DE102009051731A1 - Verfahren und Vorrichtung zum Laden einer Batterie - Google Patents

Verfahren und Vorrichtung zum Laden einer Batterie Download PDF

Info

Publication number
DE102009051731A1
DE102009051731A1 DE102009051731A DE102009051731A DE102009051731A1 DE 102009051731 A1 DE102009051731 A1 DE 102009051731A1 DE 102009051731 A DE102009051731 A DE 102009051731A DE 102009051731 A DE102009051731 A DE 102009051731A DE 102009051731 A1 DE102009051731 A1 DE 102009051731A1
Authority
DE
Germany
Prior art keywords
charging
voltage
max
charging voltage
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102009051731A
Other languages
English (en)
Other versions
DE102009051731B4 (de
Inventor
Andreas Wilde
Michael Roscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Priority to DE102009051731.6A priority Critical patent/DE102009051731B4/de
Publication of DE102009051731A1 publication Critical patent/DE102009051731A1/de
Application granted granted Critical
Publication of DE102009051731B4 publication Critical patent/DE102009051731B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Die Erfindung betrifft ein Verfahren sowie eine Vorrichtung zum Laden einer Batterie, wobei in einer ersten Ladephase mit einem konstanten Ladestrom Igeladen wird, wobei in einer zweiten Ladephase die Ladespannung Uermittelt wird aus einer Minimumauswahl aus - der maximal zulässigen Ladespannung U; - einer Konstantstrom-Ladespannung U, die zur Ladung mit dem maximal zulässigen Ladestrom Ierforderlich ist; und - einer Ladespannung U, die bestimmt wird aus einem tatsächlichen Ladestrom Igemäß: U= OCV+ (R* I) / k; mit k > 1. Dadurch wird eine gegenüber herkömmlichen Ladeverfahren verkürzte Batterieladung erreicht.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Laden einer Batterie gemäß dem Oberbegriff des Patentanspruchs 1 sowie eine dafür ausgebildete Vorrichtung.
  • Konventionelle Batterieladeverfahren arbeiten üblicherweise nach dem sog. CCCV-Verfahren, d. h. es wird zunächst in einer ersten Ladephase mit einem konstanten Ladestrom (”constant current” = CC) geladen, bis die Ladespannung einen bestimmten Schwellwert erreicht und dann in einer zweiten Ladephase mit einer konstanten Ladespannung (”constant voltage” = CV). In der zweiten Ladephase sinkt dabei der Ladestrom immer weiter ab und die Ladung wird üblicherweise dann beendet, wenn der Ladestrom einen gewissen Schwellwert unterschreitet.
  • Inder US-A 5 576 608 ist in 2 ein solches herkömmliches Ladeverfahren dargestellt.
  • Das CCCV-Verfahren wird angewandt, um die Batterien vor zu hohen Strömen während der Konstantstromphase und vor zu hohen Spannungen während der Konstantspannungsphase zu schützen. Sowohl ein zu hoher Ladestrom als auch eine zu hohe Ladespannung können die Lebensdauer der Batterie maßgeblich beeinträchtigen. Eine zu hohe Ladespannung ist allerdings nur dann schädlich, wenn die sogenannte inhärente Gleichgewichtsspannung (sogenannte ”open circuit voltage = OCV) ein gewisses Niveau überschreitet, da diese ursächlich für batterieinterne Zersetzungs- und Degradationsprozesse ist. Ferner wird von Batterieherstellern meist zusätzlich zum maximal zulässigem Ladestrom (Imax) und der maximal zulässigen Gleichgewichtsspannung (OCVmax) ein Spannungslimit (Umax) angegeben, welches auch bei Ladestrombelastung nicht überschritten werden darf. Dabei liegt dieses Spannungslimit Umax über dem Wert von OCVmax.
  • Dieses vorbekannte CCCV-Verfahren führt dazu, dass das vollständige Laden einer Batterie mit einem zulässigen maximalen Ladestrom deutlich länger als theoretisch möglich dauert, da der maximal zulässige Ladestrom zurückgeregelt werden muss, sobald die gemessene Batteriespannung die sogenannte Ladeschlussspannung erreicht. Insbesondere bei einer gewünschten Schnellladung führt dies bei Blei-Säure-Batterien, Nickel-Metallhydrid-Batterien oder Lithium-Ionen-Batterien dazu, dass diese nach einer Ladezeit von ca. einer Stunde nur zu etwa 80% oder weniger geladen sind. Gerade bei Anwendungen, in denen ein schnelles und zugleich möglichst vollständiges Laden der Batterie erforderlich ist wie beispielsweise bei elektrisch betriebenen Kraftfahrzeugen oder portablen Computern wäre es wünschenswert, eine schnellere Ladung der Batterien zu erreichen.
  • Aus der US A 5 576 608 ist ein Batterieladeverfahren bekannt, das eine verkürzte Batterieladezeit dadurch erreicht, dass die Konstantstrom-Ladephase länger fortgesetzt wird als bis zum Erreichen der Ladeschlussspannung. Erst bei Erreichen eines höheren Spannungswertes erfolgt eine Umschaltung auf eine zweite Ladephase mit einer konstanten, niedrigeren Ladespannung.
  • Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zum Laden einer Batterie bereitzustellen, das eine möglichst schnelle Batterieladung ermöglicht und gleichzeitig eine Schädigung der Batterie durch überhöhte Spannungswerte vermeidet.
  • Erfindungsgemäß wird diese Aufgabe durch die in den Ansprüchen 1 und 5 aufgeführten Merkmale gelöst. Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen.
  • Die Grundidee der Erfindung beruht darauf, während des Ladens ständig mit einem maximal möglichen Strom zu laden, ohne dabei einen der vorgegeben Grenzwerte zu verletzen. Dabei wird – wie beim Stand der Technik – zunächst mit einem konstanten und zwar dem maximal zulässigen Ladestrom Imax geladen, indem eine Ladespannung U1 angelegt wird bei der sich der gewünschte Ladestrom Imax einstellt und dies im Unterschied zum herkömmliche CCCV-Verfahren selbst dann noch fortgesetzt, wenn die Ladespannung den Wert OCVmax überschreitet und zwar so lange, bis entweder die maximal zulässige Ladespannung Umax erreicht wird oder eine zweite Ladespannung U2, die sich aus der folgenden Beziehung ergibt: U2 = OCVmax + (Ri·Ilad)/k, mit dem Batterieinnenwiderstand Ri sowie mit dem Ladestrom Imax, wobei k > 1 ist.
  • Es erfolgt also aus drei möglichen Ladespannungsverläufen eine Minimalauswahl, damit der Ladevorgang mit einer stets maximal zulässigen Ladespannung zur Erreichung eines möglichst hohen Ladestroms durchgeführt werden kann.
  • Dabei ist der Term (Ri·Ilad)/k ein Modell für die minimal denkbare Spannungserhöhung auf Grund des Ladestroms Ilad. Der Sicherheitsfaktor k stellt dabei sicher, dass zum einen die Batteriespannung den Wert OCVmax nicht überschreitet und zum anderen, dass im Falle eines Energiespeichers, bestehend aus einer Vielzahl von Einzelzellen – mit untereinander variierenden Innenwiderständen – keine der Einzelzellen das Zelllimit (OCVmax/Zellenzahl bei Serienschaltung der Zellen) überschreitet.
  • Gemäß einer ersten vorteilhaften Weiterbildung der Erfindung wird k so gewählt, dass in der ersten Ladephase U2 < Umax ist, so dass in der zweiten Ladephase mit der Spannung U2 = OCVmax + (Ri·Ilad)/k geladen wird. Das bedeutet, dass k gemäß der Ungleichung k > (Ri·Ilad)/(Umax – OCVmax) so bestimmt wird, dass U2 in der Konstantstromladephase kleiner als Umax ist. Sobald U1 dann Umax überschreitet und damit die Konstantstromladephase beendet wird, schaltet die Minimalauswahleinheit auf U1 um, so dass durch den sich sofort verringerndern Ladestrom Ilad auch U2 absinkt und zwar unter Annäherung an OCVmax.
  • Gemäß einer zweiten vorteilhaften Weiterbildung der Erfindung wird k so gewählt, dass in der ersten Ladephase U2 größer als Umax ist, so dass in der zweiten Ladephase mit der Ladespannung Umax geladen wird, der sich eine dritte Ladephase anschließt, mit der gemäß der Spannung U2 = OCVmax + (Ri·Ilad)/k geladen wird. Bei dieser Ausführungsform ist U2 zunächst – während der Konstantstromladephase – größer als Umax.
  • Sobald bei dieser Ausführungsform U1 in der Konstantstromladephase Umax überschreitet und damit die Konstantstromladephase beendet wird, schaltet die Minimalauswahleinheit auf Umax um (da U2 zu diesem Zeitpunkt noch größer ist als Umax), es wird also der Ladevorgang in der zweiten Ladephase mit einer konstanten Ladespannung Usoll = Umax fortgesetzt, wobei der Ladestrom Ilad immer mehr zurückgeht. Dementsprechend sinkt auch U2, Sobald U2 kleiner wird als Umax, schaltet die Minimumauswahleinheit von Umax auf U2 um, wodurch ein sich OCVmax asymptotisch von oben annähernder Ladespannungsverlauf ergibt.
  • Der Wert für den Faktor k hängt von den Batterieparametern, insbesondere Umax, dem maximal zulässigen Ladestrom Imax und dem Batterieinnenwiderstand Ri und dem gewünschten Ladeverhalten ab. Dieser liegt vorzugsweise zwischen 1 und 5, noch bevorzugter zwischen 1 und 2.
  • Eine Vorrichtung zur Durchführung des o. g. Verfahrens umfasst
    • – eine Proportionalregeleinheit, welche die Konstantstrom-Ladespannung U1 bestimmt aus Imax und Ilad
    • – eine Regeleinheit, welche die Ladespannung U2, bestimmt gemäß der o. g. Formel
    • – eine Minimumauswahleinheit, welche als Eingänge die maximal zulässige Ladespannung Umax, die Ladespannung U1 und die Ladespannung U2 umfasst, und die niedrigste dieser drei Spannungen als Ladespannung Usoll der Batterie zugeführt wird.
  • Vorzugsweise ist die Proportionalregeleinheit entweder ein reiner Proportionalregler (P-Regler) oder ein Proportionalregler mit Integralanteil (PI-Regler) oder ein Proportionalregler mit Integral- und Differenzialanteil (PID-Regler).
  • Die Erfindung wird nachfolgend anhand eines bevorzugten Ausführungsbeispiels unter Bezugnahme auf die beigefügten Zeichnungen weiter erläutert. Dabei zeigt:
  • 1: eine Schaltungsanordnung zur Durchführung des erfindungsgemäßen Batterieladevorgangs;
  • 2: ein Diagramm, das die Batterieladespannung über der Zeit darstellt;
  • 3: ein Diagramm, das den bei der Batterieladespannung gemäß 2 fließenden Ladestrom über der Zeit darstellt;
  • 4: ein Diagramm, das die Batterieladespannung für einen zweites Ausführungsbeispiel über der Zeit darstellt;
  • 5: ein Diagramm, das den Ladezustand (SOC) einer Batterie beim erfindungsgemäßen Ladeverfahren gegenüber dem Stand der Technik darstellt.
  • Die in 1 gezeigte Schaltungsanordnung 10 ist nur schematisch dargestellt und zeigt die wesentlichen Funktionsgruppen, die zum Verständnis der Erfindung nötig sind. Technisch notwendige aber zum Verständnis unwichtige Bauteile wie Leistungsverstärker, Spannungs- und Strommessanordnungen wurden weggelassen. Auch wird die Schaltungsanordnung 10 vorzugsweise digital ausgebildet sein, so dass nicht gezeigte Analog-Digital- und Digital-Analogwandler vorgesehen sein müssen.
  • Die Schaltungsanordnung 10 umfasst als Kernbestandteil eine Minimumauswahleinheit 12, die drei Eingänge 14, 16, 18 sowie einen Ausgang 20 aufweist. Die Minimumauswahleinheit 12 selektiert aus den drei Eingänge 14, 16, 18 denjenigen mit der niedrigsten Signalgröße und führt das Signal des betreffenden Eingangs Eingänge 14, 16, 18 über den Ausgang 20 weiter. Ein erster Eingang 14 der Minimumauswahleinheit 12 führt das Signal Umax, welches die maximal zulässige Ladespannung zur Ladung einer Batterie 22 ist. Diese Wert Umax wird vom Hersteller der Batterie vorgegeben und ist in einer nicht dargestellten Speicherstelle gespeichert.
  • Ein zweiter Eingang 16 der Minimumauswahleinheit 12 erhält ein Signal U1 von einer Proportionalregeleinheit 24, die nachstehend weiter beschrieben wird. Ein dritter Eingang 18 der Minimumauswahleinheit 12 erhält ein Signal U2 von einer Regeleinheit 26, die nachstehend weiter beschrieben wird.
  • Von der Minimumauswahleinheit 12 wird die kleinste der an den Eingängen 14, 16, 18 anliegenden Spannungswerte Umax, U1, U2 selektiert, am Ausgang 20 ausgegeben und über nicht dargestellte A/D-Wandler und Leistungstreiber als Ladespannung Usoll an der Batterie 22 angelegt.
  • Mittels nicht gezeigter Strommesseinrichtungen wird der durch die angelegte Ladespannung Usoll bewirkte Ladestrom Ilad gemessen und als Eingang 28 der Proportionalregeleinheit 24 sowie Eingang 30 der Regeleinheit 26 zugeführt.
  • Die Proportionalregeleinheit 24 umfasst einen Führungsgrößeneingang 32, über den der maximale Ladestrom Imax für die Batterie 22 vorgegeben wird. Der Wert Imax wird vom Hersteller der Batterie vorgegeben und ist in einer nicht dargestellten Speicherstelle gespeichert.
  • Die Regeleinheit 26 umfasst neben dem Eingang 30 mit dem Ladestrom Ilad einen Eingang 34 für den Wert OCVmax, der den für die Batterie 22 zutreffenden Wert für die maximal zulässige inhärente Gleichgewichtsspannung (open circuit voltage) darstellt. Die Regeleinheit 26 umfasst außerdem einen Eingang 36 für den Wert des Innenwiderstandes Ri der Batterie 22. Der Wert wird vom Hersteller der Batterie vorgegeben und ist in einer nicht dargestellten Speicherstelle gespeichert. Die Regeleinheit 26 führt aus den Eingangsgrößen eine Berechnung anhand der Formel U2 = OCVmax + (Ri·Ilad)/k (1) aus, wobei k in der Regeleinheit 26 in einer nicht dargestellten Speicherstelle gespeichert ist.
  • Der Wert OCVmax wird vom Hersteller der Batterie vorgegeben und ist in einer nicht dargestellten Speicherstelle gespeichert.
  • Die 2 und 3 zeigen den Verlauf der Ladespannung Usoll und Ilad jeweils über der Zeit t für eine Anwendung mit einem OCVmax = 4,09 V sowie einem Umax = 4,2 V.
  • Zu Beginn eines Ladevorgangs überprüft die Minimumauswahleinheit 12 die Signalwerte von Umax, U1 und U2. Die Werte Umax und U2 liegen beide oberhalb von OCVmax während U1 zunächst niedrig ist. Das heißt, bei einer niedrigen Ladespannung erfolgt eine Ladung der Batterie 22 mit dem konstanten Ladestrom Ilad = Imax. In dieser ersten Ladephase mit konstantem Ladestrom erfolgt also eine einfache Proportionalregelung über die Proportionalregeleinheit 24, gegebenenfalls mit Integral- (PI-Regelung) und gegebenenfalls zusätzlichen Differentialanteilen (PID-Regelung). Während dieser ersten Ladephase, die in 2 und 3 im Zeitbereich zwischen 0 und 500 sek. dargestellt ist, erfolgt ein Anstieg von U1 bei gleichbleibendem Ladestrom Ilad. Am Punkt A (500 sek.) würde dann die Spannung U1 den Wert von Umax überschreiten. Wie in 3 zu erkennen ist, ist der Ladestrom im Bereich bis 500 sek. konstant Ilad = Imax = 100 A.
  • In der gezeigten Ausführungsform würde im gleichen Punkt A auch die Spannung U2 überschritten werden. In diesem Punkt schaltet die Minimumauswahleinheit 12 daher entweder kurzzeitig auf Umax oder direkt auf U2 um und es beginnt die zweite Ladephase.
  • Der theoretische Verlauf von U2 gemäß der Formel (1) ist in 2 im Bereich bis 500 sek. strich-punktiert dargestellt, denn in diesem Bereich ist bei dem dargestellten Ausführungsbeispiel U2 = Umax. Im Punkt A knickt die Kurve von U2 nach unten ab, denn aufgrund des sich verkleinernden Ladestromes Ilad sinkt U2 nach dem Punkt A, also nach 500 sek. und nähert sich asymptotisch von oben der Spannung OCVmax an. Gleichzeitig sinkt der Ladestrom immer weiter ab, wie durch die Kurve b in 3 dargestellt ist.
  • In 2 ist ein zweiphasiger Verlauf der Ladespannung Usoll gezeigt, die durch den Umschaltpunkt A bei 500 sek. voneinander getrennt sind. Sofern ein anderer Wert für die Konstante k in Formel (1) verwendet wird, kann ein dreiphasiger Verlauf der Ladespannung Usoll vorliegen. Dann würde im Punkt A nicht direkt auf die Spannung U2 umgeschaltet sondern es erfolgt für einen relativ kurzen Zeitraum eine Ladung mit konstanter Spannung Umax bevor die Spannung dann mit dem Verlauf von U2 abfällt.
  • In den 2 und 3 sind auch die Ladespannungen und Ladeströme für ein herkömmliches CCCV-Verfahren dargestellt. In 2 verläuft das herkömmliche Ladeverfahren bis zu dem Punkt B genau so wie bei der Erfindung. Im Punkt B jedoch, wo die Spannung U1 den Wert von OCVmax überschreiten würde, wird beim CCCV-Verfahren auf Laden mit konstanter Ladespannung Usoll = OCVmax umgeschaltet, die Ladespannung steigt also nicht weiter an sondern bleibt auf dem Wert OCVmax. Dementsprechend ist der in 3 mit b bezeichnete CCCV-Ladestrom bis nach 1000 sek. kleiner als der mit a dargestellte Ladestrom gemäß der Erfindung.
  • In 1 sind ferner gestrichelt die Verläufe für die OCV-Spannungen beim erfindungsgemäßen Ladeverfahren mittels Linie c und mittels des herkömmlichen CCCV-Verfahrens mittels Linie d dargestellt. Es ist zu erkennen, dass die OCV-Spannung beim erfindungsgemäßen Ladeverfahren über dem gesamten Ladezeitraum höher bleibt als beim Stand der Technik.
  • In 4 ist der Spannungsverlauf über der Zeit für eine zweite vorteilhafte Ausbildung der Erfindung dargestellt, bei der k gemäß Formel (1) so bestimmt ist, dass die Spannung U2 zunächst größer als Umax ist. In einer ersten Ladephase bis zum Zeitpunkt t1 erfolgt eine Konstantstromladung mit U1, bis U1 = Umax wird. Da zu diesem Zeitpunkt t1 die Spannung U2 noch größer als Umax ist, erfolgt eine Batterieladung mit der Spannung Umax. Da die Ladespannung konstant bleibt, sinkt der Ladestrom was gemäß Formel (1) ein Absinken der Spannung U2 bewirkt. Zum Zeitpunkt t2 sinkt die Spannung U2 unterhalb Umax, so dass nach diesem Zeitpunkt t2 mit der weiter aufgrund des sinkenden Ladestromes absinkenden Spannung U2, geladen wird. Sie Spannungsverläufe bis zum Zeitpunkt t1 und nach dem Zeitpunkt t2 entsprechen im wesentlichen denjenigen aus 1 vor bzw. nach dem Punkt A.
  • In 5 ist der Ladezustand (state of charge = SOC) beim erfindungsgemäßen Ladeverfahren mittels Linie c dem des herkömmlichen CCCV-Verfahrens in Linie d gegenübergestellt. Dabei ist zu sehen, dass das erfindungsgemäße Ladeverfahren eine wesentlich schnellere Ladung der Batterie erlaubt, so dass sich die Ladezeit erheblich verkürzen lässt.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 5576608 A [0003, 0006]

Claims (6)

  1. Verfahren zum Laden einer Batterie mit einer maximal zulässigen Ladespannung Umax, einer maximal zulässigen Gleichgewichtsspannung OCVmax, einem Batterieinnenwiderstand R sowie einem maximal zulässigen Ladestrom Imax, wobei in einer ersten Ladephase mit dem Ladestrom Imax geladen wird, dadurch gekennzeichnet, dass in einer zweiten Ladephase die Ladespannung Usoll ermittelt wird aus einer Minimumauswahl aus – der maximal zulässigen Ladespannung Umax; – einer Konstantstrom-Ladespannung U1, die zur Ladung mit dem maximal zulässigen Ladestrom Imax erforderlich ist; und – einer Ladespannung U2, die bestimmt wird aus einem tatsächlichen Ladestrom Ilad gemäß: U2 = OCVmax + (Ri·Ilad)/k; mit k > 1.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass k so gewählt wird, dass in der ersten Ladephase U2 kleiner als Umax ist, so dass in der zweiten Ladephase mit der Spannung U2 = OCVmax + (Ri·Ilad)/k geladen wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass k so gewählt wird, dass in der ersten Ladephase U2 größer als Umax ist, so dass in der zweiten Ladephase mit der Ladespannung Umax geladen wird, der sich eine dritte Ladephase anschließt, mit der gemäß der Spannung U2 = OCVmax + (Ri·Ilad)/k geladen wird.
  4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass k zwischen 1 und 5, vorzugsweise zwischen 1 und 2 liegt.
  5. Vorrichtung zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass diese folgende Bestandteile umfasst: – eine Proportionalregeleinheit (2), welche die Konstantstrom-Ladespannung U1 bestimmt aus Imax und Ilad; – eine Regeleinheit (3), welche die Ladespannung U2, bestimmt gemäß U2 = OCVmax + (Ri·Ilad)/k; – eine Minimumauswahleinheit (4), welche als Eingänge die maximal zulässige Ladespannung Umax, die Ladespannung U1 und die Ladespannung U2 umfasst, und die niedrigste dieser 3 Spannungen als Ladespannung Usoll der Batterie zuführbar ist.
  6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Proportionalregeleinheit (2) ein P- oder ein PI oder ein PID-Regelverhalten aufweist.
DE102009051731.6A 2009-11-03 2009-11-03 Verfahren und Vorrichtung zum Laden einer Batterie Active DE102009051731B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102009051731.6A DE102009051731B4 (de) 2009-11-03 2009-11-03 Verfahren und Vorrichtung zum Laden einer Batterie

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009051731.6A DE102009051731B4 (de) 2009-11-03 2009-11-03 Verfahren und Vorrichtung zum Laden einer Batterie

Publications (2)

Publication Number Publication Date
DE102009051731A1 true DE102009051731A1 (de) 2011-05-05
DE102009051731B4 DE102009051731B4 (de) 2024-06-27

Family

ID=43828856

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102009051731.6A Active DE102009051731B4 (de) 2009-11-03 2009-11-03 Verfahren und Vorrichtung zum Laden einer Batterie

Country Status (1)

Country Link
DE (1) DE102009051731B4 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014040104A2 (de) 2012-09-13 2014-03-20 Fronius International Gmbh Verfahren und vorrichtung zum laden von batterien
CN107862124A (zh) * 2017-11-02 2018-03-30 上海空间电源研究所 锂电池限压充电***模型建立及计算方法
CN110875621A (zh) * 2018-08-29 2020-03-10 罗伯特·博世有限公司 执行电驱动运输工具的组合式充电和电池平衡过程的方法
CN111628541A (zh) * 2020-05-13 2020-09-04 中国长城科技集团股份有限公司 电子设备的关机供电电路及电子设备
DE102022203426A1 (de) 2022-04-06 2023-10-12 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Ermitteln einer voraussichtlichen Ladedauer einer Batterie

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576608A (en) 1993-05-14 1996-11-19 Sony Corporation Method for charging secondary battery and charger used therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2731112B1 (fr) 1995-02-27 1997-04-11 Alsthom Cge Alcatel Procede de charge d'accumulateur au lithium a anode de carbone
US5994878A (en) 1997-09-30 1999-11-30 Chartec Laboratories A/S Method and apparatus for charging a rechargeable battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576608A (en) 1993-05-14 1996-11-19 Sony Corporation Method for charging secondary battery and charger used therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014040104A2 (de) 2012-09-13 2014-03-20 Fronius International Gmbh Verfahren und vorrichtung zum laden von batterien
US9537342B2 (en) 2012-09-13 2017-01-03 Fronius International Gmbh Method and device for charging batteries by linearly increasing the charging voltage
EP3136539A1 (de) 2012-09-13 2017-03-01 Fronius International GmbH Verfahren und vorrichtung zum laden von batterien
CN107862124A (zh) * 2017-11-02 2018-03-30 上海空间电源研究所 锂电池限压充电***模型建立及计算方法
CN110875621A (zh) * 2018-08-29 2020-03-10 罗伯特·博世有限公司 执行电驱动运输工具的组合式充电和电池平衡过程的方法
CN111628541A (zh) * 2020-05-13 2020-09-04 中国长城科技集团股份有限公司 电子设备的关机供电电路及电子设备
CN111628541B (zh) * 2020-05-13 2022-09-23 中国长城科技集团股份有限公司 电子设备的关机供电电路及电子设备
DE102022203426A1 (de) 2022-04-06 2023-10-12 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Ermitteln einer voraussichtlichen Ladedauer einer Batterie

Also Published As

Publication number Publication date
DE102009051731B4 (de) 2024-06-27

Similar Documents

Publication Publication Date Title
DE102014110380B4 (de) Batteriesteuerung mit Blockauswahl
DE2642243A1 (de) Verfahren und vorrichtung zum laden von akkumulatorenbatterien
DE102012108113A1 (de) Gerät und Verfahren zur Steuerung des Aufladens eines zusammengesetzten Akkumulators
DE102009001670A1 (de) Ladeverfahren und Ladesystem
DE102006022394A1 (de) Vorrichtung zum Ladungsabgleich einer Energiequelle mit mehreren Zellen
WO2015104205A1 (de) Elektrochemischer energiespeicher und verfahren zum balancing
EP3075048A1 (de) Überspannungsschutz für kraftfahrzeugbordnetz bei lastabwurf
DE102018105841A1 (de) Verfahren zum Laden eines Energiespeichers eines Fahrzeugs mit einer modularen Ladevorrichtung bei hohem Gesamtwirkungsgrad
DE102009051731A1 (de) Verfahren und Vorrichtung zum Laden einer Batterie
DE102014219416A1 (de) Energiespeichervorrichtung für ein Kraftfahrzeug und Verfahren zum Betreibeneiner Energiespeichervorrichtung
DE102008002179A1 (de) Elektrischer Energiespeicher
DE2122227A1 (de) Verfahren zur Aufladung von Batterien
DE112019001213T5 (de) Zellenausgleichssteuerungsvorrichtung und Zellenausgleichssteuerungssystem
DE102016212762A1 (de) Verfahren und Vorrichtung zum Schnellladen eines Hochvoltenergiespeichers
WO2013113601A2 (de) Verfahren und vorrichtung zum vorladen eines elektrischen verbrauchers
EP3676933B1 (de) Vorrichtung zum elektropolieren eines zumindest eine lithium-ionen-zelle aufweisenden energiespeichers, ladegerät, verfahren zum betreiben des ladegeräts
DE102017201622A1 (de) Verfahren zum Betrieb eines Energiespeichersystems und Energiespeichersystem
WO2013167465A1 (de) Verfahren und vorrichtung zum einstellen der ladezustände einer batterie
EP2810815A1 (de) Energiespeichersystem und Verfahren zur Spannungsanpassung eines Energiespeichers
DE102019201606A1 (de) Verfahren zum elektrischen Vorladen eines Zwischenkreiskondensators im Hochvoltsystem eines zumindest teilweise elektrisch angetriebenen Kraftfahrzeugs sowie ein derartiges Hochvoltsystem
DE102012201359A1 (de) Batteriesystem, Kraftfahrzeug mit einem solchen Batteriesystem sowie ein Verfahren zum Balancieren der Batteriezellen eines Batteriesystems
DE2928503A1 (de) Verfahren und vorrichtung zur vollund/oder ausgleichsladung von mehrzelligen akkumulaturenbatterien bei bregenzter gesamtspannung
WO2016155962A1 (de) Verfahren zum betrieb einer batterieeinheit
DE102020204744A1 (de) Verfahren zum Betrieb eines Batteriepacks und Batteriepack
DE102020132936B4 (de) Steuereinheit, Energiespeicher und Verfahren zum Steuern des Energiespeichers

Legal Events

Date Code Title Description
OR8 Request for search as to paragraph 43 lit. 1 sentence 1 patent law
R163 Identified publications notified

Effective date: 20110630

R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division