DE102011078272A1 - Verfahren zum Betreiben einer elektrisch betätigbaren Bremse, elektrisch betätigbare Bremse und Bremssystem - Google Patents

Verfahren zum Betreiben einer elektrisch betätigbaren Bremse, elektrisch betätigbare Bremse und Bremssystem Download PDF

Info

Publication number
DE102011078272A1
DE102011078272A1 DE201110078272 DE102011078272A DE102011078272A1 DE 102011078272 A1 DE102011078272 A1 DE 102011078272A1 DE 201110078272 DE201110078272 DE 201110078272 DE 102011078272 A DE102011078272 A DE 102011078272A DE 102011078272 A1 DE102011078272 A1 DE 102011078272A1
Authority
DE
Germany
Prior art keywords
brake
pressure
engine
clutch
power train
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE201110078272
Other languages
English (en)
Inventor
Kai Schade
Paul Linhoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive Technologies GmbH
Original Assignee
Continental Teves AG and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Teves AG and Co OHG filed Critical Continental Teves AG and Co OHG
Priority to DE201110078272 priority Critical patent/DE102011078272A1/de
Priority to PCT/EP2012/056898 priority patent/WO2013000598A1/de
Publication of DE102011078272A1 publication Critical patent/DE102011078272A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/741Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on an ultimate actuator

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Braking Systems And Boosters (AREA)
  • Regulating Braking Force (AREA)
  • Braking Arrangements (AREA)

Abstract

Ein Verfahren zum Betreiben einer elektrisch betätigbaren Bremse (4) mit einem elektrischen Motor (8) und einem Kraftstrang, der das Drehmoment des Motors (8) auf einen Aktuator überträgt, welcher eine rotatorische Bewegung in eine translatorische Bewegung eines Bremselementes umwandelt, wobei zum Druckaufbau der Motor (8) in Druckaufbaurichtung dreht und dadurch das Bremselement gegen einen Bremskörper drückt, wobei in den Kraftstrang eine Kupplung (60) geschaltet ist, soll unterschiedliche Anforderungen an elektrisch betätigbare Bremsen und ihren Betrieb in Hinblick auf starken bzw. schnellen Druckaufbau und -abbau gleichzeitig ermöglichen. Dazu wird zum Druckaufbau die Kupplung (60) im Wesentlichen vollständig eingekuppelt und der Motor (8) in Druckaufbaurichtung gedreht, und zum Druckabbau die Kupplung (60) im Wesentlichen vollständig ausgekuppelt.

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben einer elektrisch betätigbaren Bremse mit einem elektrischen Motor und einem Kraftstrang, der das Drehmoment des Motors auf einen Aktuator überträgt, welcher eine rotatorische Bewegung in eine translatorische Bewegung eines Bremselementes umwandelt, wobei zum Druckaufbau der Motor in Druckaufbaurichtung dreht und dadurch das Bremselement gegen einen Bremskörper drückt. Sie betrifft weiterhin eine zugehörige elektrisch betätigbare Bremse und ein zugehöriges Bremssystem.
  • Bei Brake-by-Wire-Bremssystemen erfolgt die Ansteuerung der Bremsen elektronisch („by wire”) durch eine Steuer- und Regeleinheit. Der Bremswunsch des Fahrers wird bei derartigen Systemen durch eine Betätigungseinheit mit einem Bremspedal ermittelt. Dabei wird beispielsweise der Pedalweg, also der Weg, den das Bremspedal durch Drücken des Fahrers zurücklegt, durch einen entsprechenden Sensor gemessen und dient der Steuer- und Regeleinheit als Eingangsgröße zur Einstellung des entsprechenden Bremsdruckes oder der entsprechenden Zuspannkraft in den Bremsen. Der Bremswunsch des Fahrers wird gewissermaßen in ein Sollbremsmoment umgewandelt, welches der Steuer- und Regelungseinheit als Sollgröße zur Einregelung des entsprechenden Bremsdruckes dient. Bei derartigen Systemen ist der Fahrer dadurch von der Betätigung der Bremsen entkoppelt. Dies ermöglicht z. B. die Implementation von Sicherheitsroutinen wie ABS, ESP, TCS, etc., bei denen der Bremsdruck radindividuell kurzzeitig und mehrfach erhöht und erniedrigt wird, ohne dass der Fahrer diese Vorgänge am Fuß spürt. Das so genannte „Pumpen” des Bremspedals kann auf diese Weise vermieden werden.
  • In den oben genannten Bremssystemen werden oftmals elektromechanisch betätigbare bzw. elektromechanische Bremsen (EMB) eingesetzt. Das Zuspannen derartiger Bremsen erfolgt dabei durch das Ansteuern eines Elektromotors, dessen rotatorische Bewegung der Motorwelle von einem Aktuator in eine translatorische Bewegung umgesetzt wird. Durch diese translatorische Bewegung wird dann beispielsweise ein Bremskolben gegen einen Bremsbelag gefahren, welcher dann gegen eine Bremsscheibe drückt. Der Aktuator kann beispielsweise als Kugelgewindetrieb (KGT) ausgestaltet sein, wobei bei Drehen der Spindel durch den Rotor (über ein zwischengeschaltetes Getriebe) eine drehbar auf der Spindel gelagerte Spindelmutter in eine translatorische Bewegung versetzt wird, wodurch dann der Bremskolben verschoben wird. Aus der DE 10 2004 012 35 A1 ist z. B. eine Betätigungseinheit für eine elektromechanisch betätigbare Scheibenbremse bekannt.
  • Aus der WO 2011/029812 A1 ist eine „Brake-by-Wire”-Bremsanlage bekannt, bei welcher die hydraulisch betätigbaren Radbremsen der Bremsanlage mittels einer elektrisch ansteuerbaren Druckbereitstellungeinrichtung elektrische betätigt werden können. Hierzu ist die Druckbereitstellungeinrichtung als eine hydraulische Zylinder-Kolben-Anordnung ausgebildet, deren Kolben von einem Elektromotor unter Zwischenschaltung eines Rotations-Translations-Getriebes betätigbar ist. Mittels des von der Druckbereitstellungeinrichtung bereitgestellten Druckes werden die Radbremsen betätigt.
  • Bei elektromechanischen Bremsen können im Vergleich zu konventionellen hydraulischen Bremssystemen starke Bremsdrücke auf geringen Zeitskalen erzeugt werden. Bei bekannten Systemen sind der Motor und der Aktuator über einen Kraftstrang direkt gekoppelt. Mit anderen Worten: Die mechanische Ausgangsgröße (Druckkraft) und die mechanische Eingangsgröße (Motorlage bzw. Drehzahl) sind direkt gekoppelt.
  • Speziell im Regelfall (z. B. durch ein Antiblockiersystem (ABS), elektronisches Stabilitätsprogramm (ESP), Traktionskontrollsystem (TCS), ...) sind sowohl extrem große und schnelle Druck- bzw. Krafthübe als auch schnelle Vorzeichenwechsel (Druckaufbau/Druckabbau/Druckaufbau/...) erforderlich. Der offensichtliche Widerspruch zwischen großem Druckhub bzw. Druckaufbau, d. h. |dF/dt| » 0, wobei F die Spannkraft und t die Zeit bezeichnen und dessen wiederholt schnellem Vorzeichenwechsel, |d2F/dt2| » 0, wird besonders gut erkennbar, wenn man den zeitlichen Drehzahlverlauf der Motorwelle betrachtet: Einerseits erfordert nämlich großer Hub eine hohe Motordrehzahl. Andererseits bedingt ein schneller Vorzeichenwechsel, d. h. ein schneller Wechsel von Druckauf- und Druckabbau eine niedrige Motordrehzahl bzw. stetige Wiederbeschleunigung.
  • Anhand daraus folgender Voraussetzungen an die Konstruktion einer entsprechenden elektrisch betätigbaren Bremse mit einem elektrischen Motor wird der entstehende Design-Konflikt offensichtlich: Für hohe Druck- bzw. Krafthübe sind große, schwere, momentenstarke Aktuatormotoren notwendig. Für die Realisierung von einer schnellen Dynamik (Druckaufbau/Druckabbau) sind dagegen kleine, leichte, über geringes Rotationsmoment verfügende Motoren vorteilhaft.
  • Ein derartiger Konflikt wird in heutigen Bremsen-Designs vermieden bzw. durch einen Kompromiss in der Auslegung des entsprechenden Motors, der in beiden Fällen keine optimale Performance bietet, behandelt.
  • Der Erfindung liegt daher die Aufgabe zu Grunde, diese Situation zu verbessern und die unterschiedlichen Anforderungen an elektrisch betätigbare Bremsen und ihren Betrieb in Hinblick auf starken bzw. schnellen Druckaufbau und -abbau gleichzeitig zu erfüllen, so dass gängige Kompromisse nicht mehr eingegangen werden müssen.
  • In Bezug auf das Verfahren wird die oben genannte Aufgabe, insbesondere bei schnellen Regelungsvorgängen, in einer ersten Variante dadurch gelöst, dass zum Druckaufbau die Kupplung im Wesentlichen vollständig eingekuppelt wird und der Motor in Druckaufbaurichtung dreht, und dass zum Druckabbau die Kupplung im Wesentlichen vollständig ausgekuppelt wird. Mit im Wesentlichen vollständiger Ein- oder Auskupplung ist dabei gemeint, dass ganz oder nahezu ganz ausgekuppelt wird, wobei damit Bereiche von ca. 90 bis 100% gemeint sind.
  • Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
  • Bevorzugt handelt es sich um eine elektrisch betätigbare Bremse mit einem elektrischen Motor und einem Kraftstrang, der das Drehmoment des Motors auf einen Aktuator überträgt, welcher eine rotatorische Bewegung einer in einer Spindelmutter drehbar gelagerten Spindel in eine translatorische Bewegung eines mit der Spindelmutter gekoppelten Bremselementes umwandelt.
  • Alternativ handelt es sich bevorzugt um eine elektrisch betätigbare Bremse mit einem elektrischen Motor und einem Kraftstrang, der das Drehmoment des Motors auf einen Aktuator überträgt, welcher eine rotatorische Bewegung über eine Hydraulikpumpe in eine translatorische Bewegung eines Bremselementes umwandelt.
  • Die Erfindung geht von der Überlegung aus, dass ein wesentlicher Grund für die oben genannten Design-Kompromisse bei der Auslegung des Elektromotors einer elektrisch betätigbaren Bremse in der direkten bzw. starren Kopplung von Motor und Aktuator liegt. Wie nunmehr erkannt wurde, lässt sich dieser Design-Konflikt bzw. Kompromiss vermeiden, indem diese starre bzw. direkte Verbindung aufgelöst wird und in den Kraftstrang, der das Drehmoment des Elektromotors auf den Aktuator überträgt, eine Kupplung geschaltet wird, wobei diese derart angesteuert wird, dass beim Druckaufbau fast oder vollständig eingekuppelt wird, so dass das volle Drehmoment des Motors zur Verfügung steht, dass aber zum Druckabbau nahezu oder ganz ausgekuppelt wird.
  • Auf diese Weise kann ein Druckabbau erzielt werden, ohne dass der Motor seine Drehrichtung ändern muss. Das heißt, um kurzzeitig einen Druckabbau zu ermöglichen, genügt es, den Aktuator vom Motor zu entkoppeln. Sobald ausgekuppelt worden ist, sind in gewisser Weise Drehzahl und Drehrichtung des Motors beliebig, da diese auf Grund des nicht vorhandenen Kraftschlusses irrelevant sind. Die Entkopplung kann beispielsweise durch eine steuerbare Kopplung in Form einer (mechanischen) Kupplung erreicht werden. Auf diese Weise kann der Druck/Kraftistwert sinken (Druckaufbau), während die Motordrehzahl gehalten bleibt, steigt oder nur leicht sinkt. Somit kann der Motor groß, schwer und momentenstark ausgestaltet sein, ohne dass Kompromisse beim schnellen Druckabbau gemacht werden müssen.
  • Das oben beschriebene Verfahren zur Ansteuerung einer elektrisch betätigbaren Bremse hat auch gegenüber herkömmlichen Systemen Vorteile bei einem nach einem Druckabbau benötigten anschließenden Druckwiederaufbau. In diesem Fall kann nämlich statt des sonst üblichen und benötigten Reversierens bzw. Wiederanlaufen des Motorankers in Zuspann- bzw. Druckaufbaurichtung der Kraftschluss über das Einkuppeln der Kupplung wieder hergestellt werden. Die Motordrehzahl sinkt dabei nur kurz unter das Nominalniveau, um anschließend wieder zu steigen. Die Motordrehzahl muss in diesen Fällen also nicht erst von Null oder gar Gegenrichtung gegen einen Widerstand (der herrschende Bremsdruck bzw. die Spannkraft) und Motoranker/Rotationsmoment auf Nominaldrehzahl hochgefahren werden.
  • Insbesondere bei schnellen Regelvorgängen ist es vorteilhaft, wenn der Motor beim Druckabbau in Druckaufbaurichtung (weiter) dreht. Das heißt, der Bremsdruck wird im Wesentlichen durch das Entkoppeln von Motor und Aktuator abgebaut. Vorteilhafterweise wird beim Wiederaufbau von Druck der Motor in Druckaufbaurichtung gedreht und die Kupplung eingekuppelt. Während einer Sequenz von Druckaufbau und Druckabbau muss also die Drehrichtung des Motors nicht umgekehrt werden. Eine derartige Ansteuerung bzw. Regelung der Bremse ist besonders bei schnellen Regelungsprozessen wie ABS, ESP, TCS, etc. vorteilhaft.
  • In einer zweiten Variante des Verfahrens wird die oben genannte Aufgabe, insbesondere in Normalbetrieb der Bremse, gelöst, indem zum Druckabbau die Kupplung im Wesentlichen vollständig eingekuppelt und der Motor entgegengesetzt zur Druckaufbaurichtung gedreht wird. Im Gegensatz zu der ersten Variante des Verfahrens wird hier also die Drehrichtung des Motors zwischen Druckaufbau und Druckabbau umgekehrt. Sowohl beim Druckaufbau als auch beim Druckabbau wird die Kupplung im Wesentlichen vollständig eingekuppelt. In diesem Fall ist also sowohl beim Druckaufbau als auch beim Druckabbau eine direkte Kopplung oder eine nahezu vollständige Kopplung zwischen Aktuator und Motor gegeben.
  • Die oben genannte Aufgabe wird weiterhin gelöst durch ein Verfahren zum Betreiben einer elektrisch betätigbaren Bremse, wobei zum Druckaufbau der Motor in Druckaufbaurichtung dreht und dadurch das Bremselement gegen einen Bremskörper gedrückt wird, wobei in den Kraftstrang eine Kupplung geschaltet ist, wobei bei gewöhnlichen Bremsvorgängen zum Druckabbau die Kupplung im Wesentlichen vollständig eingekuppelt wird und der Motor entgegengesetzt zur Druckaufbaurichtung dreht, und wobei bei Bremsvorgängen mit automatischer Regelung der Bremse zum Druckabbau die Kupplung im Wesentlichen vollständig ausgekuppelt wird und der Motor in Druckaufbaurichtung dreht.
  • Das heißt, in gewöhnlichen Bremssituationen, in denen der Fahrer das Fahrzeug zum Stillstand bringt, und die auf gegenüber Regelvorgängen vergleichsweise großen Zeitskalen geschehen, wird durch die im Wesentlichen vollständige Einkupplung eine direkte Verbindung zwischen Motor und Aktuator geschaffen, um durch die Umkehrung der Drehrichtung den Druckabbau über den Motor zu leisten. In derartigen Situationen ist bei einem Druckabbau eine extrem schnelle Umkehr der Drehrichtung des Motors nicht erforderlich. Durch die Umkehrung der Drehrichtung des Motors zwischen Druckaufbau und -abbau kann bei einem Druckabbau nach einem gewöhnlichen Bremsvorgang der Bremskolben auch wieder bis zum Anschlag zurückgefahren werden.
  • Bei schnellen Regelvorgängen wird die Drehrichtung des Motors dagegen nicht umgekehrt und der Druckabbau ausschließlich durch ein vollständiges oder nahezu vollständiges Auskuppeln der Kupplung realisiert. Auf diese Weise kann auch schnell wieder Druck durch Einkuppeln der Kupplung aufgebaut werden. Dies kann auch in einer Sequenz mehrfach geschehen. Erst wenn der Regelungsvorgang abgeschlossen ist und der Fahrer keinen Bremswunsch mehr äußert, wird zum Druckabbau in der Bremse die Drehrichtung des Motors entgegengesetzt zur Druckaufbaurichtung eingestellt. Vorteilhafterweise wird bei einem automatischen Regelvorgang der Bremse der Motor so lange in Druckaufbaurichtung gedreht, bis der Regelvorgang abgeschlossen ist.
  • Die oben genannte Aufgabe wird weiterhin gelöst durch eine elektrisch betätigbare Bremse mit einem elektrischen Motor und einem Kraftstrang, der das Drehmoment des Motors auf einen Aktuator überträgt, welcher eine rotatorische Bewegung in eine translatorische Bewegung eines Bremselementes umwandelt, wobei zum Druckaufbau der Motor in Druckaufbaurichtung dreht und dadurch das Bremselement gegen einen Bremskörper drückt, wobei in den Kraftstrang eine Kupplung geschaltet ist.
  • Bei der Bremse kann es sich um eine elektromechanisch oder hydraulisch betätigbare Bremse handeln. Im Falle einer hydraulisch betätigbaren Bremse umfasst der Aktuator eine zumindest teilweise hydraulische Kopplung zwischen Spindelmutter und Bremselement. Im Falle einer elektromechanisch betätigbare Bremse ist die Spindelmutter rein mechanisch mit dem Bremselement gekoppelt.
  • Die elektrisch betätigbare Bremse weist vorteilhafterweise einen Kraftstrang mit einem Getriebe auf, wobei die Kupplung im Kraftstrang zwischen Motor und Getriebe angeordnet ist. Diese Stelle im Kraftpfad handelt mit vergleichsweise großen Drehzahlen und vergleichsweise kleinen Drehmomenten, was eine kompakte Bauweise der Kupplung ermöglicht.
  • Die Kupplung ist vorteilhafterweise als rheologische Kupplung mit einem magnetorheologischen oder elektrorheologischen Werkstoff ausgestaltet. Ein derartiges rheologisches Material ändert seinen Aggregatzustand in Abhängigkeit von der Stärke eines angelegten magnetischen bzw. elektrischen Feldes. Wenn kein elektromagnetisches Feld vorliegt, liegt bei gewöhnlichen Betriebstemperaturen im Bereich von –40 bis 150°C das rheologische Material in flüssigem Aggregatzustand vor. Durch Anlegen eines elektromagnetischen Feldes kann der Aggregatzustand dieses Materials in analoger, d. h. kontinuierlicher, Weise von flüssig nach fest verändert werden. Eine derartige Kupplung hat gegenüber anderen Kupplungen wie Reibkupplungen bzw. Lamellenkupplungen die Vorteile, dass sie extrem wartungsfrei und zuverlässig ist. Die Änderungen der Aggregatzustände von flüssig zu fest zu wieder flüssig usw. sind in allen praktischen Einsatzzwecken und während der typischen Lebenszeit einer EMB von ca. 15 Jahren absolut reversibel. Eine derartige Kupplung weist zudem keine Verschleißteile auf.
  • Die oben genannte Aufgabe wird weiterhin gelöst durch ein Bremssystem mit einer oben beschriebenen elektrisch betätigbaren Bremse und einer Steuer- und Regeleinheit mit Mitteln zur Ausführung eines oben genannten Verfahrens. Die Steuer- und Regeleinheit kann auch in die Bremse integriert sein, wodurch eine vorteilhafte Ausgestaltung einer elektromechanischen Bremse realisiert wird.
  • Die Vorteile der Erfindung bestehen insbesondere darin, dass durch eine ansteuerbare Kupplung im Kraftstrang die den Motor von dem Aktuator entkoppelt, eine Verbesserung der Geschwindigkeit beim Bremskraftaufbau und -abbau in elektrohydraulischen oder mechatronischen Bremssystemen erreicht werden kann. Bei elektrohydraulischen Bremssystemen kann dazu das exzentrische Wellenende des Pumpenmotors von der Motorwelle durch die genannte Kupplung getrennt werden. Dadurch können derartige Bremssysteme kosteneffizient mit Bauraum, Gewichts- und Stromaufnahmevorteilen konstruiert werden. Durch die Entkupplung von Motor und Aktuator beim Bremsdruckabbau kann die Spannkraft bzw. der Bremsdruck rapide gesenkt werden, unabhängig von der Motordrehzahl bzw. Richtung. Diese Eigenschaft kann für eine Verbesserung der Regelperformance der entsprechenden Bremsen genutzt werden.
  • Durch die Anwendung des erfindungsgemäßen Verfahrens werden über die Eliminierung der Notwendigkeit der rapiden Drehrichtungsumkehr des Motors die dabei üblicherweise entstehenden Stromspitzen und damit sprungartigen Bordnetzbelastungen eliminiert. Auf Grund der Eliminierung der Notwendigkeit der rapiden Drehrichtungsumkehr des Motors bei schnellen Regelungsvorgängen, d. h. durch den Wegfall der Dynamikanforderungen an den Motor, muss dieser nicht für entsprechende hohe Dynamik ausgelegt werden.
  • Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen in stark schematisierter Ansicht:
  • 1 eine elektromechanische Bremse nach dem Stand der Technik mit einem elektrischen Motor, einem Getriebe, einem Kugelgewindetrieb, einem Bremskolben und einem Bremsbelag,
  • 2 eine typische Zuspann- bzw. Druckaufbaukennlinie,
  • 3 eine elektrisch betätigbare Bremse in einer bevorzugten Ausführungsform mit einem elektrischen Motor, einer Kupplung, einem Getriebe, einem Kugelgewindetrieb, einem Bremskolben und einem Bremsbelag,
  • 4 eine Druckaufbaukennlinie für eine Bremse gemäß 1, und
  • 5 eine verallgemeinerte Druckaufbaukennlinie für eine Bremse gemäß 3.
  • Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
  • Bei der in 1 dargestellten elektromechanischen Bremse 2 gemäß dem Stand der Technik gibt der elektrische Motor 8 über eine Motorwelle (nicht dargestellt) mit einem zugehörigen Ritzel 10 ein Motordrehmoment M1 ab. Dabei bezeichnet φ den Drehwinkel der Motorwelle und ω1 die entsprechende Winkelgeschwindigkeit. Nach einem Getriebe 14 liegen dann am Kraftstrang das Drehmoment M3 und die Winkelgeschwindigkeit ω3 vor. Durch einen Kugelgewindetrieb (KGT) 20 wird diese rotatorische Bewegung in eine lineare Kraft F1 übersetzt, mit der ein Bremskolben 26 gegen einen Bremsbelag 32 gedrückt wird. Die auf diese Weise generierte Kraft F1 bzw. F ist eine Funktion des Drehwinkels φ, d. h. F = f(φ), wobei gilt: Ḟ > 0 beim Druckaufbau und Ḟ < 0 beim Druckabbau. Die Kraft F bzw. F1 als Funktion des Drehwinkels φ ist dazu in 2 dargestellt. Auf der Abszisse 46 ist der Drehwinkel φ und auf der Ordinate 40 die Kraft F aufgetragen. Die Kurve 50 verdeutlicht den Kraftverlauf als Funktion des Drehwinkels φ.
  • Das mechanische Drehmoment MMech, welches dem vom Motor abgegebenen Motordrehmoment M1 entspricht, setzt sich zusammen aus den ursprünglich von dem Motor generierten Drehmoment MMot, abzüglich der durch die geschwindigkeitsabhängige Reibung und die Beschleunigung konsumierten Drehmomente, d. h. MMech = MMot – MReibung – MBeschleunigung. Es kann weiterhin ausgedrückt werden als MMech = kMot·IPhase(t) – kReibung·ω1 – Jω .1. Hierbei bezeichnen kMot und kReibung jeweils Konstanten, IPhase den Strom, ω1 die Winkelgeschwindigkeit, ω .1 deren zeitliche Ableitung und J das Rotationsmoment von Anker, Ritzel und Getriebe, d. h. das Gesamtrotationsmoment.
  • Anhand von obiger Gleichung erkennt man, dass sich das mechanische Drehmoment MMech verringert, wenn sich ω .1 vergrößert. Mit anderen Worten: Je größer ω .1 , d. h. die zeitliche Änderung von ω .1 , wird, umso geringer wird das zur Verfügung stehende Drehmoment MMech. Da Regelfunktionen wie ABS, TCS, ESP, etc. naturgemäß rapiden Kraftaufbau und Kraftabbau in sehr kurzer Zeit erfordern, d. h. |dF/dt| » 0, muss am Aktuator-Motor sehr oft und schnell die Drehrichtung umgekehrt bzw. reversiert werden und unmittelbar erneut beschleunigt werden, d. h. |ω .1| » 0 . Dies führt zu einem geringen abgegebenen Moment MMech und daher zu einer geringen maximalen Spannkraft.
  • Das in 1 dargestellte System ist durch die direkte Kopplung von Motor 8 und Kugelgewindetrieb 20 bzw. Bremskolben 26 und der daraus folgenden direkten Verringerung des mechanischen Bremsmoments MMech bei steigendem ω .1 systemisch prinzipbedingt limitiert. Ab einem gewissen Quotient ΔF/Δt bzw. einer gewissen zeitlichen Ableitung der Kraft F, Ḟ, sind entweder gewisse Kräfte überhaupt nicht mehr oder nur sehr langsam anfahrbar.
  • Die in 3 stark schematisiert dargestellte erfindungsgemäße elektrisch betätigbare Bremse 4 weist in einer bevorzugten Ausführungsform einen elektrischen Motor 8 mit Ritzel 10, ein Getriebe 14, einen Kugelgewindetrieb 20, einen Bremskolben 26 und einen Bremsbelag 32 auf. Optional ist zwischen Kugelgewindetrieb 20 und Bremskolben 26 eine hydraulische Wirkverbindung/Kopplung 22 angeordnet. Kugelgewindetrieb 20 und gegebenenfalls Wirkverbindung/Kopplung 22 bilden somit einen Aktuator, welcher eine rotatorische Bewegung der in der Spindelmutter drehbar gelagerten Spindel des Kugelgewindetriebs in eine translatorische Bewegung des mit der Spindelmutter wirkgekoppelten Bremskolbens 26 umwandelt.
  • Im Unterschied zu der in 1 dargestellten Bremse 2 ist zwischen elektrischem Motor 8 und Getriebe 14 eine Kupplung 60 geschaltet. Dadurch ist die Bremse 4 gemäß 3 dazu ausgelegt, einen Druckabbau zu ermöglichen, ohne dass die Drehrichtung des elektrischen Motors 8 umgekehrt werden muss.
  • Im Folgenden soll der Parameter α den Kopplungsgrad bezeichnen. Hierbei bezeichnet α = 1 eine vollständige Einkupplung bzw. -kopplung und α = 0 bezeichnet eine vollständige Entkopplung, α ∊ R{0... 1}. Als Zielvorgabe für einen Kupplungsbetrieb, der sich für schnelle Regelvorgänge eignet, gilt –1/(5 ms) ≈≤ α . ≈≤ + 1/(10 ms). Das Drehmoment, welches vom elektrischen Motor 8 aus gesehen nun hinter der Kupplung 60 vorliegt, wird mit M2, die entsprechende Winkelgeschwindigkeit mit ω2 bezeichnet. Der zugehörige Drehwinkel wird hier mit γ bezeichnet. Hinter dem Getriebe 14 liegen dann ein Drehmoment M3 und eine zugehörige Winkelgeschwindigkeit ω3 vor. Auf Grund der Kupplung 60 wird die direkte Kopplung zwischen elektrischem Motor 8 und Kugelgewindetrieb 20 bzw. der translatorischen Bewegung des Bremskolbens 26 gelöst. Eine starre Kopplung ist weiterhin vorhanden bei α = 1, der Motor 8 ist vollständig entkoppelt bei α = 0.
  • Im Folgenden soll der Betrieb der Bremse 2 aus 1 und der Bremse 4 aus 3 bei zwei verschiedenen Betriebssituationen verglichen werden. Als erstes soll bei der jeweiligen Bremse eine schnellstmögliche Druckminderung aus einem starken Kraftaufbau heraus erfolgen. Bei der Bremse 2 aus 1 gilt während des starken Druckaufbaus: |Ḟ| » 0, |ω| » 0. Bei der Bremse 4 gemäß 3 gilt: |Ḟ| » 0, |ω1| = |ω2| » 0, α = 1. Das heißt, zum starken Druckaufbau wird hier die Kupplung 60 voll eingekuppelt. In beiden Fällen soll nun der Druck schnellstmöglich abgebaut werden, d. h. der Sollzustand |Ḟ| « 0 schnellstmöglich erreicht werden.
  • Nun gilt für die Bremse 2 gemäß 1, dass die Kraft F eine direkte Funktion des Drehwinkels φ und eine direkte Funktion der Winkelgeschwindigkeit ω1 ist, d. h. F = f(φ) = g(ω1). Bei der Bremse 4 gemäß 3 ist die Kraft F auf Grund des Vorhandenseins der Kupplung 60 und der Tatsache, dass in diesem Fall nun zum Druckabbau ausgekuppelt wird, d. h. α von dem Wert 1, den es während des schnellen Druckaufbaus hatte auf einen niedrigeren Wert gesetzt wird, nicht mehr eine direkte Funktion von φ, sondern nun eine Funktion f ~(γ), d. h. eine Funktion des Drehwinkels hinter der Kupplung 60 bzw. eine Funktion g(ω2) und damit eine Funktion h(α, ω1), d. h. F = f ~(γ) = g(ω2) = h(α, ω1).
  • Da nun α zur Entkopplung von Motor- und Aktuator bzw. KGT 20 verwendet werden kann, gilt für die Beträge der Funktionen g(ω1) bei der Bremse gemäß 1 und h(α, ω1) bei der Bremse gemäß 3 |ġ(ω1)| < |ḣ(α, ω1)|. Das heißt, die betragsmäßige zeitliche Änderung der Funktion h(α, ω1) ist auf Grund der Entkopplungsmöglichkeit durch die Kupplung 60 größer. Da dies betragsmäßig gilt und die zeitliche Ableitung der Kraft F bei Druckabbau negativ ist, d. h. Ḟ « 0, gilt nun, dass die zeitliche Änderung der Kraft für die Bremse gemäß 3 vom Betrag her größer und damit schneller negativ als bei der Bremse gemäß 1. Das heißt, durch den Einsatz der Kupplung 60, d. h. das Entkoppeln, kann in der erfindungsgemäßen Bremse 4 gemäß 3 nach einem schnellen Druckaufbau schneller Druck abgebaut werden als bei der Bremse 2 gemäß 1.
  • Als nächstes wird der Fall betrachtet, dass nach einem Druckabbau schnellstmöglich wieder Druck aufgebaut werden soll, wie dies beispielsweise während einer ABS-Regelung geschieht. Für die Bremse 2 gemäß 1 gilt: Ḟ « 0, ω1 « 0, d. h. der elektrische Motor 8 dreht entgegengesetzt zur Zuspannrichtung bzw. Druckaufbaurichtung, um Bremsdruck abzubauen. Bei der Bremse 4 gemäß 3 gilt: Ḟ « 0, ω1 » 0, ω2 « 0, α = 0. Das heißt, der Abbau des Druckes wird hier durch ein vollständiges Auskoppeln α = 0 realisiert. Durch dieses Auskoppeln wird erreicht, dass sich der Bremskolben 26 von dem Bremsbelag 32 löst und der Bremskolben 26 zurückfährt, d. h. ω2 « 0. Die Drehgeschwindigkeit des elektrischen Motors 8 hingegen wird beim Druckabbau nicht reversiert, d. h. ω1 » 0 und vom Vorzeichen her entgegengesetzt zu ω2.
  • Der Sollzustand für den schnellstmöglichen Druckaufbau ist nun Ḟ » 0. Da, wie oben gezeigt, |ġ(ω1)| < |ḣ(α, ω1)| kann in diesem Fall mit der erfindungsgemäßen Bremse 4 schneller Druck aufgebaut werden als mit der EMB 2 gemäß 1. Die liegt daran, dass zum Druckaufbau lediglich eingekuppelt werden muss auf den elektrischen Motor 8, der auch während der Druckabbauphase weiterhin in Zuspannrichtung dreht. Im Gegensatz zur Bremse gemäß 1 ist also eine Umkehrung der Motordrehrichtung nicht notwendig, d. h. ω1 muss sein Vorzeichen nicht ändern.
  • Die oben beschriebenen Vorgänge sollen anhand von zwei Diagrammen verdeutlicht werden. In 4 ist auf der Abszisse 46 der Drehwinkel φ und auf der Ordinate 40 die entsprechende von einer Bremse ausgeübte Kraft F aufgetragen. Die Kurve 110 verdeutlicht zwischen den Punkten P1, P2, P3 und P4 = P1 den Kraftverlauf bei einer bevorzugten Version des Verfahrens, bei dem sowohl beim Druckaufbau als auch beim Druckabbau die Kupplung 60 ganz oder nahezu ganz eingekuppelt ist und zum Druckaufbau der Motor 8 in Druckaufbaurichtung dreht und zum Druckabbau entgegengesetzt zur Druckabbaurichtung dreht. Von P1 wird zu P2 der Drehwinkel erhöht, d. h., der Motor dreht in Druckaufbaurichtung, so dass bei P2 eine hohe Spannkraft erreicht wird. Um zu einem Zustand mit geringerer Spannkraft zu kommen, d. h. von P2 nach P3 zu kommen, wird die Motordrehzahl umgekehrt damit der Drehwinkel φ reduziert wird. Das Hystereseverhalten resultiert dabei aus dem Setzverhalten des Belagmaterials.
  • Ein ähnliches Diagramm für das Betreiben einer erfindungsgemäßen Bremse 4 mit einer Kupplung 60 ist in 5 dargestellt. Auf der x-Achse 90 ist der Drehwinkel φ, auf der y-Achse 96 ist der Kopplungsgrad α und auf der z-Achse 102 ist die Kraft F aufgetragen. Hier entspricht wieder P2 dem Vorliegen einer hohen Spannkraft, beispielsweise während des Blockierens des Rades. Zum Abbau des Druckes bzw. der Spannkraft ausgehend von P2 wird nun die Kennlinie entlang der y-Achse 96 zum Punkt P3* hin verfolgt. Wie an dieser Darstellung ersichtlich ist, muss beim Druckabbau auf diese Weise die Motordrehzahl nicht reduziert werden. Der Abbau des Druckes geschieht hier also gewissermaßen entlang der y-Achse 96 senkrecht zur x-Achse 90 alleinig auf Grund der Ansteuerung der Kupplung 60.
  • Während eines ABS Regelvorganges würden die Punkte des in 5 gezeigten Diagramms zu folgenden Zuständen entsprechen:
  • P1:
    Ruhezustand (idle)
    P2:
    Spannkraft aufgebaut, Rad blockiert
    P3*:
    Spannkraft abgebaut, Rad bewegt sich wieder
    P2:
    Spannkraft aufgebaut
    ...
  • Bei Verwendung einer Kupplung 60 auf Basis magnetorheologischer oder elektrorheologischer Werkstoffe/Flüssigkeiten kann bei Versagen des übergeordneten Steuergerätes, beispielsweise auf Grund eines Defektes der Hardware, eines Verlustes der Versorgungsspannung, eines Fehlers in der Software oder Ähnlichem möglichst schnell der mechatronische Antrieb abgeworfen und damit weiterer Druckaufbau verhindert werden, da beim Abschalten (stromloser Zustand) die elektromagnetische Erregung der Kupplung wegfällt und diese dann auf Grund ihrer stromlos offenen Eigenschaft öffnet.
  • Durch das erfindungsgemäße Verfahren und die erfindungsgemäße elektrisch betätigbare Bremse bzw. das zugehörige Bremssystem kann eine Verbesserung für jede Art motorakturierter Anwendung erzielt werden, in welcher sowohl wiederholt schnelle Drehrichtungsumkehr des Aktuatormotors als auch hohe Drehzahlen und Drehzahlgradienten gleichermaßen vorkommen. Anwendungsgebiete sind z. B. rein elektromechanisch betätigbare Bremsen mit einem entsprechenden Elektromotor zum Spannkraftaufbau, elektrohydraulische Bremsanlagen mit einer Druckbereitstellungeinrichtung mit einem Elektromotor oder elektrohydraulisch/elektromechanisch kombinierte Bremssysteme. Hier können schnelle Positionswechsel bei ABS-Vorgängen erreicht werden. Bei elektrohydraulischen Bremsanlagen mit einem mittels eines Elektromotors betätigbaren Kolbens einer Kolben-Zylinder-Anordnung kann der Elektromotor zur Wiedergewinnung von Fördervolumen schnell zurückgefahren werden und so ein regulärer, schneller Druckaufbau erreicht werden. Auch bei elektrohydraulischen Bremssystemen mit einer Kolbenpumpe können die hier dargelegten Konzepte Anwendung finden. So kann z. B. der die Kolbenpumpe ansteuernde Pumpenmotorexzenter von der Pumpenmotorwelle entkoppelt werden, so dass diese durch den analog steuerbaren Entkopplungsgrad variable Relativdrehzahlen (auch mit umgekehrtem Vorzeichen/Drehrichtung) annehmen können. So kann z. B. der Pumpenmotor auf einer vorgegebenen Drehzahl gehalten werden, z. B. weil ein fortwährender Regeleingriff zu erwarten ist, während die Kolbenpumpe zeitweise abgekoppelt wird, und muss nicht bei einer Wiederaufnahme erst hochlaufen. In diesen Systemen kann durch die Einbringung einer Kupplung in den Kraftstrang für einen schnellen Druckabbau gesorgt werden, was insbesondere deshalb vorteilhaft ist, da die entsprechenden Elektromotoren für ein hohes Moment für großen Pumpdruck und entsprechend erforderliche Drehzahl für das Pumpvolumen ausgelegt sein müssen.
  • Bezugszeichenliste
  • 2
    elektromechanische Bremse
    4
    elektrisch betätigbare Bremse
    8
    elektrischer Motor
    10
    Ritzel
    14
    Getriebe
    20
    Kugelgewindetrieb
    26
    Bremskolben
    32
    Bremsbelag
    40
    Ordinate
    46
    Abszisse
    50
    Kurve
    60
    Kupplung
    66
    Kurve
    72
    Kurve
    90
    x-Achse
    96
    y-Achse
    102
    z-Achse
    110
    Kurve
    M1
    Motordrehmoment Drehwinkel
    φ
    Drehwinkel
    ω1
    Winkelgeschwindigkeit
    M3
    Drehmoment
    ω3
    Winkelgeschwindigkeit
    F, F1
    Kraft
    MMech
    mechanisches Drehmoment
    JInsgesamt
    Rotationsmoment
    α
    Kopplungsgrad
    M2
    Drehmoment
    ω2
    Winkelgeschwindigkeit
    γ
    Drehwinkel
    M3
    Drehmoment
    ω3
    Winkelgeschwindigkeit
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 10200401235 A1 [0003]
    • WO 2011/029812 A1 [0004]

Claims (12)

  1. Verfahren zum Betreiben einer elektrisch betätigbaren Bremse (4) mit einem elektrischen Motor (8) und einem Kraftstrang, der das Drehmoment des Motors (8) auf einen Aktuator überträgt, welcher eine rotatorische Bewegung in eine translatorische Bewegung eines Bremselementes umwandelt, wobei zum Druckaufbau der Motor (8) in Druckaufbaurichtung dreht und dadurch das Bremselement gegen einen Bremskörper drückt, dadurch gekennzeichnet, dass in den Kraftstrang eine Kupplung (60) geschaltet ist, wobei zum Druckaufbau die Kupplung (60) im Wesentlichen vollständig eingekuppelt wird und der Motor (8) in Druckaufbaurichtung dreht, und wobei zum Druckabbau die Kupplung (60) im Wesentlichen vollständig ausgekuppelt wird.
  2. Verfahren nach Anspruch 1, wobei der Motor (8) beim Druckabbau in Druckaufbaurichtung dreht.
  3. Verfahren nach Anspruch 2, wobei beim Wiederaufbau von Druck der Motor (8) in Druckaufbaurichtung dreht und die Kupplung (60) eingekuppelt wird.
  4. Verfahren zum Betreiben einer elektrisch betätigbaren Bremse (4) mit einem elektrischen Motor (8) und einem Kraftstrang, der das Drehmoment (M1) des Motors (8) auf einen Aktuator überträgt, welcher eine rotatorische Bewegung in eine translatorische Bewegung eines Bremselementes umwandelt, wobei zum Druckaufbau der Motor (8) in Druckaufbaurichtung dreht und dadurch das Bremselement gegen einen Bremskörper drückt, dadurch gekennzeichnet, dass in den Kraftstrang eine Kupplung (60) geschaltet ist, wobei zum Druckaufbau die Kupplung (60) im Wesentlichen vollständig eingekuppelt wird und der Motor (8) in Druckaufbaurichtung dreht, und wobei zum Druckabbau die Kupplung (60) im Wesentlichen vollständig eingekuppelt wird und der Motor (8) entgegengesetzt zur Druckaufbaurichtung dreht.
  5. Verfahren zum Betreiben einer elektrisch betätigbaren Bremse (4) mit einem elektrischen Motor (8) und einem Kraftstrang, der das Drehmoment des Motors (8) auf einen Aktuator überträgt, welcher eine rotatorische Bewegung in eine translatorische Bewegung eines Bremselementes umwandelt, wobei in den Kraftstrang eine Kupplung (60) geschaltet ist, wobei zum Druckaufbau der Motor (8) in Druckaufbaurichtung dreht und dadurch das Bremselement gegen einen Bremskörper drückt, wobei in den Kraftstrang eine Kupplung (60) geschaltet ist, wobei bei gewöhnlichen Bremsvorgängen die Verfahrensschritte nach Anspruch 4 durchgeführt werden, und wobei bei Bremsvorgängen mit automatischer Regelung der Bremse (4) die Verfahrensschritte nach den Ansprüchen 1 oder 2 durchgeführt werden.
  6. Verfahren nach Anspruch 5, wobei bei einem automatischen Regelvorgang der Bremse (4) der Motor (8) solange in Druckaufbaurichtung gedreht wird, bis der Regelvorgang abgeschlossen ist.
  7. Elektrisch betätigbare Bremse (4) mit einem elektrischen Motor (8) und einem Kraftstrang, der das Drehmoment des Motors (8) auf einen Aktuator überträgt, welcher eine rotatorische Bewegung in eine translatorische Bewegung eines Bremselementes umwandelt, wobei zum Druckaufbau der Motor (8) in Druckaufbaurichtung dreht und dadurch das Bremselement gegen einen Bremskörper drückt, wobei in den Kraftstrang eine Kupplung (60) geschaltet ist.
  8. Elektrisch betätigbare Bremse (4) nach Anspruch 7, wobei der Kraftstrang ein Getriebe (14) aufweist und wobei die Kupplung (60) im Kraftstrang zwischen Motor (8) und Getriebe (14) angeordnet ist.
  9. Elektrisch betätigbare Bremse (4) nach Anspruch 7 oder 8, wobei die Kupplung (60) als rheologische Kupplung mit einem magnetorheologischen oder elektrorheologischen Werkstoff ausgestaltet ist.
  10. Elektrisch betätigbare Bremse (4) nach einem der Ansprüche 7 bis 9, wobei der Aktuator eine rotatorische Bewegung einer in einer Spindelmutter drehbar gelagerten Spindel in eine translatorische Bewegung eines mit der Spindelmutter gekoppelten Bremselementes umwandelt.
  11. Elektrisch betätigbare Bremse (4) nach einem der Ansprüche 7 bis 9, wobei der Aktuator eine rotatorische Bewegung über eine Hydraulikpumpe in eine translatorische Bewegung eines Bremselementes umwandelt.
  12. Bremssystem mit einer elektrisch betätigbaren Bremse (4) nach einem der Ansprüche 7 bis 11 und einer Steuer- und Regeleinheit mit Mitteln zur Ausführung eines Verfahrens nach einem der Ansprüche 1 bis 6.
DE201110078272 2011-06-29 2011-06-29 Verfahren zum Betreiben einer elektrisch betätigbaren Bremse, elektrisch betätigbare Bremse und Bremssystem Ceased DE102011078272A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE201110078272 DE102011078272A1 (de) 2011-06-29 2011-06-29 Verfahren zum Betreiben einer elektrisch betätigbaren Bremse, elektrisch betätigbare Bremse und Bremssystem
PCT/EP2012/056898 WO2013000598A1 (de) 2011-06-29 2012-04-16 Verfahren zum betreiben einer elektrisch betätigbaren bremse, elektrisch betätigbare bremse und bremssystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201110078272 DE102011078272A1 (de) 2011-06-29 2011-06-29 Verfahren zum Betreiben einer elektrisch betätigbaren Bremse, elektrisch betätigbare Bremse und Bremssystem

Publications (1)

Publication Number Publication Date
DE102011078272A1 true DE102011078272A1 (de) 2013-01-03

Family

ID=45998322

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201110078272 Ceased DE102011078272A1 (de) 2011-06-29 2011-06-29 Verfahren zum Betreiben einer elektrisch betätigbaren Bremse, elektrisch betätigbare Bremse und Bremssystem

Country Status (2)

Country Link
DE (1) DE102011078272A1 (de)
WO (1) WO2013000598A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9815445B2 (en) 2014-10-29 2017-11-14 Bwi (Shanghai) Co., Ltd. Brake booster assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004012355A1 (de) 2003-03-18 2004-09-30 Continental Teves Ag & Co. Ohg Betätigungseinheit für eine elektromechanisch betätigbare Scheibenbremse
WO2011029812A1 (de) 2009-09-11 2011-03-17 Continental Teves Ag & Co. Ohg Bremsanlage für kraftfahrzeuge und verfahren zu ihrem betrieb

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19955080A1 (de) * 1999-11-15 2001-05-17 Continental Teves Ag & Co Ohg Betätigungseinheit für eine elektromechanisch betätigbare Feststellbremse für Kraftfahrzeuge
DE10043255A1 (de) * 2000-09-02 2002-03-14 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer elektromotorisch betriebenen Radbremse
KR100560603B1 (ko) * 2004-03-29 2006-03-17 조한용 전동 모타를 이용한 브레이크 구동장치
DE102009026960A1 (de) * 2008-12-18 2010-07-01 Robert Bosch Gmbh Verfahren zur Steuerung einer Bremsbetätigung eines Hybridfahrzeugs

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004012355A1 (de) 2003-03-18 2004-09-30 Continental Teves Ag & Co. Ohg Betätigungseinheit für eine elektromechanisch betätigbare Scheibenbremse
WO2011029812A1 (de) 2009-09-11 2011-03-17 Continental Teves Ag & Co. Ohg Bremsanlage für kraftfahrzeuge und verfahren zu ihrem betrieb

Also Published As

Publication number Publication date
WO2013000598A1 (de) 2013-01-03

Similar Documents

Publication Publication Date Title
EP3691943B1 (de) Mechanische bremsvorrichtung
EP3160804B1 (de) Druckerzeuger für eine hydraulische fahrzeugbremsanlage
EP3086987B1 (de) Elektromechanisch und hydraulisch betätigbare kraftfahrzeugbremse mit wahlweiser selbsthemmung
EP2379376B1 (de) Verfahren zur steuerung einer bremsbetätigung einer hydraulischen fahrzeugbremsanlage und elektromechanischer bremskraftverstärker
DE102018214188A1 (de) Elektromechanisch-hydraulischer Kolbenaktuator und Bremssystem
DE102008001522A1 (de) Elektromechanischer Bremskraftverstärker
DE102008018749A1 (de) Verfahren zum gesicherten Lösen einer elektromechanisch betätigbaren Feststellbremse
DE102007017107B4 (de) Rotorbremse für ein Drehflügelflugzeug
EP2503188B1 (de) Schaltzylinder für eine Antriebseinrichtung, insbesondere für eine selbstfahrende Arbeitsmaschine, Antriebseinrichtung, Arbeitsmaschine sowie Verfahren zum Betreiben einer Arbeitsmaschine
WO2006051066A1 (de) Elektrohydraulisches aggregat
WO2020216492A1 (de) Elektromechanisch antreibbarer bremsdruckerzeuger für ein hydraulisches bremssystem eines fahrzeugs sowie fahrzeug umfassend einen elektromechanischen bremsdruckerzeuger
WO2016096465A1 (de) Elektromechanischer bremskraftverstärker
DE102011004804A1 (de) Kraftstrang für eine elektromechanisch betätigbare Bremse, zugehörige rheologische Kupplung sowie Verfahren zum Betreiben eines Kraftstrangs
WO2022207172A1 (de) Fahrzeug und bremsassistenzeinrichtung für eine hydraulische bremsanlage für ein fahrzeug
EP2646296B1 (de) Vorrichtung zum aufnehmen und abgeben von hydraulikflüssigkeit, insbesondere für ein hybrid- oder elektrofahrzeug, sowie bremssystem für ein hybrid- oder elektrofahrzeug
DE102017008196A1 (de) Trommelbremse mit einem elektromechanisch-hydraulischen Bremsaktuator
WO2020216479A1 (de) Elektromechanischer bremsdruckerzeuger für ein hydraulisches bremssystem
DE102011078272A1 (de) Verfahren zum Betreiben einer elektrisch betätigbaren Bremse, elektrisch betätigbare Bremse und Bremssystem
DE102022212923A1 (de) Elektrische bremse für ein fahrzeug
DE102018132266A1 (de) Elektromechanische Bremse, Scheibenbremse und Bremsanlage für ein Kraftfahrzeug
EP1881922A2 (de) Pumpenantrieb für die pumpe eines retarders
WO2012139621A2 (de) Stelleinrichtung zum variablen einstellen eines verdichtungsverhältnisses einer verbrennungskraftmaschine
EP1496280B1 (de) Verfahren zur Unterdrückung von Rupfschwingungen in einer Reibungskupplung
DE102013203871A1 (de) Kraftfahrzeugdauerbremseinrichtung, sowie Verfahren zum Betreiben einer Kraftfahrzeugdauerbremseinrichtung
DE102014214091A1 (de) Verfahren zum Steuern einer Radbremse in einem Kraftfahrzeug und Bremsanlage

Legal Events

Date Code Title Description
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: B60T0013660000

Ipc: B60T0013740000

R163 Identified publications notified

Effective date: 20121212

R012 Request for examination validly filed
R016 Response to examination communication
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final
R081 Change of applicant/patentee

Owner name: CONTINENTAL AUTOMOTIVE TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL TEVES AG & CO. OHG, 60488 FRANKFURT, DE