DE102010004825A1 - Kollimierte Lichtquelle und Verfahren zu deren Herstellung - Google Patents

Kollimierte Lichtquelle und Verfahren zu deren Herstellung Download PDF

Info

Publication number
DE102010004825A1
DE102010004825A1 DE102010004825A DE102010004825A DE102010004825A1 DE 102010004825 A1 DE102010004825 A1 DE 102010004825A1 DE 102010004825 A DE102010004825 A DE 102010004825A DE 102010004825 A DE102010004825 A DE 102010004825A DE 102010004825 A1 DE102010004825 A1 DE 102010004825A1
Authority
DE
Germany
Prior art keywords
light
lens
exit surface
light exit
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102010004825A
Other languages
English (en)
Inventor
Steffen Dr. 67678 Reichel
Bernd Dr. 55122 Wölfing
Ralf Dr. 55252 Biertümpfel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott AG filed Critical Schott AG
Priority to DE102010004825A priority Critical patent/DE102010004825A1/de
Priority to DE202010018278.6U priority patent/DE202010018278U1/de
Priority to PCT/EP2011/000143 priority patent/WO2011085998A1/de
Priority to CN201180006227.1A priority patent/CN102713688B/zh
Publication of DE102010004825A1 publication Critical patent/DE102010004825A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F1/00Refuse receptacles; Accessories therefor
    • B65F1/0006Flexible refuse receptables, e.g. bags, sacks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/007Array of lenses or refractors for a cluster of light sources, e.g. for arrangement of multiple light sources in one plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • G02B19/0066Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F2220/00Properties of refuse receptacles
    • B65F2220/116Properties of refuse receptacles inflatable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/103Outdoor lighting of streets or roads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lenses (AREA)
  • Led Device Packages (AREA)

Abstract

Die Erfindung betrifft allgemein Linsen für Lichtquellen. Im Speziellen betrifft die Erfindung LED-Lichtquellen mit kollimierenden oder strahlformenden Linsen. Der Erfindung liegt die Aufgabe zugrunde, bereits mit einer Einzellinse eine hocheffektive Kollimation des Lichts einer flächig und unter großem Winkelbereich abstrahlenden Lichtquelle, wie insbesondere einer Leuchtdiode oder einer Leuchtdiodenanordnung zu kollimieren. Es wird eine speziell geformte Linse und eine Anordnung einer solchen Linse mit einer von der Lichteintrittsfläche beabstandeten Lichtquelle vorgeschlagen.

Description

  • Die Erfindung betrifft allgemein Linsen für Lichtquellen. Im Speziellen betrifft die Erfindung LED-Lichtquellen mit kollimierenden oder strahlformenden Linsen.
  • Aus der DE 601 01 021 T2 sind Objektivlinsen mit hoher numerischer Apertur bekannt. Diese Linsen sind für den Einsatz als Pick-up-Linsen in einem optischen Aufnahmegerät gedacht. Dementsprechend handelt es sich um ein optisch abbildendes System. Die dort beschriebenen Linsen werden als Presslinge hergestelt und müssen den Bedingungen der Herstellbarkeit und der optischen Leistung genügen. Für das Verhältnis zwischen dem Polradius r0 der Asphäre und dem Linsenvolumen Vlens der Linsen soll gelten:
    Figure 00010001
  • Dementsprechend ist hier das Linsenvolumen kleiner als das Volumen einer Kugel mit einem Radius, der dem Polradius der Linse entspricht. Die Linsen sollen eine hohe numerische Apertur aufweisen und geringe Anforderungen an die optische Justierung stellen. Das optische System ist aber insgesamt relativ komplex und es werden zwei hintereinandergeschaltete Linsen zur Fokussierung verwendet.
  • Zur Erzielung einer hohen Effizienz bei der Kollimierung werden auch in LED-Beleuchtungssystemen mehrere Linsen verwendet. Eine solche Anordnung mit mehreren Linsen zur Kollimierung des Lichts einer Leuchtdiode ist unter anderem aus der CN 101373047 A bekannt.
  • Der Erfindung liegt demgegenüber die Aufgabe zugrunde, bereits mit einer Einzellinse eine hocheffektive Kollimation des Lichts einer flächig und unter großem Winkelbereich abstrahlenden Lichtquelle, wie insbesondere einer Leuchtdiode oder einer Leuchtdiodenanordnung zu kollimieren. Diese Aufgabe wird durch den Gegenstand der unabhängigen Ansprüche gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den jeweiligen abhängigen Ansprüchen angegeben.
  • Eine erfindungsgemäße kollimierende Linse zur Kollimation des Lichtstrahls einer Lichtquelle weist
    • – eine Lichteintrittsfläche und
    • – eine Lichtaustrittsfläche auf, wobei
    • – die Lichtaustrittsfläche konvex asphärisch geformt ist, und
    • – der Krümmungsradius vom Zentrum der Linse zu deren Rand hin zunimmt, und
    • – der Brechungsindex der Linse an der Lichtaustrittfläche einen Wert von zumindest 1,70, vorzugsweise mindestens 1,75 aufweist, und
    • – die Gesamthöhe der Linse (hLinse, gesamt) größer ist, als die Pfeilhöhe (hAustritt) der Lichtaustrittsfläche, wobei
    • – die Pfeilhöhe der Lichtaustrittsfläche sich bemisst anhand der axialen Distanz zwischen Scheitelpunkt und Rand der Lichtaustrittsfläche, und wobei
    • – sich das Volumen der Linse zumindest aus dem von der Lichtaustrittsfläche umschlossenen Volumen und dem Zylindervolumen eines Zylinders ergibt, dessen Stirnfläche durch die Lichteintrittsfläche gegeben ist und dessen Höhe durch die axiale Distanz von der Lichteintrittsfläche bis zum Rand der Lichtaustrittsfläche gegeben ist, wobei für das Volumen gilt:
      Figure 00030001
      wobei r0 den Krümmungsradius am Scheitelpunkt der asphärischen Lichtaustrittsfläche und Vlens das Linsenvolumen bezeichnen.
  • Mit einer solchen kollimierenden Linse kann dann eine Beleuchtungseinrichtung zur Erzeugung eines kollimierten Lichtstrahls bereitgestellt werden, welche
    • – eine Lichtquelle mit zumindest einer Leuchtdiode und
    • – eine Linse umfasst, wobei die Linse eine Lichteintrittsfläche und eine Lichtaustrittsfläche aufweist, und wobei
    • – die Lichteintrittsfläche in einem Abstand zur Leuchtdiode angeordnet ist, und wobei
    • – die Lichtaustrittsfläche konvex asphärisch geformt ist, und dabei vorzugsweise
    • – der Krümmungsradius vom Zentrum der Linse zu deren Rand hin zunimmt, und wobei
    • – der Brechungsindex der Linse an der Lichtaustrittfläche einen Wert von zumindest 1,70, vorzugsweise mindestens 1,75 aufweist, und wobei
    • – die Gesamthöhe der Linse (hLinse, gesamt) größer ist, als die Pfeilhöhe (hAustritt) der Lichtaustrittsfläche, wobei
    • – die Pfeilhöhe der Lichtaustrittsfläche sich bemisst anhand der axialen Distanz zwischen Scheitelpunkt und Rand der Lichtaustrittsfläche, und wobei
    • – sich das Volumen der Linse zumindest aus dem von der Lichtaustrittsfläche umschlossenen Volumen und dem Zylindervolumen eines Zylinders ergibt, dessen Stirnfläche durch die Lichteintrittsfläche gegeben ist und dessen Höhe durch die axiale Distanz von der Lichteintrittsfläche bis zum Rand der Lichtaustrittsfläche gegeben ist, wobei für das Volumen gilt:
      Figure 00040001
      wobei r0 den Krümmungsradius am Scheitelpunkt der asphärischen Lichtaustrittsfläche und Vlens das Linsenvolumen bezeichnen. Unter der Gesamthöhe der Linse wird die axiale Distanz zwischen Scheitelpunkt der konvexen Lichtaustrittsfläche und der Lichteintrittsfläche gemessen entlang der optischen Achse der Linse verstanden. Eine vollständige Kollimation ist wegen der im Vergleich zur Linse örtlich ausgedehnten Lichtquelle im Allgemeinen nicht möglich. Allerdings wird mit der erfindungsgemäßen Anordnung typischerweise ein voller Öffnungswinkel des Lichtstrahls von kleiner 30° für mindestens 40%, sogar im Allgemeinen für mindestens 60% der von der Lichtabstrahlfläche abgestrahlten Intensität erzielt. Dies wird im Sinne der Erfindung als ein kollimierter Lichtstrahl angesehen.
  • Besonders zweckmäßig ist es, eine plane Lichteintrittsfläche vorzusehen. Dies ermöglicht zum einen eine einfache Herstellung der Linse aus einem ersten Körper mit zwei planparallelen Flächen und einem zweiten, an eine der planparallelen Flächen anschließenden Körper mit der konvexen Brechfläche.
  • Das erfindungsgemäße Verfahren zur Herstellung einer Linse und das Verfahren zur Herstellung einer Beleuchtungseinrichtung mit einer solchen Linse basiert entsprechend darauf, dass eine Linse hergestellt wird, die eine Lichteintrittsfläche und eine Lichtaustrittsfläche aufweist, wobei
    • – die Lichteintrittsfläche vorzugsweise plan und
    • – die Lichtaustrittsfläche konvex asphärisch geformt wird, und die Linse weiterhin vorzugsweise so geformt wird, dass
    • – der Krümmungsradius vom Zentrum der Linse zu deren Rand hin zunimmt, und wobei
    • – ein Material für die Linse verwendet wird, welches wenigstens an der Lichtaustrittfläche einen Wert von zumindest 1,70, vorzugsweise mindestens 1,75 aufweist, und wobei
    • – die Linse mit einer Gesamthöhe hergestellt wird, welche größer ist, als die Pfeilhöhe der Lichtaustrittsfläche, wobei die Pfeilhöhe der Lichtaustrittsfläche sich bemisst anhand der axialen Distanz zwischen Scheitelpunkt und Rand der Lichtaustrittsfläche, und wobei
    • – sich das Volumen der Linse zumindest aus dem von der Lichtaustrittsfläche umschlossenen Volumen und dem Zylindervolumen eines Zylinders ergibt, dessen Stirnfläche durch die Lichteintrittsfläche gegeben ist und dessen Höhe durch die axiale Distanz von der Lichteintrittsfläche bis zum Rand der Lichtaustrittsfläche gegeben ist, wobei für das Volumen wieder die oben angegebene Beziehung (2) gilt. Zur Herstellung der Beleuchtungseinrichtung wird weiterhin
    • – eine Lichtquelle mit zumindest einer Leuchtdiode bereitgestellt und
    • – die Linse und die Lichtquelle so zueinander angeordnet, dass die Lichteintrittsfläche der Linse zur Leuchtdiode beabstandet ist.
  • Im sich aus dem Abstand zwischen der Leuchtdiode und der Lichteintrittsfläche ergebenden Zwischenraum ist vorzugsweise ein niedrigbrechendes Medium, im einfachsten Fall ein Gas, insbesondere Luft vorhanden. Damit wird ein hoher Brechungsindex-Sprung an der Lichteintrittsfläche verursacht, welcher eine Brechung der eintretenden Lichtstrahlen zur optischen Achse hin verursacht. Der Zwischenraum kann aber gegebenenfalls auch mit einem M;e Medium ausgefüllt sein, welches einen höheren Brechungsindex als Luft aufweist, beispielsweise Schutzlack, Silikon oder ähnlichem gefüllt sein.
  • Um andererseits hohe Reflexionsverluste an der Linsenoberfläche zu vermeiden, wird die Linse weiterhin besonders bevorzugt vergütet, beziehungsweise mit einer Antireflex-Beschichtung versehen. Eine Vergütung ist aufgrund des hohen Brechungsindexes auch auf der Lichtaustrittsseite von Vorteil.
  • Der Erfindung liegt die Erkenntnis zugrunde, dass eine weitaus höhere Lichtsammeleffizienz erzielt werden kann, wenn die Linsen noch dicker als gemäß der oben angegebenen Beziehung (1) ausgelegt werden. Mit der Dicke geht ein entsprechend größeres Volumen und eine große Lichteintrittsfläche einher. Im Besonderen hat es sich gezeigt, dass ist die Einschränkung gemäß Gleichung (1) für Beleuchtungsanwendungen nicht notwendig oder sogar ungünstig ist. Mit bisherigen Linsen werden LED-Beleuchtungen sehr bauraum-intensiv. Weiterhin ist die sammelnde Wirkung der Linsen aus dem Stand der Technik unbefriedigend.
  • Wird aber erfindungsgemäß ein im Verhältnis zum Volumen der Linse kleiner Polradius gewählt, insbesondere kleiner als gemäß Gleichung (1), so kann insgesamt eine sehr kompakte Bauweise erzielt werden. Erfindungsgemäß eingesetzte Einzel-Linsen können daher aufgrund des im Verhältnis zum Linsenvolumen kleinen Polradius, beziehungsweise im Verhältnis zum Linsenvolumen kleinem zum Polradius korrespondierenden Kugelvolumen als vergleichsweise spitzer oder länglicher charakterisiert werden. Insbesondere ist dabei das Linsenvolumen größer als das Kugelvolumen einer Kugel, deren Radius gleich dem Polradius ist.
  • Mit dem großen Linsenvolumen und aufgrund des vergleichsweise kleinen Polradius ergeben sich typischerweise auch große Flankenwinkel. Diese sind sehr günstig für eine hohe Sammeleffizienz. In Weiterbildung der Erfindung wird dazu vorgeschlagen, die asphärische konvexe Lichtaustrittsfläche so auszugestalten, dass deren Flankenwinkel mindestens 30° beträgt. Vorzugsweise liegt der Flankenwinkel im Bereich von 30° bis 70°.
  • Der axiale Abschnitt zwischen dem Rand der asphärischen Brechfläche und der Lichteintrittsfläche macht in Weiterbildung der Erfindung einen beträchtlichen Teil des Volumens der Linse aus. Allgemein hat es sich sogar überraschend als günstig erwiesen, wenn der axiale, zylindrische Abschnitt zwischen dem Rand der asphärischen Brechfläche und der Lichteintrittsfläche einen größeren Anteil am Volumen hat, als das von der asphärischen Brechfläche eingeschlossene Volumen. Dies ist insofern überraschend, da man annehmen würde, dass dieser Abschnitt aufgrund der vorgeschalteten planen Lichteintrittsfläche an sich nicht zur Kollimation beiträgt. Im Gegenteil liegt innerhalb dieses Abschnittes sogar ein divergenter Lichtstrahl vor. Gemäß dieser Weiterbildung der Erfindung hat es sich insgesamt als günstig erwiesen, wenn das Verhältnis des von der Brechfläche eingeschlossenen Volumens zum Volumen des axialen zylindrischen Abschnitts zwischen dem Rand der asphärischen Lichtaustrittsfläche und der Lichteintrittsfläche kleiner ist als 1/2. Weist das verwendete Material an der Lichtaustrittsfläche sehr hohe Brechungsindizes von mindestens nd = 1,9 auf, kann sogar ein entsprechendes Verhältnis der Volumina von kleiner als 1/3 gewählt werden.
  • Der oben angegebene Brechungsindex von mindestens n = 1,70, vorzugsweise mindestens 1,75 wird bevorzugt noch höher gewählt. Insbesondere wird bevorzugt ein Brechungsindex größer 1,8 für die asphärische Brechfläche gewählt, um die Sammeleffizienz zu erhöhen. Auch für die Lichteintrittsfläche wird ein hoher Brechungsindex bevorzugt. Der Brechungsindex an der Lichteintrittsfläche beträgt in Weiterbildung der Erfindung mindestens 1,5, vorzugsweise mindestens 1,6, besonders bevorzugt ebenfalls wie die Lichtaustrittsfläche mindestens 1,70, insbesondere bevorzugt mindestens 1,75.
  • Um eine hohe Sammeleffizienz zu erreichen, wird auch eine große Lichteintrittsfläche vorgeschlagen. Die Lichteintrittsfläche hat in Weiterbildung der Erfindung anders als die in der der DE 601 01 021 T2 beschriebene Linse einen Durchmesser, welcher mindestens doppelt so groß ist, wie die Wurzel der aktiven Emitterfläche der Lichtquelle. Im Falle einer quadratischen Emitterfläche stellt die Wurzel der Fläche die seitliche Abmessung der Emitterfläche dar.
  • Die erfindungsgemäßen hochbrechenden Linsen können im Allgemeinen allenfalls unter Einschränkungen aus Kunststoffen hergestellt werden. Demgemäß werden anorganische Werkstoffe, wie insbesondere Gläser oder Optokeramiken besonders bevorzugt.
  • Für Gläser bietet sich als Herstellungsverfahren besonders das Blankpressen an. Allerdings kann eine Linse des Volumens, beziehungsweise der erfindungsgemäßen Geometrie nicht mehr in üblicher Weise aus einer Kugel durch Blankpressen hergestellt werden. Eine erste Möglichkeit zur Herstellung einer solchen Linse durch Blankpressen ist, einen Zylinderabschnitt als Vorvormling zu verwenden. Ein solcher Zylinderabschnitt wird in seiner Größe im Wesentlichen nur durch die Ausmaße der Form beschränkt. Ein solcher Zylinderabschnitt hat viel mehr Volumen als eine Kugel. Alternativ können auch nicht-zylindrische Glasabschnitte, wie Vierkant-Abschnitte oder ovale Abschnitte verwendet werden.
  • Besonders bevorzugt wird die Herstellung von Glas-Glas-Hybridlinsen. Diese sind aus zwei Glaselementen zusammengesetzt, welche direkt miteinander durch Aufeinanderpressen und Verklebung der Gläser in erweichtem Zustand verbunden werden. Auch andere Verbindungsarten, wie etwa Kitten sind denkbar. Demgemäß ist in Weiterbildung der Erfindung eine Beleuchtungseinrichtung vorgesehen, deren Linse aus zwei Glaselementen zusammengesetzt ist, wobei von einem der Glaselemente die Lichteintrittsfläche und vom anderen Glaselement die Lichtaustrittsfläche gebildet wird.
  • Im Speziellen umfasst bei einer Ausführungsform der Erfindung das Herstellen der Linse das Verpressen, insbesondere das Blankpressen eines ersten Glaselements oder Vorformlings auf einer planen Seite eines zweiten Glaselements oder Vorformlings, welcher zwei gegenüberliegende planparallele Flächen aufweist. Der erste Vorformling wird beim Aufeinanderpressen zu einer Asphäre umgeformt, dessen Oberfläche die Lichtaustrittsfläche der Linse und die der Fläche des zweiten Vorformlings, auf welcher der erste Vorformling aufgepresst wird, gegenüberliegende Fläche die Lichteintrittsfläche der Linse bildet, und wobei beim Verpressen an der Grenzfläche zwischen den beiden Vorformlingen die Klebeviskosität unterschritten wird. Für den ersten Vorformling kann nun beispielsweise eine Kugelvorform verwendet werden.
  • Besonders günstig für die optischen und auch mechanischen Eigenschaften der Linse hat es sich weiterhin erwiesen, wenn gewisse Einschränkungen bei der Materialauswahl beachtet werden. In Weiterbildung der Erfindung werden dabei vorzugsweise beim Aufeinanderpressen der Glaselemente oder Vorformlinge und deren direkter Verklebung unter Erweichung zumindest eines der Gläser solche Gläser verwendet, bei welchen für die Temperaturausdehungskoeffizienten αGlas1, αGlas2 gilt: Glas1 – αGlas2| ≤ 0,2 × αGlas1. (3)
  • Diese Bedingung führt dazu, dass die mechanischen Spannungen beim Abkühlen auf Raumtemperatur nicht zu hoch werden. Mechanische Spannungen können insbesondere aufgrund der im Wesentlichen planen Verbindungsfläche bei Verwendung eines planparallelen Vorformlings kritisch werden, da in diesem Fall fast ausschließlich Scherkräfte an der Verbindungsfläche aufgebaut werden. Die in Gleichung (3) beschriebene Bedingung sollte zur Reduzierung mechanischer Spannungen insbesondere im Temperaturbereich zwischen der Raumtemperatur und der Temperatur beim Verpressen der beiden Glaselemente erfüllt sein. Die Bedingung (3) ist unter anderem auch gerade dann erfüllt, wenn zwei gleiche Gläser verwendet werden.
  • Die für die Lichtquellen verwendeten Leuchtdioden sind typischerweise diffus abstrahlende Flächenstrahler. Die erfindungsgemäße Linse ist gerade für die Kollimierung einer derartigen Lichtquelle besonders geeignet. Insbesondere können im Verhältnis zur flächigen Lichtquelle relativ kompakte Linsen verwendet werden, die dennoch eine sehr hohe Lichtsammeleffizienz aufweisen. So ist in Weiterbildung der Erfindung vorgesehen, dass die Lichtabstrahlfläche der Lichtquelle zumindest 1/80, vorzugsweise mindestens 1/40, besonders bevorzugt mindestens 1/30 der Fläche der Lichteintrittsfläche oder der auf die Ebene der Lichteintrittsfläche projizierten Lichtaustrittsfläche beträgt. Die Fläche der einen oder mehreren Leuchtdioden kann ohne erhebliche Verluste der Sammeleffizienz sogar bis zu einem 1/5 der optisch relevanten Fläche der Linse, nämlich der auf die Ebene der Lichteintrittsfläche projizierten Lichtaustrittsfläche betragen.
  • Weiterhin hat sich überraschend gezeigt, dass die Sammeleffizienz und damit die in Abstrahlrichtung erzielte Helligkeit besonders hoch ist, wenn die Brennweite der Linse größer ist als deren Dicke, so dass der Brennpunkt eines auf die Lichtaustrittsfläche treffenden Parallelstrahls außerhalb der Linse in einem Abstand zur Lichteintrittsfläche liegt und die zumindest eine Leuchtdiode der Lichtquelle, beziehungsweise genauer deren Lichtabstrahlfläche in axialer Richtung zwischen der Position dieses Brennpunkts und der Lichteintrittsfläche angeordnet ist.
  • Mit der Erfindung können auch sehr kompakte Beleuchtungseinrichtungen mit mehreren nebeneinander angeordneten Linsen und zugeordneten Leuchtdioden geschaffen werden. Zur Herstellung einer Beleuchtungsanordnung mit einem Array solcher Linsen bietet es sich insbesondere an, die asphärischen Linsen auf einem gemeinsamen Grundkörper zu vereinen, da ohnehin ein großer Teil des Volumens der Einzellinsen durch den Abschnitt zwischen Lichteintrittsfläche und Rand der asphärischen Brechfläche gegeben ist.
  • In Weiterbildung der Erfindung wird daher eine Beleuchtungseinrichtung mit einer Linsenanordnung mit mehreren nebeneinander angeordneten asphärischen Linsenflächen vorgesehen, wobei die Linsenflächen auf einem gemeinsamen Grundkörper angeordnet, beziehungsweise über diesen miteinander verbunden sind, wobei der Grundkörper eine den Linsenflächen gegenüberliegende plane Seite aufweist, und beabstandet zu der gegenüberliegenden planen Fläche mehrere Leuchtdioden angeordnet sind, und wobei die Leuchtdioden den verschiedenen Linsenflächen zugeordnet sind, so dass das Licht der Leuchtdioden jeweils von verschiedenen asphärischen Linsenflächen kollimiert wird.
  • Eine erfindungsgemäße Beleuchtungsanordnung kann für allgemeine Beleuchtungszwecke verwendet werden. Besondere ANwendungsfelder liegen im Bereich medizinischer Beleuchtungseinrichtungen, sowie für Projektoren.
  • Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen und unter Bezugnahme auf die beigeschlossenen Zeichnungen näher erläutert. Dabei verweisen gleiche Bezugszeichen auf gleiche oder entsprechende Elemente.
  • Es zeigen:
  • 1 eine Linse für eine Beleuchtungseinrichtung,
  • 2 eine Beleuchtungsanordnung mit simuliertem Strahlengang
  • 3 eine Linsenanordnung mit mehreren über einen Grundkörper zusammenhängenden Linsen,
  • 4 eine Beleuchtungseinrichtung mit einer Linsenanordnung gemäß 3,
  • 5 eine Pressform mit eingelegten Glaselementen zur Herstellung einer Linsenanordnung, und
  • 6 eine mittels der Pressform erhaltene Linsenanordnung.
  • 1 zeigt in Querschnittansicht eine Linse 3 für eine erfindungsgemäße Beleuchtungseinrichtung. Die Linse 3 umfasst eine konvex asphärische Lichtaustrittsfläche 5 und eine plane Lichteintrittsfläche 9. Allgemein kann die Linse 3 daher auch als plankonvexe Linse bezeichnet werden.
  • Das Volumen der Linse kann in zwei Teile untergliedert werden, die in 1 durch unterschiedliche Schraffuren hervorgehoben sind. Die Bereiche können, müssen aber nicht aus zwei verschiedenen Materialien bestehen. Der Bereich 9 ist das von der asphärischen Lichtaustrittsfläche 5 bis zu deren Rand 13 umschlossene Volumen. Der Bereich 11 ist der axiale Abschnitt der Linse zwischen dem Rand 13 und der Lichteintrittsfläche 9. Im Falle einer Einzellinse, wie sie 1 zeigt, wird dieser Abschnitt auch gleichzeitig durch die seitliche Linsenoberfläche begrenzt, so dass die Linse 3 sich aus einem asphärischen Teil mit dem Volumen 7 und einem zylindrischen Teil mit dem Volumen des Abschnitts 11 zusammensetzt.
  • Der zylindrische Abschnitt kann gegebenenfalls auch breiter sein, als der Abschnitt 11. In diesem Fall ist die Lichteintrittsfläche 9 größer als die Projektion der Lichtaustrittsfläche auf die Ebene der Lichtaustrittsfläche. Um eine hohe Sammeleffizienz zu erreichen, ist die Lichteintrittsfläche aber vorzugsweise – entsprechend dem in 1 gezeigten Beispiel – so groß wie die Projektion der Lichtaustrittsfläche auf die Ebene der Lichtaustrittsfläche, beziehungsweise die von dem auf die Lichtaustrittsfläche projizierten Rand 13 umschlossene Fläche, oder auch gegebenenfalls noch größer.
  • Mit anderen Worten ist das Volumen der Linse 3 zumindest durch das von der Lichtaustrittsfläche 5 umschlossenen Volumen 7 und dem Zylindervolumen eines Zylinders gegeben, dessen Stirnfläche durch die Lichteintrittsfläche 9 definiert wird und dessen Höhe durch die axiale Distanz von der Lichteintrittsfläche 9 bis zum Rand 13 der Lichtaustrittsfläche 5 gegeben ist. Aufgrund des Abschnitts 11 ist weiterhin auch die Dicke der Linse 3, beziehungsweise deren Gesamthöhe 16 um die Dicke dieses Abschnitts 11 größer, als die Pfeilhöhe 12 der Lichtaustrittsfläche 5, wobei die Pfeilhöhe der Lichtaustrittsfläche 5 sich bemisst anhand der axialen Distanz zwischen Scheitelpunkt 14 und Rand 13 der Lichtaustrittsfläche 5.
  • Der Krümmungsradius der asphärischen Lichtaustrittsfläche 5 am Scheitelpunkt 14, der am Durchstosspunkt der optischen Achse 15 liegt, wird als Polradius bezeichnet. In 1 ist der Polradius 17 der Lichtaustrittsfläche 5 als Pfeil eingezeichnet. Dem Polradius 17 kann nun die in 1 eingezeichnete, gedachte Kugel 19 zugeordnet werden, deren Radius dem Polradius 17 entspricht.
  • Wie anhand von 1 unmittelbar ersichtlich, ist in Einklang mit der oben angegebenen Beziehung (2) das zusammengesetzte Linsenvolumen aus dem Volumen 7 und dem Volumen des zylindrischen Abschnittes 11 deutlich größer als das Volumen der Kugel 19. Dieses große Volumen wird insbesondere durch die große Lichteintrittsfläche 9 der Linse 3 und dem damit verbundenen großen Volumen des Abschnitts 11 verursacht.
  • Besonders bevorzugt ist dabei insbesondere auch das Volumen des Abschnitts 11 größer als das Volumen 7. Gemäß einem Ausführungsbeispiel hat das Verhältnis zwischen dem asphärischen Teil, beziehungsweise dem Volumen 7 und dem Zylinderteil der Linse, beziehungsweise dem zylindrischen axialen Abschnitt 11 einen Wert von 0,456, wobei zwei verschiedene Gläser für das Volumen 7 und den Abschnitt 11 verwendet werden. In diesem Ausführungsbeispiel wurde ein Glas mit der Bezeichnung D263 für den Abschnitt 11 und ein Glas mit der Bezeichnung P-LASF47 mit einem Brechungsindex von nd = 1,8 für den asphärischen Teil verwendet.
  • Wird ein noch höherbrechendes Material, z. B. das Glas P-SF68 mit nd = 2,0 gewählt, sinkt das Verhältnis sogar auf Werte unter 1/3. Eine Simulation liefert dabei bessere Lichtausbeuten für kleinere Verhältnisse der Volumina. Dabei ist überraschend, dass mit sinkendem Verhältnis des Volumens 7 zum Volumen 11 der zylindrische Abschnitt 11 immer größer wird und die kollimierend wirkende Lichtaustrittsfläche sich damit weiter von der Lichteintrittsfläche entfernt. Aufgrund dessen wäre an sich eine geringere numerische Apertur anzunehmen.
  • Die Form der asphärischen Lichtaustrittsfläche wird vorzugsweise allgemein gemäß folgender Beziehung für eine rotationssymmetrische Fläche gewählt: (nach DIN ISO 10110)
    Figure 00170001
  • In dieser Gleichung bezeichnet der Parameter x die Koordinate entlang der optischen Achse (sogenannte Pfeilhöhe) und der Parameter y den radialen Abstand (Radius) zur optischen Achse. Die Größe r0 bezeichnet wieder den Polradius. Der Koeffizient k ist eine Größe, welche die Konizität kennzeichnet und wird auch als konische Konstante bezeichnet. Weiterhin wird die Form der Fläche, im Speziellen die Abweichung von einer Parabelform noch durch die Koeffizienten α2n, n = 2, 3, 4, ... charakterisiert. Typischerweise ist es ausreichend, in der Summe nach Gleichung (4) Glieder bis höchstens zur zehnten Ordnung (d. h. N = 5) zu berücksichtigen.
  • Gemäß einem Ausführungsbeispiel der Erfindung weist die Linse 3 ein Linsenvolumen von 30,288 mm3 auf, wobei für die Parameter der Beziehung (4) unter Berücksichtigung von Gliedern bis maximal achter Ordnung gilt:
    Radius r0 [mm] –1,906
    K –0,585
    α4 –0,0186
    α6 0,001922
    α8 0,00009136
  • Für eine solche Linse wurde festgestellt, dass diese mehr als 92% des Lichtes einer LED einsammeln und nach vorne gerichtet abstrahlen kann. Ohne Beschränkung auf das vorstehende Beispiel können mit einer erfindungsgemäßen Anordnung im Allgemeinen mehr als 70% des von der LED emittierten Lichts durch die Linse 3 eingefangen und nach vorne gerichtet abgestrahlt werden.
  • 2 zeigt eine erfindungsgemäße Beleuchtungsanordnung 1 mit einem simulierten Strahlengang und dem abgestrahlten Lichtstrahl 2. Die Lichtquelle 21 der Beleuchtungsanordnung 1 umfasst eine Leuchtdiode 22 deren Lichtabstrahlfläche 24 in einem Abstand 28 zur Lichteintrittsfläche 9 der Linse 3 angeordnet ist.
  • Im Unterschied zu einer Linse eines Pick-Up-Systems besteht erfindungsgemäß die Aufgabe, das Licht der quer zur optischen Achse ausgedehnten Lichtabstrahlfläche möglichst gut zu kollimieren; d. h. das Licht verlässt die Linse 3 mit einem möglichst geringen Öffnungswinkel. Eine vollständige Kollimation ist wegen der im Vergleich zur Linse örtlich ausgedehnten, diffus emittierenden Lichtquelle typischerweise nicht möglich. Als Kollimation wird daher festgelegt, dass mindestens 40%, vorzugsweise mindestens 60% des von der Lichtabstrahlfläche der Lichtquelle abgestrahlten Lichtes die Linse unter einem Öffnungswinkel kleiner gleich 30° verlässt. Zum Vergleich mit dem tatsächlichen Strahlenbündel ist in 2 ein gedachter Lichtstrahl 200, welcher einen Öffnungswinkel von 30°, beziehungsweise einen Winkel von 15° zur optischen Achse hat, eingezeichnet.
  • Bei der in 2 gezeigten Position der Leuchtdiode 22 gegenüber der Linse 3 wird ein optimierter kollimierter Strahl erzeugt. Zum Zwecke der Übersichtlichkeit sind dabei allerdings nur von einem einzelnen Punkt der Lichtabstrahlfläche ausgehende Lichtstrahlen eingezeichnet. Wie anhand von 2 weiterhin zu erkennen ist, ist der Lichtstrahl 2 nach der Kollimierung durch die Linse 3 divergent. Selbst die paraxialen Teilstrahlen nahe der optischen Achse laufen mit wachsender Entfernung von der Linse auseinander.
  • Anhand dessen wird ersichtlich, dass die Leuchtdiode 22 so angeordnet ist, dass die axiale Position der Lichtabstrahlfläche 24 nicht mit dem lichteintrittsseitigen Brennpunkt 26 eines auf die Lichtaustrittsseite treffenden Parallelstrahls zusammenfällt. Insbesondere ist, wie in 2 gezeigt, die Brennweite der Linse 3 größer als deren Dicke, so dass der Brennpunkt 26 eines auf die Lichtaustrittsfläche 5 treffenden Parallelstrahls außerhalb der Linse 3 in einem Abstand zur Lichteintrittsfläche 9 liegt, wobei die Lichtabstrahlfläche 9 der Leuchtdiode 22 in axialer Richtung zwischen der Position dieses Brennpunkts 26 und der Lichteintrittsfläche 9 der Linse 3 angeordnet ist. Diese Abweichung ist sogar erheblich. Bei der Linse 3, wie sie der Simulation der 2 zugrundegelegt wurde, liegt die Position der Lichtabstrahlfläche deutlich innerhalb der Hälfte der Strecke von der Lichtabstrahlfläche 9 zum Brennpunkt 26. Die Lichtabstrahlfläche liegt hier sogar noch innerhalb des ersten Drittels dieser an der Lichteintrittsseite 9 beginnenden Strecke.
  • Diese beiden vorstehenden Parameter können als allgemein angenommen werden, zumal für die zugrundegelegte Linse 3 ein noch relativ niedriger Brechungsindex an der Lichteintrittsseite angenommen wurde und ein hoher Brechungsindex an der Lichteintrittsseite im Allgemeinen noch eine Erniedrigung des Abstands 28 erlaubt. Der geringe Abstand bewirkt eine hohe Sammeleffizienz, wäre aber für abbildende oder auf einen Punkt fokussierende Systeme nur schlecht geeignet. In Weiterbildung der Erfindung ist daher die Lichtabstrahlfläche innerhalb der ersten Hälfte, vorzugsweise innerhalb des ersten Drittels der an der Lichteintrittsfläche 9 der Linse 3 beginnenden Strecke bis zum lichteintrittsseitigen Brennpunkt 26 angeordnet. Die Einhaltung eines Abstands ist generell günstig, um die Anforderungen an die Fertigungstoleranzen zu erniedrigen und/oder Bauraum für Anschlußstrukturen, wie etwa für Bonddrähte zu schaffen. Generell, ohne Beschränkung auf die dargestellten Ausführungsbeispiele wird ein Abstand der Lichtabstrahlfläche zur Lichteintrittsfläche der Linse von mindestens 200 Mikrometern bevorzugt.
  • Weiterhin hat die Lichtabstrahlfläche 24 der Leuchtdiode 22 auch eine Ausdehnung quer zur Richtung des Lichtstrahls 2, beziehungsweise zur optischen Achse. Zieht man die von weiteren Punkten der Lichtabstrahlfläche 24 abgestrahlten Lichtstrahlen in Betracht, ergibt sich gerade eine bessere Kollimierung des Lichtstrahls für die gegenüber dem Brennpunkt 26 nähere Position der Lichtabstrahlfläche 24 an der Lichteintrittsfläche 9 der Linse 3.
  • Die Linse 3, wie sie in 2 gezeigt ist, ist aus zwei Glaselementen 30, 33 zusammengesetzt, wobei von einem der Glaselemente, nämlich dem Glaselement 30 die Lichteintrittsfläche 9 und vom anderen Glaselement (Glaselement 33) die Lichtaustrittsfläche 5 gebildet wird. Die Linse wird dabei vorzugsweise durch Verpressen, insbesondere Blankpressen eines ersten Vorformlings auf einer planen Seite eines zweiten Vorformlings, welcher zwei gegenüberliegende planparallele Flächen aufweist, hergestellt. Der erste Vorformling wird dabei zum Glaselement 33 und damit zu einer Asphäre umgeformt, dessen Oberfläche die Lichtaustrittsfläche 5 der Linse 3 bildet. Die der Fläche des zweiten Vorformlings, auf welcher der erste Vorformling aufgepresst wird, gegenüberliegende Fläche bildet die Lichteintrittsfläche 9 der Linse 3. Um die beiden Vorformlinge, beziehungsweise die resultierenden Glaselemente 30, 33 miteinander zu verbinden, wird beim Verpressen an der Grenzfläche zwischen den beiden Vorformlingen die Klebeviskosität dieser Materialpaarung unterschritten. Das bedeutet, dass die Klebetemperatur der Materialpaarung überschritten wird.
  • Bei dem in 2 gezeigten Ausführungsbeispiel wurden folgende Parameter der Linse zugrundegelegt: Das Glas des Glaselements 33 mit der Bezeichnung P-LASF47 hat einen Brechungsindex von 1,8061. Das Glas des Glaselements 30 hat einen niedrigeren Brechungsindex von 1,5231. Die Dicke des Glaselements 33 zur Dicke des Glaselements 30 verhält sich wie 2,05 zu 0,55, wobei die Dicke des Glaselements 33 in axialer Richtung gemessen ist von der Grenzfläche der beiden Glaselemente 33 zum Scheitelpunkt des Glaselements 33. Wie weiterhin anhand von 2 zu erkennen ist, wird ein Teil des Abschnitts 11 durch das Glaselement 33 gebildet. Es ist also nicht zwingend, dass bei Verwendung einer Linse aus zwei Glaselementen der Abschnitt 11 vollständig durch eines der Glaselemente gebildet wird.
  • In einem weiteren Ausführungsbeispiel wurde eine Leuchtdiode mit einer Abstrahlfläche von 1 mm × 1 mm verwendet, deren Abstand zur Lichteintrittsfläche der Linse 0,5 Millimeter betrug. Die Lichteintrittsfläche der Linse hat in diesem Ausführungsbeispiel einen Durchmesser von 5 mm, entsprechend einer Fläche von 19,6 mm2. Demgemäß weist die Lichtabstrahlfläche 24 der Leuchtdiode eine Fläche von 1/19,6 der Fläche der Lichteintrittsfläche 9 auf. Die Linse hat eine Gesamthöhe von 3,55 Millimetern, einen konvexen Polradius von –2,14101 Millimetern, eine konische Konstante k = –6,913545. Der Parameter α4 beträgt –4,71584E–2, der Parameter α6 beträgt 4,13144E–3 und der Parameter α8 beträgt –1,86246E–4. Das Glaselement 33 weist eine Dicke von 3,0 Millimetern auf und ist aus Glas mit einer Brechzahl von 1,80 und das Glaselement 30 aus Glas mit einer Brechzahl von 1,52 und einer Dicke von 0,55 Millimetern gefertigt. Mit dieser Anordnung konnte bei beidseitig entspiegelter Linse ein Öffnungswinkel von 25° für 82% der von der Leuchtdiode abgestrahlten Lichtintensität erzielt werden.
  • Die erfindungsgemäße Anordnung ermöglicht nicht nur eine sehr gute Kollimierung flächiger Leuchtdioden. Es hat sich auch gezeigt, dass die Kollimierung weiterhin auch nahezu farbunabhängig ist. Damit eignet sich die erfindungsgemäße Beleuchtungseinrichtung besonders auch für mehrfarbige Leuchtdioden oder Weisslicht-Leuchtdioden. Wie unter anderem bei Mehrfarben-Leuchtdioden kann also auch die Leuchtdiode 22 durch mehrere nebeneinander angeordnete Leuchtdioden ersetzt werden.
  • Bei den bisher beschriebenen Ausführungsbeispielen wurde eine einzelne Linse für eine Beleuchtungsanordnung verwendet. Es ist aber auch möglich, zur Erzielung höherer Lichtintensitäten mehrere Linsen und zugeordnete Leuchtdioden nebeneinander anzuordnen. Dazu kann insbesondere auch eine Linsenanordnung mit mehreren nebeneinander angeordneten asphärischen Linsenflächen vorgesehen werden, welche auf einem gemeinsamen Grundkörper angeordnet sind, der eine den Linsenflächen gegenüberliegende plane Seite aufweist, wobei beabstandet zu der gegenüberliegenden planen Fläche mehrere Leuchtdioden angeordnet sind, so dass das Licht der Leuchtdioden jeweils von verschiedenen asphärischen Linsenflächen kollimiert wird.
  • Eine solche Linsenanordnung 100 mit mehreren in einem gemeinsamen Grundkörper 101 vereinigten Linsen 103 ist in den 3 und 4 dargestellt. Dabei zeigt 3 eine Aufsicht. 4 zeigt in Seitenansicht eine Beleuchtungseinrichtung mit einer solchen Linsenanordnung 100 und einer entsprechenden Lichtquelle 21 mit mehreren Leuchtdioden 22. Die Leuchtdioden 21 sind auf einem Träger 35 befestigt. Vorzugsweise wird eine Leiterplatte als Träger 35 verwendet, auf welcher die Leuchtdioden 22 aufgelötet sind.
  • Die Linsenanordnung 100 und der Träger 35 sind mit einer Halterung 37 zueinander unter Einhaltung eines Abstands 28 zwischen den Lichtabstrahlflächen 24 und den Lichteintrittsflächen 9 der Linsen, welche durch die gemeinsame plane Seite 90 des Grundkörpers 101 definiert werden, fixiert.
  • Nachfolgend wird ein Herstellungsverfahren für eine solceh Linsenanordnung 100 beschrieben, welches analog auch für die Herstellung von Einzellinsen entsprechend der Ausführungsbeispiele der 1 und 2 angewendet werden kann. Das Verfahren basiert darauf, dass zur Herstellung der Linse 3 oder der Linsenanordnung 100 ein erster Vorformling mit einen zweiten Vorformling verpresst, insbesondere unter Blankpressen verpresst wird, wobei der erste Vorformling auf einer planen Seite des zweiten Vorformlings aufgepresst und dabei der erste Vorformling zu einer Asphäre umgeformt wird.
  • Die zur verpressten Seite gegenüberliegende plane Fläche des zweiten Vorformlings, auf welcher der erste Vorformling aufgepresst wird, bildet die Lichteintrittsfläche 9 der Linse 3, beziehungsweise der Linsen 103 der Linsenanordnung 100. Zur Verbindung wird beim Verpressen an der Grenzfläche zwischen den beiden Vorformlingen die Klebeviskosität unterschritten. Dabei erfolgt beim Aufeinanderpressen deren direkte Verklebung unter Erweichung zumindest eines der Gläser der Glaselemente. Besonders bevorzugt werden entweder gleiche Gläser oder solche mit sehr ähnlichen Temperaturausdehungskoeffizienten verwendet, für die insbesondere die oben angegebene Beziehung (3) gilt.
  • Das Blankpressverfahren funktioniert dabei wie folgt: Beide Glaselemente oder Vorformlinge werden in eine Form eingelegt. Dann wird die Form geschlossen und auf eine Temperatur aufgeheizt, bei der beide Gläser miteinander verkleben. Bei erreichter Temperatur erfolgt das Pressen, anschließend wird die Form abgekühlt und geöffnet und die Linse 3 oder die Linsenanordnung 100 kann entnommen werden.
  • Gegebenenfalls kann noch eine Nachbearbeitung der Oberfläche, beispielsweise durch Nachpolieren erfolgen. Ein kritischer Parameter beim Verpressen ist die Temperatur, denn die Gläser sollten nicht mit der Pressform verschmelzen/verkleben. Um dies zu vermeiden, können geeignete Materialien der Form und/oder Beschichtungen auf der Form verwendet werden. Ein geeignetes Material zur Vermeidung eines Anklebens ist z. B. eine Platin-Iridium-Legierung. Alternativ oder zusätzlich möglich ist auch, ein Trennmittel, wie BN, Graphit, Ruß, auf der Form zu verwenden.
  • 5 zeigt eine Pressform 40 mit eingelegten Glaselementen. Die Pressform 40 weist zwei Formhälften 41, 42 mit Pressflächen 43, beziehungsweise 44 auf. Auf die plane Pressfläche 43 der Formhälfte 41 ist als zweites Glaselement ein Glaselement 30 mit zwei planen Flächen aufgelegt. Die Pressfläche 44 der Formhälfte 42 weist die zur Herstellung der asphärischen Brechfläche komplementären Vertiefungen 46 auf.
  • In den Vertiefungen 46 werden die ersten Glaselemente 33 angeordnet, die beim Erreichen der Klebeviskosität und dem Verpressen zu ashärischen Glaselementen umgeformt werden, so dass eine wie in 6 dargestellte Linsenanordnung 100 erhalten wird. Bei dieser Linsenanordnung wird der Grundkörper durch das zweite Glaselement 30 und das von den asphärischen Linsenflächen umschlossene Volumen 5 durch die ersten Glaselemente 33 gebildet. Die Pressflächen 41, 43 sind mit einer Antihaftbeschichtung 45 beschichtet. Anstelle oder zusätzlich zu dieser Antihaftbeschichtung 45 kann auch eine Schicht eines Trennmittels verwendet werden.
  • Ein Verkleben eines Glases erfolgt im Allgemeinen bei einer Glasviskosität von kleiner 1·10–10 dPa·s. Die genaue Klebeviskosität ist abhängig von der Materialpaarung. So kann durch eine geschickte Wahl der Presswerkzeugbeschichtung die Klebeviskosität zur Form verringert werden. Damit wird es möglich, die Form 40 so weit aufzuheizen, dass die Kontaktstelle zwischen den Gläsern der Glaselemente 30, 33 zwar die ihnen eigene Klebeviskosität erreicht, aber an den Kontaktstellen zu den Formen wird die unterschiedliche, insbesondere geringere Klebeviskosität nicht erreicht.
  • Wenn eine optische Fläche eine einfache Geometrie (Planfläche, Sphäre) aufweist, kann anstelle oder zusätzlich zur Antihaftbeschichtung 45 auch ein Trennmittel verwendet werden, das einfach abpoliert wird. Wird ein Trennmittel verwendet, so kann die Form, welche mit Trennmittel beschichtet ist, sehr viel heißer gefahren werden.
  • Mit dem Verfahren, insbesondere auch mit einer Antihaft- oder Trennmittelbeschichtung ist es möglich, hinsichtlich ihrer Temperaturausdehnungskoeffizienten und Erweichungspunkte sehr ähnliche, sogar gleiche Gläser für die Glaselemente 30, 33 zu verwenden. Dies ermöglicht unter anderem auch, ebenso hohe Brechungsindizes an der Lichteintrittsfläche wie an der Lichtaustrittsfläche der Linse 3, beziehungsweise der Linsen 103 bereitzustellen.
  • Obwohl Linsen verwendet werden, die sehr steile Flanken haben, können Linsen mit kleinen Durchmessern verwendet werden und es kann insgesamt eine Anordnung mit nur kleinem Bauraum und entsprechend hoher Leuchtkraft erzielt werden.
  • Die erfindungsgemäße Beleuchtungseinrichtung, insbesondere mit einer Linsenanordnung, wie sie etwa in 4 gezeigt ist, kann weiterhin als hocheffiziente Lichtquelle für faseroptische Beleuchtungsanwendungen eingesetzt werden.
  • Um bei der Verwendung mehrere Linsen 103 eine optimale Lichtmischung zu erreichen und die Entstehung von Farbsäumen zu vermeiden, hat es sich weiterhin als überraschend günstig erwiesen, wenn der optische Schwerpunkt der Linsenanordnung 50 seitlich verschoben zur optischen Achse 51 oder Mittenachse einer nachgeschalteten Optik wie beispielsweise einer faseroptischen Einrichtung angeordnet wird. Zur Verdeutlichung dieser Anordnung sind in 3 der optische Schwerpunkt 50 der Linsenanordnung 100 und eine entsprechend seitlich verschobene optische Achse 51 einer nachgeschalteten Optik eingezeichnet. Mit anderen Worten ist damit keine der Linsen 103 in Koinzidenz mit der optischen Achse 51 der Faser/des Faserbündels.
  • Es ist dem Fachmann ersichtlich, dass die Erfindung nicht auf die vorstehenden Ausführungsbeispiele beschränkt ist, sondern vielmehr im Rahmen der Ansprüche variiert werden kann.
  • Bezugszeichenliste
  • 1
    Beleuchtungseinrichtung
    2
    Lichtstrahl
    3
    Linse
    5
    asphärische Lichtaustrittsfläche
    7
    von 5 umschlossenes Volumen
    9
    plane Lichteintrittsfläche
    11
    axialer Abschnitt von 3 zwischen 13 und 9
    12
    Pfeilhöhe von 3
    13
    Rand von 5
    14
    Scheitelpunkt
    15
    optische Achse von 3
    16
    Gesamthöhe von 3
    17
    Polradius
    19
    gedachte Kugel mit Radius 17
    21
    Lichtquelle
    22
    Leuchtdiode
    24
    Lichtabstrahlfläche von 22
    26
    lichtaustrittsseitiger Brennpunkt von 3
    28
    Abstand von 24 zu 9
    30, 33
    Glaselemente
    35
    Träger
    37
    Halterung
    40
    Pressform
    41, 42
    Pressformhälften
    50
    optischer Schwerpunkt von 100
    51
    optische Achse einer nachgeschalteten Optik
    90
    plane Seite von 101
    100
    Linsenanordnung
    101
    Grundkörper von 100
    103
    Linsen von 100
    200
    gedachter Lichtstrahl mit 30° Öffnungswinkel
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 60101021 T2 [0002, 0017]
    • CN 101373047 A [0004]
  • Zitierte Nicht-Patentliteratur
    • DIN ISO 10110 [0045]

Claims (12)

  1. Kollimierende Linse zur Kollimation des Lichtstrahls einer Lichtquelle, welche – eine Lichteintrittsfläche und – eine Lichtaustrittsfläche aufweist, wobei – die Lichtaustrittsfläche konvex asphärisch geformt ist, und – der Krümmungsradius vom Zentrum der Linse zu deren Rand hin zunimmt, und – der Brechungsindex der Linse an der Lichtaustrittfläche einen Wert von zumindest 1,70 aufweist, und – die Gesamthöhe der Linse (3) größer ist, als die Pfeilhöhe der Lichtaustrittsfläche (5), wobei – die Pfeilhöhe der Lichtaustrittsfläche (5) sich bemisst anhand der axialen Distanz zwischen Scheitelpunkt und Rand der Lichtaustrittsfläche, und wobei – sich das Volumen der Linse zumindest aus dem von der Lichtaustrittsfläche umschlossenen Volumen und dem Zylindervolumen eines Zylinders ergibt, dessen Stirnfläche durch die Lichteintrittsfläche gegeben ist und dessen Höhe durch die axiale Distanz von der Lichteintrittsfläche (9) bis zum Rand der Lichtaustrittsfläche (5) gegeben ist, wobei für das Volumen gilt:
    Figure 00290001
    wobei r0 den Krümmungsradius am Scheitelpunkt der asphärischen Lichtaustrittsfläche (5) und Vlens das Linsenvolumen der Linse (3) bezeichnen.
  2. Beleuchtungseinrichtung (1) zur Erzeugung eines kollimierten Lichtstrahls (2), welche – eine Lichtquelle (21) mit zumindest einer Leuchtdiode (22) und – eine Linse (3) umfasst, wobei die Linse (3) eine Lichteintrittsfläche (9) und eine Lichtaustrittsfläche (5) aufweist, und wobei – die Lichteintrittsfläche (9) in einem Abstand zur Leuchtdiode (22) angeordnet ist, und wobei – die Lichtaustrittsfläche (5) konvex asphärisch geformt ist, und – der Krümmungsradius vom Zentrum der Linse (3) zu deren Rand hin zunimmt, und wobei – der Brechungsindex der Linse (3) an der Lichtaustrittsfläche (5) einen Wert von zumindest 1,70 aufweist, und wobei – die Gesamthöhe der Linse (3) größer ist, als die Pfeilhöhe (hAustritt) der Lichtaustrittsfläche (5), wobei – die Pfeilhöhe der Lichtaustrittsfläche (5) sich bemisst anhand der axialen Distanz zwischen Scheitelpunkt und Rand der Lichtaustrittsfläche (5), und wobei – sich das Volumen der Linse (3) zumindest aus dem von der Lichtaustrittsfläche (5) umschlossenen Volumen und dem Zylindervolumen eines Zylinders ergibt, dessen Stirnfläche durch die Lichteintrittsfläche (9) gegeben ist und dessen Höhe durch die axiale Distanz von der Lichteintrittsfläche (9) bis zum Rand der Lichtaustrittsfläche (5) gegeben ist, wobei für das Linsenvolumen gilt:
    Figure 00310001
    wobei r0 den Krümmungsradius am Scheitelpunkt der asphärischen Lichtaustrittsfläche (5) und Vlens das Linsenvolumen der Linse (3) bezeichnen.
  3. Beleuchtungseinrichtung (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Flankenwinkel der Linse (3) größer als 30° beträgt.
  4. Beleuchtungseinrichtung gemäß vorstehendem Anspruch, wobei die Lichteintrittsfläche (9) plan ist.
  5. Beleuchtungseinrichtung (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Lichtabstrahlfläche (24) der Lichtquelle (21) zumindest 1/80 der Fläche der Lichteintrittsfläche (9) oder der auf die Ebene der Lichteintrittsfläche (9) projizierten Lichtaustrittsfläche (5) beträgt.
  6. Beleuchtungseinrichtung (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass – die Brennweite der Linse (3) größer ist als deren Dicke, so dass der Brennpunkt eines auf die Lichtaustrittsfläche (5) treffenden Parallelstrahls außerhalb der Linse (3) in einem Abstand (28) zur Lichteintrittsfläche (9) liegt, und wobei – die Lichtabstrahlfläche (24) der zumindest einen Leuchtdiode (22) der Lichtquelle (21) in axialer Richtung zwischen der Position dieses Brennpunkts und der Lichteintrittsfläche (9) angeordnet ist.
  7. Beleuchtungseinrichtung (1) gemäß einem der vorstehenden Ansprüche, gekennzeichnet durch eine Linsenanordnung mit mehreren nebeneinander angeordneten asphärischen Linsenflächen, welche auf einem gemeinsamen Grundkörper angeordnet sind, der eine den Linsenflächen gegenüberliegende plane Seite aufweist, wobei beabstandet zu der gegenüberliegenden planen Fläche mehrere Leuchtdioden angeordnet sind, so dass das Licht der Leuchtdioden jeweils von verschiedenen asphärischen Linsenflächen kollimiert wird.
  8. Beleuchtungseinrichtung (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Linse (3) aus zwei Glaselementen (30, 33) zusammengesetzt ist, wobei von einem der Glaselemente (30) die Lichteintrittsfläche (9) und vom anderen Glaselement (33) die Lichtaustrittsfläche (5) gebildet wird.
  9. Beleuchtungseinrichtung (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass – der axiale, zylindrische Abschnitt zwischen dem Rand der asphärischen Brechfläche und der Lichteintrittsfläche (9) einen größeren Anteil am Volumen hat, als das von der asphärischen Brechfläche eingeschlossene Volumen, wobei – das Verhältnis des von der Brechfläche eingeschlossenen Volumens zum Volumen des axialen zylindrischen Abschnitts zwischen dem Rand der asphärischen Lichtaustrittsfläche (5) und der Lichteintrittsfläche (9) kleiner ist als 1/2.
  10. Verfahren zur Herstellung einer Beleuchtungseinrichtung (1) zur Erzeugung eines kollimierten Lichtstrahls (2) gemäß einem der vorstehenden Ansprüche 2 bis 9, bei welchem – eine Lichtquelle (21) mit zumindest einer Leuchtdiode (22) bereitgestellt und – eine Linse (3) hergestellt wird, wobei die Linse (3) eine Lichteintrittsfläche (9) und eine Lichtaustrittsfläche (5) aufweist, wobei – die Lichteintrittsfläche (9) plan und – die Lichtaustrittsfläche (5) konvex asphärisch geformt wird, und die Linse (3) weiterhin so geformt wird, dass – der Krümmungsradius vom Zentrum der Linse (3) zu deren Rand hin zunimmt, und wobei – ein Material für die Linse (3) verwendet wird, welches wenigstens an der Lichtaustrittsfläche (5) einen Wert von zumindest 1,7 aufweist, und wobei – die Linse mit einer Gesamthöhe hergestellt wird, welche größer ist, als die Pfeilhöhe der Lichtaustrittsfläche (5), wobei die Pfeilhöhe der Lichtaustrittsfläche (5) sich bemisst anhand der axialen Distanz zwischen Scheitelpunkt und Rand der Lichtaustrittsfläche (5), und wobei – sich das Volumen der Linse (3) zumindest aus dem von der Lichtaustrittsfläche (5) umschlossenen Volumen und dem Zylindervolumen eines Zylinders ergibt, dessen Stirnfläche durch die Lichteintrittsfläche (9) gegeben ist und dessen Höhe durch die axiale Distanz von der Lichteintrittsfläche (9) bis zum Rand der Lichtaustrittsfläche (5) gegeben ist, wobei für das Volumen gilt:
    Figure 00340001
    wobei r0 den Krümmungsradius am Scheitelpunkt der asphärischen Lichtaustrittsfläche (5) und Vlens das Linsenvolumen bezeichnen, und wobei – die Linse (3) und die Lichtquelle (21) so zueinander angeordnet werden, dass die Lichteintrittsfläche (9) der Linse (3) zur Leuchtdiode (22) beabstandet ist.
  11. Verfahren gemäß dem vorstehenden Anspruch, dadurch gekennzeichnet, dass das Herstellen der Linse (3) das Verpressen, insbesondere das Blankpressen eines ersten Glaselements auf einer planen Seite eines zweiten Glaselements, welches zwei gegenüberliegende planparallele Flächen aufweist, umfasst, wobei – das erste Glaselement (33) zu einer Asphäre umgeformt wird, dessen Oberfläche die Lichtaustrittsfläche (5) der Linse (3) und die der Fläche des zweiten Glaselements, auf welcher das erste Glaselement aufgepresst wird, gegenüberliegende Fläche die Lichteintrittsfläche (9) der Linse (3) bildet, und wobei – beim Verpressen an der Grenzfläche zwischen den beiden Glaselementen (30, 33) die Klebeviskosität unterschritten wird.
  12. Verfahren gemäß einem der zwei vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Herstellen der Linse (3) das Aufeinanderpressen zweier Glaselemente (30, 33) und deren direkte Verklebung unter Erweichung zumindest eines der Gläser umfasst, wobei gleiche Gläser verwendet werden oder für die Temperaturausdehungskoeffizienten αGlas1, αGlas2 der Gläser der Glaselemente gilt: Glas1 – αGlas2| ≤ 0,2 × αGlas1.
DE102010004825A 2010-01-15 2010-01-15 Kollimierte Lichtquelle und Verfahren zu deren Herstellung Ceased DE102010004825A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102010004825A DE102010004825A1 (de) 2010-01-15 2010-01-15 Kollimierte Lichtquelle und Verfahren zu deren Herstellung
DE202010018278.6U DE202010018278U1 (de) 2010-01-15 2010-01-15 Kollimierte Lichtquelle
PCT/EP2011/000143 WO2011085998A1 (de) 2010-01-15 2011-01-14 Kollimierte lichtquelle und verfahren zu deren herstellung
CN201180006227.1A CN102713688B (zh) 2010-01-15 2011-01-14 经准直化的光源和用于制造该光源的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010004825A DE102010004825A1 (de) 2010-01-15 2010-01-15 Kollimierte Lichtquelle und Verfahren zu deren Herstellung

Publications (1)

Publication Number Publication Date
DE102010004825A1 true DE102010004825A1 (de) 2011-07-21

Family

ID=43881215

Family Applications (2)

Application Number Title Priority Date Filing Date
DE202010018278.6U Expired - Lifetime DE202010018278U1 (de) 2010-01-15 2010-01-15 Kollimierte Lichtquelle
DE102010004825A Ceased DE102010004825A1 (de) 2010-01-15 2010-01-15 Kollimierte Lichtquelle und Verfahren zu deren Herstellung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DE202010018278.6U Expired - Lifetime DE202010018278U1 (de) 2010-01-15 2010-01-15 Kollimierte Lichtquelle

Country Status (3)

Country Link
CN (1) CN102713688B (de)
DE (2) DE202010018278U1 (de)
WO (1) WO2011085998A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2693113A1 (de) * 2012-08-02 2014-02-05 Valeo Vision Dicke Linse aus zwei Materialien für eine Beleuchtungsvorrichtung, insbesondere für Kraftfahrzeuge
DE202014103713U1 (de) 2014-08-11 2014-08-27 Jenoptik Polymer Systems Gmbh LED-Spotlichtstrahler
CN104204907A (zh) * 2012-02-01 2014-12-10 罗布照明有限公司 改进的光校准***
DE202015102507U1 (de) 2015-05-15 2015-06-10 Bernd Beisse LED-Leuchte
DE102017102465A1 (de) 2017-02-08 2018-08-09 HELLA GmbH & Co. KGaA Optisches Linsensystem mit wenigstens zwei stoffschlüssig miteinander verbundenen Linsen

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6243143B2 (ja) * 2013-06-04 2017-12-06 スタンレー電気株式会社 画像読取装置用線状光源装置および画像読取装置
DE102013021309A1 (de) * 2013-12-19 2015-06-25 Erco Gmbh Leuchte u.a.
DE202016105880U1 (de) * 2016-10-19 2018-01-22 BÄ*RO GmbH & Co. KG Beleuchtungseinrichtung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1614239A1 (de) * 1966-04-22 1970-07-02 Philips Nv Magnetooptischer Schalter
EP0168012A2 (de) * 1984-07-09 1986-01-15 Casio Computer Company Limited Flüssigkristallzusammensetzung
DE3830119A1 (de) * 1988-09-05 1990-03-15 Standard Elektrik Lorenz Ag Optische koppelvorrichtung
EP0400176A1 (de) * 1989-05-31 1990-12-05 Siemens Aktiengesellschaft Oberflächenmontierbares Opto-Bauelement
DE19534638A1 (de) * 1994-09-19 1996-03-21 Rodenstock Optik G Optisches System mit drei Linsen
DE60101021T2 (de) 2000-06-12 2004-06-24 Pioneer Corp. Objektivlinse, optische Abtastvorrichtung und optisches Aufnahme/Wiedergabegerät
US20080297920A1 (en) * 2007-05-18 2008-12-04 Tetsuya Suzuki Bonded optical element
CN101373047A (zh) 2007-08-20 2009-02-25 神钛光学科技股份有限公司 Led投射灯的聚光结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020720A (ja) * 2002-06-13 2004-01-22 Olympus Corp コリメートレンズ
JP4294295B2 (ja) * 2002-11-06 2009-07-08 株式会社小糸製作所 車両用前照灯
US7618162B1 (en) * 2004-11-12 2009-11-17 Inteled Corp. Irradiance-redistribution lens and its applications to LED downlights
CN1299128C (zh) * 2005-01-07 2007-02-07 清华大学 一种用于阵列二极管激光器的二维准直微透镜阵列
CN101457900B (zh) * 2007-12-13 2011-06-29 绎立锐光科技开发(深圳)有限公司 低发散led光源模块

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1614239A1 (de) * 1966-04-22 1970-07-02 Philips Nv Magnetooptischer Schalter
EP0168012A2 (de) * 1984-07-09 1986-01-15 Casio Computer Company Limited Flüssigkristallzusammensetzung
DE3830119A1 (de) * 1988-09-05 1990-03-15 Standard Elektrik Lorenz Ag Optische koppelvorrichtung
EP0400176A1 (de) * 1989-05-31 1990-12-05 Siemens Aktiengesellschaft Oberflächenmontierbares Opto-Bauelement
DE19534638A1 (de) * 1994-09-19 1996-03-21 Rodenstock Optik G Optisches System mit drei Linsen
DE60101021T2 (de) 2000-06-12 2004-06-24 Pioneer Corp. Objektivlinse, optische Abtastvorrichtung und optisches Aufnahme/Wiedergabegerät
US20080297920A1 (en) * 2007-05-18 2008-12-04 Tetsuya Suzuki Bonded optical element
CN101373047A (zh) 2007-08-20 2009-02-25 神钛光学科技股份有限公司 Led投射灯的聚光结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DIN ISO 10110

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104204907A (zh) * 2012-02-01 2014-12-10 罗布照明有限公司 改进的光校准***
EP2693113A1 (de) * 2012-08-02 2014-02-05 Valeo Vision Dicke Linse aus zwei Materialien für eine Beleuchtungsvorrichtung, insbesondere für Kraftfahrzeuge
FR2994280A1 (fr) * 2012-08-02 2014-02-07 Valeo Vision Lentille epaisse bi-matiere pour dispositif d'eclairage notamment de vehicule automobile
DE202014103713U1 (de) 2014-08-11 2014-08-27 Jenoptik Polymer Systems Gmbh LED-Spotlichtstrahler
DE202015102507U1 (de) 2015-05-15 2015-06-10 Bernd Beisse LED-Leuchte
WO2016184775A1 (de) 2015-05-15 2016-11-24 Bernd Beisse Led-leuchte
DE102017102465A1 (de) 2017-02-08 2018-08-09 HELLA GmbH & Co. KGaA Optisches Linsensystem mit wenigstens zwei stoffschlüssig miteinander verbundenen Linsen
WO2018146065A1 (de) 2017-02-08 2018-08-16 HELLA GmbH & Co. KGaA Optisches linsensystem mit wenigstens zwei stoffschlüssig miteinander verbundenen linsen
US11543632B2 (en) 2017-02-08 2023-01-03 HELLA GmbH & Co. KGaA Optical lens system with at least two lenses firmly bonded to each other

Also Published As

Publication number Publication date
DE202010018278U1 (de) 2015-05-06
CN102713688A (zh) 2012-10-03
CN102713688B (zh) 2014-10-01
WO2011085998A1 (de) 2011-07-21

Similar Documents

Publication Publication Date Title
DE102010004825A1 (de) Kollimierte Lichtquelle und Verfahren zu deren Herstellung
DE102008048379B4 (de) Verfahren zur Herstellung eines Linsen-Arrays
DE102010018119B4 (de) Optikelement für eine Beleuchtungseinrichtung eines Fahrzeugs
DE102009052339A1 (de) Beleuchtungseinrichtung für ein Kraftfahrzeug
DE102008001778A1 (de) Nahbereichslinse
DE102013013995A1 (de) Scheinwerferlinse für einen Fahrzeugscheinwerfer
EP3258164B1 (de) Optik für einen scheinwerfer, optikanordnung und scheinwerfer
DE112014003601T5 (de) Spritzgegossene dicke Linse
DE102018101991B3 (de) Effizientes, Mikroprojektoren aufweisendes Projektionslichtmodul für einen Kraftfahrzeugscheinwerfer
DE202012005157U1 (de) Beleuchtungseinrichtung
DE102009017424B4 (de) Vorsatzoptik für eine Lichtquelle und Beleuchtungseinrichtung für ein Kraftfahrzeug mit einer solchen Vorsatzoptik
DE102011112285A1 (de) Lichtformung mittels LED-Lichtquelle
EP2618045A1 (de) Beleuchtungseinrichtung für ein Kraftfahrzeug
DE202017102935U1 (de) Linsenanordnung zur Implementierung eines Abblendlichts
DE102009015088A1 (de) Lichtquelle mit mehr als einer LED, welche UV-C-Licht emittiert, zur Desinfektion
EP2238496B1 (de) Optoelektronische vorrichtung und bildaufnahmegerät
DE1165514B (de) Axialsymmetrische Sammellinse
EP3086025A1 (de) Abstrahleinheit für eine operationsleuchte
DE3317519A1 (de) Lichtsammelplatte
DE102018207516B3 (de) Head-Up-Display mit einer von mehreren verteilt angeordneten Lichtquellen beleuchteten Anzeige
DE10321020A1 (de) Anordnung zum Erzeugen eines homogenisierten Leuchtfeldes
EP3805635A1 (de) Beleuchtungseinrichtung mit linse aus silikondruck
DE102015015360A1 (de) Scheinwerfer für ein Kraftfahrzeug
DE102005022636B4 (de) Dünne sphärische Linse und Verwendung einer Solchen
DE102012021797A1 (de) Scheinwerferlinse für einen Fahrzeugscheinwerfer

Legal Events

Date Code Title Description
R016 Response to examination communication
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final