vorläufersubstanz für graphitisierbaren Kohlenstoff, (c) Carbonisieren der Vorläufersubstanz. WO2012055731 A1 discloses a method of making a porous carbon product comprising the steps of: (a) providing a porous carbon structure (12) having a first specific surface, (b) infiltrating the carbon structure (12) with a graphitizable carbon precursor substance, (c) carbonizing the precursor substance ,

Aufgabe der Erfindung ist es ein Verfahren zur Herstellung von porösem Kohlenstoff anzugeben, welches es erlaubt, das Porenvolumen möglichst definiert einzustellen und welches in einer geringen Größenverteilung der Poren resultiert.The object of the invention is to provide a method for the production of porous carbon, which allows to set the pore volume as defined as possible and which results in a small size distribution of the pores.

Erfindungsgemäß gelöst wird die Aufgabe durch ein Verfahren zur Herstellung eines porösen Kohlenstoffmaterials durch Einbetten von anorganischen Nanopartikeln in eine kohlenstoffhaltige Matrix und anschließende Umsetzung mit einem Halogengas X2.According to the invention, the object is achieved by a method for producing a porous carbon material by embedding inorganic nanoparticles in a carbon-containing matrix and subsequent reaction with a halogen gas X 2 .

Die anorganischen Nanopartikel sind bevorzugt Metalloxid- oder Halbmetalloxid-Nanopartikel. Das Metalloxid- oder Halbmetalloxid ist bevorzugt ausgewählt aus Titanoxid, Zirkoniumoxid, Zinnoxid, Boroxid und Aluminiumoxid, sowie weniger bevorzugt Manganoxid oder Wolframoxid.The inorganic nanoparticles are preferably metal oxide or semimetal oxide nanoparticles. The metal oxide or semimetal oxide is preferably selected from titanium oxide, zirconium oxide, tin oxide, boron oxide and aluminum oxide, and less preferably manganese oxide or tungsten oxide.

Durch die Umsetzung wird das Metall-/Halbmetalloxid in ein flüchtiges Halogenid umgewandelt. D. h. die Nanopartikel werden aufgelöst und es verbleiben Poren in der Größe der ursprünglich eingebetteten Nanopartikel. Da der die Nanopartikel umgebende Kohlenstoff oxidiert wird (insbesondere zu CO) entstehen zusätzliche kleine Poren.The reaction converts the metal / semimetal oxide into a volatile halide. Ie. the nanoparticles are dissolved, leaving pores the size of the originally embedded nanoparticles. As the carbon surrounding the nanoparticles is oxidized (especially to CO), additional small pores are formed.

Durch die Größe der verwendeten Nanopartikel erlaubt das erfindungsgemäße Verfahren vorteilhaft eine präzise Kontrolle der Porengröße sowie der Porengößenverteilung der resultierenden Kohlenstoffmaterialien.Due to the size of the nanoparticles used, the method according to the invention advantageously permits a precise control of the pore size and the pore size distribution of the resulting carbon materials.

Bevorzugt wird im erfindungsgemäßen Verfahren als Halogengas Chlor oder auch Brom eingesetzt.In the process according to the invention, preference is given to using chlorine or else bromine as halogen gas.

Für Titanoxid und Chlorgas ergibt sich folgende bevorzugte Reaktionsgleichung: TiO2 + 2C + 2Cl2 → TiCl2 + 2CO For titanium oxide and chlorine gas, the following preferred reaction equation results: TiO 2 + 2C + 2Cl 2 → TiCl 2 + 2CO

Das erfindungsgemäße Verfahren entspricht weitgehend dem aus dem Stand der Technik bekannten Verfahren der Carbochlorierung. Dieses dient nach dem Stand der Technik in erster Linie als Zwischenschritt zur Herstellung von elementarem Titan und findet auch Anwendung in der Herstellung von reinem TiO2. Dabei wird ein Titanoxid-haltiges Erz – wie z. B. Ilmenit (FeTiO3), Rutil (TiO2) oder Titanit (CaO-TiO2-SiO2) – mit Petrolkoks vermengt und dieses Gemisch bei Temperaturen von 750–1000°C mit Chlorgas behandelt, um TiCl4 herzustellen, welches anschließend durch Destillation abgetrennt wird. Der überschüssige Kohlenstoff stellt nach dem Stand der Technik ein Nebenprodukt dar. The process according to the invention largely corresponds to the process of carbochlorination known from the prior art. This is used in the prior art primarily as an intermediate step for the production of elemental titanium and also finds application in the production of pure TiO 2 . This is a titanium oxide-containing ore - such. As ilmenite (FeTiO 3 ), rutile (TiO 2 ) or titanite (CaO-TiO 2 -SiO 2 ) - mixed with petroleum coke and this mixture treated at temperatures of 750-1000 ° C with chlorine gas to produce TiCl 4 , which subsequently is separated by distillation. The excess carbon is a by-product of the prior art.

Erfindungsgemäß wird dieses Verfahren nun auf nanoskalige Komposite aus anorganischen Nanopartikeln und einer er kohlenstoffhaltigen Matrix angewandt. Dadurch lassen sich poröse Kohlenstoff-Negativabdrücke der Nanopartikel herstellen.According to the invention, this method is now applied to nanoscale composites of inorganic nanoparticles and a carbon-containing matrix. As a result, porous carbon negative prints of the nanoparticles can be produced.

Das erfindungsgemäße Verfahren unterscheidet sich von den aus dem Stand der Technik bekannten Templat-basierten Verfahren darin, dass eine Entfernung der anorganischen Nanopartikel ohne Säuren oder Basen erfolgt. Neu ist die Verwendung der Carbochlorierung zur Entfernung der Nanopartikel bei der Herstellung von porösem Kohlenstoff. Durch die Carbochlorierung wird das bevorzugte Titanoxid mit Halogengas zu Titantetrahalogenid, bevorzugt TiCl4, umgesetzt, welches bei den Prozesstemperaturen als Gas entweicht.The method according to the invention differs from the template-based methods known from the prior art in that removal of the inorganic nanoparticles takes place without acids or bases. New is the use of carbochlorination to remove the nanoparticles in the Production of porous carbon. By means of the carbochlorination, the preferred titanium oxide with halogen gas is converted to titanium tetrahalide, preferably TiCl 4 , which escapes as gas at the process temperatures.

Die im erfindungsgemäßen Verfahren verwendeten anorganischen Nanopartikel sind daher aus einem Material, welches mit dem Halogengas und Kohlenstoff ausschließlich zu Produkten reagiert, die bei der Temperatur der Umsetzung mit Halogengas (bevorzugt 700 bis 1000°C) gasförmig sind. Diese Produkte sind ein gasförmiges Halogenid, bevorzugt ein Tetrahalogenid, sowie Kohlenstoffoxide, bevorzugt Kohlenmonoxid und/oder Kohlendioxid. Bevorzugt sind die anorganischen Nanopartikel aus einem Metalloxid- oder Halbmetalloxid, vorzugsweise von Metallen oder Halbmetallen, die ausgewählt sind aus Metallen) oder Halbmetallen der Gruppe 4 bis 14, bevorzugt der Gruppen 4 und 13, des Periodensystems, insbesondere Titan, Bor, Aluminium, Zinn und Zirkonium. The inorganic nanoparticles used in the process according to the invention are therefore made of a material which reacts with the halogen gas and carbon exclusively to products which are gaseous at the temperature of the reaction with halogen gas (preferably 700 to 1000 ° C). These products are a gaseous halide, preferably a tetrahalide, as well as carbon oxides, preferably carbon monoxide and / or carbon dioxide. The inorganic nanoparticles are preferably composed of a metal oxide or semimetal oxide, preferably of metals or semimetals, which are selected from metals) or semimetals of group 4 to 14, preferably groups 4 and 13, of the Periodic Table, in particular titanium, boron, aluminum, tin and zirconium.

Das erfindungsgemäße Verfahren ist vorteilhaft einfach und preisgünstig. Im erfindungsgemäßen Verfahren kann je nach eingesetzten Nanopartikeln das entsprechende Halbmetall- oder Metalltetrachlorid, bevorzugt TiCl4 als nützliches Nebenprodukt gewonnen werden.The method according to the invention is advantageously simple and inexpensive. In the process according to the invention, depending on the nanoparticles used, the corresponding semimetal or metal tetrachloride, preferably TiCl 4 , can be obtained as a useful by-product.

Die Nanopartikel weisen vorzugsweise einen Durchmesser von 5 nm bis 1000 nm, bevorzugt 5 nm bis 200 nm, besonders bevorzugt 5 bis 50 nm und vorzugsweise über 10 nm auf.The nanoparticles preferably have a diameter of 5 nm to 1000 nm, preferably 5 nm to 200 nm, more preferably 5 to 50 nm and preferably more than 10 nm.

Als kohlenstoffhaltige Matrix kommen prinzipiell alle kohlenstoffhaltige Materialien in Betracht, die sich verkoken lassen, d. h. durch Pyrolyse in nahezu reinem (bevorzugt über 90 %) Kohlenstoff umwandeln lassen. Bevorzugt ist die kohlenstoffhaltige Matrix ausgewählt aus natürlichen und synthetischen organischen Materialen, insbesondere Kohlenhydraten (bevorzugt Zucker), synthetischen Polymeren (bevorzugt Polyolefinen), Harzen, bituminösen Rohstoffe und Pech.As a carbon-containing matrix, in principle, all carbonaceous materials are considered, which can be coked, d. H. can be converted by pyrolysis in almost pure (preferably over 90%) carbon. Preferably, the carbonaceous matrix is selected from natural and synthetic organic materials, in particular carbohydrates (preferably sugars), synthetic polymers (preferably polyolefins), resins, bituminous raw materials and pitch.

Das Halogengas ist bevorzugt ausgewählt aus Chlor und Brom.The halogen gas is preferably selected from chlorine and bromine.

Bevorzugt erfolgt zunächst eine Vermischung der Nanopartikel mit der kohlenstoffhaltigen Matrix und vor der Umsetzung mit Halogengas eine Verkokung (Pyrolyse) der kohlenstoffhaltige Matrix. Die Pyrolyse erfolgt abhängig von der eingesetzten kohlenstoffhaltigen Matrix nach an sich bekannten Methoden. Bei Zuckern erfolgt zunächst eine Polymerisation bei bevorzugten Temperaturen von 100°C bis 250 °C und anschließend eine Pyrolyse bei vorzugsweise 700°C bis 1000°C.Preferably, the nanoparticles are first mixed with the carbon-containing matrix and, prior to the reaction with halogen gas, coking (pyrolysis) of the carbon-containing matrix takes place. The pyrolysis is carried out depending on the carbon-containing matrix used according to known methods. In the case of sugars, polymerization is first carried out at preferred temperatures of from 100.degree. C. to 250.degree. C., followed by pyrolysis at preferably from 700.degree. C. to 1000.degree.

Durch die Polymerisation bzw. Pyrolyse entsteht vorteilhaft ein Kompositmaterial, in welchem die Nanopartikel in die kohlenstoffhaltigen Matrix bzw. den verbleibenden Kohlenstoff eingebettet sind.The polymerization or pyrolysis advantageously produces a composite material in which the nanoparticles are embedded in the carbon-containing matrix or the remaining carbon.

Die Umsetzung mit dem Halogengas findet bevorzugt unter Sauerstoffausschluss statt. Das Halogengas wird bevorzugt mit einem Inertgas als Trägergas vermischt in die Reaktionskammer eingeleitet. Der Anteil des Halogengases beträgt bevorzugt 30–60 Vol %, besonders bevorzugt 40–60 Vol %. Bevorzugte Trägergase sind Edelgase oder auch Stickstoff. Die Umsetzung mit Halogengas erfolgt bevorzugt bei 200 bis 1200 °C (bitte prüfen), bevorzugt 700 bis 1000 °C. Die Reaktion kann vorteilhaft bei Normaldruck durchgeführt werden.The reaction with the halogen gas preferably takes place with exclusion of oxygen. The halogen gas is preferably mixed with an inert gas as a carrier gas introduced into the reaction chamber. The proportion of the halogen gas is preferably 30-60% by volume, more preferably 40-60% by volume. Preferred carrier gases are noble gases or else nitrogen. The reaction with halogen gas is preferably carried out at 200 to 1200 ° C (please check), preferably 700 to 1000 ° C. The reaction can advantageously be carried out at atmospheric pressure.

Optional kann dem erfindungsgemäßen Verfahren eine postreduktive Behandlung im Wasserstoffstrom nachgeschaltet werden Dabei wird das absorbierte Halogengas (X2, insbesondere Chlor) mit Wasserstoff (H2) zu HX (bevorzugt HCl oder auch HBr und bevorzugt bei 400°C bis 800°C) umgesetzt, welches als Gas entweicht. Alternativ erfolgt ein Entfernen des absorbierten Halogengas durch Umsetzen mit Kohlendioxid. Can optionally be connected downstream of the process according to the invention a postreduktive treatment in a hydrogen stream Here, the absorbed halogen gas (X 2, in particular chlorine) is reacted with hydrogen (H 2) to HX (preferably HCl or HBr and preferably at 400 ° C to 800 ° C) are reacted , which escapes as gas. Alternatively, the absorbed halogen gas is removed by reacting with carbon dioxide.

Das wesentlich Neue an der Erfindung ist die Herstellung von porösem Kohlenstoff über das erfindungsgemäße Verfahren. Durch gezielte Veränderung der Beschaffenheit der Nanopartikel (Partikelgröße, Textur etc.) können auf eine vergleichsweise einfache und kosteneffiziente Weise wohldefinierte Kohlenstoffmaterialien hergestellt werden. Je nach Porengröße sind diese für Anwendungen in der Enzymimmobilisierung oder als Elektrodenmaterialien in der Batterieforschung prädestiniert. The essential novelty of the invention is the production of porous carbon via the process according to the invention. By deliberately changing the nature of the nanoparticles (particle size, texture, etc.) well-defined carbon materials can be produced in a comparatively simple and cost-effective manner. Depending on the pore size, these are predestined for applications in enzyme immobilization or as electrode materials in battery research.

Vorteilhaft kann die Porengrößen des porösen Kohlenstoff durch das erfindungsgemäße Verfahren gezielt und exakt in einem vergleichsweise weiten Größenbereich eingestellt werden, um optimale Speicherungs-/Separationseigenschaften zu erreichen.Advantageously, the pore sizes of the porous carbon can be adjusted by the method according to the invention in a targeted and exact manner in a comparatively wide size range in order to achieve optimum storage / separation properties.

Gegenstand der Erfindung ist auch das nach dem erfindungsgemäßen Verfahren hergestellte poröse Kohlenstoffmaterial.The invention also provides the porous carbon material produced by the process according to the invention.

Das erfindungsgemäße poröse Kohlenstoffmaterial, kennzeichnet sich insbesondere durch folgende Eigenschaften und Vorteile aus: The porous carbon material according to the invention is characterized in particular by the following properties and advantages:

Das erfindungsgemäße poröse Kohlenstoffmaterial weist, bevorzugt nach postreduktiver Wasserstoffbehandlung, spezifische Oberflächen (BET) im Bereich von 1500 bis 2000 m2/g, besonders bevorzugt im Bereich von 1700 m2/g bis 1900 m2/g auf. Die totalen Porenvolumina bewegen sich bevorzugt im Bereich von 1 cm3/g bis 3 cm3/g, besonders bevorzugt im Bereich 1,5 cm3/g bis 2,5 cm3/g. Bevorzugt sind 5 % bis 40 %, besonders bevorzugt maximal 20 %, der Poren Mikroporen (Porendurchmessern im Bereich unter 2 nm). The porous carbon material according to the invention has, preferably after postreductive hydrotreating, specific surface areas (BET) in the range from 1500 to 2000 m 2 / g, particularly preferably in the range from 1700 m 2 / g to 1900 m 2 / g. The total pore volumes preferably range from 1 cm 3 / g to 3 cm 3 / g, particularly preferably from 1.5 cm 3 / g to 2.5 cm 3 / g. Preference is given to 5% to 40%, particularly preferably not more than 20%, of the pores micropores (pore diameters in the range below 2 nm).

Elektronen mikroskopische Aufnahmen (3 bis 6) zeigen eine ausgeprägte Mesoporenstruktur und einen graphitischen Charakter der Porenwände, was auf eine hohe elektrische Leitfähigkeit hindeutet. Bevorzugt sind über 60 %, bevorzugt über 70% bis 95 % des Porenvolumens Mesoporen (Porendurchmessern im Bereich 2–50 nm) oder auch Makroporen (Porendurchmessern im Bereich über 50 nm, bevorzugt bis 1000 nm, besonders bevorzugt bis 200 nm). Bevorzugt sind jedoch 60 % bis 90 %, bevorzugt 70% bis 80 % des Porenvolumens Mesoporen (Porendurchmessern im Bereich 2–50 nm). Die Größe der Mesoporen und der Makroporen kann vorteilhaft durch die Größe der verwendeten Nanopartikel eingestellt werden. Die Mikroporen entstehen durch die partielle Oxidation des Kohlenstoffs. Vorteilhaft sind alle Poren offenporig.Electron micrographs ( 3 to 6 ) show a pronounced mesopore structure and a graphitic character of the pore walls, indicating a high electrical conductivity. Preferably more than 60%, preferably more than 70% to 95% of the pore volume mesopores (pore diameters in the range 2-50 nm) or macropores (pore diameters in the range above 50 nm, preferably up to 1000 nm, particularly preferably up to 200 nm). However, preferred are 60% to 90%, preferably 70% to 80% of the pore volume Mesoporen (pore diameters in the range 2-50 nm). The size of the mesopores and the macropores can advantageously be adjusted by the size of the nanoparticles used. The micropores are formed by the partial oxidation of the carbon. Advantageously, all pores are porous.

Vorteilhaft können durch die Erfindung größeneinheitliche Mesoporen oder auch Makroporen erhalten werden. Besonders bevorzugt werden mindestens 60 % bis 90 %, besonders bevorzugt 70% bis 80 % des Porenvolumens durch Poren mit einem Durchmesser von 12 nm bis 26 nm, besonders bevorzugt 15 nm bis 20 nm gebildet. Advantageously, uniform mesopores or macropores can be obtained by the invention. More preferably, at least 60% to 90%, more preferably 70% to 80%, of the pore volume is formed by pores having a diameter of 12 nm to 26 nm, more preferably 15 nm to 20 nm.

Durch die Verwendung von Nanopartikeln unterschiedlicher Größe können auch gezielt Mesoporen oder Makroporen unterschiedlicher Größe erhalten werden. In diesem Fall gelten die Angaben für die Porengrößenverteilung jeweils für die Poren, die durch Nanopartikel einer Größe gebildet wurden.By using nanoparticles of different sizes it is also possible to selectively obtain mesopores or macropores of different sizes. In this case, the pore size distribution information applies to pores formed by nanoparticles of one size.

Das erfindungsgemäße poröse Kohlenstoffmaterial besteht vorzugsweise mindestens 90 Gew.-%, bevorzugt mindestens 95 Gew.-%, besonders bevorzugt mindestens 98 Gew.-% aus Kohlenstoff. The porous carbon material according to the invention preferably consists of at least 90% by weight, preferably at least 95% by weight, particularly preferably at least 98% by weight, of carbon.

Gegenstand der Erfindung ist auch die Verwendung des erfindungsgemäßen porösen Kohlenstoffmaterials als Trägermaterial insbesondere für biotechnologische Anwendungen, z.B. für die Enzym- oder Antikörperimmobilisierung, als Elektrodenmaterial, insbesondere für Batterien, in Brennstoffzellen, als Katalysatorträger, in der Gasadsorption, als Filtermaterial, in der Immobilisierung und Filtration von Biomaterialien oder in adsorptiven Trennverfahren.The invention also provides the use of the porous carbon material according to the invention as a carrier material, in particular for biotechnological applications, e.g. for enzyme or antibody immobilization, as electrode material, in particular for batteries, in fuel cells, as a catalyst support, in gas adsorption, as a filter material, in the immobilization and filtration of biomaterials or in adsorptive separation processes.

Die Erfindung wird nachfolgend durch Abbildungen und ein Ausführungsbeispiel näher erläutert.The invention will be explained in more detail by figures and an embodiment.

Dabei zeigen:Showing:

1 eine schematische Darstellung des erfindungsgemäßen Verfahrens. 1 a schematic representation of the method according to the invention.

2 Daten der Stickstoffphysorption von erfindungsgemäß hergestellten porösen Kohlenstoffpartikeln – vergleich Herstellung bei 800°C (Rauten) und 1000 °C (schwarze Kästchen). 2 Data of the nitrogen absorption of porous carbon particles produced according to the invention - comparative preparation at 800 ° C (diamonds) and 1000 ° C (black boxes).

3 eine rasterelektronenmikroskopische Aufnahme eines erfindungsgemäß hergestellten porösen Kohlenstoffpartikels. 3 a scanning electron micrograph of a porous carbon particle produced according to the invention.

4 eine rasterelektronenmikroskopische Aufnahme von Poren eines erfindungsgemäß hergestellten porösen Kohlenstoffpartikels. 4 a scanning electron micrograph of pores of a porous carbon particle produced according to the invention.

5 eine transmissionselektronenmikroskopische Aufnahme eines erfindungsgemäß hergestellten porösen Kohlenstoffpartikels. 5 a transmission electron micrograph of a porous carbon particle produced according to the invention.

6 eine transmissionselektronenmikroskopische Aufnahme von Poren eines erfindungsgemäß hergestellten porösen Kohlenstoffpartikels. 6 a transmission electron micrograph of pores of a porous carbon particle produced according to the invention.

Beispiel zur Herstellung eines porösen Kohlenstoffes über das Verfahren der Carbochlorierung: Example of producing a porous carbon via the process of carbochlorination:

Es werden 2 g TiO2-Nanopartikel (kommerziell erhältliches Degussa P25 (50m2/g +/– 15m2/g spezifische Oberfläche, gemessene Primärpartikelgröße ca. 21 nm Durchmesser) mit einem Gemisch aus 10 ml Wasser, 2,75 g Saccharose und 2 Tropfen konzentrierter Schwefelsäure in einer Petrischale vermischt. Die Polymerisation der Saccharose erfolgt unter Luftatmosphäre für 3 h bei 100°C und anschließend für weitere 3 h bei 160°C. Das so erhaltene Kompositmaterial wird anschließend unter Argonfluss (50ml/min) mit einer Heizrate von 300 K/h auf 800 °C oder 1000 °C aufgeheizt und 1 h gehalten. Nun wird der Gasfluss auf ein Gemisch aus 80 ml/min Chlor und 70 ml/min Argon umgestellt und die Temperatur für weitere 2 h gehalten. Die Abkühlung des so erhaltenen Kohlenstoffmaterials erfolgt unter einem Argonfluss von 30 ml/min. There are 2 g of TiO 2 nanoparticles (commercially available Degussa P25 (50m 2 / g +/- 15m 2 / g specific surface area, measured primary particle size about 21 nm diameter) with a mixture of 10 ml of water, 2.75 g of sucrose and Polymerization of the sucrose takes place under air atmosphere for 3 h at 100 ° C and then for a further 3 h at 160 ° C. The resulting composite material is then under argon flow (50ml / min) at a heating rate from 300 K / h to 800 ° C. or 1000 ° C. and held for 1 h, the gas flow is then switched to a mixture of 80 ml / min of chlorine and 70 ml / min of argon and the temperature is kept for a further 2 h The carbon material thus obtained is carried out under an argon flow of 30 ml / min.

Elektronen mikroskopische Aufnahmen (3 bis 6) zeigen eine ausgeprägte Mesoporenstruktur und einen sp2 dominierten Charakter der Porenwände, was auf eine hohe elektrische Leitfähigkeit hindeutet. Electron micrographs ( 3 to 6 ) show a pronounced mesopore structure and an sp2-dominated character of the pore walls, indicating a high electrical conductivity.

Für das erfindungsgemäß hergestellte poröse Kohlenstoffmaterial wurden die in der Tabelle 1 dargestellten physikalischen Daten gemessen: Tabelle 1: Synthese bei 800 °C Synthese bei 1000 °C Spezifische Oberfläche* 1649 m2/g 1715 m2/g totales Porenvolumen**: 1,735 cm3/g 2,327 cm3/g Elementarzusammensetzung*** > 99,9 Gew.-% Kohlenstoff > 99,9 Gew.-% Kohlenstoff Mittlerer Mesoporendurchmesser**** 16 nm 16 nm *ermittelt mittels Multi-Point-BET-Gleichung von 0,05–0,2 p/p0.
**ermittelt bei einem Relativdruck von 0,965 p/p0.
*** ermittelt mittels elektronendispersiver Röntgenspektroskopie.
**** berechnet mittels Auswertung des Desorptionsastes mit BJH-Methode (Barrett-Joyner-Halenda).
For the porous carbon material produced according to the invention, the physical data shown in Table 1 were measured: TABLE 1 Synthesis at 800 ° C Synthesis at 1000 ° C Specific surface* 1649 m2 / g 1715 m2 / g total pore volume **: 1.735 cc / g 2,327 cm3 / g Elemental composition *** > 99.9 wt .-% carbon > 99.9 wt .-% carbon Mean mesopore diameter **** 16 nm 16 nm * determined using a multi-point BET equation of 0.05-0.2 p / p0.
** determined at a relative pressure of 0.965 p / p0.
*** determined by means of electron dispersive X-ray spectroscopy.
**** calculated by evaluation of the desorption branch with BJH method (Barrett-Joyner-Halenda).

ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • US 6579833 B [0003] US 6579833 B [0003]
  • WO 2005118471 A1 [0003] WO 2005118471 A1 [0003]
  • WO 2006130706 A1 [0003] WO 2006130706 A1 [0003]
  • WO 2007062095 A1 [0003] WO 2007062095 A1 [0003]
  • US 2004202602 A1 [0007] US 2004202602 A1 [0007]
  • EP 2444369 A1 [0008] EP 2444369 A1 [0008]
  • US 2009136808 A1 [0009] US 2009136808 A1 [0009]
  • US 2011082024 A1 [0009] US 2011082024 A1 [0009]
  • US 2011311873 [0010] US 2011311873 [0010]
  • DE 102009033251 [0010] DE 102009033251 [0010]
  • US 6475461 B1 [0011] US 6475461 B1 [0011]
  • WO 2011092149 A2 [0012] WO 2011092149 A2 [0012]
  • WO 2012055731 A1 [0013] WO 2012055731 A1 [0013]

Zitierte Nicht-PatentliteraturCited non-patent literature

  • Lu AH, Schüth F, Adv. Mater. 2006, 18, 179 [0006] Lu AH, Schüth F, Adv. Mater. 2006, 18, 179 [0006]
  • Meng Y et al. Angew. Chem. Int. Ed. 2005 44, 7053 [0006] Meng Y et al. Angew. Chem. Int. Ed. 2005 44, 7053 [0006]

Claims (11)

Verfahren zur Herstellung eines porösen Kohlenstoffmaterials durch Einbetten von anorganischen Nanopartikeln in eine kohlenstoffhaltige Matrix und anschließende Umsetzung mit einem Halogengas.A method of producing a porous carbon material by embedding inorganic nanoparticles in a carbonaceous matrix and then reacting with a halogen gas. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die anorganischen Nanopartikel Metalloxid- oder Halbmetalloxid-Nanopartikel der Metalle oder Halbmetalle der Gruppe 4 bis 14 des Periodensystems sind, insbesondere ausgewählt aus Titan, Bor, Aluminium, Zirconium und Zinn.A method according to claim 1, characterized in that the inorganic nanoparticles are metal oxide or semimetal oxide nanoparticles of the metals or semimetals of Group 4 to 14 of the Periodic Table, in particular selected from titanium, boron, aluminum, zirconium and tin. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Nanopartikel einen Durchmesser von 5 nm bis 1000 nm, bevorzugt 10 nm bis 200 nm, aufweisen.A method according to claim 1 or 2, characterized in that nanoparticles have a diameter of 5 nm to 1000 nm, preferably 10 nm to 200 nm. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass kohlenstoffhaltige Matrix ausgewählt ist aus organischen Materialen, insbesondere Kohlenhydraten, synthetischen Polymeren, Harzen, bituminösen Rohstoffe und Pech.Method according to one of claims 1 to 3, characterized in that carbonaceous matrix is selected from organic materials, in particular carbohydrates, synthetic polymers, resins, bituminous raw materials and pitch. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Halogengas ausgewählt ist aus Chlor und Brom.Method according to one of claims 1 to 4, characterized in that the halogen gas is selected from chlorine and bromine. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass vor der Umsetzung mit Halogengas eine Verkokung der kohlenstoffhaltige Matrix erfolgt.Method according to one of claims 1 to 5, characterized in that prior to the reaction with halogen gas, a coking of the carbonaceous matrix. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Umsetzung mit Halogengas bei 200 bis 1200 °C, bevorzugt 600 bis 1000 °C erfolgt.Method according to one of claims 1 to 6, characterized in that the reaction with halogen gas at 200 to 1200 ° C, preferably 600 to 1000 ° C takes place. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass absorbiertes Halogengas anschließend mit Wasserstoff oder Kohlendioxid entfernt wird.Method according to one of claims 1 to 7, characterized in that absorbed halogen gas is subsequently removed with hydrogen or carbon dioxide. Poröses Kohlenstoffmaterial hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 8.Porous carbon material produced by a process according to any one of claims 1 to 8. Poröses Kohlenstoffmaterial, bevorzugt nach Anspruch 9, enthaltend mindestens 90 % Kohlenstoff, wobei 10 % bis 40 % des Porenvolumens durch Mikroporen gebildet wird und 60 % bis 90 % des Porenvolumens durch Mesoporen mit einem Porendurchmesser von 12 bis 26 nm.Porous carbon material, preferably according to claim 9, containing at least 90% carbon, wherein 10% to 40% of the pore volume is formed by micropores and 60% to 90% of the pore volume by mesopores having a pore diameter of 12 to 26 nm. Verwendung eines porösen Kohlenstoffs nach Anspruch 9 oder 10 als Trägermaterial, insbesondere als Elektrodenmaterial, insbesondere für Batterien, in Brennstoffzellen, als Katalysatorträger, in der Gasadsorption, als Filtermaterial, in der Immobilisierung und Filtration von Biomaterialien oder in adsorptiven Trennverfahren.Use of a porous carbon according to claim 9 or 10 as support material, in particular as electrode material, in particular for batteries, in fuel cells, as catalyst support, in gas adsorption, as filter material, in the immobilization and filtration of biomaterials or in adsorptive separation processes.
DE201210213595 2012-08-01 2012-08-01 Process for the production of porous carbon Ceased DE102012213595A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE201210213595 DE102012213595A1 (en) 2012-08-01 2012-08-01 Process for the production of porous carbon
EP13741716.8A EP2879991A1 (en) 2012-08-01 2013-07-22 Process for producing porous carbon
PCT/EP2013/065426 WO2014019880A1 (en) 2012-08-01 2013-07-22 Process for producing porous carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201210213595 DE102012213595A1 (en) 2012-08-01 2012-08-01 Process for the production of porous carbon

Publications (1)

Publication Number Publication Date
DE102012213595A1 true DE102012213595A1 (en) 2014-05-15

Family

ID=48875019

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201210213595 Ceased DE102012213595A1 (en) 2012-08-01 2012-08-01 Process for the production of porous carbon

Country Status (3)

Country Link
EP (1) EP2879991A1 (en)
DE (1) DE102012213595A1 (en)
WO (1) WO2014019880A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101858799B1 (en) 2013-03-15 2018-05-16 웨스트 버지니아 유니버시티 리서치 코포레이션 Process for pure carbon production, compositions, and methods thereof
WO2016064713A2 (en) 2014-10-21 2016-04-28 West Virginia University Research Corporation Methods and apparatuses for production of carbon, carbide electrodes, and carbon compositions
BR112018071554A2 (en) 2016-04-20 2019-03-06 Univ West Virginia methods, apparatus and electrodes for converting carbide to carbon with nanostructured carbide chemical compounds
DE102017109025A1 (en) * 2017-04-27 2018-10-31 Technische Universität Hamburg-Harburg Porous material for use in a catalytic process
DE102018001617A1 (en) * 2018-02-27 2019-08-29 Technische Universität Dresden Carbon composite molding, process for its preparation and use of the carbon composite molding in an electrochemical energy storage

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475461B1 (en) 1995-03-30 2002-11-05 Nippon Sanso Corporation Porous carbonaceous material, manufacturing method therefor and use thereof
US6579833B1 (en) 1999-09-01 2003-06-17 The Board Of Trustees Of The University Of Illinois Process for converting a metal carbide to carbon by etching in halogens
US20040202602A1 (en) 2002-09-30 2004-10-14 Matsushita Electric Industrial Co., Ltd Porous material and method for manufacturing same, and electrochemical element made using this porous material
WO2005118471A1 (en) 2004-06-01 2005-12-15 Tartu Tehnoloogiad OÜ A method of making the porous carbon material and porous carbon materials produced by the method
WO2006130706A1 (en) 2005-06-01 2006-12-07 Drexel University Process for producing nanoporous carbide -derived carbon with increased gas storage capability
WO2007062095A1 (en) 2005-11-23 2007-05-31 Drexel University Process for producing nanoporous carbide derived carbon with large specific surface area
US20090136808A1 (en) 2007-11-27 2009-05-28 Kang Soon-Ki Porous carbon structure, method for preparing same, electrode catalyst for fuel cell, and electrode and membrane-electrode assembly including same
DE102009033251A1 (en) 2008-08-30 2010-09-23 Universität Duisburg-Essen Producing an electrically conductive porous carbon material useful as a battery anode material comprises incorporating silicon and/or tin nanoparticles into a polymer matrix and carbonizing the product
US20110082024A1 (en) 2008-06-10 2011-04-07 Hansan Liu Controllable Synthesis of Porous Carbon Spheres, and Electrochemical Applications Thereof
WO2011092149A2 (en) 2010-01-27 2011-08-04 Heraeus Quarzglas Gmbh & Co. Kg Porous carbon product and method for the production thereof
US20110311873A1 (en) 2008-07-15 2011-12-22 Christof Schulz Intercalation of silicon and/or tin into porous carbon substrates
EP2444369A1 (en) 2009-06-19 2012-04-25 Toyo Tanso Co., Ltd. Porous carbon and method for producing the same
WO2012055731A1 (en) 2010-10-25 2012-05-03 Heraeus Quarzglas Gmbh & Co. Kg Porous carbon product, method for the production thereof, and use of the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007566A2 (en) * 2003-07-03 2005-01-27 Drexel University Nanoporous carbide derived carbon with tunable pore size

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475461B1 (en) 1995-03-30 2002-11-05 Nippon Sanso Corporation Porous carbonaceous material, manufacturing method therefor and use thereof
US6579833B1 (en) 1999-09-01 2003-06-17 The Board Of Trustees Of The University Of Illinois Process for converting a metal carbide to carbon by etching in halogens
US20040202602A1 (en) 2002-09-30 2004-10-14 Matsushita Electric Industrial Co., Ltd Porous material and method for manufacturing same, and electrochemical element made using this porous material
WO2005118471A1 (en) 2004-06-01 2005-12-15 Tartu Tehnoloogiad OÜ A method of making the porous carbon material and porous carbon materials produced by the method
WO2006130706A1 (en) 2005-06-01 2006-12-07 Drexel University Process for producing nanoporous carbide -derived carbon with increased gas storage capability
WO2007062095A1 (en) 2005-11-23 2007-05-31 Drexel University Process for producing nanoporous carbide derived carbon with large specific surface area
US20090136808A1 (en) 2007-11-27 2009-05-28 Kang Soon-Ki Porous carbon structure, method for preparing same, electrode catalyst for fuel cell, and electrode and membrane-electrode assembly including same
US20110082024A1 (en) 2008-06-10 2011-04-07 Hansan Liu Controllable Synthesis of Porous Carbon Spheres, and Electrochemical Applications Thereof
US20110311873A1 (en) 2008-07-15 2011-12-22 Christof Schulz Intercalation of silicon and/or tin into porous carbon substrates
DE102009033251A1 (en) 2008-08-30 2010-09-23 Universität Duisburg-Essen Producing an electrically conductive porous carbon material useful as a battery anode material comprises incorporating silicon and/or tin nanoparticles into a polymer matrix and carbonizing the product
EP2444369A1 (en) 2009-06-19 2012-04-25 Toyo Tanso Co., Ltd. Porous carbon and method for producing the same
WO2011092149A2 (en) 2010-01-27 2011-08-04 Heraeus Quarzglas Gmbh & Co. Kg Porous carbon product and method for the production thereof
WO2012055731A1 (en) 2010-10-25 2012-05-03 Heraeus Quarzglas Gmbh & Co. Kg Porous carbon product, method for the production thereof, and use of the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Adv. Mater. 2001, 13(9), 677-681 *
Lu AH, Schüth F, Adv. Mater. 2006, 18, 179
Meng Y et al. Angew. Chem. Int. Ed. 2005 44, 7053

Also Published As

Publication number Publication date
WO2014019880A1 (en) 2014-02-06
EP2879991A1 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
Zhang et al. Coal tar pitch as natural carbon quantum dots decorated on TiO2 for visible light photodegradation of rhodamine B
EP2528879B1 (en) Method for the production of a porous carbon product
DE102012213595A1 (en) Process for the production of porous carbon
Krishna et al. Rapid electrochemical synthesis of hydrogenated graphene oxide using Ni nanoparticles
Wang et al. Influence of tunable pore size on photocatalytic and photoelectrochemical performances of hierarchical porous TiO2/C nanocomposites synthesized via dual-Templating
WO2011131722A1 (en) Method for producing two-dimensional sandwich nano-materials on the basis of graphene
US20160355402A1 (en) Method of making activated nano-porous carbon
JP2006347864A (en) Method for producing mesoporous carbon, and mesoporous carbon
EP1879965A2 (en) Method for further processing the residue obtained during the production of fullerene and carbon nanostructures
CN1884188A (en) Carbon nanotube/nano clay nano composite materials and method for preparing same
EP3285272A1 (en) A method for making activated nano-porous carbon
CN106495125A (en) A kind of preparation method and application of petroleum coke base mesoporous carbon
US10343921B1 (en) Method for preparing fluorinated graphene nanoribbons
CN105293479A (en) Preparation method of three-dimensional orderly square-hole mesoporous graphene skeleton material
Park et al. Enhanced photocatalytic activity of porous single crystal TiO2/CNT composites by annealing process
US20150290624A1 (en) Hierarchical porous monoliths and methods for their preparation and use
EP3268512B1 (en) Method for producing an electrode, electrode and electrolytic device
Supriya et al. An investigation on temperature-dependant surface properties of porous carbon nanoparticles derived from biomass
Liu et al. Facile synthesis of an air-stable 3D reduced graphene oxide-phosphorene composite by sonication
CN103894169B (en) A kind of catalyst carrier, the preparation method of carrier and the Heavy oil hydrogenation catalyst prepared by this carrier
CN108455565A (en) A kind of preparation method of N doping graphitization nano carbon cage
KR100813178B1 (en) Hollow graphitic nanocarbon using polymers incorporated with metal catalysts and Preparation method of it
Mansoor et al. Optimization of ethanol flow rate for improved catalytic activity of Ni particles to synthesize MWCNTs using a CVD reactor
Zheng et al. Facile synthesis of α-Fe2O3@ porous hollow yeast-based carbonaceous microspheres for fluorescent whitening agent-VBL wastewater treatment
KR20210128176A (en) Method for Preparing Graphene-Carbon Nanotube Composite

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: C01B0031100000

Ipc: C01B0032336000

R016 Response to examination communication
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final