WO2014019880A1 - Process for producing porous carbon - Google Patents

Process for producing porous carbon Download PDF

Info

Publication number
WO2014019880A1
WO2014019880A1 PCT/EP2013/065426 EP2013065426W WO2014019880A1 WO 2014019880 A1 WO2014019880 A1 WO 2014019880A1 EP 2013065426 W EP2013065426 W EP 2013065426W WO 2014019880 A1 WO2014019880 A1 WO 2014019880A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous carbon
nanoparticles
carbon
halogen gas
pore
Prior art date
Application number
PCT/EP2013/065426
Other languages
German (de)
French (fr)
Inventor
Martin OSCHATZ
Lars Borchardt
Stefan Kaskel
Original Assignee
Technische Universität Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universität Dresden filed Critical Technische Universität Dresden
Priority to EP13741716.8A priority Critical patent/EP2879991A1/en
Publication of WO2014019880A1 publication Critical patent/WO2014019880A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28076Pore volume, e.g. total pore volume, mesopore volume, micropore volume being more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • C04B38/0032Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors one of the precursor materials being a monolithic element having approximately the same dimensions as the final article, e.g. a paper sheet which after carbonisation will react with silicon to form a porous silicon carbide porous body
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention provides a process for producing porous carbon.
  • the porous carbon produced by the method finds application in chemistry, medicine and electrical engineering and is particularly suitable as an adsorbent, filtration and electrode material, for. B. in lithium ion batteries.
  • Porous carbons or activated carbons are important materials for the purification of gases and liquids. They are used as adsorbents in medical applications and as electrode materials in battery research. In all these areas, precise control of the pore size is often necessary, which is optimally adapted to the substrate to be filtered or adsorbed.
  • Commercially available activated carbons show predominantly only very small pores (micropores, pore diameter ⁇ 2 nm) and are therefore only useful for the filtration of very small matter. Larger substances (proteins, etc.) can only be adequately filtered off.
  • porous carbon materials are mainly produced by coking and subsequent activation (with H 2 O, C0 2 , air, KOH, etc.) of carbon precursors (polymers, moss, fungi, wood, etc.).
  • the materials obtained by this classical activation have comparatively broad pore radius distributions, making them unsuitable for size-selective applications.
  • Another method is the production of porous carbon from carbides (so-called “carbide derived carbon (CDC)" (see eg US 6,579,833B2, WO20051 18471A1, WO2006130706A1, WO2007062095A1) .
  • This class of materials is characterized by comparatively narrow pore radius distributions.
  • both of these methods are limited to microporous materials (pore diameter ⁇ 2 nm) .
  • the generation of uniform sized and accessible mesopores by these methods is not possible in the current state of the art.
  • oxidic templates Si0 2
  • carbon precursors eg, sucrose or furfuryl alcohol
  • materials having mesopores of uniform size can be obtained (Lu AH, Schüth F, Adv Mater., 2006, 18, 179). This method is called a hard-templating method.
  • Soft-template-based methods require large amounts of surfactants to generate liquid crystals in polar solvents (eg, water / ethanol). Around these micellar structures, monomeric molecules are polymerized and the solvent is evaporated. By means of a high-temperature treatment under inert conditions, the polymers are coked and the liquid crystals are removed (Meng Y et al., Angew Chem Chem International Ed., 2005, 44, 7053). The soft-template process is carried out in very large quantities of polar solvents and requires the use of large amounts of environmentally harmful surfactants.
  • polar solvents eg, water / ethanol
  • MgO magnesium oxide
  • a colloidal silicon template is mixed with a water-soluble carbonaceous material and pyrolyzed in small drops (ultrasonic spray pyrolysis). From the obtained spherical carbon / silica particles, the silicon is dissolved out by acid or base.
  • tin or silicon nanoparticles are embedded in an organic polymer matrix and carbonized. The particles remain in the material to increase its conductivity.
  • US6475461 B1 discloses a process for producing porous carbonaceous material by halogenation and subsequent dehalogenation. Here the coal is activated with elemental chlorine.
  • WO201 1092149 A2 discloses a process for producing a porous carbon product, comprising the following process steps: (a) preparing a monolithic template of inorganic matrix material having interconnected pores by a soot deposition process, (b) infiltrating the pores of the template with carbon or a carbon Precursor substance and (c) calcination.
  • WO2012055731 A1 discloses a process for producing a porous carbon product comprising the following process steps: (a) providing a porous carbon structure (12) having a first specific surface, (b) infiltrating the carbon structure (12) with a graphitizable carbon precursor substance, (c) carbonizing the precursor substance.
  • the object of the invention is to provide a method for the production of porous carbon, which allows to set the pore volume as defined as possible and which results in a small size distribution of the pores.
  • the object is achieved by a method for producing a porous carbon material by embedding inorganic nanoparticles in a carbon-containing matrix and subsequent reaction with a halogen gas X 2 .
  • the inorganic nanoparticles are preferably metal oxide or semimetal oxide nanoparticles.
  • the metal oxide or semimetal oxide is preferably selected from titanium oxide, zirconium oxide, tin oxide, boron oxide, silicon oxide and aluminum oxide, and less preferably manganese oxide or tungsten oxide.
  • the reaction converts the metal / semimetal oxide into a volatile halide. Ie. the nanoparticles are dissolved, leaving pores the size of the originally embedded nanoparticles. As the carbon surrounding the nanoparticles is oxidized (in particular to CO), additional small pores (so-called micropores) are formed. By definition, micropores have a pore diameter of less than 2 nm. Due to the size of the nanoparticles used, the method according to the invention advantageously permits a precise control of the pore size and the pore size distribution of the resulting carbon materials.
  • the inorganic nanoparticles can be used from a metal oxide and / or metalloid in various sizes, which allows a precise control of the pore size and the pore size distribution of the resulting carbon material.
  • the process according to the invention largely corresponds to the process of carbochlorination known from the prior art.
  • This is used in the prior art primarily as an intermediate step for the production of elemental titanium and is also used in the production of pure Ti0. 2
  • This is a titanium oxide-containing ore - such.
  • the excess carbon is a by-product of the prior art.
  • this method is now applied to nanoscale composites of inorganic nanoparticles and a carbon-containing matrix. As a result, porous carbon negative prints of the nanoparticles can be produced.
  • the method according to the invention differs from the template-based methods known from the prior art in that removal of the inorganic nanoparticles takes place without acids or bases. What is new is the use of carbochlorination to remove the nanoparticles in the production of porous carbon.
  • carbochlorination By means of the carbochlorination, the preferred titanium oxide with halogen gas is converted to titanium tetrahalide, preferably TiCl 4 , which escapes as gas at the process temperatures.
  • the inorganic nanoparticles used in the process according to the invention are therefore made of a material which reacts with the halogen gas and carbon exclusively to products which are gaseous at the temperature of the reaction with halogen gas (preferably 700 to 1000 ° C).
  • the inorganic nanoparticles are preferably composed of a metal oxide or semimetal oxide, preferably of metals or semimetals, which are selected from metals) or semimetals of group 4 to 14, preferably groups 4 and 13, of the Periodic Table, in particular titanium, boron, silicon, aluminum , Tin and zirconium.
  • the method according to the invention is advantageously simple and inexpensive.
  • the corresponding semimetal or metal tetrachloride preferably TiCl 4
  • the corresponding semimetal or metal tetrachloride can be obtained as a useful by-product.
  • the nanoparticles preferably have a diameter of 5 nm to 1000 nm, preferably 5 nm to 200 nm, more preferably 5 to 50 nm and preferably more than 10 nm.
  • the carbonaceous matrix is selected from natural and synthetic organic materials, in particular carbohydrates (preferably sugars), synthetic polymers (preferably polyolefins), resins, bituminous raw materials and pitch.
  • the natural and / or synthetic organic material in the liquid phase is preferably brought into contact with the inorganic nanoparticles.
  • the organic material is in the liquid phase in liquid form or dissolved and / or suspended.
  • the content of the natural and / or synthetic organic material which is dissolved and / or suspended in a liquid can basically be chosen freely and is preferably between 0.1 and 90% by mass (wt .-%), particularly preferably between 1 and 75 Ma .-%, most preferably between 5 and 60 wt .-% based on the mixture of organic material / liquid before.
  • the liquid is preferably selected from the group consisting of water, aliphatic alcohols, in particular linear or branched C.sub.1-8-alcohols, especially C.sub.1-4-alcohols (such as, for example, methanol, ethanol, n- or isopropanol, n-, 2-, iso-alcohols).
  • carboxylic esters particularly preferably C 2-10 carboxylic esters with linear or branched alkyl groups (such as, for example, methyl acetate, ethyl acetate, propyl acetate or butyl acetate), acyclic and alicyclic ethers, especially C 2-8 dialkyl ethers or C 2-8 alicyclic Ether (such as, for example, tetrahydrofuran (THF), 1, 4-dioxane, methyl tert-butyl ether (MTBE), diethyl ether, di-n-butyl ether, 1, 2-dimethoxyethane, 1, 3-dimethoxypropane, but also C2-9 Di-di (C 1-4 -alkyl) ethers, such as, for example, monoethylene glycol dimethyl ether, monoethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether,
  • a suspension it is a heterogeneous mixture of solid particles of the natural and synthetic organic material and water or a water-containing solution.
  • the water or a water-containing solution serve as a carrier liquid in which the solid particles of the natural and synthetic organic material coarsely dispersed and therefore tend to sedimentation.
  • the mixing of nanoparticles with natural and / or synthetic organic materials containing liquid preferably results in a homogeneous coating, ie. H. Embedding or impregnation of the nanoparticles with the natural and / or synthetic organic materials.
  • a homogeneous coating or impregnation of the nanoparticles with the natural and / or synthetic organic materials allows the pore sizes of and the pore size distribution of the resulting porous carbon material to be adjusted in a targeted and precise manner.
  • the halogen gas is preferably selected from chlorine and bromine.
  • the nanoparticles are first mixed with the carbon-containing matrix and, prior to the reaction with halogen gas, coking (pyrolysis) of the carbon-containing matrix takes place.
  • the pyrolysis is carried out depending on the carbon-containing matrix used according to known methods. In the case of sugars, polymerization is first carried out at preferred temperatures of from 100.degree. C. to 250.degree. C., followed by pyrolysis at preferably from 700.degree. C. to 1000.degree.
  • the polymerization or pyrolysis advantageously produces a composite material in which the nanoparticles are embedded in the carbon-containing matrix or the remaining carbon.
  • the reaction with the halogen gas preferably takes place with exclusion of oxygen.
  • the halogen gas is preferably mixed with an inert gas as a carrier gas introduced into the reaction chamber.
  • the proportion of the halogen gas is preferably 30-60% by volume, more preferably 40-60% by volume.
  • Preferred carrier gases are noble gases or else nitrogen.
  • the reaction with halogen gas is preferably carried out at 200 to 1200 ° C, preferably 700 to 1000 ° C.
  • the reaction can advantageously be carried out at atmospheric pressure.
  • the process according to the invention can be followed by a postreductive treatment in a hydrogen stream.
  • the absorbed halogen gas (X 2 , in particular chlorine) with hydrogen (H 2 ) to HX is reacted, which escapes as gas.
  • the adsorbed halogen gas is removed by reaction with carbon dioxide.
  • the essential novelty of the invention is the production of porous carbon via the process according to the invention.
  • nanoparticles particle size, texture, etc.
  • carbon materials can be produced in a comparatively simple and cost-effective manner.
  • these are predestined for applications in enzyme immobilization or as electrode materials in battery research.
  • the pore sizes of the porous carbon can be adjusted by the method according to the invention in a targeted and exact manner in a comparatively wide size range in order to achieve optimum storage / separation properties.
  • the invention also provides the porous carbon material produced by the process according to the invention.
  • the porous carbon material according to the invention has, preferably after postreductive hydrotreating, specific surface areas (BET) in the range from 1500 to 2000 m 2 / g, particularly preferably in the range from 1700 m 2 / g to 1900 m 2 / g.
  • BET specific surface areas
  • the total pore volumes preferably range from 1 cm 3 / g to 3 cm 3 / g, especially preferably in the range 1, 5 cm 3 / g to 2.5 cm 3 / g.
  • Preference is given to 5% to 40%, particularly preferably not more than 20%, of the pores micropores (pore diameters in the range below 2 nm).
  • Electron micrographs show a pronounced mesopore structure and a graphitic character of the pore walls, which indicates a high electrical conductivity.
  • the size of the mesopores and the macropores can advantageously be adjusted by the size of the nanoparticles used.
  • the micropores are formed by the partial oxidation of the carbon.
  • all pores are porous.
  • uniform mesopores or macropores can be obtained by the invention. More preferably, at least 60% to 90%, more preferably 70% to 80%, of the pore volume is formed by pores having a diameter of 12 nm to 26 nm, more preferably 15 nm to 20 nm.
  • the pore size distribution information applies to pores formed by nanoparticles of one size.
  • the porous carbon material according to the invention preferably consists of at least 90% by weight, preferably at least 95% by weight, particularly preferably at least 98% by weight, of carbon.
  • the invention also provides the use of the porous carbon material according to the invention as a carrier material, in particular for biotechnological applications, for.
  • a carrier material in particular for biotechnological applications, for.
  • the enzyme or antibody immobilization as electrode material, especially for batteries, in fuel cells, as a catalyst support, in the gas adsorption, as a filter material, in the immobilization and filtration of biomaterials or in adsorptive separation process.
  • Fig. 1 is a schematic representation of the method according to the invention.
  • Fig. 2 Data of the nitrogen physisorption of porous carbon particles produced according to the invention - Comparison of preparation at 800 ° C (diamonds) and 1000 ° C (black boxes).
  • FIG. 3 shows a scanning electron micrograph of a porous carbon particle produced according to the invention.
  • FIG. 4 shows a scanning electron micrograph of pores of a porous carbon particle produced according to the invention.
  • FIG. 5 shows a transmission electron micrograph of a porous carbon particle produced according to the invention.
  • FIG. 6 shows a transmission electron micrograph of pores of a porous carbon particle produced according to the invention.
  • Ti0 2 nanoparticles commercially available Degussa P25 (50m 2 / g +/- 15m 2 / g specific surface area, measured primary particle size about 21 nm diameter) with a mixture of 10 ml of water, 2.75 g of sucrose and Polymerization of the sucrose takes place under air atmosphere for 3 h at 100 ° C and then for a further 3 h at 160 ° C.
  • the resulting composite material is then under argon flow (50ml / min) at a heating rate heated from 300 K / h to 800 ° C or 1000 ° C and held for 1 h switched a mixture of 80 ml / min chlorine and 70 ml / min argon and kept the temperature for a further 2 h.
  • the cooling of the carbon material thus obtained takes place under an argon flow of 30 ml / min.
  • Electron micrographs (FIGS. 3 to 6) show a pronounced mesopore structure and an sp 2- dominated character of the pore walls, which indicates a high electrical conductivity.
  • the gas flow is then switched to a mixture of 80 ml / min of chlorine and 70 ml / min of argon and the temperature is held for a further 2 h.
  • the cooling of the carbon material thus obtained takes place under an argon flow of 30 ml / min.

Abstract

The invention provides a process for producing porous carbon by embedding inorganic nanoparticles into a carbon-containing matrix and then reacting them with a halogen gas. By virtue of the size of the nanoparticles used, the process according to the invention advantageously enables precise control of the pore size and the pore size distribution of the resulting carbon materials. The porous carbon produced by the process advantageously contains micropores and preferably mesopores of defined size, and finds use in chemistry, medicine and electrical engineering, and is especially suitable as an adsorbent, filtration material and electrode material, for example in lithium batteries.

Description

Verfahren zur Herstellung von porösem Kohlenstoff  Process for the production of porous carbon
Die Erfindung stellt ein Verfahren zur Herstellung von porösem Kohlenstoff bereit. Der mit dem Verfahren hergestellte poröse Kohlenstoff findet Anwendung in der Chemie, Medizin und Elektrotechnik und eignet sich insbesondere als Adsorbens, Filtrations- und als Elektrodenmaterial, z. B. in Lithium Ionen-Batterien. The invention provides a process for producing porous carbon. The porous carbon produced by the method finds application in chemistry, medicine and electrical engineering and is particularly suitable as an adsorbent, filtration and electrode material, for. B. in lithium ion batteries.
Poröse Kohlenstoffe oder Aktivkohlen sind bedeutende Materialien für die Reinigung von Gasen und Flüssigkeiten. Sie kommen als Adsorbentien in medizinischen Applikationen sowie als Elektrodenmaterialien in der Batterieforschung vor. In all diesen Bereichen ist oft eine präzise Steuerung der Porengröße notwendig, die optimal auf das zu filternde oder adsorbierende Substrat angepasst ist. Kommerziell erhältliche Aktivkohlen zeigen überwiegend nur sehr kleine Poren (Mikroporen; Porendurchmesser < 2nm) und sind somit nur für die Filtration ebenfalls sehr kleiner Materien dienlich. Größere Substanzen (Proteine etc.) können bisher nur unzureichend abgefiltert werden. Porous carbons or activated carbons are important materials for the purification of gases and liquids. They are used as adsorbents in medical applications and as electrode materials in battery research. In all these areas, precise control of the pore size is often necessary, which is optimally adapted to the substrate to be filtered or adsorbed. Commercially available activated carbons show predominantly only very small pores (micropores, pore diameter <2 nm) and are therefore only useful for the filtration of very small matter. Larger substances (proteins, etc.) can only be adequately filtered off.
Nach dem Stand der Technik werden poröse Kohlenstoffmaterialien hauptsächlich über die Verkokung und anschließender Aktivierung (mit H20, C02, Luft, KOH etc.) von Kohlenstoffvorläufern (Polymere, Moos, Pilze, Holz etc.) hergestellt. Die über diese klassische Aktivierung gewonnenen Materialien weisen allerdings vergleichsweise breite Porenradienverteilungen auf, wodurch sie für größenselektive Anwendungen wenig geeignet sind. Ein anderes Verfahren stellt die Herstellung von porösem Kohlenstoff aus Carbiden (sogenanntem „Carbid derived Carbon - (CDC)" dar (s. z. B. US 6,579, 833B2, WO20051 18471A1 , WO2006130706A1 , WO2007062095A1 ). Diese Materialklasse zeichnet sich durch vergleichsweise enge Porenradienverteilungen aus. Beide genannten Verfahren sind allerdings auf mikroporöse Materialien (Porendurchmesser < 2 nm) limitiert. Die Generierung größeneinheitlicher und zugänglicher Mesoporen über diese Verfahren ist nach dem gegenwärtigen Stand der Technik nicht möglich. According to the prior art, porous carbon materials are mainly produced by coking and subsequent activation (with H 2 O, C0 2 , air, KOH, etc.) of carbon precursors (polymers, moss, fungi, wood, etc.). The materials obtained by this classical activation, however, have comparatively broad pore radius distributions, making them unsuitable for size-selective applications. Another method is the production of porous carbon from carbides (so-called "carbide derived carbon (CDC)" (see eg US 6,579,833B2, WO20051 18471A1, WO2006130706A1, WO2007062095A1) .This class of materials is characterized by comparatively narrow pore radius distributions. However, both of these methods are limited to microporous materials (pore diameter <2 nm) .The generation of uniform sized and accessible mesopores by these methods is not possible in the current state of the art.
Die Methoden der klassischen Aktivierung und der Herstellung von porösem Kohlenstoff aus Carbiden sind prinzipiell ungeeignet um größeneinheitliche Mesoporen zu generieren. The methods of classical activation and the production of porous carbon from carbides are in principle unsuitable for generating mesopores of uniform size.
Dafür geeignet sind allerdings Harttemplatverfahren die jedoch sehr aufwendige und teure Synthesen oxidischer Template und deren Auflösung unter harschen Bedingungen notwendig machen. Materialien mit engen Mesoporenradienverteilungen werden derzeit über templatbasierte Methoden hergestellt. So können oxidische Template (Si02) mit Kohlenstoffvorläufern (z. B. Saccharose oder Furfurylalkohol) infiltriert werden und nach Verkokung unter inerten Bedingungen sowie Auflösen des Si02 mittles Flusssäure oder Natriumhydroxid Materialien mit größeneinheitlichen Mesoporen erhalten werden (Lu AH, Schüth F, Adv. Mater. 2006, 18, 179). Dieses Verfahren wird als Harttemplatmethode bezeichnet. Weichtemplatbasierte Methoden erfordern große Mengen an Tensiden zur Generierung von Flüssigkristallen in polaren Lösungsmitteln (z. B. Wasser/Ethanol). Um diese mizellaren Strukturen werden monomere Moleküle polymerisiert und das Lösungsmittel verdampft. Über eine Hochtemperaturbehandlung unter inerten Bedingungen werden die Polymere Verkokt und die Flüssigkristalle entfernt (Meng Y et al. Angew. Chem. Int. Ed. 2005 44, 7053). Das Weichtemplatverfahren wird in sehr großen Mengen an polaren Lösungsmitteln durchgeführt und erfordert den Einsatz großer Mengen an umweltschädlichen Tensiden. However, hard templating methods are suitable for this, but they require very complex and expensive syntheses of oxidic templates and their dissolution under harsh conditions. Materials with narrow mesopore radius distributions are currently produced via template-based methods. Thus, oxidic templates (Si0 2 ) can be infiltrated with carbon precursors (eg, sucrose or furfuryl alcohol) and, after coking under inert conditions and dissolution of the SiO 2 with hydrofluoric acid or sodium hydroxide, materials having mesopores of uniform size can be obtained (Lu AH, Schüth F, Adv Mater., 2006, 18, 179). This method is called a hard-templating method. Soft-template-based methods require large amounts of surfactants to generate liquid crystals in polar solvents (eg, water / ethanol). Around these micellar structures, monomeric molecules are polymerized and the solvent is evaporated. By means of a high-temperature treatment under inert conditions, the polymers are coked and the liquid crystals are removed (Meng Y et al., Angew Chem Chem International Ed., 2005, 44, 7053). The soft-template process is carried out in very large quantities of polar solvents and requires the use of large amounts of environmentally harmful surfactants.
Aus der Patentliteratur sind einige Verfahren zur Herstellung von porösem Kohlenstoff bekannt: From the patent literature, some processes for the production of porous carbon are known:
In der US2004202602 A1 wird ein Gel eines Oxids mit einem Kohlenstoffhaltigen Material vermischt und dieses anschließend zu porösem Kohlenstoff karbonisiert. Das anorganische Oxid verbleibt im porösen Kohlenstoff oder wird optional durch herauslösen mit einer Säure oder Base entfernt.  In US2004202602 A1 a gel of an oxide is mixed with a carbonaceous material and this is then carbonized to porous carbon. The inorganic oxide remains in the porous carbon or is optionally removed by leaching with an acid or base.
In der EP2444369 A1 wird Magnesiumoxid (MgO) als Maske mit einem organischen Polymer als kohlenstoffhaltigem Material vermischt und dieses zu porösem Kohlenstoff karbonisiert. Parallel dazu erfolgt eine Metallabscheidung auf dem Kohlenstoff. Das MgO wird anschließend mit Säure herausgelöst.  In EP2444369 A1 magnesium oxide (MgO) is mixed as a mask with an organic polymer as the carbonaceous material and this carbonized to porous carbon. In parallel, a metal deposition takes place on the carbon. The MgO is then dissolved out with acid.
In der US2009136808 A1 wird eine Mischung von Mesoporen-bildenden Partikeln und mindestens zwei Makroporen-bildende Partikel mit unterschiedlichen Durchmessern vermischt und getrocknet. Nach Entfernen der Makroporen-bildenden Partikel wird ein kohlenstoffhaltiges Material in die erhaltenen Poren gegeben und das erhaltene Komposit karbonisiert. Anschließend werden die Mesoporen-bildenden Partikel entfernt. Das Entfernen der Partikel erfolgt durch Herauslösen oder Ätzen oder auch durch Erhitzen.  In US2009136808 A1 a mixture of mesopore-forming particles and at least two macroporous particles having different diameters is mixed and dried. After removal of the macropore-forming particles, a carbonaceous material is added to the resulting pores and the resulting composite carbonized. Subsequently, the mesopores-forming particles are removed. The removal of the particles is carried out by dissolution or etching or by heating.
In der US201 1082024 A1 wird ein kolloides Siliziumtemplat mit einem wasserlöslichen kohlenstoffhaltigem Material vermischt und in kleinen Tropfen pyrolysiert (Ultraschall Sprühpyrolyse). Aus den erhaltenen sphärischen Karbon/Silika-Partikeln wird das Silizium durch Säure oder Base herausgelöst. In der US201 131 1873 und der DE102009033251 werden Zinn- oder Silizium-Nanopartikeln in eine organische Polymermatrix eingebettet und diese karbonisiert. Die Partikel verbleiben in dem Material um dessen Leitfähigkeit zu erhöhen. In US2011082024 A1, a colloidal silicon template is mixed with a water-soluble carbonaceous material and pyrolyzed in small drops (ultrasonic spray pyrolysis). From the obtained spherical carbon / silica particles, the silicon is dissolved out by acid or base. In US201 131 1873 and DE102009033251, tin or silicon nanoparticles are embedded in an organic polymer matrix and carbonized. The particles remain in the material to increase its conductivity.
US6475461 B1 offenbart ein Verfahren zur Herstellung von porösem kohlenstoffhaltigem Material durch eine Halogenierung und anschließende Dehalogenierung. Hier erfolgt eine Aktivierung der Kohle mit elementarem Chlor.  US6475461 B1 discloses a process for producing porous carbonaceous material by halogenation and subsequent dehalogenation. Here the coal is activated with elemental chlorine.
WO201 1092149 A2 offenbart ein Verfahren zur Herstellung eines porösen Kohlenstofferzeugnisses, mit folgenden Verfahrensschritten: (a) Herstellen eines monolithischen Templats aus anorganischem Matrixmaterial, das miteinander verbundene Poren aufweist, durch einen Sootabscheideprozess, (b) Infiltrieren der Poren des Templats mit Kohlenstoff oder einer Kohlenstoff-Vorläufersubstanz und (c) Kalzinieren.  WO201 1092149 A2 discloses a process for producing a porous carbon product, comprising the following process steps: (a) preparing a monolithic template of inorganic matrix material having interconnected pores by a soot deposition process, (b) infiltrating the pores of the template with carbon or a carbon Precursor substance and (c) calcination.
WO2012055731 A1 offenbart ein Verfahren zur Herstellung eines porösen Kohlenstofferzeugnisses mit folgenden Verfahrensschritten: (a) Bereitstellen einer porösen Kohlenstoffstruktur (12) mit einer ersten spezifischen Oberfläche, (b) Infiltrieren der Kohlenstoffstruktur (12) mit einer Vorläufersubstanz für graphitisierbaren Kohlenstoff, (c) Carbonisieren der Vorläufersubstanz.  WO2012055731 A1 discloses a process for producing a porous carbon product comprising the following process steps: (a) providing a porous carbon structure (12) having a first specific surface, (b) infiltrating the carbon structure (12) with a graphitizable carbon precursor substance, (c) carbonizing the precursor substance.
Aufgabe der Erfindung ist es ein Verfahren zur Herstellung von porösem Kohlenstoff anzugeben, welches es erlaubt, das Porenvolumen möglichst definiert einzustellen und welches in einer geringen Größenverteilung der Poren resultiert. The object of the invention is to provide a method for the production of porous carbon, which allows to set the pore volume as defined as possible and which results in a small size distribution of the pores.
Erfindungsgemäß gelöst wird die Aufgabe durch ein Verfahren zur Herstellung eines porösen Kohlenstoffmaterials durch Einbetten von anorganischen Nanopartikeln in eine kohlenstoffhaltige Matrix und anschließende Umsetzung mit einem Halogengas X2. According to the invention, the object is achieved by a method for producing a porous carbon material by embedding inorganic nanoparticles in a carbon-containing matrix and subsequent reaction with a halogen gas X 2 .
Die anorganischen Nanopartikel sind bevorzugt Metalloxid- oder Halbmetalloxid- Nanopartikel. Das Metalloxid- oder Halbmetalloxid ist bevorzugt ausgewählt aus Titanoxid, Zirkoniumoxid, Zinnoxid, Boroxid, Siliziumoxid und Aluminiumoxid, sowie weniger bevorzugt Manganoxid oder Wolf ramoxid. The inorganic nanoparticles are preferably metal oxide or semimetal oxide nanoparticles. The metal oxide or semimetal oxide is preferably selected from titanium oxide, zirconium oxide, tin oxide, boron oxide, silicon oxide and aluminum oxide, and less preferably manganese oxide or tungsten oxide.
Durch die Umsetzung wird das Metall-/Halbmetalloxid in ein flüchtiges Halogenid umgewandelt. D. h. die Nanopartikel werden aufgelöst und es verbleiben Poren in der Größe der ursprünglich eingebetteten Nanopartikel. Da der die Nanopartikel umgebende Kohlenstoff oxidiert wird (insbesondere zu CO) entstehen zusätzliche kleine Poren (s. g. Mikroporen). Definitionsgemäß weisen Mikroporen einen Porendurchmesser von kleiner 2 nm auf. Durch die Größe der verwendeten Nanopartikel erlaubt das erfindungsgemäße Verfahren vorteilhaft eine präzise Kontrolle der Porengröße sowie der Porengößenverteilung der resultierenden Kohlenstoffmaterialien. The reaction converts the metal / semimetal oxide into a volatile halide. Ie. the nanoparticles are dissolved, leaving pores the size of the originally embedded nanoparticles. As the carbon surrounding the nanoparticles is oxidized (in particular to CO), additional small pores (so-called micropores) are formed. By definition, micropores have a pore diameter of less than 2 nm. Due to the size of the nanoparticles used, the method according to the invention advantageously permits a precise control of the pore size and the pore size distribution of the resulting carbon materials.
Vorteilhaft können die anorganischen Nanopartikel aus einem Metalloxid und/oder Halbmetalloxid in verschiedensten Größen eingesetzt werden, was eine präzise Kontrolle der Porengröße sowie der Porengößenverteilung des resultierenden Kohlenstoffmaterials erlaubt. Advantageously, the inorganic nanoparticles can be used from a metal oxide and / or metalloid in various sizes, which allows a precise control of the pore size and the pore size distribution of the resulting carbon material.
Bevorzugt wird im erfindungsgemäßen Verfahren als Halogengas Chlor oder auch Brom eingesetzt. In the process according to the invention, preference is given to using chlorine or else bromine as halogen gas.
Für Titanoxid und Chlorgas ergibt sich folgende bevorzugte Reaktionsgleichung: For titanium oxide and chlorine gas, the following preferred reaction equation results:
Γ1Ο2 " ~ 2 - " 2 I2 — 1 - 2 ί Γ1Ο2 "~ 2 -" 2 I2 - 1 - 2 ί
Das erfindungsgemäße Verfahren entspricht weitgehend dem aus dem Stand der Technik bekannten Verfahren der Carbochlorierung. Dieses dient nach dem Stand der Technik in erster Linie als Zwischenschritt zur Herstellung von elementarem Titan und findet auch Anwendung in der Herstellung von reinem Ti02. Dabei wird ein Titanoxid-haltiges Erz - wie z. B. Ilmenit (FeTi03), Rutil (Ti02) oder Titanit (CaO-Ti02-Si02) - mit Petrolkoks vermengt und dieses Gemisch bei Temperaturen von 750-1000°C mit Chlorgas behandelt, um TiCL- herzustellen, welches anschließend durch Destillation abgetrennt wird. Der überschüssige Kohlenstoff stellt nach dem Stand der Technik ein Nebenprodukt dar. The process according to the invention largely corresponds to the process of carbochlorination known from the prior art. This is used in the prior art primarily as an intermediate step for the production of elemental titanium and is also used in the production of pure Ti0. 2 This is a titanium oxide-containing ore - such. As ilmenite (FeTi0 3 ), rutile (Ti0 2 ) or titanite (CaO-Ti0 2 -Si0 2 ) - mixed with petroleum coke and treated this mixture at temperatures of 750-1000 ° C with chlorine gas to TiCL- produce, which subsequently is separated by distillation. The excess carbon is a by-product of the prior art.
Erfindungsgemäß wird dieses Verfahren nun auf nanoskalige Komposite aus anorganischen Nanopartikeln und einer kohlenstoffhaltigen Matrix angewandt. Dadurch lassen sich poröse Kohlenstoff-Negativabdrücke der Nanopartikel herstellen. According to the invention, this method is now applied to nanoscale composites of inorganic nanoparticles and a carbon-containing matrix. As a result, porous carbon negative prints of the nanoparticles can be produced.
Das erfindungsgemäße Verfahren unterscheidet sich von den aus dem Stand der Technik bekannten Templat-basierten Verfahren darin, dass eine Entfernung der anorganischen Nanopartikel ohne Säuren oder Basen erfolgt. Neu ist die Verwendung der Carbochlorierung zur Entfernung der Nanopartikel bei der Herstellung von porösem Kohlenstoff. Durch die Carbochlorierung wird das bevorzugte Titanoxid mit Halogengas zu Titantetrahalogenid, bevorzugt TiCI4, umgesetzt, welches bei den Prozesstemperaturen als Gas entweicht. Die im erfindungsgemäßen Verfahren verwendeten anorganischen Nanopartikel sind daher aus einem Material, welches mit dem Halogengas und Kohlenstoff ausschließlich zu Produkten reagiert, die bei der Temperatur der Umsetzung mit Halogengas (bevorzugt 700 bis 1000°C) gasförmig sind. Diese Produkte sind ein gasförmiges Halogenid, bevorzugt ein Tetrahalogenid, sowie Kohlenstoffoxide, bevorzugt Kohlenmonoxid und/oder Kohlendioxid. Bevorzugt sind die anorganischen Nanopartikel aus einem Metalloxid- oder Halbmetalloxid, vorzugsweise von Metallen oder Halbmetallen, die ausgewählt sind aus Metallen) oder Halbmetallen der Gruppe 4 bis 14, bevorzugt der Gruppen 4 und 13, des Periodensystems, insbesondere Titan, Bor, Silizium, Aluminium, Zinn und Zirkonium. The method according to the invention differs from the template-based methods known from the prior art in that removal of the inorganic nanoparticles takes place without acids or bases. What is new is the use of carbochlorination to remove the nanoparticles in the production of porous carbon. By means of the carbochlorination, the preferred titanium oxide with halogen gas is converted to titanium tetrahalide, preferably TiCl 4 , which escapes as gas at the process temperatures. The inorganic nanoparticles used in the process according to the invention are therefore made of a material which reacts with the halogen gas and carbon exclusively to products which are gaseous at the temperature of the reaction with halogen gas (preferably 700 to 1000 ° C). These products are a gaseous halide, preferably a tetrahalide, as well as carbon oxides, preferably carbon monoxide and / or carbon dioxide. The inorganic nanoparticles are preferably composed of a metal oxide or semimetal oxide, preferably of metals or semimetals, which are selected from metals) or semimetals of group 4 to 14, preferably groups 4 and 13, of the Periodic Table, in particular titanium, boron, silicon, aluminum , Tin and zirconium.
Das erfindungsgemäße Verfahren ist vorteilhaft einfach und preisgünstig. Im erfindungsgemäßen Verfahren kann je nach eingesetzten Nanopartikeln das entsprechende Halbmetall- oder Metalltetrachlorid, bevorzugt TiCI4 als nützliches Nebenprodukt gewonnen werden. The method according to the invention is advantageously simple and inexpensive. In the process according to the invention, depending on the nanoparticles used, the corresponding semimetal or metal tetrachloride, preferably TiCl 4 , can be obtained as a useful by-product.
Die Nanopartikel weisen vorzugsweise einen Durchmesser von 5 nm bis 1000 nm, bevorzugt 5 nm bis 200 nm, besonders bevorzugt 5 bis 50 nm und vorzugsweise über 10 nm auf. The nanoparticles preferably have a diameter of 5 nm to 1000 nm, preferably 5 nm to 200 nm, more preferably 5 to 50 nm and preferably more than 10 nm.
Als kohlenstoffhaltige Matrix kommen prinzipiell alle kohlenstoffhaltige Materialien in Betracht, die sich verkoken lassen, d. h. durch Pyrolyse in nahezu reinen (bevorzugt über 90 %) Kohlenstoff umwandeln lassen. Bevorzugt ist die kohlenstoffhaltige Matrix ausgewählt aus natürlichen und synthetischen organischen Materialen, insbesondere Kohlenhydraten (bevorzugt Zucker), synthetischen Polymeren (bevorzugt Polyolefinen), Harzen, bituminösen Rohstoffe und Pech. As a carbon-containing matrix, in principle, all carbonaceous materials are considered, which can be coked, d. H. by pyrolysis in almost pure (preferably over 90%) carbon can be converted. Preferably, the carbonaceous matrix is selected from natural and synthetic organic materials, in particular carbohydrates (preferably sugars), synthetic polymers (preferably polyolefins), resins, bituminous raw materials and pitch.
Bevorzugt wird in dem erfindungsgemäßen Verfahren das natürliche und/oder synthetische organische Material in flüssiger Phase mit den anorganischen Nanopartikeln in Kontakt gebracht. Bevorzugt liegt das organisches Material in der flüssigen Phase in flüssiger Form oder gelöst und/oder suspendiert vor. In the process according to the invention, the natural and / or synthetic organic material in the liquid phase is preferably brought into contact with the inorganic nanoparticles. Preferably, the organic material is in the liquid phase in liquid form or dissolved and / or suspended.
Der Gehalt des natürlichen und/oder synthetischen organischen Materials, dass gelöst und/oder suspendiert in einer Flüssigkeit vorliegt kann grundsätzlich frei gewählt werden und liegt bevorzugt zwischen 0,1 und 90 Massenprozent (Ma.-%), besonders bevorzugt zwischen 1 und 75 Ma.-%, ganz besonders bevorzugt zwischen 5 und 60 Ma.-% bezogen auf die Mischung organisches Material/Flüssigkeit vor. Bevorzugt ist die Flüssigkeit ausgewählt aus der Gruppe Wasser, aliphatische Alkohole, insbesondere lineare oder verzweigter C1 -8-Alkohole, besonders C1 -4-Alkohole (wie bspw. Methanol, Ethanol, n- oder Isopropanol, n-, 2-, iso- oder tert.-Butanol) Carbonsäureester, besonders bevorzugt C2-10-Carbonsäureester mit linearen oder verzweigten Alkylgruppen (wie bspw. Essigsäuremethylester, Essigsäureethylester, Essigsäurepropylester oder Essigsäurebutylester), acyclische und alicyclische Ether, insbesondere C2-8-Dialkylether oder C2-8-alicyclische Ether (wie bspw. Tetrahydrofuran (THF), 1 ,4-Dioxan, Methyl-tert- butylether (MTBE), Diethylether, Di-n-butylether, 1 ,2-Dimethoxyethan, 1 ,3-Dimethoxypropan; aber auch C2-9-Diol-di(C1 -4-alkyl)ether, wie bspw. Monoethylenglykol-dimethylether, Monoethylenglykol-diethylether, Diethylenglykol-dimethylether, Diethylenglykol-diethylether, Tripropylenglykol-dimethylether) sowie aliphatische Etheralkohole (wie bspw. Methoxypropanol, Monoethylenglykolmonomethylether) und Mischungen hiervon. The content of the natural and / or synthetic organic material which is dissolved and / or suspended in a liquid can basically be chosen freely and is preferably between 0.1 and 90% by mass (wt .-%), particularly preferably between 1 and 75 Ma .-%, most preferably between 5 and 60 wt .-% based on the mixture of organic material / liquid before. The liquid is preferably selected from the group consisting of water, aliphatic alcohols, in particular linear or branched C.sub.1-8-alcohols, especially C.sub.1-4-alcohols (such as, for example, methanol, ethanol, n- or isopropanol, n-, 2-, iso-alcohols). or tert-butanol) carboxylic esters, particularly preferably C 2-10 carboxylic esters with linear or branched alkyl groups (such as, for example, methyl acetate, ethyl acetate, propyl acetate or butyl acetate), acyclic and alicyclic ethers, especially C 2-8 dialkyl ethers or C 2-8 alicyclic Ether (such as, for example, tetrahydrofuran (THF), 1, 4-dioxane, methyl tert-butyl ether (MTBE), diethyl ether, di-n-butyl ether, 1, 2-dimethoxyethane, 1, 3-dimethoxypropane, but also C2-9 Di-di (C 1-4 -alkyl) ethers, such as, for example, monoethylene glycol dimethyl ether, monoethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, tripropylene glycol dimethyl ether) and aliphatic ether alcohols (such as, for example, methoxypropanol, monoethyleng glycol monomethyl ether) and mixtures thereof.
Im Falle einer Suspension handelt es sich um ein heterogenes Gemisch aus Feststoffpartikeln des natürlichen und synthetischen organischen Materials und Wasser oder einer wasserhaltigen Lösung. Das Wasser oder eine wasserhaltige Lösung dienen dabei als Trägerflüssigkeit in der die Feststoffpartikel des natürlichen und synthetischen organischen Materials grobdispers vorliegen und daher zur Sedimentation neigen. In the case of a suspension, it is a heterogeneous mixture of solid particles of the natural and synthetic organic material and water or a water-containing solution. The water or a water-containing solution serve as a carrier liquid in which the solid particles of the natural and synthetic organic material coarsely dispersed and therefore tend to sedimentation.
Bevorzugt erfolgt durch die Vermischung von Nanopartikeln mit Flüssigkeit enthaltenden natürlichen und/oder synthetischen organischen Materialen eine homogene Beschichtung, d. h. Einbettung bzw. Imprägnierung der Nanopartikel mit den natürlichen und/oder synthetischen organischen Materialen. Vorteilhaft erlaubt die homogene Beschichtung bzw. Imprägnierung der Nanopartikel mit den natürlichen und/oder synthetischen organischen Materialen, dass die Porengrößen des und die Porengößenverteilung des resultierenden porösen Kohlenstoffmaterials gezielt und exakt eingestellt werden kann. The mixing of nanoparticles with natural and / or synthetic organic materials containing liquid preferably results in a homogeneous coating, ie. H. Embedding or impregnation of the nanoparticles with the natural and / or synthetic organic materials. Advantageously, the homogeneous coating or impregnation of the nanoparticles with the natural and / or synthetic organic materials allows the pore sizes of and the pore size distribution of the resulting porous carbon material to be adjusted in a targeted and precise manner.
Das Halogengas ist bevorzugt ausgewählt aus Chlor und Brom. The halogen gas is preferably selected from chlorine and bromine.
Bevorzugt erfolgt zunächst eine Vermischung der Nanopartikel mit der kohlenstoffhaltigen Matrix und vor der Umsetzung mit Halogengas eine Verkokung (Pyrolyse) der kohlenstoffhaltige Matrix. Die Pyrolyse erfolgt abhängig von der eingesetzten kohlenstoffhaltigen Matrix nach an sich bekannten Methoden. Bei Zuckern erfolgt zunächst eine Polymerisation bei bevorzugten Temperaturen von 100°C bis 250 °C und anschließend eine Pyrolyse bei vorzugsweise 700°C bis 1000°C. Durch die Polymerisation bzw. Pyrolyse entsteht vorteilhaft ein Kompositmaterial, in welchem die Nanopartikel in die kohlenstoffhaltigen Matrix bzw. den verbleibenden Kohlenstoff eingebettet sind. Preferably, the nanoparticles are first mixed with the carbon-containing matrix and, prior to the reaction with halogen gas, coking (pyrolysis) of the carbon-containing matrix takes place. The pyrolysis is carried out depending on the carbon-containing matrix used according to known methods. In the case of sugars, polymerization is first carried out at preferred temperatures of from 100.degree. C. to 250.degree. C., followed by pyrolysis at preferably from 700.degree. C. to 1000.degree. The polymerization or pyrolysis advantageously produces a composite material in which the nanoparticles are embedded in the carbon-containing matrix or the remaining carbon.
Die Umsetzung mit dem Halogengas findet bevorzugt unter Sauerstoffausschluss statt. Das Halogengas wird bevorzugt mit einem Inertgas als Trägergas vermischt in die Reaktionskammer eingeleitet. Der Anteil des Halogengases beträgt bevorzugt 30 - 60 Vol %, besonders bevorzugt 40 - 60 Vol %. Bevorzugte Trägergase sind Edelgase oder auch Stickstoff. Die Umsetzung mit Halogengas erfolgt bevorzugt bei 200 bis 1200 °C, bevorzugt 700 bis 1000 °C. Die Reaktion kann vorteilhaft bei Normaldruck durchgeführt werden. The reaction with the halogen gas preferably takes place with exclusion of oxygen. The halogen gas is preferably mixed with an inert gas as a carrier gas introduced into the reaction chamber. The proportion of the halogen gas is preferably 30-60% by volume, more preferably 40-60% by volume. Preferred carrier gases are noble gases or else nitrogen. The reaction with halogen gas is preferably carried out at 200 to 1200 ° C, preferably 700 to 1000 ° C. The reaction can advantageously be carried out at atmospheric pressure.
Optional kann dem erfindungsgemäßen Verfahren eine postreduktive Behandlung im Wasserstoffstrom nachgeschaltet werden. Dabei wird das absorbierte Halogengas (X2, insbesondere Chlor) mit Wasserstoff (H2) zu HX (bevorzugt HCl oder auch HBr und bevorzugt bei 400°C bis 800°C) umgesetzt, welches als Gas entweicht. Alternativ erfolgt ein Entfernen des adsorbierten Halogengas durch Umsetzen mit Kohlendioxid. Optionally, the process according to the invention can be followed by a postreductive treatment in a hydrogen stream. In this case, the absorbed halogen gas (X 2 , in particular chlorine) with hydrogen (H 2 ) to HX (preferably HCl or HBr and preferably at 400 ° C to 800 ° C) is reacted, which escapes as gas. Alternatively, the adsorbed halogen gas is removed by reaction with carbon dioxide.
Das wesentlich Neue an der Erfindung ist die Herstellung von porösem Kohlenstoff über das erfindungsgemäße Verfahren. Durch gezielte Veränderung der Beschaffenheit der Nanopartikel (Partikelgröße, Textur etc.) können auf eine vergleichsweise einfache und kosteneffiziente Weise wohldefinierte Kohlenstoffmaterialien hergestellt werden. Je nach Porengröße sind diese für Anwendungen in der Enzymimmobilisierung oder als Elektrodenmaterialien in der Batterieforschung prädestiniert. The essential novelty of the invention is the production of porous carbon via the process according to the invention. By deliberately changing the nature of the nanoparticles (particle size, texture, etc.) well-defined carbon materials can be produced in a comparatively simple and cost-effective manner. Depending on the pore size, these are predestined for applications in enzyme immobilization or as electrode materials in battery research.
Vorteilhaft kann die Porengrößen des porösen Kohlenstoff durch das erfindungsgemäße Verfahren gezielt und exakt in einem vergleichsweise weiten Größenbereich eingestellt werden, um optimale Speicherungs-/Separationseigenschaften zu erreichen. Advantageously, the pore sizes of the porous carbon can be adjusted by the method according to the invention in a targeted and exact manner in a comparatively wide size range in order to achieve optimum storage / separation properties.
Gegenstand der Erfindung ist auch das nach dem erfindungsgemäßen Verfahren hergestellte poröse Kohlenstoffmaterial. The invention also provides the porous carbon material produced by the process according to the invention.
Das erfindungsgemäße poröse Kohlenstoffmaterial, kennzeichnet sich insbesondere durch folgende Eigenschaften und Vorteile aus: The porous carbon material according to the invention is characterized in particular by the following properties and advantages:
Das erfindungsgemäße poröse Kohlenstoffmaterial weist, bevorzugt nach postreduktiver Wasserstoffbehandlung, spezifische Oberflächen (BET) im Bereich von 1500 bis 2000 m2/g, besonders bevorzugt im Bereich von 1700 m2/g bis 1900 m2/g auf. Die totalen Porenvolumina bewegen sich bevorzugt im Bereich von 1 cm3/g bis 3 cm3/g, besonders bevorzugt im Bereich 1 ,5 cm3/g bis 2,5 cm3/g. Bevorzugt sind 5 % bis 40 %, besonders bevorzugt maximal 20 %, der Poren Mikroporen (Porendurchmessern im Bereich unter 2 nm). The porous carbon material according to the invention has, preferably after postreductive hydrotreating, specific surface areas (BET) in the range from 1500 to 2000 m 2 / g, particularly preferably in the range from 1700 m 2 / g to 1900 m 2 / g. The total pore volumes preferably range from 1 cm 3 / g to 3 cm 3 / g, especially preferably in the range 1, 5 cm 3 / g to 2.5 cm 3 / g. Preference is given to 5% to 40%, particularly preferably not more than 20%, of the pores micropores (pore diameters in the range below 2 nm).
Elektronenmikroskopische Aufnahmen (Fig. 3 bis 6) zeigen eine ausgeprägte Mesoporenstruktur und einen graphitischen Charakter der Porenwände, was auf eine hohe elektrische Leitfähigkeit hindeutet. Bevorzugt sind über 60 %, bevorzugt über 70% bis 95 % des Porenvolumens Mesoporen (Porendurchmessern im Bereich 2-50 nm) oder auch Makroporen (Porendurchmessern im Bereich über 50 nm, bevorzugt bis 1000 nm, besonders bevorzugt bis 200 nm). Bevorzugt sind jedoch 60 % bis 90 %, bevorzugt 70% bis 80 % des Porenvolumens Mesoporen (Porendurchmessern im Bereich 2-50 nm). Die Größe der Mesoporen und der Makroporen kann vorteilhaft durch die Größe der verwendeten Nanopartikel eingestellt werden. Die Mikroporen entstehen durch die partielle Oxidation des Kohlenstoffs. Vorteilhaft sind alle Poren offenporig. Electron micrographs (FIGS. 3 to 6) show a pronounced mesopore structure and a graphitic character of the pore walls, which indicates a high electrical conductivity. Preferably more than 60%, preferably more than 70% to 95% of the pore volume mesopores (pore diameters in the range 2-50 nm) or macropores (pore diameters in the range above 50 nm, preferably up to 1000 nm, particularly preferably up to 200 nm). However, preferred are 60% to 90%, preferably 70% to 80% of the pore volume Mesoporen (pore diameters in the range 2-50 nm). The size of the mesopores and the macropores can advantageously be adjusted by the size of the nanoparticles used. The micropores are formed by the partial oxidation of the carbon. Advantageously, all pores are porous.
Vorteilhaft können durch die Erfindung größeneinheitliche Mesoporen oder auch Makroporen erhalten werden. Besonders bevorzugt werden mindestens 60 % bis 90 %, besonders bevorzugt 70 % bis 80 % des Porenvolumens durch Poren mit einem Durchmesser von 12 nm bis 26 nm, besonders bevorzugt 15 nm bis 20 nm gebildet. Advantageously, uniform mesopores or macropores can be obtained by the invention. More preferably, at least 60% to 90%, more preferably 70% to 80%, of the pore volume is formed by pores having a diameter of 12 nm to 26 nm, more preferably 15 nm to 20 nm.
Durch die Verwendung von Nanopartikeln unterschiedlicher Größe können auch gezielt Mesoporen oder Makroporen unterschiedlicher Größe erhalten werden. In diesem Fall gelten die Angaben für die Porengrößenverteilung jeweils für die Poren, die durch Nanopartikel einer Größe gebildet wurden. By using nanoparticles of different sizes it is also possible to selectively obtain mesopores or macropores of different sizes. In this case, the pore size distribution information applies to pores formed by nanoparticles of one size.
Das erfindungsgemäße poröse Kohlenstoffmaterial besteht vorzugsweise mindestens 90 Gew.-%, bevorzugt mindestens 95 Gew.-%, besonders bevorzugt mindestens 98 Gew.-% aus Kohlenstoff. The porous carbon material according to the invention preferably consists of at least 90% by weight, preferably at least 95% by weight, particularly preferably at least 98% by weight, of carbon.
Gegenstand der Erfindung ist auch die Verwendung des erfindungsgemäßen porösen Kohlenstoffmaterials als Trägermaterial insbesondere für biotechnologische Anwendungen, z. B. für die Enzym- oder Antikörperimmobilisierung, als Elektrodenmaterial, insbesondere für Batterien, in Brennstoffzellen, als Katalysatorträger, in der Gasadsorption, als Filtermaterial, in der Immobilisierung und Filtration von Biomaterialien oder in adsorptiven Trennverfahren. Die Erfindung wird nachfolgend durch Abbildungen und ein Ausführungsbeispiel näher erläutert. The invention also provides the use of the porous carbon material according to the invention as a carrier material, in particular for biotechnological applications, for. As for the enzyme or antibody immobilization, as electrode material, especially for batteries, in fuel cells, as a catalyst support, in the gas adsorption, as a filter material, in the immobilization and filtration of biomaterials or in adsorptive separation process. The invention will be explained in more detail by figures and an embodiment.
Dabei zeigen: Showing:
Fig. 1 eine schematische Darstellung des erfindungsgemäßen Verfahrens. Fig. 1 is a schematic representation of the method according to the invention.
Fig. 2 Daten der Stickstoffphysisorption von erfindungsgemäß hergestellten porösen Kohlenstoffpartikeln - Vergleich Herstellung bei 800°C (Rauten) und 1000 °C (schwarze Kästchen). Fig. 2 Data of the nitrogen physisorption of porous carbon particles produced according to the invention - Comparison of preparation at 800 ° C (diamonds) and 1000 ° C (black boxes).
Fig. 3 eine rasterelektronenmikroskopische Aufnahme eines erfindungsgemäß hergestellten porösen Kohlenstoffpartikels. 3 shows a scanning electron micrograph of a porous carbon particle produced according to the invention.
Fig. 4 eine rasterelektronenmikroskopische Aufnahme von Poren eines erfindungsgemäß hergestellten porösen Kohlenstoffpartikels. 4 shows a scanning electron micrograph of pores of a porous carbon particle produced according to the invention.
Fig. 5 eine transmissionselektronenmikroskopische Aufnahme eines erfindungsgemäß hergestellten porösen Kohlenstoffpartikels. 5 shows a transmission electron micrograph of a porous carbon particle produced according to the invention.
Fig. 6 eine transmissionselektronenmikroskopische Aufnahme von Poren eines erfindungsgemäß hergestellten porösen Kohlenstoffpartikels. 6 shows a transmission electron micrograph of pores of a porous carbon particle produced according to the invention.
Beispiel zur Herstellung eines porösen Kohlenstoffes über das Verfahren der Carbochlorierung: Example of producing a porous carbon via the process of carbochlorination:
Beispiel 1 - Herstellung eines porösen Kohlenstoffs durch Umsetzung von Ti02- Nanopartikel Example 1 Production of a Porous Carbon by Reaction of TiO 2 Nanoparticles
Es werden 2 g Ti02-Nanopartikel (kommerziell erhältliches Degussa P25 (50m2/g +/- 15m2/g spezifische Oberfläche, gemessene Primärpartikelgröße ca. 21 nm Durchmesser) mit einem Gemisch aus 10 ml Wasser, 2,75 g Saccharose und 2 Tropfen konzentrierter Schwefelsäure in einer Petrischale vermischt. Die Polymerisation der Saccharose erfolgt unter Luftatmosphäre für 3 h bei 100°C und anschließend für weitere 3 h bei 160°C. Das so erhaltene Kompositmaterial wird anschließend unter Argonfluss (50ml/min) mit einer Heizrate von 300 K/h auf 800 °C oder 1000 °C aufgeheizt und 1 h gehalten. Nun wird der Gasfluss auf ein Gemisch aus 80 ml/min Chlor und 70 ml/min Argon umgestellt und die Temperatur für weitere 2 h gehalten. Die Abkühlung des so erhaltenen Kohlenstoffmaterials erfolgt unter einem Argonfluss von 30 ml/min. There are 2 g Ti0 2 nanoparticles (commercially available Degussa P25 (50m 2 / g +/- 15m 2 / g specific surface area, measured primary particle size about 21 nm diameter) with a mixture of 10 ml of water, 2.75 g of sucrose and Polymerization of the sucrose takes place under air atmosphere for 3 h at 100 ° C and then for a further 3 h at 160 ° C. The resulting composite material is then under argon flow (50ml / min) at a heating rate heated from 300 K / h to 800 ° C or 1000 ° C and held for 1 h switched a mixture of 80 ml / min chlorine and 70 ml / min argon and kept the temperature for a further 2 h. The cooling of the carbon material thus obtained takes place under an argon flow of 30 ml / min.
Elektronenmikroskopische Aufnahmen (Fig. 3 bis 6) zeigen eine ausgeprägte Mesoporenstruktur und einen sp2 dominierten Charakter der Porenwände, was auf eine hohe elektrische Leitfähigkeit hindeutet. Electron micrographs (FIGS. 3 to 6) show a pronounced mesopore structure and an sp 2- dominated character of the pore walls, which indicates a high electrical conductivity.
Für das erfindungsgemäß hergestellte poröse Kohlenstoffmaterial wurden die in der Tabelle 1 dargestellten physikalischen Daten gemessen: For the porous carbon material produced according to the invention, the physical data shown in Table 1 were measured:
Tabelle V. Table V.
Figure imgf000011_0001
Figure imgf000011_0001
*ermittelt mittels Multi-Point-BET-Gleichung von 0,05-0,2 p/pO. * determined using a multi-point BET equation of 0.05-0.2 p / pO.
**ermittelt bei einem Relativdruck von 0,965 p/p0. ** determined at a relative pressure of 0.965 p / p 0 .
*** ermittelt mittels elektronendispersiver Röntgenspektroskopie. *** determined by means of electron dispersive X-ray spectroscopy.
**** berechnet mittels Auswertung des Desorptionsastes mit BJH-Methode (Barrett-Joyner- Halenda). **** calculated by evaluation of the desorption branch with BJH method (Barrett-Joyner-Halenda).
Beispiel 2 - Herstellung eines porösen Kohlenstoffs durch Umsetzung von Si02- Nanopartikel Example 2 - Production of a porous carbon by reaction of Si0 2 - nanoparticles
Es werden 2 g Si02-Nanopartikel (kommerziell erhältliche pyrogene Kieselsaeure; Degussa- Evonik; spezifische Oberflächen von 90-380 m2/g) mit einem Gemisch aus 10 ml Wasser, 4,75 g Saccharose und 2 Tropfen konzentrierter Schwefelsäure in einer Petrischale vermischt. Die Polymerisation der Saccharose erfolgt unter Luftatmosphäre für 3 h bei 100°C und anschließend für weitere 3 h bei 160°C. Das so erhaltene Kompositmaterial wird anschließend unter Argonfluss (50 ml/min) mit einer Heizrate von 300 K/h auf 900°C oder 1000°C aufgeheizt und 1 h gehalten. Nun wird der Gasfluss auf ein Gemisch aus 80 ml/min Chlor und 70 ml/min Argon umgestellt und die Temperatur für weitere 2 h gehalten. Die Abkühlung des so erhaltenen Kohlenstoffmaterials erfolgt unter einem Argonfluss von 30 ml/min. 2 g of SiO 2 nanoparticles (commercially available pyrogenic silica, Degussa-Evonik, specific surface areas of 90-380 m 2 / g) with a mixture of 10 ml of water, 4.75 g of sucrose and 2 drops of concentrated sulfuric acid in a Petri dish mixed. The polymerization of the sucrose is carried out under air atmosphere for 3 h at 100 ° C and then for a further 3 h at 160 ° C. The composite material thus obtained becomes then heated under argon flow (50 ml / min) at a heating rate of 300 K / h to 900 ° C or 1000 ° C and held for 1 h. The gas flow is then switched to a mixture of 80 ml / min of chlorine and 70 ml / min of argon and the temperature is held for a further 2 h. The cooling of the carbon material thus obtained takes place under an argon flow of 30 ml / min.
Für das erfindungsgemäß hergestellte poröse Kohlenstoffmaterial wurden die in der Tabelle 2 dargestellten physikalischen Daten gemessen: For the porous carbon material prepared according to the present invention, the physical data shown in Table 2 were measured.
Tabelle 2: Table 2:
Figure imgf000012_0001
Figure imgf000012_0001
ermittelt mittels Multi-Point-BET-Gleichung von 0,05-0,2 p/pO. **ermittelt bei einem Relativdruck von 0,965 p/pO. determined using a multi-point BET equation of 0.05-0.2 p / pO. ** determined at a relative pressure of 0.965 p / pO.
*** berechnet mittels Auswertung des Desorptionsastes mit BJH-Methode (Barrett-Joyner- Halenda). *** calculated by evaluation of the desorption branch with BJH method (Barrett-Joyner-Halenda).
Beispiel 3 - Herstellung eines porösen Kohlenstoffs durch Umsetzung von Al203- Nanopartikel Example 3 - Production of a Porous Carbon by Reaction of Al 2 O 3 Nanoparticles
Es werden 2,54 g AI203-Nanopartikel (kommerziell erhältliches Aeroxide Alu; Degussa- Evonik; spezifische Oberfläche 130±20 m2/g) in einem Gemisch aus 80 ml Wasser, 5 g Saccharose und 8 Tropfen konzentrierter Schwefelsäure in einem Becherglas dispergiert und in eine Petrischale gegossen. Die Polymerisation der Saccharose erfolgt unter Luftatmosphäre für 3 h bei 100°C und anschließend für weitere 3 h bei 160°C. Das so erhaltene Kompositmaterial wird anschließend unter Argonfluss (50 ml/min) mit einer Heizrate von 300 K/h auf 900°C oder 1000°C aufgeheizt und 1 h gehalten. Nun wird der Gasfluss auf ein Gemisch aus 80 ml/min Chlor und 70 ml/min Argon umgestellt und die Temperatur für weitere 2 h gehalten. Die Abkühlung des so erhaltenen Kohlenstoffmaterials erfolgt unter einem Argonfluss von 30 ml/min. Für das erfindungsgemäß hergestellte poröse Kohlenstoffmaterial wurden die in der Tabelle 3 dargestellten physikalischen Daten gemessen: There are 2.54 g of Al 2 0 3 nanoparticles (commercially available Aeroxide Alu, Degussa Evonik, specific surface area 130 ± 20 m 2 / g) in a mixture of 80 ml of water, 5 g of sucrose and 8 drops of concentrated sulfuric acid in one Beaker dispersed and poured into a Petri dish. The polymerization of the sucrose is carried out under air atmosphere for 3 h at 100 ° C and then for a further 3 h at 160 ° C. The resulting composite material is then heated under argon flow (50 ml / min) at a heating rate of 300 K / h to 900 ° C or 1000 ° C and held for 1 h. The gas flow is then switched to a mixture of 80 ml / min of chlorine and 70 ml / min of argon and the temperature is held for a further 2 h. The cooling of the carbon material thus obtained takes place under an argon flow of 30 ml / min. For the porous carbon material produced according to the invention, the physical data shown in Table 3 were measured:
Tabelle 3: Table 3:
Figure imgf000013_0001
Figure imgf000013_0001
ermittelt mittels Multi-Point-BET-Gleichung von 0,05-0,2 p/pO. **ermittelt bei einem Relativdruck von 0,965 p/pO. determined using a multi-point BET equation of 0.05-0.2 p / pO. ** determined at a relative pressure of 0.965 p / pO.
*** berechnet mittels Auswertung des Desorptionsastes mit BJH-Methode (Barrett-Joyner- Halenda). *** calculated by evaluation of the desorption branch with BJH method (Barrett-Joyner-Halenda).

Claims

Patentansprüche claims
1 . Verfahren zur Herstellung eines porösen Kohlenstoffmaterials durch Einbetten von anorganischen Nanopartikeln in eine kohlenstoffhaltige Matrix ausgewählt aus natürlichen und synthetischen organischen Materialien und anschließende Umsetzung mit einem Halogengas. 1 . A method of producing a porous carbon material by embedding inorganic nanoparticles in a carbonaceous matrix selected from natural and synthetic organic materials and then reacting with a halogen gas.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die anorganischen Nanopartikel Metalloxid- oder Halbmetalloxid-Nanopartikel der Metalle oder Halbmetalle der Gruppe 4 bis 14 des Periodensystems sind, insbesondere ausgewählt aus Titan, Bor, Silizium, Aluminium, Zirconium und Zinn. 2. The method according to claim 1, characterized in that the inorganic nanoparticles are metal oxide or semimetal oxide nanoparticles of the metals or semimetals of Group 4 to 14 of the Periodic Table, in particular selected from titanium, boron, silicon, aluminum, zirconium and tin.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Nanopartikel einen Durchmesser von 5 nm bis 1000 nm, bevorzugt 10 nm bis 200 nm, aufweisen. 3. The method according to claim 1 or 2, characterized in that nanoparticles have a diameter of 5 nm to 1000 nm, preferably 10 nm to 200 nm.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die kohlenstoffhaltige Matrix ausgewählt ist aus organischen Materialen, insbesondere Kohlenhydraten, synthetischen Polymeren, Harzen, bituminösen Rohstoffe und Pech. 4. The method according to any one of claims 1 to 3, characterized in that the carbonaceous matrix is selected from organic materials, in particular carbohydrates, synthetic polymers, resins, bituminous raw materials and pitch.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Halogengas ausgewählt ist aus Chlor und Brom. 5. The method according to any one of claims 1 to 4, characterized in that the halogen gas is selected from chlorine and bromine.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass vor der Umsetzung mit Halogengas eine Verkokung der kohlenstoffhaltige Matrix erfolgt. 6. The method according to any one of claims 1 to 5, characterized in that prior to the reaction with halogen gas coking of the carbonaceous matrix.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Umsetzung mit Halogengas bei 200 bis 1200 °C, bevorzugt 600 bis 1000 °C erfolgt. 7. The method according to any one of claims 1 to 6, characterized in that the reaction with halogen gas at 200 to 1200 ° C, preferably 600 to 1000 ° C takes place.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass absorbiertes Halogengas anschließend mit Wasserstoff oder Kohlendioxid entfernt wird. 8. The method according to any one of claims 1 to 7, characterized in that absorbed halogen gas is subsequently removed with hydrogen or carbon dioxide.
9. Poröses Kohlenstoffmaterial hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 8. 9. Porous carbon material produced by a method according to any one of claims 1 to 8.
10. Poröses Kohlenstoffmaterial, bevorzugt nach Anspruch 9, enthaltend mindestens 90 % Kohlenstoff, wobei 10 % bis 40 % des Porenvolumens durch Mikroporen gebildet wird und 60 % bis 90 % des Porenvolumens durch Mesoporen mit einem Porendurchmesser von 12 bis 26 nm. Verwendung eines porösen Kohlenstoffs nach Anspruch 9 oder 10 als Trägermaterial, insbesondere als Elektrodenmaterial, insbesondere für Batterien, in Brennstoffzellen, als Katalysatorträger, in der Gasadsorption, als Filtermaterial, in der Immobilisierung und Filtration von Biomaterialien oder in adsorptiven Trennverfahren. 10. Porous carbon material, preferably according to claim 9, containing at least 90% carbon, wherein 10% to 40% of the pore volume is formed by micropores and 60% to 90% of the pore volume by mesopores having a pore diameter of 12 to 26 nm. Use of a porous carbon according to claim 9 or 10 as support material, in particular as electrode material, in particular for batteries, in fuel cells, as catalyst support, in gas adsorption, as filter material, in the immobilization and filtration of biomaterials or in adsorptive separation processes.
PCT/EP2013/065426 2012-08-01 2013-07-22 Process for producing porous carbon WO2014019880A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13741716.8A EP2879991A1 (en) 2012-08-01 2013-07-22 Process for producing porous carbon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201210213595 DE102012213595A1 (en) 2012-08-01 2012-08-01 Process for the production of porous carbon
DE102012213595.2 2012-08-01

Publications (1)

Publication Number Publication Date
WO2014019880A1 true WO2014019880A1 (en) 2014-02-06

Family

ID=48875019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/065426 WO2014019880A1 (en) 2012-08-01 2013-07-22 Process for producing porous carbon

Country Status (3)

Country Link
EP (1) EP2879991A1 (en)
DE (1) DE102012213595A1 (en)
WO (1) WO2014019880A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9701539B2 (en) 2013-03-15 2017-07-11 West Virginia University Research Corporation Process for pure carbon production
US9909222B2 (en) 2014-10-21 2018-03-06 West Virginia University Research Corporation Methods and apparatuses for production of carbon, carbide electrodes, and carbon compositions
WO2018197587A1 (en) * 2017-04-27 2018-11-01 Technische Universität Hamburg-Harburg Porous material for use in a catalytic process
WO2019166489A1 (en) * 2018-02-27 2019-09-06 Technische Universität Dresden Carbon composite moulding, method for the production thereof and use of the carbon composite moulding in an electrochemical energy storage device
US11332833B2 (en) 2016-04-20 2022-05-17 West Virginia Research Corporation Methods, apparatuses, and electrodes for carbide-to-carbon conversion with nanostructured carbide chemical compounds

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475461B1 (en) 1995-03-30 2002-11-05 Nippon Sanso Corporation Porous carbonaceous material, manufacturing method therefor and use thereof
US6579833B1 (en) 1999-09-01 2003-06-17 The Board Of Trustees Of The University Of Illinois Process for converting a metal carbide to carbon by etching in halogens
US20040202602A1 (en) 2002-09-30 2004-10-14 Matsushita Electric Industrial Co., Ltd Porous material and method for manufacturing same, and electrochemical element made using this porous material
WO2005007566A2 (en) * 2003-07-03 2005-01-27 Drexel University Nanoporous carbide derived carbon with tunable pore size
WO2005118471A1 (en) 2004-06-01 2005-12-15 Tartu Tehnoloogiad OÜ A method of making the porous carbon material and porous carbon materials produced by the method
WO2006130706A1 (en) 2005-06-01 2006-12-07 Drexel University Process for producing nanoporous carbide -derived carbon with increased gas storage capability
WO2007062095A1 (en) 2005-11-23 2007-05-31 Drexel University Process for producing nanoporous carbide derived carbon with large specific surface area
US20090136808A1 (en) 2007-11-27 2009-05-28 Kang Soon-Ki Porous carbon structure, method for preparing same, electrode catalyst for fuel cell, and electrode and membrane-electrode assembly including same
DE102009033251A1 (en) 2008-08-30 2010-09-23 Universität Duisburg-Essen Producing an electrically conductive porous carbon material useful as a battery anode material comprises incorporating silicon and/or tin nanoparticles into a polymer matrix and carbonizing the product
US20110082024A1 (en) 2008-06-10 2011-04-07 Hansan Liu Controllable Synthesis of Porous Carbon Spheres, and Electrochemical Applications Thereof
WO2011092149A2 (en) 2010-01-27 2011-08-04 Heraeus Quarzglas Gmbh & Co. Kg Porous carbon product and method for the production thereof
US20110311873A1 (en) 2008-07-15 2011-12-22 Christof Schulz Intercalation of silicon and/or tin into porous carbon substrates
EP2444369A1 (en) 2009-06-19 2012-04-25 Toyo Tanso Co., Ltd. Porous carbon and method for producing the same
WO2012055731A1 (en) 2010-10-25 2012-05-03 Heraeus Quarzglas Gmbh & Co. Kg Porous carbon product, method for the production thereof, and use of the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475461B1 (en) 1995-03-30 2002-11-05 Nippon Sanso Corporation Porous carbonaceous material, manufacturing method therefor and use thereof
US6579833B1 (en) 1999-09-01 2003-06-17 The Board Of Trustees Of The University Of Illinois Process for converting a metal carbide to carbon by etching in halogens
US20040202602A1 (en) 2002-09-30 2004-10-14 Matsushita Electric Industrial Co., Ltd Porous material and method for manufacturing same, and electrochemical element made using this porous material
WO2005007566A2 (en) * 2003-07-03 2005-01-27 Drexel University Nanoporous carbide derived carbon with tunable pore size
WO2005118471A1 (en) 2004-06-01 2005-12-15 Tartu Tehnoloogiad OÜ A method of making the porous carbon material and porous carbon materials produced by the method
WO2006130706A1 (en) 2005-06-01 2006-12-07 Drexel University Process for producing nanoporous carbide -derived carbon with increased gas storage capability
WO2007062095A1 (en) 2005-11-23 2007-05-31 Drexel University Process for producing nanoporous carbide derived carbon with large specific surface area
US20090136808A1 (en) 2007-11-27 2009-05-28 Kang Soon-Ki Porous carbon structure, method for preparing same, electrode catalyst for fuel cell, and electrode and membrane-electrode assembly including same
US20110082024A1 (en) 2008-06-10 2011-04-07 Hansan Liu Controllable Synthesis of Porous Carbon Spheres, and Electrochemical Applications Thereof
US20110311873A1 (en) 2008-07-15 2011-12-22 Christof Schulz Intercalation of silicon and/or tin into porous carbon substrates
DE102009033251A1 (en) 2008-08-30 2010-09-23 Universität Duisburg-Essen Producing an electrically conductive porous carbon material useful as a battery anode material comprises incorporating silicon and/or tin nanoparticles into a polymer matrix and carbonizing the product
EP2444369A1 (en) 2009-06-19 2012-04-25 Toyo Tanso Co., Ltd. Porous carbon and method for producing the same
WO2011092149A2 (en) 2010-01-27 2011-08-04 Heraeus Quarzglas Gmbh & Co. Kg Porous carbon product and method for the production thereof
WO2012055731A1 (en) 2010-10-25 2012-05-03 Heraeus Quarzglas Gmbh & Co. Kg Porous carbon product, method for the production thereof, and use of the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MENG Y ET AL., ANGEW. CHEM. INT. ED., vol. 44, 2005, pages 7053
See also references of EP2879991A1 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9701539B2 (en) 2013-03-15 2017-07-11 West Virginia University Research Corporation Process for pure carbon production
US9764958B2 (en) 2013-03-15 2017-09-19 West Virginia University Research Corporation Process for pure carbon production, compositions, and methods thereof
US10035709B2 (en) 2013-03-15 2018-07-31 West Virginia University Research Corporation Process for pure carbon production, compositions, and methods thereof
US10144648B2 (en) 2013-03-15 2018-12-04 West Virginia University Research Corporation Process for pure carbon production
US10494264B2 (en) 2013-03-15 2019-12-03 West Virginia University Research Corporation Process for pure carbon production, compositions, and methods thereof
US10696555B2 (en) 2013-03-15 2020-06-30 West Virginia University Research Corporation Process for pure carbon production
US9909222B2 (en) 2014-10-21 2018-03-06 West Virginia University Research Corporation Methods and apparatuses for production of carbon, carbide electrodes, and carbon compositions
US11306401B2 (en) 2014-10-21 2022-04-19 West Virginia University Research Corporation Methods and apparatuses for production of carbon, carbide electrodes, and carbon compositions
US11332833B2 (en) 2016-04-20 2022-05-17 West Virginia Research Corporation Methods, apparatuses, and electrodes for carbide-to-carbon conversion with nanostructured carbide chemical compounds
WO2018197587A1 (en) * 2017-04-27 2018-11-01 Technische Universität Hamburg-Harburg Porous material for use in a catalytic process
WO2019166489A1 (en) * 2018-02-27 2019-09-06 Technische Universität Dresden Carbon composite moulding, method for the production thereof and use of the carbon composite moulding in an electrochemical energy storage device

Also Published As

Publication number Publication date
DE102012213595A1 (en) 2014-05-15
EP2879991A1 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
Yan et al. Facile synthesis of porous microspheres composed of TiO2 nanorods with high photocatalytic activity for hydrogen production
Mohapatra et al. Facile wick-and-oil flame synthesis of high-quality hydrophilic onion-like carbon nanoparticles
CN103058172B (en) Preparation method of carbon nanometer tube-graphene composite material
WO2014019880A1 (en) Process for producing porous carbon
US9938152B2 (en) Method of making activated nano-porous carbon
US11111148B2 (en) Graphene, preparation method thereof and supercapacitor electrode and supercapacitor containing the graphene
CN106495125B (en) A kind of preparation method and application of petroleum coke base mesoporous carbon
EP2560918A1 (en) Method for producing two-dimensional sandwich nano-materials on the basis of graphene
Li et al. One-pot synthesis of 3D TiO2-reduced graphene oxide aerogels with superior adsorption capacity and enhanced visible-light photocatalytic performance
JP2006347864A (en) Method for producing mesoporous carbon, and mesoporous carbon
Asgarian et al. The effect of different sources of porous carbon on the synthesis of nanostructured boron carbide by magnesiothermic reduction
CN107117649A (en) Mesoporous P25 titanium dioxide microballoon spheres and preparation method thereof
CN105293479A (en) Preparation method of three-dimensional orderly square-hole mesoporous graphene skeleton material
US10343921B1 (en) Method for preparing fluorinated graphene nanoribbons
JP2018039719A (en) Method of producing activated nano-porous carbon
Cao et al. Synthesis, characterization, and electrochemical properties of ordered mesoporous carbons containing nickel oxide nanoparticles using sucrose and nickel acetate in a silica template
CN110562959A (en) Preparation method of carbon nanotube-porous carbon composite material
Chen et al. Growth of single-crystal α-MnO2 nanorods on multi-walled carbon nanotubes
US9908102B2 (en) Hierarchical porous monoliths and methods for their preparation and use
CN103601180B (en) A kind of Nano-size Porous Graphite alkene material and preparation method thereof
Supriya et al. An investigation on temperature-dependant surface properties of porous carbon nanoparticles derived from biomass
Liu et al. Facile synthesis of an air-stable 3D reduced graphene oxide-phosphorene composite by sonication
CN108455565A (en) A kind of preparation method of N doping graphitization nano carbon cage
Zheng et al. Facile synthesis of α-Fe2O3@ porous hollow yeast-based carbonaceous microspheres for fluorescent whitening agent-VBL wastewater treatment
KR20210128176A (en) Method for Preparing Graphene-Carbon Nanotube Composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741716

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013741716

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE