DE102010026516B4 - Feder für einen Drucktaster, Federanordnung und Tasteranordnung - Google Patents

Feder für einen Drucktaster, Federanordnung und Tasteranordnung Download PDF

Info

Publication number
DE102010026516B4
DE102010026516B4 DE102010026516A DE102010026516A DE102010026516B4 DE 102010026516 B4 DE102010026516 B4 DE 102010026516B4 DE 102010026516 A DE102010026516 A DE 102010026516A DE 102010026516 A DE102010026516 A DE 102010026516A DE 102010026516 B4 DE102010026516 B4 DE 102010026516B4
Authority
DE
Germany
Prior art keywords
spring
area
sensor means
magnet
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102010026516A
Other languages
English (en)
Other versions
DE102010026516A1 (de
Inventor
Manfred Brandl
Jean-Marc Lucchini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram AG
Original Assignee
Austriamicrosystems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Austriamicrosystems AG filed Critical Austriamicrosystems AG
Priority to DE102010026516A priority Critical patent/DE102010026516B4/de
Priority to US13/809,156 priority patent/US9035731B2/en
Priority to KR1020137003078A priority patent/KR101426212B1/ko
Priority to PCT/EP2011/061629 priority patent/WO2012004386A2/de
Publication of DE102010026516A1 publication Critical patent/DE102010026516A1/de
Application granted granted Critical
Publication of DE102010026516B4 publication Critical patent/DE102010026516B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/10Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
    • F16H21/44Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for conveying or interconverting oscillating or reciprocating motions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/025Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by having a particular shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/04Measuring force or stress, in general by measuring elastic deformation of gauges, e.g. of springs
    • G01L1/044Measuring force or stress, in general by measuring elastic deformation of gauges, e.g. of springs of leaf springs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/122Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using permanent magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/10Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the capsule type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/02Details
    • H01H13/26Snap-action arrangements depending upon deformation of elastic members
    • H01H13/36Snap-action arrangements depending upon deformation of elastic members using flexing of blade springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/50Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a single operating member
    • H01H13/52Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a single operating member the contact returning to its original state immediately upon removal of operating force, e.g. bell-push switch
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/965Switches controlled by moving an element forming part of the switch
    • H03K17/97Switches controlled by moving an element forming part of the switch using a magnetic movable element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/96038Inductive touch switches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18992Reciprocating to reciprocating

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Push-Button Switches (AREA)
  • Switches With Compound Operations (AREA)
  • Mechanical Control Devices (AREA)

Abstract

Feder (3) für einen Drucktaster, zur Befestigung auf einem Träger (2) und zur Erfassung einer vertikalen Kraft (F), wobei die Feder (3) derart ausgestaltet ist, dass sie bei Betätigung eine vertikale Bewegung in eine horizontale Bewegung transformiert, welche mit einem Sensormittel (4) erfassbar ist, die Feder umfassend – mindestens einen Befestigungsbereich (6) zur Befestigung mit dem Träger (2), – mindestens einen Gleitbereich (8) zum horizontalen Gleiten der Feder (3) über das Sensormittel (4), – einen Magneten (9), der mit dem Gleitbereich (8) verbunden ist, – mindestens einen Kraftaufnahmebereich (7) zum Einleiten der in vertikaler Richtung ausgeübten Kraft (F) in die Feder (3).

Description

  • Die vorliegende Erfindung betrifft eine Feder für einen Drucktaster, eine Federanordnung sowie eine Tasteranordnung.
  • Drucktaster finden vielfältige Anwendung, um menschliche Anweisungen in elektrische Signale zu konvertieren. Um einen mehrjährigen sicheren Betrieb zu garantieren, haben sich kontaktlose Drucktaster bewährt. Diese stehen derzeit kapazitiv, optisch sowie als induktive Näherungsschalter zur Verfügung.
  • Aufgrund der zunehmenden Miniaturisierung beispielsweise in tragbaren Geräten wie Mobiltelefonen ist eine geringe Bauhöhe des Drucktasters wünschenswert. Zudem muss Design-Aspekten Rechnung getragen werden, beispielsweise durch eine flache Bauform des Gehäuses.
  • In dem Dokument DE 23 59 971 A1 ist ein elektrischer Tastenschalter angegeben, der für eine Schreibmaschine geeignet ist und kontaktbehaftet arbeitet.
  • Aufgabe der vorliegenden Erfindung ist es, eine Feder, eine Federanordnung sowie eine Tasteranordnung anzugeben, die eine kontaktlose Erfassung einer Betätigung des Drucktasters ermöglichen und zudem geringe Bauhöhen ermöglichen.
  • Die Aufgabe wird mit den Gegenständen der unabhängigen Patentansprüche gelöst. Ausgestaltungen und Weiterbildungen des vorgeschlagenen Prinzips sind in den jeweiligen abhängigen Patentansprüchen angegeben.
  • In einer Ausführungsform ist die Feder, die für einen Drucktaster geeignet ist, zur Befestigung auf einem Träger und zur Erfassung einer vertikalen Kraft bei einer Betätigung des Drucktasters eingerichtet. Dabei ist die Feder derart ausgestaltet, dass sie bei Betätigung eine vertikale Bewegung in eine horizontale Bewegung konvertiert. Die horizontale Bewegung ist mit einem Sensormittel erfassbar.
  • Durch die Konversion der vertikalen Kraft in eine horizontale Kraft ist eine sehr geringe Bauhöhe eines Drucktasters erzielbar. Dabei erlaubt die Erfassung der horizontalen Bewegung mit einem Sensormittel zudem eine berührungslose Erfassung einer Betätigung.
  • Die vorgeschlagene Feder ermöglicht eine Drucktasterfunktion, die eine zuverlässige berührungslose Erfassung ermöglicht bei zugleich geringer vertikaler Bewegung, um eine Betätigung auszulösen. Zudem ermöglicht das vorgeschlagene Prinzip eine Erfassung einer Betätigung eines Drucktasters mit geringer Empfindlichkeit gegenüber elektromagnetischen Störfeldern, Temperaturänderungen und Feuchtigkeit. Die geringe Bauhöhe und die einfache, sich durch die Konversion der Bewegung von vertikal nach horizontal ergebende Funktion ermöglicht zudem eine einfache Systemintegration, Assemblierung, Test und Kalibrierung.
  • Die Konversion der vertikalen in die horizontale Bewegung erfolgt bevorzugt durch elastische Deformation der Feder. Die elastische Deformation kann zudem eine Rückstellkraft erzeugen, die dazu führt, dass nach einer Betätigung die Feder in ihre Ausgangslage oder Ruhelage zurückkehrt.
  • Die Feder umfasst mindestens einen Befestigungsbereich zur Befestigung mit dem Träger. Die Befestigung kann beispielsweise mittels einer Schraube erfolgen. Weiterhin ist mindestens ein Gleitbereich zum Gleiten der Feder über das Sensormittel vorgesehen. Hierdurch wird letztlich die mechanische Betätigung in ein elektrisches Signal konvertiert. Weiterhin ist mindestens ein Kraftaufnahmebereich zum Einleiten der in vertikaler Richtung bei Betätigung ausgeübten Kraft in die Feder vorgesehen. Auch hier kann ein Gleiten des Kraftaufnahmebereichs bezüglich beispielsweise einer Glasplatte über der Feder vorgesehen sein.
  • In einem Ausführungsbeispiel ist der Kraftaufnahmebereich über je einen Schenkel der Feder einerseits mit dem Befestigungsbereich und andererseits mit dem Gleitbereich der Feder verbunden. Die Ausgestaltung der Feder, besonders die Winkel der beiden Schenkel der Feder bezüglich der Vertikalen, beeinflussen, ob bei der Konversion der vertikalen in die horizontale Bewegung eine mechanische Verstärkung oder Abschwächung erfolgt.
  • Die Feder ist bevorzugt aus einem Stück, das heißt ohne Gelenke oder Scharniere gefertigt. Daher ergibt sich kein mechanisches Spiel bei der Umsetzung der vertikalen Bewegung in eine horizontale Bewegung. Aufgrund mechanischer Reibung kann es bei einigen Ausführungen zu einer geringen Hysterese kommen. Mechanische Reibung kann sowohl im Kraftaufnahmebereich als auch besonders im Gleitbereich der Feder auftreten.
  • Die Feder ist bevorzugt aus einem Material gefertigt, welches eine ähnliche oder identische thermische Expansion aufweist, wie ein die Feder umgebendes Gehäuse. Beispielsweise kann dieses Material einen Kunststoff oder Teflon umfassen. Hierzu sind die Materialen so gewählt, dass die thermischen Ausdehnungskoeffizienten aufeinander abgestimmt sind, beispielsweise Materialien mit identischem oder ähnlichem Ausdehnungskoeffizienten für Feder und Gehäuse gewählt werden.
  • Die Feder ist bevorzugt elastisch deformierbar und erzielt hierdurch ein Rückstellmoment zur Rückkehr der Feder in eine Ausgangslage nach Ende der Betätigung.
  • Der Gleitbereich der Feder ist bevorzugt zur Aufnahme eines Magneten ausgebildet. Hierdurch ist eine kontaktlose Erfassung der in die Horizontale konvertierten Bewegung mittels eines Magnetsensors, beispielsweise eines Hall-Sensors, möglich.
  • Alternativ könnte auch der Gleitbereich der Feder das Sensormittel umfassen, während in diesem Fall der Magnet an dem Träger befestigt ist.
  • Die Feder kann beispielsweise im Wesentlichen V-förmig ausgebildet sein, wobei je ein Ende des V den Befestigungsbereich beziehungsweise den Gleitbereich repräsentiert und die Mitte des V den Kraftaufnahmebereich. Der Kraftaufnahmebereich ist über je einen Schenkel mit Befestigungsbereich und Gleitbereich verbunden.
  • Um eine größere mechanische Verstärkung einer vertikalen Bewegung in eine horizontale Bewegung zu erzielen, kann anstelle des V ein W vorgesehen sein, so dass sich eine W-förmige Feder ergibt.
  • Eine fertigungsnahe Realisierung ist beispielsweise eine U-förmige Feder, welche mit geringem Aufwand und geringen Kosten einstückig herstellbar ist und die relevante Bewegung in elastischer Deformation, ohne plastische Deformation, erfüllen kann.
  • In einer weiteren Ausführungsform umfasst eine Federanordnung eine Feder wie vorstehend beschrieben. Zusätzlich ist ein Kompensationsmittel vorgesehen, das mit dem Befestigungsbereich der Feder fest verbunden ist und sich in horizontaler Richtung erstreckt, wobei das Kompensationsmittel zur ortsfesten Montage mit dem Träger ausgebildet ist. Der Ausdehnungskoeffizient des Kompensationsmittel auf den Ausdehnungskoeffizienten der Feder ist derart abgestimmt, dass Temperatureinflüsse auf die Erfassung der horizontalen Bewegung mit dem Sensormittel vollständig oder weitgehend kompensiert sind.
  • Beispielsweise ist das Kompensationsmittel an einem Ende fest mit dem Träger verbunden und an dem anderen Ende gleitend über den Träger beweglich angebracht. An diesem Ende ist der Befestigungsbereich der Feder befestigt. Hierdurch wird bei thermischer Ausdehnung das Ausdehnungsverhalten der Feder in der horizontalen Ebene weitgehend kompensiert. Dies ermöglicht es sicherzustellen, dass sich beispielsweise der Magnet stets über dem Erfassungsbereich des Sensormittels befindet, sodass bei unterschiedlichsten Temperaturbedingungen eine sichere Erfassung einer Betätigung des Drucktasters ermöglicht ist.
  • Das Kompensationsmittel kann in vertikaler Projektion beispielsweise U-förmig ausgebildet sein und Schenkel aufweisen, die in einem Verbindungsbereich mit dem Befestigungsbereich der Feder verbunden sind. Die Schenkel können an ihren freien Enden Mittel zur ortsfesten Montage mit dem Träger aufweisen. Dies können beispielsweise Clips, Schraubverbindungen oder ähnliche ortsfeste Verbindungen sein.
  • Besonders bevorzugt ist die Feder beziehungsweise die Federanordnung in einer Tasteranordnung insbesondere für einen Drucktaster anwendbar. Eine derartige Tasteranordnung umfasst eine Feder oder eine Federanordnung wie vorstehend beschrieben. Der Träger ist dabei mit dem Befestigungsbereich der Feder unmittelbar beziehungsweise – falls vorhanden – über das Kompensationsmittel der Federanordnung verbunden. Weiterhin ist ein Magnet vorgesehen, der mit dem Gleitbereich der Feder verbunden ist sowie ein Sensormittel, welches auf oder an dem Träger befestigt ist zur Erfassung einer Horizontalbewegung des Magneten in Abhängigkeit von der Vertikalbewegung des Kraftaufnahmebereichs der Feder.
  • Der Kraftaufnahmebereich der Feder ist beispielsweise kraftschlüssig mit einem Betätigungselement der Tasteranordnung verbunden.
  • Dieses Betätigungselement kann beispielsweise durch eine im Wesentlichen horizontal ausgerichtete Glasplatte oder eine andere Abdeckung realisiert sein. Glasplatten finden beispielsweise in Mobiltelefonen verbreitet Anwendung und dienen dort zur großflächigen Realisierung einer berührungsempfindlichen Oberfläche, die resistiv oder, zunehmend, kapazitiv arbeitet.
  • Eine großflächige kapazitive berührungsempfindliche Oberfläche erfordert einen verhältnismäßig hohen Ruhestrom. Hier kommt das vorgeschlagene Prinzip besonders vorteilhaft zur Geltung, da die Feder ermöglicht, einen Drucktaster mit der berührungsempfindlichen Oberfläche zu kombinieren. Der Drucktaster kann beispielsweise dazu dienen, das Gerät aus einem Ruhezustand heraus zu aktivieren und die berührungsempfindliche Oberfläche großflächig einzuschalten.
  • Eine Vertikalbewegung durch Betätigen der Glasplatte führt aufgrund der kraftschlüssigen Verbindung unmittelbar zu einer Vertikalbewegung des Kraftaufnahmebereichs der Feder, welche wiederum zu einer Horizontalbewegung des Gleitbereichs der Feder führt, die mit dem Sensormittel erfasst und damit in ein elektrisches Signal konvertiert wird.
  • Das Sensormittel umfasst beispielsweise mindestens einen Hall-Sensor, der eine horizontale Bewegung des Magneten erfasst und in Abhängigkeit davon ein Sensorsignal an einem Sensorausgang des Sensormittels bereitstellt.
  • Beispielsweise kann das Sensormittel ein magnetischer Linearpositionssensor sein, der somit eine sehr robuste und kontaktlose Operation ermöglicht. Hierfür kann ein Permanentmagnet, der mindestens einen Nord- und Südpol umfasst, an demjenigen freien Ende der Feder befestigt sein, welches als Gleitbereich bezeichnet ist. Erfasst wird mit dem Sensormittel eine horizontale Positionsänderung des Magneten gegenüber dem Sensormittel.
  • Die Erfindung wird nachfolgend an mehreren Ausführungsbeispielen anhand von Figuren näher erläutert.
  • Es zeigen:
  • 1 ein Ausführungsbeispiel einer Tasteranordnung mit einer Feder nach dem vorgeschlagenen Prinzip,
  • 2 ein Ausführungsbeispiel eines Magneten und eines Sensormittels zur Anwendung in der Tasteranordnung nach 1,
  • 3 ein weiteres Ausführungsbeispiel einer Feder,
  • 4 ein anderes Ausführungsbeispiel einer Feder,
  • 5 beispielhafte Signalverläufe zum Betrieb des Sensormittels,
  • 6 eine alternative Ausführungsform der Tasteranordnung mit einer Federanordnung im Querschnitt, sowie
  • 7 eine Draufsicht auf die Ausführungsform gemäß 6.
  • 1 zeigt ein Ausführungsbeispiel einer Tasteranordnung mit einer Feder nach dem vorgeschlagenen Prinzip. Es ist eine V-förmige Feder 3 vorgesehen, welche in einem im wesentlichen quaderförmigen Gehäuse 1, 2, 5 gemeinsam mit einem Sensormittel 4 untergebracht ist.
  • Im Einzelnen umfasst die Feder 3 einen Befestigungsbereich 6, der an einem Ende eines von zwei Schenkeln der V-förmigen Feder 3 vorgesehen ist. Die beiden Schenkel der Feder 3 sind in einem Kraftaufnahmebereich 7 miteinander verbunden. An einem freien Ende des zweiten Schenkels ist ein Gleitbereich 8 ausgebildet, in dem ein Magnet 9 vorgesehen ist. Sowohl der Kraftaufnahmebereich 7, als auch der Befestigungsbereich 6 und der Gleitbereich 8 der Feder sind in horizontaler Ausdehnung zur Außenseite der Feder hin abgeflacht ausgeführt. Die Außenbereiche von Befestigungsbereich, Gleitbereich und Kraftaufnahmebereich sind im Wesentlichen mit parallelen Flächen ausgeführt.
  • Der Befestigungsbereich 6 der Feder ist auf dem Träger 2, der gemeinsam mit zwei Seitenwänden 5 und einer Betätigungsplatte 1 das Gehäuse bildet, befestigt. Weitere zwei Seitenwände des Gehäuses sind aufgrund der Schnittdarstellung der 1 nicht eingezeichnet. Zur Befestigung ist eine Schraubverbindung 10 vorgesehen, welche eine Schraube umfasst, die durch ein Bohrloch in der Trägerplatte 2 in ein im Befestigungsbereich 6 vorgesehenes Gewinde mittels einer Schraube eingeschraubt ist.
  • Unterhalb des Gleitbereichs 8 der Feder ist das Sensormittel 4 vorgesehen, welches großflächig mit dem Träger 2 verbunden ist, beispielsweise durch Löten oder Kleben. Das Sensormittel 4 kann beispielsweise als integrierter Schaltkreis ausgebildet sein. Zwischen dem Gleitbereich 8 und dem Sensormittel 4 ist keine mechanisch feste Verbindung vorgesehen, sondern der Gleitbereich 8 kann in im Wesentlichen horizontaler Richtung über dem Sensormittel gleiten. Gleiches gilt auch für den kraftschlüssig an der Betätigungsplatte 1 anliegenden Kraftaufnahmebereich 7 der Feder, wobei bei Betätigung aufgrund der Geometrie der Feder eine geringere Wegstrecke des Befestigungsbereichs gegenüber dem Gleitbereich in horizontaler Richtung erfolgt.
  • Bei Betätigung in vertikaler Richtung, beispielsweise wie in 1 eingezeichnet mittig, auf die Betätigungsplatte 1 mit einer Kraft F erfolgt eine Auslenkung der Feder in horizontaler Richtung. Im Einzelnen bleibt der Befestigungsbereich 6 der Feder bei Betätigung ortsfest, während darauf bezogen der Kraftaufnahmebereich 7 leicht nach links in horizontaler Richtung ausgelenkt wird und entsprechend stärker der Gleitbereich 8 der Feder ebenfalls nach links in horizontaler Richtung ausgelenkt wird. Die Bewegung ist mit entsprechenden Pfeilen in horizontaler Richtung eingezeichnet. Durch die Betätigung verschieben sich sowohl die Betätigungsplatte 1, als auch zumindest große Teile der Feder wie vorstehend beschrieben in eine neue Lage, welche in 1 durch gestrichelte Linien gezeigt ist. Demgegenüber ist die Ruhelage der Feder mit durchgezogenen Linien eingezeichnet. Sowohl die Betätigungsplatte 1 als auch die Feder erfahren bei Betätigung eine elastische Deformation. Bei Entfernen der Betätigungskraft F kehren die Betätigungsplatte 1 und die Feder 3, insbesondere der Kraftaufnahmebereich 7 und der Gleitbereich 8 in die Ausgangslage zurück.
  • Die Feder 3 ist einstückig ausgeführt. Mittels der elastischen Deformation wird ein Rückstellmoment gebildet, welches dazu führt, dass die Feder nach Ende der Betätigung in die Ausgangslage zurückkehrt.
  • Die Gesamtanordnung von Feder 3, Magnet 9, Sensormittel 4 und Gehäuse 1, 2, 5 wird als Tasteranordnung bezeichnet. Da die Erfassung der Horizontalbewegung des Magneten 9 über dem Sensormittel 4 kontaktlos erfolgt, handelt es sich insgesamt um einen kontaktlosen Drucktaster. Das Sensormittel 4 weist nicht eingezeichnete Anschlüsse auf, die wenigstens einen Signalausgang umfassen. An dem Signalausgang wird im Betrieb der Tasteranordnung ein Signal bereitgestellt, welches eine Bewegung des Magneten 9 relativ zum Sensormittel 4 anzeigt und so letztlich ein elektrisches Signal in Abhängigkeit einer menschlichen Betätigung des Drucktasters erzeugt.
  • Mit anderen Worten führt eine Reduzierung des vertikalen Abstands zwischen der Betätigungsplatte 1 und der Trägerplatte 2, die im Wesentlichen parallel zueinander liegen, mittels einer extern angewendeten Kraft dazu, dass die Feder derart elastisch deformiert wird, dass sie sich horizontal nach links ausdehnt. Somit wird eine vertikale Bewegung in eine seitliche oder horizontale Bewegung konvertiert.
  • Mit der Geometrie der Feder 3, insbesondere einem Winkel zwischen den beiden Schenkeln der Feder wird festgelegt, ob eine differentielle Bewegung zwischen der Betätigungsplatte 1 und dem Träger 2 bezogen auf die Horizontalauslenkung des Gleitbereichs 8 der Feder verstärkt wird oder abgeschwächt.
  • In 1 ist die Feder 3 einstückig als fester Körper gefertigt und weist keine Gelenke auf. Daher gibt es kein mechanisches Spiel bei der Transformation der Bewegung der Betätigungsplatte in vertikaler Richtung hin zu der horizontalen Bewegung, die zur Erfassung dient. Aufgrund vorhandener Reibung bei den beiden Kontaktflächen zwischen dem Kraftaufnahmebereich 7 und der Betätigungsplatte 1 einerseits sowie zwischen dem Gleitbereich 8 und dem Sensormittel 4 andererseits kann eine Hysterese der Bewegung verbleiben. In der vorliegenden Ausführung ist die Feder aus einem Material hergestellt, welches identischen oder ähnlichen thermischen Ausdehnungskoeffizienten wie die Seitenwände 5 des Gehäuses hat, um eine Temperaturdrift der Tasteranordnung zu vermeiden. Hier kommen beispielsweise Werkstoffe wie Kunststoffe oder Teflon in Frage.
  • Das Sensormittel 4 ist vorliegend als magnetischer Linearpositionssensor ausgeführt und für robuste und kontaktlose Operation ausgelegt. Hierfür ist ein Permanentmagnet 9 am freien Ende im Gleitbereich der Feder 3 eingebracht. Vertikale Positionsänderungen bezüglich dem Sensormittel werden erfasst.
  • Der Drucktaster gemäß 1 weist aufgrund der Konversion der Bewegung von vertikal nach horizontal und der Erfassung in horizontaler Richtung eine geringe Bauhöhe auf und kann für geringe Leistungsaufnahme für batteriebetriebene Geräte verwendet werden, da das Sensormittel beispielsweise bei Ausführung in Hall-Sensortechnik für sehr geringe Stromaufnahme ausgelegt werden kann. Es ist lediglich ein einziger Digitalausgang nötig. Für die Erkennung des gedrückten Zustands des Tasters stehen zeitbasierte und amplitudenbasierte Algorithmen bereit, die im Sensormittel implementiert werden können und nachfolgend noch näher erläutert werden. Zum Einstellen von Kenngrößen des Algorithmus ist in dem Sensormittel in einer Weiterbildung ein optionaler Kommunikationsanschluss vorgesehen. Hiermit können Zeit- und/oder Amplitudenschwellwerte eingestellt werden.
  • Ein weiterer Vorteil ist die geringe Empfindlichkeit des Tasters bezüglich Störungen wie äußere Magnetfelder, Temperaturänderungen, Feuchtigkeit, sowie seine guten Eigenschaften im Hinblick auf elektromagnetische Verträglichkeit. So kann beispielsweise eine differentielle Erfassung mit zwei Hall-Sensoren das Vorhandensein externer Magnetfelder auslöschen beziehungsweise kompensieren.
  • Der Aufbau gemäß 1 kann mit geringem Aufwand gefertigt, getestet und kalibriert werden und erlaubt eine einfache Systemintegration, beispielsweise in mobilen Geräten.
  • Alternativ zu der gezeigten Ausführung von 1, bei der eine im Wesentlichen rechteckförmiges beziehungsweise quaderförmiges Gehäuse 1, 2, 5 vorgesehen ist, sowie eine V-förmige Feder, sind auch andere Ausführungen der Geometrie von Feder und Gehäuse denkbar, die dem Grundprinzip der vorgeschlagenen Feder und Tasteranordnung folgen, nämlich Konversion eines vertikalen Drucks bei Betätigen eines Drucktasters in eine horizontale Bewegung mittels mechanischer Maßnahmen einer Feder und eine kontaktlose Erfassung der horizontalen Auslenkung mit einem Sensormittel.
  • 2 zeigt ein Ausführungsbeispiel eines Magneten 9 über einem Sensormittel 4. Während 1 ein Querschnitt durch eine Tasteranordnung zeigt, ist 2 eine Draufsicht eines Ausschnitts der Ausführung von 1, nämlich lediglich des Magneten 9 über dem Sensormittel 4 zur Erläuterung des Sensorprinzips, das heißt der Erfassung der Horizontalbewegung. Weitere Komponenten, insbesondere die Feder 3, sind hier nicht eingezeichnet.
  • Der Magnet 9 ist ein Linearmagnet und umfasst vorliegend mehrere magnetische Pole N, S, von denen der Einfachheit halber ein Nordpol N zwischen zwei Südpolen S eingezeichnet ist. In Pfeilrichtung ist der Magnet horizontal verschiebbar, wie anhand der 1 bereits erläutert. Das Sensormittel 4 ist als integrierter Schaltkreis in Form eines Sensor-IC ausgeführt und umfasst mehrere Hall-Sensoren sowie eine daran angeschlossene Auswerteelektronik. Darüber hinaus umfasst das Sensormittel Anschlüsse zu dessen Spannungsversorgung 11, mindestens einen Signalausgang 12 sowie einen Kommunikationsanschluss 13 zur optionalen Konfiguration.
  • Das Sensormittel 4 ist ein linearer Sensor, der die Verschiebung des Magneten 9 horizontal über ihm erfassen kann. Beispielsweise mit einem Oszillator, der für geringe Leistungsaufnahme ausgelegt ist, werden Hall-Elemente im Sensormittel periodisch in Betrieb genommen, um die Magnetposition zu messen und werden am Ende jeder Messung wieder ausgeschaltet, um Energie zu sparen.
  • Die Zeitdauer zwischen zwei Einschaltvorgängen, welche periodisch ist, kann entweder voreingestellt oder im Betrieb eingestellt werden. Ebenso können Schwellwerte für die Zeitdauer und die Amplitude der Erfassung entweder in einem Register fest eingestellt werden oder im Betrieb über den Kommunikationsport eingestellt werden. Im Falle der permanenten Programmierung der Periodendauer sowie der Registerwerte kann beispielsweise eine einmalige Programmierung mittels sogenannter Fuses vorgenommen werden. Dies wird auch als Einmalprogrammierung (OTP, one-time programming) bezeichnet.
  • Für jede Periode Wt, bei der die Hall-Elemente eingeschaltet werden, wird zu einem Zeitpunkt t eine Positionsmessung durchgeführt und ein Ergebnis Pa(t) für diese Zeit t bestimmt. Am Ende jeder Messung werden die Hall-Elemente wieder ausgeschaltet und ein Differenzwert Delta(t) bestimmt. Dieser ergibt sich durch Bilden der Differenz aufeinanderfolgender Positionsmessungen Pa(t) – Pa(t – 1). Der Signalausgang 12 wird in seinem Wert verändert abhängig von den folgenden Bedingungen:
    • 1. Falls die Differenz Delta(t) größer als der Schwellwert Delta_Schwelle ist und falls die Amplitude dess Messwerts Pa(t) größer als der Schwellwert der Amplitude Pa_Schwelle ist, dann wird der Signalausgang auf aktiv gelegt. Wenn die Signalamplitude Pa(t) kleiner als der Schwellwert der Signalamplitude Pa_Schwelle ist, dann wird der Ausgang inaktiv geschaltet.
    • 2. Alternativ kann der Algorithmus so konfiguriert werden: Wenn die Amplitude des Messwerts Pa(t) größer als der Schwellwert der Amplitude Pa_Schwelle ist, wird der Ausgang aktiv geschaltet. Wenn der Wert der Amplitude des Messsignals Pa(t) kleiner als der Schwellwert für die Amplitude Pa_Schwelle ist, wird der Ausgang inaktiv geschaltet.
  • Die zusätzliche Bedingung, dass der Zeitabstand zwischen zwei Messwerten größer als ein Schwellwert ist, vermeidet einen unerwünschten Zustand einer erkannten Betätigung im Falle langsamer Bewegungsänderungen, beispielsweise Temperaturänderungen, versehentliches Betätigen in einer Tragetasche des Mobilgeräts, externe magnetische Felder oder parasitäre mechanische Bewegungen, um Beispiele zu nennen.
  • 3 zeigt eine alternative Ausführung der Feder von 1, die hier nicht V-förmig, sondern U-förmig ausgeführt und mit Bezugszeichen 14 versehen ist. Das heißt die Form der Feder wird im Querschnitt nicht durch ein auf dem Kopf stehendes V, sondern durch ein auf dem Kopf stehendes U beschrieben. Unverändert hat die U-förmige Feder 14 einen flach ausgeführten Befestigungsbereich 6, der auch als Flansch interpretiert werden kann und wiederum mittels Schraubverbindung 10 an der Trägerplatte 2 befestigt ist. Die Feder ist wiederum einstückig hergestellt. Der Kraftaufnahmebereich wird vom Boden des ”U” gebildet und kann, alternativ auch leicht abgeflacht sein, um eine bessere kraftschlüssige Verbindung mit der Betätigungsplatte 1 herzustellen.
  • Auch hier führt eine vertikale Bewegung bei Einwirken einer Kraft F auf die Betätigungsplatte 1 zu einer Horizontalbewegung des Gleitbereichs 8 der U-förmigen Feder 14 über einem Sensormittel 4.
  • Die U-förmige Ausführung der Feder 14 eignet sich besonders für eine einstückige industrielle Herstellung und hat im Vergleich mit der V-förmigen Ausführung von 1 den Vorteil, dass eine mechanisch besonders beanspruchte Stelle der Feder, wie sie im Kraftaufnahmebereich beim Zusammentreffen der beiden Schenkel der Feder von 1 auftreten kann, bei der U-förmigen Ausführung vermieden wird. Zudem ist eine verbesserte Federwirkung, das heißt ein größerer elastischer deformierbarer Bereich erzielt.
  • 4 zeigt ein noch weiteres Ausführungsbeispiel der Feder, welche in 4 W-förmig ausgeführt und mit Bezugszeichen 15 versehen ist. Aufgrund der W-förmigen Ausführung ist nicht nur ein Kraftaufnahmebereich vorgesehen, wie in 1, sondern zwei Kraftaufnahmebereiche 7, welche jeweils abgeflacht sind und kraftschlüssig an der Betätigungsplatte 1 anliegen. Gegenüberliegend auf der Seite des Trägers 2 ist unverändert der flanschartige Befestigungsbereich 6 vorgesehen, jedoch ein zusätzlicher Gleitbereich in der Mitte der W-förmigen Feder 16. Der Gleitbereich, der den Magneten aufnimmt, ist unverändert und über dem Sensormittel 4 gleitend in horizontaler Richtung ausgeführt. Wie leicht erkennbar ist, ergibt sich durch die W-förmige Ausführung eine mechanische Verstärkung der Betätigung, das heißt dass bereits eine sehr leichte Betätigung über einen kurzen Weg hin in vertikaler Richtung zu einer großen Auslenkung des Gleitbereichs 8 und des Magneten 9 in horizontaler Richtung führen muss. Somit ist eine sichere Erkennung der Betätigung mit Sensoren auch bei geringen Auslenkungen möglich, was wiederum die erforderliche Bauhöhe der Drucktasteranordnung weiter verringert.
  • Letztlich ist eine Feder mit nicht nur zwei Schenkeln, sondern einer Vielzahl von Schenkeln gebildet, um die mechanische Verstärkung bei der Transformation der vertikalen zur horizontalen Bewegung sicherzustellen.
  • 5 zeigt ein beispielhaftes Signalflussdiagramm zur anschaulichen Darstellung der Funktionsweise der Erfassung einer Betätigung des Drucktasters. Das obere Signal ist ein periodischer Puls der Taktdauer Wt, sodass zu den aufeinander folgenden Zeitpunkten t1, t2, t3... jeweils periodisch ein Einschalten der Sensormittel, insbesondere der Hall-Sensoren erfolgt.
  • Im mittleren Bereich der Signale ist eine Amplitude über der Zeit aufgezeichnet, welche der Intensität der Betätigung des Drucktasters entspricht und proportional ist zu der erfassten Amplitude Pa(t) im Sensormittel. Diese ist zur einfacheren Darstellung normiert und ändert sich im Beispiel zwischen 0 und 100% beliebig, um verschiedene Betätigungssituationen durchzuspielen.
  • Unten schließlich ist der Pegel des Ausgangssignals am Signalausgang 12 des Sensormittels gezeigt. Man erkennt, dass der langsame Anstieg der Amplitude von den Zeitpunkten t1 bis t4 nicht als absichtliche Betätigung des Drucktasters erkannt wird. Der Signalausgang bleibt auf logisch 0. Erst der starke Anstieg zwischen den Zeitpunkten t6 und t7 wird als gewollte Betätigung erkannt und umgekehrt der Abfall der Betätigung zwischen t8 und t9 von 100% auf 0% als Loslassen des Drucktasters.
  • Hierfür wurde beispielhaft das Register für den Schwellwert Delta_Schwelle auf 40% und das Register für den Schwellwert der Amplitude Pa_Schwelle auf 50% gesetzt. Im Ruhezustand, das heißt bei nichtgedrücktem Drucktaster, wurde die Amplitude der Betätigung auf 0% festgesetzt. 100% Amplitude entspricht dem voll gedrückten Drucktaster, bei dem der Magnet bei seiner maximalen horizontalen Verschiebung liegt.
  • 6 zeigt eine Weiterbildung der Befestigung der Feder, die dort in einer Federanordnung angeordnet ist. Betätigungsplatte 1, dazu parallel die Trägerplatte 2, das Sensormittel 4 sowie die Feder 3 mit Befestigungsbereich 6, Kraftaufnahmebereich 7, Gleitbereich 8 mit Magnet 9 sowie den beiden Schenkeln der V-förmigen Feder sind im Wesentlichen unverändert zu 1 ausgeführt, wobei zur besseren elastischen Verformung der Kraftaufnahmebereich ein abgedünntes Material und eine leichte Krümmung aufweist. Im Unterschied zu 1 ist der Befestigungsbereich 6 bei 6 nicht unmittelbar mit dem Träger mechanisch fest verbunden, sondern vielmehr an einem ebenfalls im Wesentlichen parallel zum Träger angeordneten Kompensationsmittel 17. Das Kompensationsmittel 17 ist an seinem freien Ende fest mit dem Träger 2 mechanisch verbunden, beispielsweise wie in 6 gezeigt eingeklipst. Der Bereich des Kompensationsmittels 17, welcher unmittelbar mit dem Befestigungsbereich 6 befestigt ist, kann über den Träger in horizontaler Richtung gleiten. Wählt man für das Kompensationsmittel 17 ein Material mit einem thermischen Ausdehnungskoeffizienten, der an denjenigen des Materials der Feder 3 angepasst ist, so ergibt sich mit Vorteil eine Kompensation der horizontalen Ausdehnung der Feder beispielsweise durch unterschiedliche Betriebs- beziehungsweise Umgebungstemperaturen. Hierdurch ist sichergestellt, dass bei unterschiedlichsten Betriebstemperaturen das Sensormittel 4 und der Magnet 9 in Ruhelage die gleiche Relativposition zueinander einnehmen, so dass für unterschiedliche Temperaturen keine weiteren Maßnahmen zur sicheren Erfassung getroffen werden brauchen.
  • Die Horizontalbewegung des Kraftaufnahmebereichs ist ausschließlich bedingt durch thermische Expansion. Die horizontale Bewegung des Gleitbereichs ist unabhängig von der Temperatur und lediglich einer vertikalen Betätigung der Trägerplatte 1 geschuldet. Der Kraftaufnahmebereich 7 weist eine vertikale Bewegung bei Betätigung sowie eine horizontale Bewegung temperaturabhängig auf bedingt durch das Kompensationsmittel und dessen thermische Ausdehnung.
  • 7 zeigt eine Draufsicht der Ausführung von 6, die dort im Querschnitt gezeigt ist. Man erkennt, dass das Kompensationsmittel 17 in der Draufsicht U-förmig ausgeführt ist mit einem im Wesentlichen in einer Hauptrichtung ausgedehnten Mittelbereich 18, an dem sich rechtwinklig zwei Schenkel 19 anschließen, die an ihrem Ende jeweils eine durch Einklipsen hergestellte Verbindung 20 umfassen. Die Feder 3 in der Draufsicht zeigt den mit dem Kompensationsmittel fest verbundenen Befestigungsbereich 6, den Kraftaufnahmebereich 7 sowie den Magneten 9, der gestrichelt gezeichnet ist und im Gleitbereich 8 der Feder angeordnet ist. Darunter ist im Wesentlichen quadratisch das Sensormittel 4 angeordnet.
  • Bezugszeichenliste
  • 1
    Betätigungsplatte
    2
    Träger
    3
    Feder
    4
    Sensormittel
    5
    Seitenwand
    6
    Befestigungsbereich
    7
    Kraftaufnahmebereich
    8
    Gleitbereich
    9
    Magnet
    10
    Schraube
    11
    Spannungsversorgungsanschluss
    12
    Signalausgang
    13
    Kommunikationsport
    14
    U-förmige Feder
    15
    Schenkel
    16
    zusätzlicher Gleitbereich
    17
    Kompensationsmittel
    18
    Mittelteil
    19
    Schenkel
    20
    Clip
    N
    Nordpol
    S
    Südpol
    Wt
    Periodendauer
    Pa
    Messergebnis

Claims (10)

  1. Feder (3) für einen Drucktaster, zur Befestigung auf einem Träger (2) und zur Erfassung einer vertikalen Kraft (F), wobei die Feder (3) derart ausgestaltet ist, dass sie bei Betätigung eine vertikale Bewegung in eine horizontale Bewegung transformiert, welche mit einem Sensormittel (4) erfassbar ist, die Feder umfassend – mindestens einen Befestigungsbereich (6) zur Befestigung mit dem Träger (2), – mindestens einen Gleitbereich (8) zum horizontalen Gleiten der Feder (3) über das Sensormittel (4), – einen Magneten (9), der mit dem Gleitbereich (8) verbunden ist, – mindestens einen Kraftaufnahmebereich (7) zum Einleiten der in vertikaler Richtung ausgeübten Kraft (F) in die Feder (3).
  2. Feder nach Anspruch 1, die ein Rückstellmoment aufweist zur Rückkehr der Feder (3) in die Ausgangslage nach Ende der Betätigung.
  3. Feder nach Anspruch 1 oder 2, bei der der Gleitbereich (8) der Feder zur Aufnahme des Magneten (9) ausgebildet ist.
  4. Feder nach einem der Ansprüche 1 bis 3, die V-förmig ausgebildet ist.
  5. Feder nach einem der Ansprüche 1 bis 3, die W-förmig ausgebildet ist.
  6. Feder nach einem der Ansprüche 1 bis 3, die U-förmig ausgebildet ist.
  7. Federanordnung mit einer Feder (3) nach einem der Ansprüche 1 bis 6, – weiter umfassend ein Kompensationsmittel (17), das mit dem Befestigungsbereich (6) der Feder fest verbunden ist und sich in horizontaler Richtung erstreckt, wobei das Kompensationsmittel (17) zur ortsfesten Montage mit dem Träger (2) ausgebildet ist, und bei der – der thermische Ausdehnungskoeffizient des Kompensationsmittels (17) auf den thermischen Ausdehnungskoeffizienten der Feder (3) derart abgestimmt ist, um Temperatureinflüsse auf die Erfassung der horizontalen Bewegung mit dem Sensormittel (4) zu kompensieren.
  8. Federanordnung nach Anspruch 7, bei der das Kompensationsmittel (17) U-förmig ausgebildet ist und Schenkel aufweist, die in einem Verbindungsbereich (18) mit dem Befestigungsbereich (6) der Feder verbunden sind, wobei die Schenkel (19) an ihren freien Enden Mittel (20) zur ortsfesten Montage mit dem Träger (2) aufweisen.
  9. Tasteranordnung, umfassend – eine Federanordnung nach einem der vorstehenden Ansprüche, – den Träger (2), der mit dem Befestigungsbereich (6) der Feder unmittelbar oder über das Kompensationsmittel (17) verbunden ist, – das Sensormittel (4), das auf dem Träger (2) befestigt ist zur Erfassung einer Horizontalbewegung des Magneten (9) relativ zum Sensormittel (4), in Abhängigkeit von der Vertikalbewegung des Kraftaufnahmebereichs (7) der Feder.
  10. Tasteranordnung nach Anspruch 9, bei der das Sensormittel (4) mindestens einen Hall-Sensor umfasst, der eine horizontale Bewegung des Magneten (9) erfasst und in Abhängigkeit davon ein Sensorsignal an einem Signalausgang (12) des Sensormittels bereitstellt.
DE102010026516A 2010-07-08 2010-07-08 Feder für einen Drucktaster, Federanordnung und Tasteranordnung Expired - Fee Related DE102010026516B4 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102010026516A DE102010026516B4 (de) 2010-07-08 2010-07-08 Feder für einen Drucktaster, Federanordnung und Tasteranordnung
US13/809,156 US9035731B2 (en) 2010-07-08 2011-07-08 Spring, particularly for a push button
KR1020137003078A KR101426212B1 (ko) 2010-07-08 2011-07-08 스프링, 특히 푸시 버튼용 스프링
PCT/EP2011/061629 WO2012004386A2 (de) 2010-07-08 2011-07-08 Feder, insbesondere für einen drucktaster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010026516A DE102010026516B4 (de) 2010-07-08 2010-07-08 Feder für einen Drucktaster, Federanordnung und Tasteranordnung

Publications (2)

Publication Number Publication Date
DE102010026516A1 DE102010026516A1 (de) 2012-01-12
DE102010026516B4 true DE102010026516B4 (de) 2013-04-11

Family

ID=44628650

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010026516A Expired - Fee Related DE102010026516B4 (de) 2010-07-08 2010-07-08 Feder für einen Drucktaster, Federanordnung und Tasteranordnung

Country Status (4)

Country Link
US (1) US9035731B2 (de)
KR (1) KR101426212B1 (de)
DE (1) DE102010026516B4 (de)
WO (1) WO2012004386A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599523B2 (en) * 2013-01-10 2017-03-21 Ntn Corporation Magnetic load sensor and electric brake system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10557533B2 (en) * 2015-07-30 2020-02-11 Nec Corporation Linear motion mechanism formed integrally
KR101600246B1 (ko) * 2015-10-21 2016-03-04 박정원 무접점 스위치
US10275055B2 (en) 2016-03-31 2019-04-30 Azoteq (Pty) Ltd Rotational sensing
FR3053785B1 (fr) * 2016-07-06 2020-07-31 Crouzet Automatismes Dispositif apte a detecter une force d’appui
CN111965865A (zh) * 2020-09-08 2020-11-20 河源思比电子有限公司 一种可提高良品率的双稳态液晶显示模组热压装置
WO2023275006A1 (en) * 2021-06-28 2023-01-05 Melexis Technologies Sa Force sensing scale with target
EP4113085A1 (de) * 2021-06-28 2023-01-04 Melexis Technologies SA Kraftsensor mit ziel auf einem halbleitergehäuse
US11587742B1 (en) * 2021-09-02 2023-02-21 Medtronic Minimed, Inc. Ingress-tolerant input devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2359971A1 (de) * 1973-12-01 1975-06-12 Olympia Werke Ag Elektrischer tastenschalter

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3621415A (en) * 1970-06-18 1971-11-16 Amf Inc Precision reed-type snap switches
JPS5468174U (de) 1977-10-24 1979-05-15
JPS56148824U (de) * 1980-04-08 1981-11-09
JPS56148824A (en) 1980-04-21 1981-11-18 Nec Corp Formation of electrode
DE4330576C1 (de) 1993-09-09 1994-11-10 Preh Elektro Feinmechanik Tastschalter
JPH0817286A (ja) * 1994-06-29 1996-01-19 Omron Corp スイッチ機構
JPH117860A (ja) 1997-06-17 1999-01-12 Sagami Denshi Kogyo:Kk 軽操作スイッチ
JP2001229794A (ja) * 2000-02-17 2001-08-24 Idec Izumi Corp 薄型スイッチおよびスイッチ付表示パネル
JP2003197078A (ja) 2001-12-27 2003-07-11 Takata Corp 磁気式近接スイッチ及びバックルスイッチ
JP4595741B2 (ja) * 2005-08-17 2010-12-08 パナソニック株式会社 スイッチ
JP4741989B2 (ja) 2006-07-07 2011-08-10 キヤノン株式会社 撮像装置及び撮像方法
JP4735452B2 (ja) 2006-07-13 2011-07-27 パナソニック株式会社 プッシュスイッチ
JP2008214800A (ja) 2007-03-02 2008-09-18 Toray Ind Inc 繊維およびそれからなる繊維製品並びに繊維ブラシ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2359971A1 (de) * 1973-12-01 1975-06-12 Olympia Werke Ag Elektrischer tastenschalter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599523B2 (en) * 2013-01-10 2017-03-21 Ntn Corporation Magnetic load sensor and electric brake system

Also Published As

Publication number Publication date
WO2012004386A2 (de) 2012-01-12
US9035731B2 (en) 2015-05-19
DE102010026516A1 (de) 2012-01-12
KR20130029811A (ko) 2013-03-25
US20130194028A1 (en) 2013-08-01
WO2012004386A3 (de) 2012-06-28
KR101426212B1 (ko) 2014-08-01

Similar Documents

Publication Publication Date Title
DE102010026516B4 (de) Feder für einen Drucktaster, Federanordnung und Tasteranordnung
EP0268580B1 (de) Magnetfeldabhängiger, induktiver näherungsschalter
EP2396557B1 (de) Hydraulisches kupplungs- oder bremsbetätigungssystem
EP3592926B1 (de) Betätigungsmodul für einen türgriff
DE102011102796A1 (de) Positionssensor, Aktor-Sensor-Vorrichtung und Verfahren zur induktiven Erfassung einer Position
EP2854296A1 (de) Kontaktloser Taster
DE102019206282A1 (de) Türentriegelungs- und/oder Türöffnungsmechanismus mit einer Betätigungsvorrichtung
DE102015119485A1 (de) Fernbedienung mit gleichpolig angeordneten Magneten
DE102006010811A1 (de) Schaltelement
DE102014019241B4 (de) Eingabeeinrichtung zum Ermitteln einer manuellen Betätigung
DE102014107366A1 (de) Kühlgerät
EP2438417B1 (de) Sensor
DE102015102947A1 (de) Feldgerät der Automatisierungstechnik
DE102010054118A1 (de) Sensorsystem oder Sensor zur Detektion von mechanischen oder thermischen Messgrößen oder Systemzuständen
DE4237928A1 (de) Mikroschalter mit einem Magnetfeld-Sensor
EP2700166B1 (de) Bedienvorrichtung, insbesondere für eine fahrzeugkomponente
DE102012208779A1 (de) Schalter für ein Gurtschloss
DE102014014021A1 (de) Elektrischer Mehrwege-Schalterbaustein
DE10251895A1 (de) Kompakter Magnetinduktionsschalter
DE102015122086A1 (de) Fahrzeugtürgriff mit Druckschalter
EP2141461A2 (de) Vorrichtung zur Erfassung einer Position eines Messobjektes mit vergrössertem Messbereich
DE102013104866A1 (de) Behältnis und Verfahren zum Auslösen einer Antriebsvorrichtung des Behältnisses
DE3133033C2 (de) Stellungsmeßfühler
DE202013100461U1 (de) Mikroschalter für einen Druckschalter mit einstellbarer Hysterese und Druckschalter mit derartigem Mikroschalter
DE102009050554A1 (de) Sensor

Legal Events

Date Code Title Description
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final

Effective date: 20130712

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee