DE102010044206A1 - Verfahren zur Herstellung von strahlungshärtbaren (Meth)Acrylaten - Google Patents

Verfahren zur Herstellung von strahlungshärtbaren (Meth)Acrylaten Download PDF

Info

Publication number
DE102010044206A1
DE102010044206A1 DE102010044206A DE102010044206A DE102010044206A1 DE 102010044206 A1 DE102010044206 A1 DE 102010044206A1 DE 102010044206 A DE102010044206 A DE 102010044206A DE 102010044206 A DE102010044206 A DE 102010044206A DE 102010044206 A1 DE102010044206 A1 DE 102010044206A1
Authority
DE
Germany
Prior art keywords
meth
acrylic acid
radiation
mixture
coatings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102010044206A
Other languages
English (en)
Inventor
Christine RÖSCH
Nick Gruber
Klaus Menzel
Susanne Neumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of DE102010044206A1 publication Critical patent/DE102010044206A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

Zweistufiges Verfahren zur Herstellung von strahlungshärtbaren (Meth)Acrylaten, dadurch erhältliche strahlungshärtbare Acrylate und deren Verwendung.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von strahlungshärtbaren (Meth)Acrylaten.
  • Aus der EP-A-54 105 , DE-A 33 16 593 , EP-A 680 985 und EP-A-279 303 sind Verfahren bekannt, bei denen in einer 1. Stufe ein (Meth)acrylsäureester aus (Meth)acrylsäure und Hydroxyverbindungen hergestellt wird und in einer zweiten Stufe überschüssige (Meth)acrylsäure mit Epoxiden umgesetzt wird.
  • Nachteilig daran ist, daß durch diese Reaktionsführung zwangsläufig Epoxy(meth)acrylate anfallen, die das Produktspektrum mitbestimmen.
  • Aus der EP-A-280 222 , DE 2625238 , DE-A-23 46 424 , DE 3706355 und der EP-A-211 978 ist bekannt, die Reaktivität von Acrylaten durch Zusatz von Verbindungen mit primären und/oder sekundären Aminogruppen zu erhöhen. Die Aminogruppen addieren sich dabei an die Doppelbindungen der Acrylate (Michael-Addition) und bewirken eine Aktivierung der Doppelbindungen, so daß strahlungshärtbare Beschichtungsmassen, die diese aktivierten Verbindungen enthalten weniger anfällig für eine Inhibierung durch Sauerstoff sind.
  • Im Falle der obigen, zweistufig hergestellten Acrylate führt die Aminzugabe zu einem starken Anstieg der Viskosität, wodurch der Bedarf an Reaktivverdünnern im unerwünschten Ausmaß erhöht wird. Nachteilig an der Gegenwart von Aminen ist, daß diese in den Beschichtungen eine Weichmacherwirkung bewirken und extrahierbare Bestandteile darstellen. Durch die erhöhte Reaktivität wird zudem die Lagerstabilität verringert.
  • Aufgabe der vorliegenden Erfindung war es, niedrigviskose strahlungshärtbare Verbindungen zur Verfügung zu stellen, die eine hohe Reaktivität bei gleichzeitig guter Lagerstabilität aufweisen.
  • Dem gemäß wurden strahlungshärtbare Gemische gefunden, erhältlich durch Umsetzung von
    • (A) (Meth)acrylsäure mit im statistischen Mittel 3,0 bis 4,0-fach propoxyliertem Glycerin,
    • (B) gefolgt von Entfernung überschüssiger (Meth)acrylsäure aus dem aus (A) erhaltenen Reaktionsgemisch mit Hilfe einer wäßrigen Extraktion und
    • optional (C) Zugabe von 0 bis 8 Gew.-% mindestens eines primären oder sekundären Amins.
  • Gefunden wurde auch die Verwendung dieser Gemische in Überzugsmassen, Beschichtungsmassen und insbesondere Druckfarben.
  • Zur Herstellung der erfindungsgemäßen Gemische wird in einer 1. Stufe Acrylsäure oder Methacrylsäure (zusammenfassend in dieser Schrift als (Meth)acrylsäure bezeichnet), vorzugsweise Acrylsäure, mit im statistischen Mittel 3,0 bis 4,0-fach, bevorzugt 3,1 bis 4,0-fach, besonders bevorzugt 3,2 bis 4,0-fach und ganz besonders bevorzugt 3,4 bis 3,9-fach propoxyliertem Glycerin als Hydroxyverbindung umgesetzt.
  • Zur Veresterung von (Meth)acrylsäure mit der Hydroxyverbindung sind die dem Fachmann bekannten Verfahren geeignet.
  • Bei der Veresterung von (Meth)acrylsäure mit der Hydroxyverbindung werden bevorzugt 0,1 bis 1,5, besonders bevorzugt 0,5 bis 1,4 und ganz besonders bevorzugt 0,7 bis 1,3 Äquivalente (Meth)acrylsäure, bezogen auf 1 Hydroxy-Äquivalent der Hydroxyverbindung eingesetzt.
  • Die Umsetzung der (Meth)acrylsäure mit den Hydroxyverbindungen kann z. B. in Gegenwart eines sauren Veresterungskatalysators, wie z. B. Schwefelsäure, p-Toluolsulfonsäure, Benzolsulfonsäure, Dodecylbenzolsulfonsäure oder saure Ionentauscher, sowie in Gegenwart eines Kohlenwasserstoffs, der mit Wasser ein azeotropes Gemisch bildet, insbesondere bis zu einem Umsatz von beispielsweise mindestens 70%, bevorzugt mindestens 80, ganz besonders bevorzugt 80 bis 98% und insbesondere 80–95%, der Hydroxygruppen der Hydroxyverbindung, beispielsweise bei 60 bis 140°C, durchgeführt werden.
  • Das gebildete Reaktionswasser wird bevorzugt azeotrop entfernt. Geeignete Kohlenwasserstoffe sind aliphatische und aromatische, z. B. Alkane und Cycloalkane, wie Pentan, n-Hexan, n-Heptan, Methylcyclohexan und Cyclohexan, Aromaten wie Benzol, Toluol und die Xylol-Isomeren, und sog. Spezialbenzine, welche Siedegrenzen zwischen 70 und 140°C aufweisen.
  • Zur Vermeidung einer vorzeitigen Polymerisation wird die Umsetzung mit (Meth)acrylsäure zweckmäßigerweise in Gegenwart geringer Mengen von Inhibitoren durchgeführt. Dabei handelt es sich um die üblichen, zur Verhinderung einer thermischen Polymerisation verwendeten Verbindungen, z. B. vom Typ des Hydrochinons, der Hydrochinonmonoalkylether, besonders Hydrochinonmonomethylether, des 2,6-Di-t-butylphenols, t-Butylkatechol, der N-Nitrosoamine der Phenothiazine, der Phophorigsäureester oder der hypophosphorigen Säure. Sie werden im allgemeinen in Mengen von 0,001 bis 2,0%, vorzugsweise in Mengen von 0,005 bis 0,5%, bezogen auf die Reaktion in der 1. Stufe eingesetzt.
  • Nach der Veresterung kann das Lösungsmittel, z. B. der Kohlenwasserstoff, aus dem Reaktionsgemisch destillativ, gegebenenfalls unter vermindertem Druck, entfernt werden. Der Veresterungskatalysator kann in geeigneter Weise neutralisiert werden, z. B. durch Zusatz von tertiären Aminen oder Alkalihydroxyden. Auch überschüssige (Meth)acrylsäure kann teilweise z. B. durch Destillation im Vakuum entfernt werden, bevorzugt wird überschüssige (Meth)acrylsäure jedoch durch Extraktion mit wäßrigem Medium entfernt.
  • Dazu wird das Reaktionsgemisch in einem Waschapparat mit Wasser oder einer 5–30 Gew.-%-igen, bevorzugt 5–20, besonders bevorzugt 5–15 Gew.-%-igen Kochsalz-, Kaliumchlorid-, Ammoniumchlorid-, Natriumsulfat- oder Ammoniumsulfatlösung, bevorzugt Kochsalzlösung, behandelt.
  • Wenn eine möglichst vollständige Entfernung von Säure angestrebt wird, kann die organische Phase, die Katalysator und die Hauptmenge an überschüssiger (Meth)acrylsäure enthalten kann, mit einer 5–25, bevorzugt 5–20, besonders bevorzugt 5–15 Gew.-%igen wäßrigen Lösung einer Base, wie z. B. Natronlauge, Kalilauge, Natriumhydrogencarbonat, Natriumcarbonat, Kaliumhydrogencarbonat, Kalziumhydroxid, Ammoniakwasser oder Kaliumcarbonat, der gegebenenfalls 5–15 Gew.-% Kochsalz, Kaliumchlorid, Ammoniumchlorid oder Ammoniumsulfat zugesetzt sein können, bevorzugt mit Natronlauge oder Natronlauge-Kochsalz-Lösung, neutralisiert.
  • Die Zugabe der Base erfolgt in einer Weise, daß die Temperatur im Apparat nicht über 35°C ansteigt, bevorzugt zwischen 20 und 35°C beträgt und der pH-Wert 10–14 beträgt. Die Abfuhr der Neutralisationswärme erfolgt vorzugsweise durch Kühlung des Behälters mit Hilfe von innenliegenden Kühlschlangen oder über eine Doppelwandkühlung.
  • Das Mengenverhältnis Reaktionsgemisch:Waschflüssigkeit beträgt in der Regel 1:0,1–1, bevorzugt 1:0,2–0,8, besonders bevorzugt 1:0,3–0,7.
  • Die Wäsche kann beispielsweise in einem Rührbehälter oder in anderen herkömmlichen Apparaturen, z. B. in einer Kolonne oder Mixer-Settler-Apparatur, durchgeführt werden.
  • Verfahrenstechnisch können für eine Wäsche im erfindungsgemäßen Verfahren alle an sich bekannten Extraktions- und Waschverfahren und -apparate eingesetzt werden, z. B. solche, die in Ullmann's Encyclopedia of Industrial Chemistry, 6th ed, 1999 Electronic Release, Kapitel: Liquid – Liquid Extraction – Apparatus, beschrieben sind. Beispielsweise können dies ein- oder mehrstufige, bevorzugt einstufige Extraktionen, sowie solche in Gleich- oder Gegenstromfahrweise, bevorzugt Gegenstromfahrweise sein.
  • Vorzugsweise werden Siebboden- oder gepackte beziehungsweise Füllkörperkolonnen, Rührbehälter oder Mixer-Settler-Apparate, sowie Kolonnen mit rotierenden Einbauten eingesetzt.
  • Wenn die Extraktion der Säure mit Hilfe von wäßriger basischer Lösung erfolgt ist, kann es bevorzugt sein zur Entfernung von Base- oder Salzspuren aus dem neutralisierten Reaktionsgemisch eine Nachwäsche mit Wasser oder einer 5–30, bevorzugt 5–20 und besonders bevorzugt 5–15 Gew.-%-igen Kochsalz-, Kaliumchlorid-, Ammoniumchlorid- oder Ammoniumsulfatlösung, bevorzugt Wasser oder Kochsalzlösung durchzuführen.
  • Das Mengenverhältnis Reaktionsgemisch:Waschflüssigkeit beträgt dann in der Regel 1:0,1–1, bevorzugt 1:0,2–0,8, besonders bevorzugt 1:0,3–0,7.
  • Hinsichtlich der Apparatur gilt das oben Gesagte.
  • Nach der Veresterung und wäßrigen Aufarbeitung werden dem Produkt eine oder mehrere Verbindungen (C), bevorzugt eine Verbindung mit einer oder mehreren primären oder sekundären Aminogruppen zugegeben
  • Primäre oder sekundäre Aminogruppen addieren sich gemäß einer Michaeladdition an Acrylgruppen oder Methacrylgruppen.
  • Aus primären Aminogruppen werden dabei sekundäre Aminogruppen, welche sich wiederum erneut an (Meth)Acrylgruppen unter Bildung tertiärer Aminogruppen addieren können.
  • Geeignete Verbindungen mit primären oder sekundären Aminogruppen sind im allgemeinen niedermolekular und weisen vorzugsweise ein Molgewicht unter 1000 auf.
  • Zu nennen sind beispielsweise primäre Monoamine wie C1-C20-Alkylamine, insbesondere n-Butylamin, n-Hexylamin, 2-Ethylhexylamin, Octadecylamin und cycloaliphatische Amine wie Cyclopentylamin oder Cyclohexylamin.
  • Als sekundäre Monoamine zu nennen sind beispielsweise wie Di-C1-C20-alkylamine, insbesondere Diethylamin, Di-n-Butylamin, Di-n-Hexylamin und Di-iso Propylamin.
  • Als Verbindungen mit primären oder sekundären Aminogruppen mit mindestens einer Hydroxygruppe genannt seien Alkanolamine, z. B. Mono- oder Diethanolamin, Aminoethoxyethanol, 2-Aminopropan-1-ol und Di iso Propanolamin.
  • In der Regel werden dem Reaktionsgemisch 0,1–8 Gew.-%, bevorzugt 0,5–6 und besonders bevorzugt 1 bis 6 Gew.-% Verbindungen (C) mit einer primären oder sekundären Aminogruppen zugegeben.
  • Vorzugsweise werden die Verbindungen mit einer primären oder sekundären Aminogruppen in solchen Mengen eingesetzt, daß auf 1 Mol der (Meth)Acrylgruppen 0,01 bis 0,2, bevorzugt 0,05 bis 0,15 Mol aminische Wasserstoffatome von primären oder sekundären Aminogruppen kommen.
  • Die Verbindungen (C) mit primären oder sekundären Aminogruppen werden dem Produkt bevorzugt zugesetzt, wenn dessen Säurezahl weniger als 3 mg KOH/g, bevorzugt weniger als 2 und besonders bevorzugt weniger als 1 mg KOH/g beträgt.
  • Die Temperatur während und/oder nach der Zugabe der Verbindungen mit primären oder sekundären Aminogruppen bis zum Reaktionsabbruch beträgt mindestens 40°C, bevorzugt 40 bis 130°C, besonders bevorzugt 50 bis 110 und ganz besonders bevorzugt 60 bis 110°C.
  • Die nach dem erfindungsgemäßen Verfahren erhältlichen strahlungshärtbaren (Meth)Acrylate weisen eine Viskosität von in der Regel weniger als 1 Pas bei 23°C auf, bei sekundären Aminen als Verbindungen (C) bevorzugt weniger als 500 mPas, besonders bevorzugt weniger als 250 und ganz besonders bevorzugt weniger als 200 mPas, bei primären Aminen als Verbindungen (C) bevorzugt weniger als 750 mPas, besonders bevorzugt weniger als 700 und ganz besonders bevorzugt weniger als 650 mPas.
  • Die nach dem erfindungsgemäßen Verfahren erhältlichen strahlungshärtbaren (Meth)Acrylate eignen sich insbesondere zur Verwendung als oder in Massen, welche thermisch, bevorzugt aber durch energiereiche Strahlung gehärtet werden können.
  • Die Massen können als bzw. in Beschichtungsmassen, z. B. Lacken, Druckfarben, oder Klebstoffen, als Druckplatten, als Formkörper, zur Herstellung von Photoresisten, in der Stereolithographie oder als Gießmasse, z. B. für optische Linsen verwendet werden.
  • Substrate für die Beschichtung können beispielsweise sein Textil, Leder, Metall, Kunststoff, Glas, Holz, Papier oder Pappe.
  • Als weitere lacktypische Additive können beispielsweise Antioxidantien, Stabilisatoren, Aktivatoren (Beschleuniger), Füllmittel, Pigmente, Farbstoffe, antistatische Agentien, Flammschutzmittel, Verdicker, thixotrope Agentien, oberflächenaktive Agentien, Viskositätsmodifikatoren, Plastifizierer oder Chelatbildner verwendet werden.
  • Als Verdicker kommen neben radikalisch (co)polymerisierten (Co)Polymerisaten, übliche organische und anorganische Verdicker wie Hydroxymethylcellulose oder Bentonit in Betracht.
  • Als Chelatbildner können z. B. Ethylendiaminessigsäure und deren Salze sowie β-Diketone verwendet werden.
  • Geeignete Füllstoffe umfassen Silikate, z. B. durch Hydrolyse von Siliciumtetrachlorid erhältliche Silikate wie Aerosil® der Fa. Degussa, Kieselerde, Talkum, Aluminiumsilikate, Magnesiumsilikate, Calciumcarbonate etc.
  • Geeignete Stabilisatoren umfassen typische UV-Absorber wie Oxanilide, Triazine und Benzotriazol (letztere erhältlich als Tinuvin®-Marken der Ciba-Spezialitätenchemie) und Benzophenone. Diese können allein oder zusammen mit geeigneten Radikalfängern, beispielsweise sterisch gehinderten Aminen wie 2,2,6,6-Tetramethylpiperidin, 2,6-Di-tert.-butylpiperidin oder deren Derivaten, z. B. Bis-(2,2,6,6-tetra-methyl-4-piperidyl)sebacinat, eingesetzt werden. Stabilisatoren werden üblicherweise in Mengen von 0,1 bis 5,0 Gew.-%, bezogen auf die in der Zubereitung enthaltenen festen Komponenten, eingesetzt.
  • Pigmente können ebenfalls enthalten sein. Pigmente sind gemäß CD Römpp Chemie Lexikon – Version 1.0, Stuttgart/New York: Georg Thieme Verlag 1995 unter Verweis auf DIN 55943 partikelförmige ”im Anwendungsmedium praktisch unlösliche, anorganische oder organische, bunte oder unbunte Farbmittel”.
  • Praktisch unlöslich bedeutet dabei eine Löslichkeit bei 25°C unter 1 g/1000 g Anwendungsmedium, bevorzugt unter 0,5, besonders bevorzugt unter 0,25, ganz besonders bevorzugt unter 0,1 und insbesondere unter 0,05 g/1000 g Anwendungsmedium.
  • Wird ein Pigment eingesetzt, so ist darauf zu achten, daß entweder die Härtung mit Elektronenstrahlen durchgeführt wird oder daß ein Photoinitiator verwendet wird, der trotz der Pigmentierung durch die eingestrahlte Strahlung aktiviert werden kann, beispielsweise indem der Photoinitiator eine signifikante Absorbanz in einem Wellenlängenbereich aufweist, in dem das Pigment für die eingestrahlte Strahlung ausreichend durchlässig ist. Es stellt eine bevorzugte Ausführungsform der vorliegenden Erfindung dar, kein Pigment zu verwenden und die Beschichtungsmasse in Klarlacken einzusetzen.
  • Beispiele für Pigmente umfassen beliebige Systeme von Absorptions- und/oder Effektpigmenten, bevorzugt Absorptionspigmente. Anzahl und Auswahl der Pigmentkomponenten sind dabei keinerlei Beschränkungen unterworfen. Sie können den jeweiligen Erfordernissen, beispielsweise dem gewünschten Farbeindruck, beliebig angepaßt werden.
  • Unter Effektpigmenten sind alle Pigmente zu verstehen, die einen plättchenförmigen Aufbau zeigen und einer Oberflächenbeschichtung spezielle dekorative Farbeffekte verleihen. Bei den Effektpigmenten handelt es sich beispielsweise um alle in der Fahrzeug- und Industrielackierung üblicherweise einsetzbaren effektgebenden Pigmente. Beispiele für derartige Effektpigmente sind reine Metallpigmente; wie z. B. Aluminium-, Eisen- oder Kupferpigmente; Interferenzpigmente, wie z. B. titandioxidbeschichteter Glimmer, eisenoxidbeschichteter Glimmer, mischoxidbeschichteter Glimmer (z. B. mit Titandioxid und Fe2O3 oder Titandioxid und Cr2O3), metalloxidbeschichtetes Aluminium, oder Flüssigkristallpigmente.
  • Bei den farbgebenden Absorptionspigmenten handelt es sich beispielsweise um übliche in der Lackindustrie einsetzbare organische oder anorganische Absorptionspigmente. Beispiele für organische Absorptionspigmente sind Azopigmente, Phthalocyanin-, Chinacridon- und Pyrrolopyrrolpigmente. Beispiele für anorganische Absorptionspigmente sind Eisenoxidpigmente, Titandioxid und Ruß.
  • Sofern die Aushärtung der Beschichtungsmassen nicht mit Elektronenstrahlen, sondern mittels UV-Strahlung erfolgt, ist vorzugsweise wenigstens ein Photoinitiator enthalten, der die Polymerisation ethylenisch ungesättigter Doppelbindungen initiieren kann.
  • Photoinitiatoren können beispielsweise dem Fachmann bekannte Photoinitiatoren sein, z. B. solche in "Advances in Polymer Science", Volume 14, Springer Berlin 1974 oder in K. K. Dietliker, Chemistry and Technology of UV- and EB-Formulation for Coatings, Inks and Paints, Volume 3; Photoinitiators for Free Radical and Cationic Polymerization, P. K. T. Oldring (Eds), SITA Technology Ltd, London, genannten.
  • In Betracht kommen z. B. Mono- oder Bisacylphosphinoxide, wie sie z. B. in EP-A 7 508 , EP-A 57 474 , DE-A 196 18 720 , EP-A 495 751 oder EP-A 615 980 beschrieben sind, beispielsweise 2,4,6-Trimethylbenzoyldiphenylphosphinoxid (Lucirin® TPO der BASF SE), Ethyl-2,4,6-trimethylbenzoylphenylphosphinat (Lucirin® TPO L der BASF SE), Bis-(2,4,6-trimethylbenzoyl)-phenylphosphinoxid (Irgacure® 819 der Firma Ciba Spezialitätenchemie), Benzophenone, Hydroxyacetophenone, Phenylglyoxylsäure und ihre Derivate oder Gemische dieser Photoinitiatoren. Als Beispiele seien genannt Benzophenon, Acetophenon, Acetonaphthochinon, Methylethylketon, Valerophenon, Hexanophenon, α-Phenylbutyrophenon, p-Morpholinopropiophenon, Dibenzosuberon, 4-Morpholinobenzophenon, 4-Morpholinodeoxybenzoin, p-Diacetylbenzol, 4-Aminobenzophenon, 4'-Methoxyacetophenon, β-Methylanthrachinon, tert-Butylanthrachinon, Anthrachinoncarbonysäureester, Benzaldehyd, α-Tetralon, 9-Acetylphenanthren, 2-Acetylphenanthren, 10-Thioxanthenon, 3-Acetylphenanthren, 3-Acetylindol, 9-Fluorenon, 1-Indanon, 1,3,4-Triacetylbenzol, Thioxanthen-9-on, Xanthen-9-on, 2,4-Dimethylthioxanthon, 2,4-Diethylthioxanthon, 2,4-Di-iso-propylthioxanthon, 2,4-Dichlorthioxanthon, Benzoin, Benzoin-iso-butylether, Chloroxanthenon, Benzointetrahydropyranylether, Benzoin-methylether, Benzoin-ethylether, Benzoin-butylether, Benzoin-iso-propylether, 7-H-Benzoin-methylether, Benz[de]anthracen-7-on, 1-Naphthaldehyd, 4,4'-Bis(dimethylamino)benzophenon, 4-Phenylbenzophenon, 4-Chlorbenzophenon, Michlers Keton, 1-Acetonaphthon, 2-Acetonaphthon, 1-Benzoylcyclohexan-1-ol, 2-Hydroxy-2,2-dimethylacetophenon, 2,2-Dimethoxy-2-phenylacetophenon, 2,2-Diethoxy-2-phenylacetophenon, 1,1-Dichloracetophenon, 1-Hydroxyacetophenon, Acetophenondimethylketal, o-Methoxybenzophenon, Triphenylphosphin, Tri-o-Tolylphosphin, Benz[a]anthracen-7,12-dion, 2,2-Diethoxyacetophenon, Benzilketale, wie Benzildimethylketal, 2-Methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-on, Anthrachinone wie 2-Methylanthrachinon, 2-Ethylanthrachinon, 2-tert-Butylanthrachinon, 1-Chloranthrachinon, 2-Amylanthrachinon und 2,3-Butandion.
  • Geeignet sind auch nicht- oder wenig vergilbende Photoinitiatoren vom Phenylglyoxalsäureestertyp, wie in DE-A 198 26 712 , DE-A 199 13 353 oder WO 98/33761 beschrieben.
  • Typische Gemische umfassen beispielsweise 2-Hydroxy-2-Methyl-1-phenyl-propan-2-on und 1-Hydroxy-cyclohexyl-phenylketon, Bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphinoxid und 2-Hydroxy-2-methyl-1-phenyl-propan-1-on, Benzophenon und 1-Hydroxy-cyclohexyl-phenylketon, Bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphinoxid und 1-Hydroxy-cyclohexyl-phenylketon, 2,4,6-Trimethylbenzoyldiphenylphosphinoxid und 2-Hydroxy-2-methyl-1-phenyl-propan-1-on, 2,4,6-Trimethylbenzophenon und 4-Methylbenzophenon oder 2,4,6-Trimethylbenzophenon und 4-Methylbenzophenon und 2,4,6-Trimethylbenzoyldiphenylphosphinoxid.
  • Bevorzugt unter diesen Photoinitiatoren sind 2,4,6-Trimethylbenzoyldiphenylphosphinoxid, Ethyl-2,4,6-trimethylbenzoylphenylphosphinat, Bis-(2,4,6-trimethylbenzoyl)-phenylphosphinoxid, Benzophenon, 1-Benzoylcyclohexan-1-ol, 2-Hydroxy-2,2-dimethylacetophenon und 2,2-Dimethoxy-2-phenylacetophenon.
  • Die Beschichtungsmassen enthalten die Photoinitiatoren vorzugsweise in einer Menge von 0,05 bis 10 Gew.-%, besonders bevorzugt 0,1 bis 8 Gew.-%, insbesondere 0,2 bis 5 Gew.-%, bezogen auf die Gesamtmenge der härtbaren Komponenten.
  • Die Beschichtung der Substrate mit den Beschichtungsmassen erfolgt nach üblichen, dem Fachmann bekannten Verfahren, wobei man eine Beschichtungsmasse oder eine solche enthaltend Lackformulierung auf das zu beschichtende Substrat in der gewünschten Stärke aufbringt und gegebenenfalls trocknet. Dieser Vorgang kann gewünschtenfalls ein- oder mehrfach wiederholt werden. Das Aufbringen auf das Substrat kann in bekannter Weise, z. B. durch Spritzen, Spachteln, Rakeln, Bürsten, Rollen, Walzen, Gießen, Laminieren, Hinterspritzen oder Coextrudieren erfolgen.
  • Weiterhin wird ein Verfahren zum Beschichten von Substraten offenbart, bei dem man das eine Beschichtungsmasse oder eine solche enthaltende Lackformulierung, gegebenenfalls mit weiteren lacktypischen Additiven und thermisch, chemisch oder strahlungshärtbaren Harzen versetzt, auf das Substrat aufbringt und gegebenenfalls trocknet, mit Elektronenstrahlen oder UV Belichtung unter sauerstoffhaltiger Atmosphäre oder bevorzugt unter Inertgas härtet, gegebenenfalls bei Temperaturen bis zur Höhe der Trocknungstemperatur.
  • Die Strahlungshärtung erfolgt mit energiereichem Licht, z. B. UV-Licht oder Elektronenstrahlen. Die Strahlungshärtung kann bei höheren Temperaturen erfolgen. Bevorzugt ist dabei eine Temperatur oberhalb der Tg des strahlungshärtbaren Bindemittels.
  • Strahlungshärtung heißt hier die radikalische Polymerisation von polymerisierbaren Verbindungen infolge einer elektromagnetischen und/oder korpuskularen Strahlung, bevorzugt UV-Licht im Wellenlängenbereich von λ = 200 bis 700 nm und/oder Elektronenstrahlung im Bereich von 150 bis 300 keV und besonders bevorzugt mit einer Strahlungsdosis von mindestens 80, bevorzugt 80 bis 3000 mJ/cm2.
  • Die Beschichtungsmittel können nach den unterschiedlichsten Spritzverfahren, wie z. B. Luftdruck-, Airless- oder Elektrostatik-Spritzverfahren unter Verwendung von Ein- oder Zweikomponenten-Spritzanlagen, aber auch durch Spritzen, Spachteln, Rakeln, Borsten, Rollen, Walzen, Gießen, Laminieren, Hinterspritzen oder Coextrudieren ein- oder mehrfach appliziert werden.
  • Die Beschichtungsstärke liegt in der Regel in einem Bereich von etwa 3 bis 1000 g/m2 und vorzugsweise 10 bis 200 g/m2.
  • Die Trocknung und Aushärtung der Beschichtungen erfolgt im allgemeinen unter normalen Temperaturbedingungen, d. h. ohne Erhitzung der Beschichtung. Die erfindungsgemäßen Mischungen können jedoch auch zur Herstellung von Beschichtungen eingesetzt werden, die nach Applikation bei erhöhter Temperatur, z. B. bei 40–250°C, vorzugsweise 40–150°C und insbesondere bei 40 bis 100°C getrocknet und ausgehärtet werden. Dies ist begrenzt durch die Thermostabilität des Substrats.
  • Weiterhin wird ein Verfahren zum Beschichten von Substraten offenbart, bei dem man die Beschichtungsmasse oder solche enthaltende Lackformulierungen, gegebenenfalls mit thermisch härtbaren Harzen versetzt, auf das Substrat aufbringt, trocknet, und anschließend mit Elektronenstrahlen oder UV Belichtung unter sauerstoffhaltiger Atmosphäre oder bevorzugt unter Inertgas härtet, gegebenenfalls bei Temperaturen bis zur Höhe der Trocknungstemperatur.
  • Gegebenenfalls kann, wenn mehrere Schichten des Beschichtungsmittels übereinander aufgetragen werden, nach jedem Beschichtungsvorgang eine Trocknung und/oder Strahlungshärtung erfolgen.
  • Als Strahlungsquellen für die Strahlungshärtung geeignet sind z. B. Quecksilber-Niederdruckstrahler, -Mitteldruckstrahler mit Hochdruckstrahler sowie Leuchtstoffröhren, Impulsstrahler, Metallhalogenidstrahler, Elektronenblitzeinrichtungen, wodurch eine Strahlungshärtung ohne Photoinitiator möglich ist, oder Excimerstrahler. Die Strahlungshärtung erfolgt durch Einwirkung energiereicher Strahlung, also UV-Strahlung oder Tageslicht, vorzugsweise Licht im Wellenlängenbereich von λ = 200 bis 700 nm strahlt, besonders bevorzugt von λ = 200 bis 500 nm und ganz besonders bevorzugt λ = 250 bis 400 nm, oder durch Bestrahlung mit energiereichen Elektronen (Elektronenstrahlung; 150 bis 300 keV). Als Strahlungsquellen dienen beispielsweise Hochdruckquecksilberdampflampen, Laser, gepulste Lampen (Blitzlicht), Halogenlampen oder Excimerstrahler. Die üblicherweise zur Vernetzung ausreichende Strahlungsdosis bei UV-Härtung liegt im Bereich von 80 bis 3000 mJ/cm2.
  • Selbstverständlich sind auch mehrere Strahlungsquellen für die Härtung einsetzbar, z. B. zwei bis vier.
  • Diese können auch in jeweils unterschiedlichen Wellenlängebereichen strahlen.
  • Die Trocknung und/oder thermische Behandlung kann auch zusätzlich zur oder anstelle der thermischen Behandlung durch NIR-Strahlung erfolgen, wobei als NIR-Strahlung hier elektromagnetische Strahlung im Wellenlängenbereich von 760 nm bis 2,5 μm, bevorzugt von 900 bis 1500 nm bezeichnet ist.
  • Die Bestrahlung kann gegebenenfalls auch unter Ausschluß von Sauerstoff, z. B. unter Inertgas-Atmosphäre, durchgeführt werden. Als Inertgase eignen sich vorzugsweise Stickstoff, Edelgase, Kohlendioxid, oder Verbrennungsgase. Des weiteren kann die Bestrahlung erfolgen, indem die Beschichtungsmasse mit transparenten Medien abgedeckt wird. Transparente Medien sind z. B. Kunststofffolien, Glas oder Flüssigkeiten, z. B. Wasser. Besonders bevorzugt ist eine Bestrahlung in der Weise, wie sie in der DE-A1 199 57 900 beschrieben ist.
  • Geeignete Substrate für die erfindungsgemäßen Beschichtungsmassen sind beispielsweise thermoplastische Polymere, insbesondere Polymethylmethacrylate, Polybutylmethacrylate, Polyethylenterephthalate, Polybutylenterephthalate, Polyvinylidenflouride, Polyvinylchloride, Polyester, Polyolefine, Acrylnitrilethylenpropylendienstryolcopolymere (A-EPDM), Polyetherimide, Polyetherketone, Polyphenylensulfide, Polyphenylenether oder deren Mischungen.
  • Weiterhin genannt seien Polyethylen, Polypropylen, Polystyrol, Polybutadien, Polyester, Polyamide, Polyether, Polycarbonat, Polyvinylacetal, Polyacrylnitril, Polyacetal, Polyvinylalkohol, Polyvinylacetat, Phenolharze, Harnstoffharze, Melaminharze, Alkydharze, Epoxidharze oder Polyurethane, deren Block- oder Pfropfcopolymere und Elends davon.
  • Bevorzugt genannt seien ABS, AES, AMMA, ASA, EP, EPS, EVA, EVAL, HDPE, LDPE, MARS, MBS, MF, PA, PA6, PA66, PAN, PB, PBT, PBTP, PC, PE, PEC, PEEK, PEI, PEK, PEP, PES, PET, PETP, PF, PI, PIB, PMMA, POM, PP, PPS, PS, PSU, PUR, PVAC, PVAL, PVC, PVDC, PVP, SAN, SB, SMS, UF, UP-Kunststoffe (Kurzzeichen gemäß DIN 7728) und aliphatische Polyketone.
  • Besonders bevorzugte Substrate sind Polyolefine, wie z. B. PP (Polypropylen), das wahlweise isotaktisch, syndiotaktisch oder ataktisch und wahlweise nicht-orientiert oder durch uni- oder bisaxiales Recken orientiert sein kann, SAN (Styrol-Acrylnitril-Copolymere), PC (Polycarbonate), PVC (Polyvinylchloride), PMMA (Polymethylmethacrylate), PBT (Poly(butylenterephthalat)e), PA (Polyamide), ASA (Acrylnitril-Styrol-Acrylester-Copolymere) und ABS (Acrylnitril-Butadien-Styrol-Copolymere), sowie deren physikalische Mischungen (Elends). Besonders bevorzugt sind PP, SAN, ABS, ASA sowie Elends von ABS oder ASA mit PA oder PBT oder PC. Ganz besonders bevorzugt sind Polyolefine, PMMA und PVC.
  • Ganz besonders bevorzugt ist ASA, insbesondere gemäß DE 196 51 350 und der Elend ASA/PC. Bevorzugt ist ebenfalls Polymethylmethacrylat (PMMA) oder schlagzähmodifiziertes PMMA.
  • In dieser Schrift verwendete ppm- und Prozentangaben beziehen sich, falls nicht anders angegeben, auf Gewichtsprozente und -ppm.
  • Beispiele
  • 1. Herstellung von Glycerinpropoxylattriacrylat durch azeotrope Veresterung des Triols mit Acrylsäure; Verbindung 1
  • 355 g Glycerinpropoxylat (mittlere OHZ = 520 mg KOH/g), 265 g Cyclohexan, 245 g Acrylsäure, 0,42 g 31,5%ige CuCl2-Lösung, 1,57 g H3PO2 und 0,12 g Methylhydrochinon wurden als Vorlage eingefüllt und auf 75°C erwärmt. Bei dieser Temperatur wurde der Katalysator, 27 g 70%ige wässrige Methansulfonsäurelösung, zugegeben. Die Temperatur wurde auf 96–97°C angehoben und durch Zugabe von weiterem Cyclohexan bei diesem Wert gehalten. Der Reaktionsfortschritt wurde anhand der Menge des gebildeten Reaktionswassers bestimmt. Nach 9 h ist die Reaktion beendet. Die Aufarbeitung erfolgt durch wässrige Extraktion der überschüssigen Acrylsäure, Entfernen des Lösungsmittels bei reduziertem Druck und anschließender Filtration des Produkts über einen Seitz K300 Filter.
    Viskosität: 110 mPa·s bei 23°C
    Hazenfarbzahl: 67 mg Pt/l
  • 2. Addition von Monoethanolamin an Verbindung 1; Verbindung 2 (Verh. Amin zu Acrylatdoppelbindung ca. 0,1)
  • 1600 g Verbindung 1 wurden zusammen mit 1,6 g Hydrochinonmonomethylether, 3,2 g 2,6-Di-tert.-Butyl-p-kresol und 1,6 g Triphenylphosphit vorgelegt und der Ansatz auf 60°C erwärmt. Über einen Zeitraum von 90 Minuten wurden 64 g Monoethanolamin zugegeben und der Ansatz anschließend 6 h bei 60°C gerührt. Das Produkt wurde durch Filtration über einen Seitz K300 Filter gereinigt.
    Viskosität: 640 mPas bei 23°C
    Hazenfarbzahl: 115 mg Pt/I
    Lagerstabilität (RT/60°C): > 2 Monate/> 2 Monate
  • 3. Addition von Dibutylamin an Verbindung 1; Verbindung 3 (Verh. Amin zu Acrylatdoppelbindung ca. 0,07)
  • 1600 g Verbindung 1 wurden zusammen mit 1,6 g Hydrochinonmonomethylether, 3,2 g 2,6-Di-tert.-Butyl-p-kresol, 0,16 g Phenothiazin und 1,6 g Triphenylphosphit vorgelegt und der Ansatz auf 60°C erwärmt. Über einen Zeitraum von 90 Minuten wurden 96 g Dibutylamin zugegeben und der Ansatz anschließend 6 h bei 60°C gerührt. Das Produkt wurde durch Filtration über einen Seitz K300 Filter gereinigt.
    Viskosität: 120 mPas bei 23°C
    Hazenfarbzahl: 75 mg Pt/I
    Lagerstabilität (RT/60°C): > 1 Monate/> 1 Monate
  • 4. Addition von Dibutylamin an Verbindung 1; Verbindung 4 (Verh. Amin zu Acrylatdoppelbindung ca. 0,07)
  • 1600 g Verbindung 1 wurden zusammen mit 1,6 g 2,6-Di-tert.-Butyl-p-kresol und 0,48 g 4-Hydroxy-TEMPO vorgelegt und der Ansatz auf 60°C erwärmt. Über einen Zeitraum von 45 Minuten wurden 96 g Dibutylamin zugegeben und der Ansatz anschließend 6 h bei 60°C gerührt. Das Produkt wurde durch Filtration über einen Seitz K300 Filter gereinigt.
    Viskosität: 110 mPas bei 23°C
    Hazenfarbzahl: 250 mg Pt/I
    Lagerstabilität (RT/60°C): > 1 Monate/> 1 Monate
  • 5. Addition von Diethylamin an Verbindung 1; Verbindung 5 (Verh. Amin zu Acrylatdoppelbindung ca. 0,13)
  • 150 g Verbindung 1 wurden zusammen mit 0,3 g 2,6-Di-tert.-Butyl-p-kresol vorgelegt und der Ansatz auf 60°C erwärmt. Über einen Zeitraum von 5 Minuten wurden 9 g Diethylamin zugegeben und der Ansatz anschließend 6 h bei 60°C gerührt. Das Produkt wurde durch Filtration über einen Seitz K300 Filter gereinigt.
    Viskosität: 102 mPas bei 23°C
    Hazenfarbzahl: 92 mg Pt/I
  • 6. Addition einer Aminmischung an Verbindung 1; Verbindung 6 (Verh. Amin zu Acrylatdoppelbindung ca. 0,12)
  • 300 g Verbindung 1 wurden zusammen mit 0,6 g 2,6-Di-tert.-Butyl-p-kresol vorgelegt und auf 60°C erwärmt. Innerhalb von 10 Minuten wurde eine Mischung aus 5,4 g Monoethanolamin, 5,4 g Isopropanolamin und 5,4 g Aminoethoxyethanol zugegeben. Der Ansatz wurde weitere 6 h bei 60°C gerührt und das Produkt anschließend durch Filtration über einen Seitz K300 Filter gereinigt.
    Viskosität: 700 mPas bei 23°C
    Hazenfarbzahl: 94 mg Pt/I
  • Bestimmung der anwendungstechnischen Eigenschaften:
  • Es wurden die hergestellten Harze unter Rührung mit einem Labordissolver mit 4% Irgacure® 500 (50:50-Gemisch aus 1-Hydroxy-cyclohexyl-phenyl-keton und Benzophenon, Photoinitiator der Firma Ciba Spezialitätenchemie) fest auf fest gemischt. Die Lacke wurden nach 24 h mit einem 200 μm-Kastenrakel auf Glasplatten (für die Bestimung der Pendeldämpfung PD nach König gemäß DIN EN ISO 1522, hohe Werte bedeuten hohe Härte) und Barytpapier (für die Bestimmung im Chemikalientest gemäß DIN 68860 B) appliziert.
  • Mit einem 100 μm-Spiralrakel wurden die Lacke auf Schwarzweißpapier (für die Bestimung der Reaktivität und des Glanzes), auf Photopapier (für die Bestimmung der Vergilbung) und auf Bonderblech (für die Bestimmung der Erichsentiefung ET gemäß DIN EN ISO 1520, hohe Werte bedeuten hohe Flexibilität und des Glanzes) appliziert. Anschließend wurden die Filme sofort zweimal an der Luft bei einer Bandgeschwindigkeit von 10 m/min unter der UV-Lampe (CV-Strahler UV Bereich 180–450 nm, Leistung 100 W/cm) belichtet und damit ausgehärtet. Für den Vergilbungstest wurde sofort nach 1 × 10 m und nach 10 × 10 m Belichtung der b* Wert gemessen (Gerät: Fa. BYK Gardner color-guide sphere gloss) Gerät entspricht folgenden Normen: Glanz: ASTM D 523, ASTM D 2457 EN ISO 7668, DIN EN ISO 2813).
  • Für die Glanzbestimmung wurde nach 2 × 10 m Belichtung bei 60° auf Schwarzweißpapier und auf Bonder gemessen (Gerät: Fa. Byk Gardner micro-TRI-gloss μ) (Erfüllt folgende Normen Für Glanz: ASTM D 523/DIN 67530/DIN EN ISO 2813 Für Schichtdicke: ASTM B 499 & D 1400/DIN EN ISO 2360/EN ISO 2178)
  • Bei der Bestimmung der Reaktivität wird die max. mögliche Bandgeschwindigkeit ermittelt, bei welcher ein flüssiger Lackfilm durch UV-Strahlung ausgehärtet wird und eine kratzfeste, klebfreie Oberfläche ergibt. Getestet wird mit dem Fingernagel, Lampe: HL-600-3 × 1-H-L-TR-SLC (120 W/cm, Objektabstand: 10 cm).
  • Zur Bestimmung der Lagerstabilität werden je ca. 20 g bei Raumtemperatur und bei 60°C in braunen Schraubgläsern eingelagert und regelmäßig auf Viskosität und Jodfarbzahl (DIN 6162) kontrolliert.
  • Als Vergleich wurde ein Acrylsäureester von gemischt einfach ethoxyliertem und dreifach propoxyliertem Trimethylolpropan eingesetzt, der mit der gleichen Menge des gleichen Amins versetzt ist, wie die verglichenenen erfindungsgemäßen Beispiele.
    Rezepte: Verbindung 2 Referenz
    Harz 96
    Referenz 100
    Ethanolamin in % 4
    Irgacure 500 4 4
    Ansatz Viskosität mPas 540 530
    Jodfarbzahl 0,4 0,9
    Hazen 62 183
    8 g/m2 Reaktivität [m/min] 40 25
    50 g/m2 Reaktivität [m/min] 40 25
    100 g/m2 Pendeldämpfung [Schläge] 31 29
    25 g/m2 Erichsen-Tiefung [mm] 3,9 4,2
    25 g/m2 b* belichtet – 1 × 10 m/min 4,3 4,3
    25 g/m2 b* belichtet – 10 × 10 m/min 7,5 7,3
    25 g/m2 Glanz 60° auf Schwarzem Papier 89,7 90,8
    25 g/m2 Glanz 60° Bonder (2 × 10 m/min) 97,3 98,0
    Chem-Test DIN 68680 0,85 0,70
    1 Std. Alkohol 0,0 0,0
    5 Std. Rotwein 1,5 1,5
    16 Std. Pulverkaffee 2,0 1,5
    16 Std. Sches. Johannisbeersaft 2,0 1,0
    10 sec EE-Buac 0,0 0,0
    5 Std. Senf 3,0 3,0
    16 Std. Lippenstift 0,0 0,0
    10 min Desinfektionsmittel 0,0 0,0
    10 sec Aceton 0,0 0,0
    1 Std. Reinigungsmittel 0,0 0,0
    Rezepte: Verbindung 4 Verbindung 3 Verbindung 5 Referenz
    Harz 96 96 96
    Referenz 100
    Dibutylamin in % 6 6
    Irgacure 500 4 4 4 4
    Ansatz Viskosität mPas 120 240 110
    Jodfarbzahl 1,6 0,5 1,0 0,4
    Hazen 220 55 75
    8 g/m2 Reaktivität [m/min] 15 20 45 20
    50 g/m2 Reaktivität [m/min] 15 20 45 20
    100 g/m2 Pendeldämpfung [Schläge] 28 36 29 36
    25 g/m2 Erichsen-Tiefung [mm] 3,6 3,3 3,2 3,5
    25 g/m2 b* belichtet – 1 × 10 m/min 4,6 4,1 4,4 4,6
    25 g/m2 b* belichtet – 10 × 10 m/min 7,6 7,3 7,5 7,3
    25 g/m2 Glanz 60° auf Schwarzem Papier 88 89,6 88 88,8
    25 g/m2 Glanz 60° Bonder (2 × 10 m/min) 96 97,2 n. b. 97,4
    100 g/m2 Chem. Test 1,05 0,90 1,00 0,70
    1 Std. Alkohol 0,0 0,0 0,0 0,0
    5 Std. Rotwein 3,0 2,0 1,5 1,5
    16 Std. Pulverkaffee 3,0 2,0 3 1,5
    16 Std. Schw. Johannisbeersaft 1,5 1,5 2 1,0
    10 sec EE-Buac 0,0 0,0 0,0 0,0
    5 Std. Senf 3,0 3,5 3,5 3,0
    16 Std. Lippenstift 0,0 0,0 0,0 0,0
    10 min Desinfektionsmittel 0,0 0,0 0,0 0,0
    10 sec Aceton 0,0 0,0 0,0 0,0
    1 Std. Reinigungsmittel 0,0 0,0 0,0 0,0
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • EP 54105 A [0002]
    • DE 3316593 A [0002]
    • EP 680985 A [0002]
    • EP 279303 A [0002]
    • EP 280222 A [0004]
    • DE 2625238 [0004]
    • DE 2346424 A [0004]
    • DE 3706355 [0004]
    • EP 211978 [0004]
    • EP 7508 A [0054]
    • EP 57474 A [0054]
    • DE 19618720 A [0054]
    • EP 495751 A [0054]
    • EP 615980 A [0054]
    • DE 19826712 A [0055]
    • DE 19913353 A [0055]
    • WO 98/33761 [0055]
    • DE 19957900 A1 [0072]
    • DE 19651350 [0077]
  • Zitierte Nicht-Patentliteratur
    • CD Römpp Chemie Lexikon – Version 1.0, Stuttgart/New York: Georg Thieme Verlag 1995 unter Verweis auf DIN 55943 [0046]
    • ”Advances in Polymer Science”, Volume 14, Springer Berlin 1974 [0053]
    • K. K. Dietliker, Chemistry and Technology of UV- and EB-Formulation for Coatings, Inks and Paints, Volume 3; Photoinitiators for Free Radical and Cationic Polymerization, P. K. T. Oldring (Eds), SITA Technology Ltd, London [0053]
    • DIN 7728 [0075]
    • DIN EN ISO 1522 [0085]
    • DIN 68860 B [0085]
    • DIN EN ISO 1520 [0086]
    • ASTM D 523 [0086]
    • ASTM D 2457 [0086]
    • EN ISO 7668 [0086]
    • DIN EN ISO 2813 [0086]
    • ASTM D 523 [0087]
    • DIN 67530 [0087]
    • DIN EN ISO 2813 [0087]
    • ASTM B 499 & D 1400 [0087]
    • DIN EN ISO 2360 [0087]
    • EN ISO 2178 [0087]
    • DIN 6162 [0089]
    • DIN 68680 [0090]

Claims (5)

  1. Strahlungshärtbare Gemische, erhältlich durch Umsetzung von (A) (Meth)acrylsäure mit im statistischen Mittel 3,0 bis 4,0-fach propoxyliertem Glycerin, (B) gefolgt von Entfernung überschüssiger (Meth)acrylsäure aus dem aus (A) erhaltenen Reaktionsgemisch mit Hilfe einer wäßrigen Extraktion und optional (C) Zugabe von 0 bis 8 Gew.-% mindestens eines primären oder sekundären Amins.
  2. Strahlungshärtbare Gemische gemäß Anspruch 1, dadurch gekennzeichnet, daß das Glycerin im statistischen Mittel 3,4 bis 3,9-fach propoxyliert ist.
  3. Strahlungshärtbare Gemische gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Umsetzung (A) mit 0,7 bis 1,3 Äquivalenten (Meth)acrylsäure erfolgt.
  4. Strahlungshärtbare Gemische gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Amin ausgewählt ist aus der Gruppe bestehend aus n-Butylamin, n-Hexylamin, 2-Ethylhexylamin, Octadecylamin, Cyclopentylamin, Cyclohexylamin, Diethylamin, Di-n-Butylamin, Di-n-Hexylamin, Di-iso Propylamin, Monoethanolamin, Diethanolamin, 2-Aminopropan-1-ol, Aminoethoxyethanol und Di iso Propanolamin.
  5. Verwendung von strahlungshärtbaren Gemischen gemäß einem der vorstehenden Ansprüche in Lacken, Druckfarben, Klebstoffen, Druckplatten, Formkörper, zur Herstellung von Photoresisten, in der Stereolithographie oder als Gießmasse
DE102010044206A 2009-11-25 2010-11-22 Verfahren zur Herstellung von strahlungshärtbaren (Meth)Acrylaten Withdrawn DE102010044206A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09177087.5 2009-11-25
EP09177087 2009-11-25

Publications (1)

Publication Number Publication Date
DE102010044206A1 true DE102010044206A1 (de) 2011-05-26

Family

ID=43902248

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010044206A Withdrawn DE102010044206A1 (de) 2009-11-25 2010-11-22 Verfahren zur Herstellung von strahlungshärtbaren (Meth)Acrylaten

Country Status (1)

Country Link
DE (1) DE102010044206A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012253A1 (de) 2014-10-20 2016-04-27 Basf Se Tetrahydrofuran-Derivate
WO2017174443A1 (de) 2016-04-08 2017-10-12 Basf Se Trimethylolpropan-derivate
WO2017174444A1 (de) 2016-04-08 2017-10-12 Basf Se Trimethylolpropan-derivate
WO2017174436A1 (de) 2016-04-08 2017-10-12 Basf Se Trimethylolpropan-derivate
DE102022126298A1 (de) 2022-10-11 2024-04-11 Maschinenfabrik Kaspar Walter Gmbh & Co Kg Vorrichtung und Verfahren zum Auftragen und Aushärten einer Polymerschicht auf einem zylindrischen Körper

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2346424A1 (de) 1972-09-18 1974-04-11 Desoto Inc Strahlungshaertbare, nicht gelierte michael-additionsprodukte
DE2625238A1 (de) 1976-06-04 1977-12-15 Usbeck & Soehne Monopolwerk Schraubdeckelzange
EP0007508A2 (de) 1978-07-14 1980-02-06 BASF Aktiengesellschaft Acylphosphinoxidverbindungen, ihre Herstellung und ihre Verwendung
EP0054105A1 (de) 1980-12-10 1982-06-23 Vianova Kunstharz Aktiengesellschaft Verfahren zur Herstellung von (meth)acrylsäuremodifizierten Polyestern
EP0057474A2 (de) 1979-03-14 1982-08-11 BASF Aktiengesellschaft Acylphosphinoxidverbindungen, ihre Herstellung und Verwendung
DE3316593A1 (de) 1983-05-06 1984-11-08 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von (meth)-acrylsaeureestern und deren verwendung
EP0211978A1 (de) 1985-08-14 1987-03-04 Gus Nichols Herstellungsverfahren für Polymerzusammensetzung ohne Lösungsmittel
EP0279303A2 (de) 1987-02-11 1988-08-24 BASF Aktiengesellschaft Strahlungshärtbare Acrylate
EP0280222A2 (de) 1987-02-27 1988-08-31 BASF Aktiengesellschaft Additionsprodukte aus Acrylaten und Aminen sowie deren Verwendung in strahlungshärtbaren Massen
EP0495751A1 (de) 1991-01-14 1992-07-22 Ciba-Geigy Ag Bisacylphosphine
EP0615980A2 (de) 1993-03-18 1994-09-21 Ciba-Geigy Ag Härtung von Bisacylphosphinoxid-Photoinitiatoren enthaltenden Zusammensetzungen
EP0680985A1 (de) 1994-05-04 1995-11-08 Basf Aktiengesellschaft Verfahren zur Herstellung von strahlungshärtbaren Acrylaten
DE19618720A1 (de) 1995-05-12 1996-11-14 Ciba Geigy Ag Bisacyl-bisphosphine, -oxide und -sulfide
DE19651350A1 (de) 1996-12-10 1998-06-18 Basf Ag Verbundschichtplatten oder -folien und Formkörper daraus
WO1998033761A1 (en) 1997-01-30 1998-08-06 Ciba Specialty Chemicals Holding Inc. Non-volatile phenylglyoxalic esters
DE19826712A1 (de) 1998-06-16 1999-12-23 Basf Ag Strahlungshärtbare Massen, enthaltend Phenylglyoxylate
DE19913353A1 (de) 1999-03-24 2000-09-28 Basf Ag Verwendung von Phenylglyoxalsäureestern als Photoinitiatoren
DE19957900A1 (de) 1999-12-01 2001-06-07 Basf Ag Lichthärtung von strahlungshärtbaren Massen unter Schutzgas

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2346424A1 (de) 1972-09-18 1974-04-11 Desoto Inc Strahlungshaertbare, nicht gelierte michael-additionsprodukte
DE2625238A1 (de) 1976-06-04 1977-12-15 Usbeck & Soehne Monopolwerk Schraubdeckelzange
EP0007508A2 (de) 1978-07-14 1980-02-06 BASF Aktiengesellschaft Acylphosphinoxidverbindungen, ihre Herstellung und ihre Verwendung
EP0057474A2 (de) 1979-03-14 1982-08-11 BASF Aktiengesellschaft Acylphosphinoxidverbindungen, ihre Herstellung und Verwendung
EP0054105A1 (de) 1980-12-10 1982-06-23 Vianova Kunstharz Aktiengesellschaft Verfahren zur Herstellung von (meth)acrylsäuremodifizierten Polyestern
DE3316593A1 (de) 1983-05-06 1984-11-08 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von (meth)-acrylsaeureestern und deren verwendung
EP0211978A1 (de) 1985-08-14 1987-03-04 Gus Nichols Herstellungsverfahren für Polymerzusammensetzung ohne Lösungsmittel
EP0279303A2 (de) 1987-02-11 1988-08-24 BASF Aktiengesellschaft Strahlungshärtbare Acrylate
EP0280222A2 (de) 1987-02-27 1988-08-31 BASF Aktiengesellschaft Additionsprodukte aus Acrylaten und Aminen sowie deren Verwendung in strahlungshärtbaren Massen
DE3706355A1 (de) 1987-02-27 1988-09-08 Basf Ag Additionsprodukte aus acrylaten und aminen sowie deren verwendung in strahlungshaertbaren massen
EP0495751A1 (de) 1991-01-14 1992-07-22 Ciba-Geigy Ag Bisacylphosphine
EP0615980A2 (de) 1993-03-18 1994-09-21 Ciba-Geigy Ag Härtung von Bisacylphosphinoxid-Photoinitiatoren enthaltenden Zusammensetzungen
EP0680985A1 (de) 1994-05-04 1995-11-08 Basf Aktiengesellschaft Verfahren zur Herstellung von strahlungshärtbaren Acrylaten
DE19618720A1 (de) 1995-05-12 1996-11-14 Ciba Geigy Ag Bisacyl-bisphosphine, -oxide und -sulfide
DE19651350A1 (de) 1996-12-10 1998-06-18 Basf Ag Verbundschichtplatten oder -folien und Formkörper daraus
WO1998033761A1 (en) 1997-01-30 1998-08-06 Ciba Specialty Chemicals Holding Inc. Non-volatile phenylglyoxalic esters
DE19826712A1 (de) 1998-06-16 1999-12-23 Basf Ag Strahlungshärtbare Massen, enthaltend Phenylglyoxylate
DE19913353A1 (de) 1999-03-24 2000-09-28 Basf Ag Verwendung von Phenylglyoxalsäureestern als Photoinitiatoren
DE19957900A1 (de) 1999-12-01 2001-06-07 Basf Ag Lichthärtung von strahlungshärtbaren Massen unter Schutzgas

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Advances in Polymer Science", Volume 14, Springer Berlin 1974
ASTM B 499 & D 1400
ASTM D 2457
ASTM D 523
CD Römpp Chemie Lexikon - Version 1.0, Stuttgart/New York: Georg Thieme Verlag 1995 unter Verweis auf DIN 55943
DIN 6162
DIN 67530
DIN 68860 B
DIN 7728
DIN EN ISO 1520
DIN EN ISO 1522
DIN EN ISO 2360
DIN EN ISO 2813
EN ISO 2178
EN ISO 7668
K. K. Dietliker, Chemistry and Technology of UV- and EB-Formulation for Coatings, Inks and Paints, Volume 3; Photoinitiators for Free Radical and Cationic Polymerization, P. K. T. Oldring (Eds), SITA Technology Ltd, London

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012253A1 (de) 2014-10-20 2016-04-27 Basf Se Tetrahydrofuran-Derivate
WO2016062559A1 (de) * 2014-10-20 2016-04-28 Basf Se Tetrahydrofuran-derivate
WO2017174443A1 (de) 2016-04-08 2017-10-12 Basf Se Trimethylolpropan-derivate
WO2017174444A1 (de) 2016-04-08 2017-10-12 Basf Se Trimethylolpropan-derivate
WO2017174436A1 (de) 2016-04-08 2017-10-12 Basf Se Trimethylolpropan-derivate
DE102022126298A1 (de) 2022-10-11 2024-04-11 Maschinenfabrik Kaspar Walter Gmbh & Co Kg Vorrichtung und Verfahren zum Auftragen und Aushärten einer Polymerschicht auf einem zylindrischen Körper

Similar Documents

Publication Publication Date Title
EP3526273B1 (de) Strahlungshärtbare polyesteracrylat-haltige zusammensetzungen
EP2350154B1 (de) (meth)acrylierte melamin-formaldehyd-harze
EP3630857A1 (de) Härtbare zusammensetzungen und verwendungen davon
EP2092030B1 (de) Niedrigviskose beschichtungsmassen
DE102010044206A1 (de) Verfahren zur Herstellung von strahlungshärtbaren (Meth)Acrylaten
EP3015485B1 (de) Verfahren zur Herstellung strahlungshärtbarer Urethan(meth)acrylate
EP2855553B1 (de) Strahlungshärtbare verbindungen
WO2004055090A1 (de) Verfahren zur herstellung von strahlungshärtbaren urethan(meth)acrylaten
EP0755949A1 (de) Strahlungshärtbare Massen mit kovalent gebundenen Photoinitiatoren
EP1511817B1 (de) Strahlungshärtbare wässrige dispersionen
EP1858995B1 (de) Radikalisch härtbare beschichtungsmassen
WO2007020200A1 (de) Verfahren zur herstellung von (meth)acrylsäureestern
EP3012253B1 (de) Tetrahydrofuran-Derivate
WO2017174438A1 (de) Strahlenhärtbare zusammensetzungen
DE102010044204A1 (de) Verfahren zur Herstellung von strahlungshärtbaren (Meth)Acrylaten
DE102010003308A1 (de) Strahlungshärtbare wasseremulgierbare Polyurethan(meth)acrylate
WO2016075007A1 (de) 1,3-propandiol-derivate
WO2005090489A1 (de) Cer-verbindungen als initiatoren für die dual-cure härtung
EP3004199A1 (de) Verfahren zur herstellung von urethan(meth)acrylaten
WO2017174443A1 (de) Trimethylolpropan-derivate
WO2017174444A1 (de) Trimethylolpropan-derivate
EP3440049A1 (de) Trimethylolpropan-derivate
JP2017179006A (ja) 活性エネルギー線硬化型インクジェットインキ組成物
WO2004026940A1 (de) Verfahren zur herstellung von strahlungshärtbaren zusammensetzungen

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20130601