DE102006056836B4 - Verfahren und Vorrichtung zur Ansteuerung von Personenschutzmitteln - Google Patents

Verfahren und Vorrichtung zur Ansteuerung von Personenschutzmitteln Download PDF

Info

Publication number
DE102006056836B4
DE102006056836B4 DE102006056836.2A DE102006056836A DE102006056836B4 DE 102006056836 B4 DE102006056836 B4 DE 102006056836B4 DE 102006056836 A DE102006056836 A DE 102006056836A DE 102006056836 B4 DE102006056836 B4 DE 102006056836B4
Authority
DE
Germany
Prior art keywords
signal
acceleration
feature
value
ejection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102006056836.2A
Other languages
English (en)
Other versions
DE102006056836A1 (de
Inventor
Frank Mack
Gunther Lang
Sascha Steinkogler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102006056836.2A priority Critical patent/DE102006056836B4/de
Publication of DE102006056836A1 publication Critical patent/DE102006056836A1/de
Application granted granted Critical
Publication of DE102006056836B4 publication Critical patent/DE102006056836B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0136Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to actual contact with an obstacle, e.g. to vehicle deformation, bumper displacement or bumper velocity relative to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R2021/0104Communication circuits for data transmission
    • B60R2021/01047Architecture
    • B60R2021/01054Bus
    • B60R2021/01068Bus between different sensors and airbag control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Bags (AREA)

Abstract

Verfahren zur Ansteuerung von Personenschutzmitteln (PS), wobei die Personenschutzmittel (PS) in Abhängigkeit von einem Beschleunigungssignal einer Beschleunigungssensorik (BS 1 bis 3), die am Stoßfanger angeordnet ist, angesteuert werden, wobei für die Ansteuerung ein zeitlicher Verlauf eines vom Beschleunigungssignal abgeleiteten Signals derart ausgewertet wird, dass in Abhängigkeit von wenigstens einem Signalwert, der ein Auswerfen eines Aufprallobjekts vom Stoßfanger kennzeichnet, wenigstens ein Merkmal erzeugt wird und dass in Abhängigkeit von dem wenigstens einem Merkmal die Ansteuerung erfolgt dadurch gekennzeichnet, dass das Auswerfen anhand des zeitlichen Verlaufs des Beschleunigungssignals erkannt wird, wobei der wenigstens eine Signalwert auf ein absolutes Minimum folgt.

Description

  • Stand der Technik
  • Die Erfindung betrifft ein Verfahren bzw. eine Vorrichtung zur Ansteuerung von Personenschutzmitteln nach der Gattung der unabhängigen Patentansprüche.
  • Aus DE 10 2005 000 657 A1 ist ein Verfahren zur Offset-Erkennung für eine Fußgängerschutzvorrichtung bekannt. Dabei wird abhängig von einem Beschleunigungssignal von Beschleunigungssensoren, die am Stoßfänger angeordnet sind, ein Offset eines Auftreffpunkts im Vergleich zur Fahrzeugmittellinie bestimmt. Dafür können Absolutwerte, Differenzwerte, Summenwerte oder Maximal- bzw. Minimalwerte der Sensordaten verwendet werden.
  • Die DE 10 2005 042 512 A1 offenbart ein Verfahren zum Aktivieren einer Fußgängerschutzvorrichtung eines Kraftfahrzeugs.
  • Die DE 10 2004 042 467 A1 offenbart ein Verfahren und eine Vorrichtung zur Erzeugung eines Auslösesignals für eine Fußgängerschutzvorrichtung.
  • Die DE 10 2004 018 356 A1 offenbart eine Kollisionsobjektunterscheidungsvorrichtung, die in ein Fahrzeug eingebaut werden kann.
  • Offenbarung der Erfindung
  • Das erfindungsgemäße Verfahren bzw. die erfindungsgemäße Vorrichtung zur Ansteuerung von Personenschutzmitteln mit den Merkmalen der unabhängigen Patentansprüche haben demgegenüber den Vorteil, dass durch die Erzeugung der Merkmale in Abhängigkeit von wenigstens einem Signalwert, der das Auswerfen eines Aufprallobjekts vom Stoßfanger kennzeichnet, eine genauere Charakterisierung des Aufprallobjekts möglich ist, da es sich gezeigt hat, dass die Relaxierung beim Auswerfvorgang des Aufprallobjekts des Stoßfangers ein ausgeprägteres Signal ist, als das Signal, das den Eindringvorgang kennzeichnet. Damit wird eine bessere Beurteilung des Aufpralls möglich. Dieses Auswerfsignal ist um so ausgeprägter, je geringer die Masse des Aufprallobjekts ist. Die Bestimmung der Masse aber ist ein wesentlicher Bestandteil eines Fußgängerdiskriminierungsalgorithmus, so dass erfindungsgemäß diese Diskriminierung erheblich verbessert wird.
  • Das erfindungsgemäße Verfahren bzw. die erfindungsgemäße Vorrichtung verwenden ein vom Beschleunigungssignal abgeleitetes Signal, wobei das Beschleunigungssignal hier auch Signale von mehreren Beschleunigungssensoren repräsentieren kann. Dieses abgeleitete Signal kann das Beschleunigungssignal selbst, beispielsweise nach einer Tiefpassfilterung, ein wegbasiertes oder ein geschwindigkeitsbasiertes oder Kombinationen daraus sein. Die Merkmale können dann aus dem abgeleiteten Signal bzw. dann dem erkannten Signalwert, der das Auswerfen des Aufprallobjekts kennzeichnet, erzeugt werden und diese Merkmale werden dann ausgewertet, um die Ansteuerung festzulegen.
  • Als Schnittstelle kann ein integrierter Schaltkreis, ein diskreter Schaltkreis, Kombinationen daraus, mehrere integrierte Schaltkreise oder eine Softwareschnittstelle vorgesehen sein. Die Beschleunigungssensorik, die am Stoßfänger angeordnet ist, ist dabei hinter der Stoßfängerverkleidung eingebaut. Bei der Beschleunigungssensorik kann es sich um ein, zwei, drei, vier oder mehr Beschleunigungssensoren handeln. Diese Beschleunigungssensoren sind üblicherweise mit einem mikromechanisch hergestellten Sensorelement versehen und weisen eine Signalaufbereitung und Senderbausteine auf.
  • Die Auswerteschaltung ist üblicherweise ein Mikrocontroller, es sind jedoch auch andere Prozessortypen oder ASICs möglich. Die Auswerteschaltung weist erfindungsgemäß ein Auswertemodul vor, das hardware- und/oder softwaremäßig ausgebildet sein kann. Entsprechend ist das Detektionsmodul, das Element des Auswertemodüls ist, hardware- und/oder softwaremäßig ausgebildet. Dies gilt ebenso für das Merkmalsmodul und für das Ansteuerungsmodul, das nicht Element des Auswertemoduls, sondern der Auswerteschaltung ist.
  • Bei den Personenschutzmitteln handelt es sich um Airbags, Gurtstraffer, crashaktive Kopfstützen, Überrollbügel und insbesondere Fußgängerschutzmitteln, wie eine anhebbare Fronthaube, Außenairbags und andere bekannte Fußgängerschutzmittel.
  • Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen und Weiterbildungen sind vorteilhafte Verbesserungen des in den unabhängigen Patentansprüchen angegebenen Verfahrens bzw. der in den unabhängigen Patentansprüchen angegebenen Vorrichtung zur Ansteuerung von Personenschutzmitteln möglich.
  • Besonders vorteilhaft ist, dass anhand des zeitlichen Verlaufs des Beschleunigungssignals das Auswerfen des Aufprallobjekts erkannt wird. Dieser Signalwert wird dabei als ein absolutes Maximum detektiert, der auf ein absolutes Minimum folgt. Diese Bezeichnungen sind insbesondere innerhalb vorgegebener Zeit nach dem Aufprall zu sehen. D. h. das absolute Minimum bezeichnet hier betragsmäßig das größte Minimum und darauf folgt dann das betragsmäßig höchste Maximum des Beschleunigungssignals. Dabei kann es sich um einzelne Beschleunigungssignale, oder um Summen von Beschleunigungssignalen handeln.
  • Weiterhin ist es vorteilhaft, dass das Signal wegbasiert, d.i. das zweite Integral der Beschleunigung, erzeugt wird, beispielsweise durch eine zweifache Integration, wobei hier Integration pragmatisch zu verstehen ist, so dass auch eine Aufsummierung oder andere äquivalente Maßnahmen, wie eine Mittelwertbildung, die zur Integration verwendet werden, darunter verstanden werden. Durch das wegbasierte Merkmal ist die Relaxierung des Stoßfängers leicht erkennbar. Dieses Merkmal kann dann entweder absolut oder in Relation zur Eindrückung des Stoßfängers bewertet werden.
  • Weiterhin ist es vorteilhaft, dass das Signal geschwindigkeitsbasiert erzeugt wird, also durch einfache Integration der Beschleunigung oder andere entsprechende Maßnahmen. Dabei wird zur Erzeugung des wenigstens einen Merkmals ein erster Maximalwert und ein erster Minimalwert des Signals verwendet. Da die Relaxierung des Stoßfängers, also das Rückschwingen des zweiten Integrals, gerade durch positive Werte des ersten Integrals verursacht wird, können zur Quantifizierung folgende Merkmale eingesetzt werden: Merkmal_DV_1 = Max_Dv / Min_Dv
    Figure DE102006056836B4_0001
    Merkmal_Dv_2 = ( | Max_Dv | | Min_Dv | ) / | | Max_Dv | + | Min_Dv | |
    Figure DE102006056836B4_0002
    Merkmal_Dv_3= Dv ( t )  dt | ( falls Dv > 0 ) / Dv ( t )  dt | ( falls Dv < 0 )
    Figure DE102006056836B4_0003
  • Bei Dv kann es sich dabei entweder um das erste Integral des aufprallnächsten Sensors oder um die Summe der ersten Integrale über alle Sensoren handeln.
  • Vorteilhafter Weise kann das Signal natürlich auch beschleunigungsbasiert sein, wobei dann folgende Merkmale verwendet werden können: Merkmal_Acc_1 = MaxAcc / MinAcc
    Figure DE102006056836B4_0004
    Merkmal_Acc_2 = ( | MaxAcc | | MinAcc | ) / | | MaxAcc | + | MinAcc | |
    Figure DE102006056836B4_0005
    Merkmal_Acc_3= a ( t )  dt | ( falls a > 0 ) / a ( t )  dt | ( falls a < 0 )
    Figure DE102006056836B4_0006
  • Bei A von D kann es sich dabei entweder um das Beschleunigungssignal des aufprallnächsten Sensors oder um die Summe über alle Sensorsignale handeln.
  • Die beschriebenen Merkmale, mit Ausnahme von Dv_2 und Acc_2 nehmen im Falle eines ausgeprägten Rückschwingvorgangs große Werte an. Große Merkmalswerte weisen damit auf eine geringe Masse des Aufprallobjekts hin. Bei den Merkmalen Dv_2 und Acc_2 ist das Verhalten gerade invers.
  • Die Wahl der einzelnen Merkmale, die zur Diskriminierung beitragen, kann applikationsabhängig gestaltet werden. Jedes der gewählten Merkmale wird mit einer applikationsabhängigen Schwelle verglichen und einer Auslöselogik zugeführt. Der Schwellwert kann dabei konstant oder zeitabhängig sein. Es ist vorteilhaft, diesen Schwellenwert in Abhängigkeit von der Geschwindigkeit, das kann die Eigengeschwindigkeit des Fahrzeugs oder das integrierte Beschleunigungssignal sein, und/oder von der Temperatur und/oder von der ermittelten Auftreffposition zu variieren.
  • Der Vergleich der Merkmale mit den Schwellwerten kann dabei in einem bestimmten auslöserelevanten Zeitfenster minimale und maximale Zeit ab Algorithmusstart durchgeführt werden. Der Algorithmusstart kann dabei in Abhängigkeit vom Überschreiten einer Schwelle, beispielsweise einer Rauschschwelle festgestellt werden. Alternativ kann als Bezugspunkt für das Zeitfenster auch ein charakteristisches Merkmal im Signalverlauf, z. B. das Erreichen der maximalen Intrusion herangezogen werden. Alternativ kann anstelle eines Zeitfensters auch ein Auswertefenster durch eine weitere Variable vorgegeben werden, beispielsweise kann eine Auswertung erfolgen, solange sich das absolut integrierte Signal zwischen einer Unter- und einer Obergrenze befindet.
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert.
  • Es zeigen
    • 1 ein Blockschaltbild mit der erfindungsgemäßen Vorrichtung,
    • 2 Module auf der Auswerteschaltung,
    • 3 ein erstes Blockdiagramm,
    • 4 ein zweites Blockdiagramm,
    • 5 ein drittes Blockdiagramm,
    • 6a bis c Zeitdiagramme der Signale bei einem mittigen Fußgängeraufprall,
    • 7 der Verlauf des Beschleunigungssignals bei einem mittigen Fußgängeraufprall und
    • 8a und b der Vergleich von unterschiedlichen schweren Aufprallobjekten in Bezug auf das integrierte und zweifach integrierte Beschleunigungssignal.
  • 1 zeigt in einem Blockschaltbild die erfindungsgemäße Vorrichtung SG als Steuergerät zur Ansteuerung von Personenschutzmitteln, insbesondere von Fußgängerschutzmitteln. An das Steuergerät SG sind drei hinter dem Stoßfänger eingebaute Beschleunigungssensoren BS1, BS2 und BS3 über eine Schnittstelle IF angeschlossen. Die Beschleunigungssensoren BS1, BS2 und BS3 weisen ein mikromechanisch hergestelltes Sensorelement auf, wobei das dadurch entstehende Messsignal in den Beschleunigungssensoren BS1 bis 3 vorverarbeitet wird, um es dann digital, beispielsweise über eine Powerline-Datenübertragung an die Schnittstelle IF zu übertragen. Die Schnittstelle IF wandelt die empfangenen Daten in ein Format für die Auswerteschaltung µC, also einen Mikrocontroller um. Zur Übertragung der Daten von der Schnittstelle IF zum Mikrocontroller µC wird der so genannte SPI- (Serial Peripherial Interface) Bus verwendet. Der Mikrocontroller µC verarbeitet die Sensorsignale in der erfindungsgemäßen Weise, indem er die entsprechenden Algorithmen und Module aus dem Speicher S lädt.
  • Dabei wird anhand der Beschleunigungssignale der Eindringvorgang und der Auswerfvorgang des Aufprallobjekts anhand des Beschleunigungssignals erkannt und durch Signalverarbeitungsschritte, die die Erzeugung von Merkmalen aus den Signalen und die Schwellwertgleiche der Merkmale beinhalten, wird dann ein Ansteuerungssignal erzeugt. Dieses Ansteuerungssignal wird ebenfalls über einen SPI-Bus zur Ansteuerungsschaltung FLIC übertragen, die ebenfalls als ein einziger integrierter Baustein oder eine Mehrzahl von integrierten Bausteinen vorhanden ist. Die Ansteuerschaltung FLIC weist insbesondere Leistungsschalter auf, die eine Bestromung der Personenschutzmittel im Auslösefall ermöglichen. Weitere Sensoren und Komponenten, die an das Steuergerät SG angeschlossen sind oder sich im Steuergerät SG befinden, sind der Einfachheit halber weggelassen worden. Bei dem Steuergerät SG handelt es sich üblicherweise um das Airbagsteuergerät oder ein Sicherheitssteuergerät, das den gesamten Personenschutz im Fahrzeug regelt.
  • 2 erläutert schematisch die Softwaremodule, die auf dem Mikrocontroller µC vorhanden sein können. Der Mikrocontroller µC weist als Hauptmodul das Auswertemodul 20 auf, das ein Detektionsmodul 21 und ein Merkmalsmodul 22 aufweist. Weiterhin ist ein Ansteuerungsmodul 23 vorgesehen und gegebenenfalls eine Schnittstelle 24, an die beispielsweise Sensoren angeschlossen werden können. Weitere Softwaremodule können vorgesehen sein. Es ist möglich, dass diese Module auch hardwaremäßig vorhanden sind oder aus einer Kombination aus Hardware und Software, wobei beispielsweise auf der Auswerteschaltung bestimmte Schaltkreise diesen Modulen dann exklusiv zugeordnet sind.
  • Das Auswertemodul 20 sucht mit dem Detektionsmodul 21 nach den Signalmerkmalen, die das Eindringen und das Auswerfen des Aufprallobjekts anzeigen. Wurde das Auswerfen gefunden, dann wird anhand dieser Signalwerte mittels des Merkmalsmoduls 22 dann die entsprechenden Merkmale erzeugt und mit Schwellwerten verglichen. Diese Schwellwerte können wie oben angegeben konstant oder variabel ausgeführt sein. Insbesondere ist dabei eine Zeitfenster- oder Auswertefenstersteuerung möglich. Wurde ein Ansteuerungsfall durch das Auswertemodul 20 erkannt, dann wird dies dem Modul 23 mitgeteilt, das als Ansteuerungsmodul konfiguriert ist. Dieses Ansteuerungsmodul 23 erzeugt dann mittels der Auswerteschaltung µC das Ansteuerungssignal, dass dann an die Ansteuerungsschaltung übertragen wird.
  • 3 zeigt in einem ersten Blockdiagramm den Ablauf des erfindungsgemäßen Verfahrens. In Verfahrensschritt 300 wird durch die Beschleunigungssensorik BS1 bis 3 die Beschleunigung als Wert bereitgestellt. Die Beschleunigung kann dabei durch den Verfahrensschritt 301 gefiltert werden, insbesondere einer Tiefpassfilterung unterzogen werden. Da gemäß 3 das Beschleunigungssignal als solches ausgewertet wird, werden hier letztlich drei verschiedene Auswertezweige vorgestellt, die alle oder nur eine Untermenge davon erfindungsgemäß verwendet werden können. In einem ersten Zweig wird das gefilterte Beschleunigungssignal in Verfahrensschritt 308 integriert, und zwar wird dann in Verfahrensschritt 309 der Anteil des Beschleunigungssignals, der positiv ist und integriert wurde, durch den Anteil des Beschleunigungssignals, der negativ ist und integriert wurde, dividiert, um ein Merkmal zu erzeugen. In Verfahrensschritt 310 wird dieses Merkmal mit einem Schwellwert, der wie oben dargestellt konstant oder variabel sein kann, verglichen, um festzustellen, ob dieses Merkmal einen Auslösefall anzeigt. Dieses Ergebnis wird einer Auslöselogik 306 mitgeteilt. Diese entscheidet dann anhand dieses und/oder anderer Ergebnisse, ob die Erzeugung des Ansteuerungssignals erfolgen soll oder nicht.
  • In einem weiteren Zweig wird in Verfahrensschritt 302 das Minimum, und zwar das absolute Minimum, im Beschleunigungssignal, und zwar dem zeitlichen Verlauf, gesucht. Dieses absolute Minimum kennzeichnet die Intrusion des Aufprallobjekts in den Stoßfänger. In Verfahrensschritt 303 wird das nachfolgende absolute Maximum gesucht, das das Auswerfen des Aufprallobjekts aus dem Stoßfänger kennzeichnet. Mit dem Minimum und Maximum können dann unterschiedliche Merkmale erzeugt werden. In Verfahrensschritt 304 wird durch eine Quotientenbildung des Maximums und des Minimums ein Merkmal erzeugt, das in Verfahrensschritt 305 einer Schwellwertuntersuchung unterzogen wird. Dieses Ergebnis wird ebenfalls der Auslöselogik 306 mitgeteilt. Ein weiteres Merkmal kann dadurch erzeugt werden, dass in Verfahrensschritt 307 eine betragsmäßige Differenzbildung des Maximums und des Minimums dividiert wird durch die Summenbildung des Maximums und des Minimums. Dieses Merkmal wird dann in Verfahrensschritt 308 ebenfalls einer Schwellwertuntersuchung unterzogen. Auf dieses Ergebnis wird der Auslöselogik 306 mitgeteilt. Die Auslöselogik 306 entscheidet dann anhand der Ergebnisse, ob das Ansteuerungssignal erzeugt wird oder nicht.
  • 4 zeigt in einem zweiten Blockdiagramm die Erzeugung der Merkmale des geschwindigkeitsbasierten Signals. In Verfahrensschritt 400 wird das Beschleunigungssignal bereitgestellt, das in Verfahrensschritt 401 gefiltert wird. Das Beschleunigungssignal wird in Verfahrensschritt 402 auf die oben beschriebene Weise integriert. Wiederum liegen vorliegend drei Merkmale vor, die erzeugt werden können. In einem ersten Zweig wird dann in Verfahrensschritt 403 eine Division des integrierten Geschwindigkeitssignals, das positiv ist, durch das integrierte Geschwindigkeitssignal, das negativ ist, durchgeführt. Dieser Quotient wird in Verfahrensschritt 404 mit einem Schwellwert verglichen und das Ergebnis wird der Auslöselogik 405 mitgeteilt. In einem mittleren Zweig wird in Verfahrensschritt 406 das Minimum im Geschwindigkeitssignal gesucht und in Verfahrensschritt 407 das Maximum. In Verfahrensschritt 408 wird dann ein Quotient aus Maximum und Minimum gebildet, der als Merkmal in Verfahrensschritt 409 einem Schwellwertentscheider zugeführt wird. Das Ergebnis des Schwellwertsvergleichs wird wiederum der Auslöselogik 405 mitgeteilt. In Verfahrensschritt 410 wird analog Verfahrensschritt 307 eine Differenz der Beträge des Maximums des Geschwindigkeitssignals und des Minimums des Geschwindigkeitssignals durch eine Summe der Beträge des Maximums des Geschwindigkeitssignals und des Minimum des Geschwindigkeitssignals durchgeführt, um ein weiteres Merkmal zu bilden, das in Verfahrensschritt 411 einem Schwellwertentscheider zugeführt wird. Auch dieses Schwellwertergebnis wird der Auslöselogik 405 zugeführt, die danach entscheidet, ob das Ansteuerungssignal erzeugt werden soll oder nicht.
  • 5 zeigt in einem dritten Blockdiagramm das erfindungsgemäße Verfahren mittels eines wegbasierten Signals. In Verfahrensschritt 500 wird das Beschleunigungssignal bereitgestellt, das in Verfahrensschritt 501 gefiltert wird. In Verfahrensschritt 502 erfolgt die zweifache Integration in der oben beschriebenen Weise. In Verfahrensschritt 503 wird das Minimum des wegbasierten Signals gesucht. Dann wird in Verfahrensschritt 504 durch eine Differenzbildung des wegbasierten Signals mit dem Minimum des wegbasierten Signals ein erstes Merkmal gebildet, das in Verfahrensschritt 505 einem Schwellwertentscheider zugeführt wird und dieses Ergebnis des Schwellwertentscheiders wird der Auslöselogik 506 zugeführt. In Verfahrensschritt 507 wird diese Differenz auf das Minimum des wegbasierten Signals bezogen, so dass damit ein zweites Merkmal erzeugt wird, das dem Schwellwertentscheider 508 zugeführt wird. Das Ergebnis des Schwellwertentscheiders 508 wird der Auslöselogik 506 zugeführt. Die Auslöselogik 506 entscheidet in Abhängigkeit von den Ergebnissen der Schwellwertscheider 505 und 508, ob das Ansteuerungssignal erzeugt werden soll oder nicht.
  • Es ist möglich, dass einzelne oder alle Zweige, die in den 3, 4 und 5 dargestellt wurden, miteinander kombiniert werden können.
  • 6 zeigt das Beschleunigungssignal, das erste Integral und das zweite Integral bei einem mittigen Fußgängeraufprall, den ein mittiger Beschleunigungssensor erfasst. Zum Zeitpunkt 0,008 wird das Minimum MinAcc, also das absolute Minimum des Beschleunigungssignals im zeitlichen Verlauf erkannt. Zum Zeitpunkt 0,016 wird das absolute Maximum des Beschleunigungssignals, das auf das absolute Minimum folgt, erkannt. Dies ist durch MaxAcc gekennzeichnet. Das Beschleunigungssignal wird dabei im oberen Diagramm gekennzeichnet. Im mittleren Diagramm ist das erste Integral gezeigt, das das entsprechende Minimum Min_Dv und das Maximum Max_Dv zeigt, die wegen der Integration natürlich zeitlich nicht mit den Zeitpunkten übereinstimmen. Im unteren Diagramm wird das zweite Integral gezeigt, dass das Minimum MinDs angibt, das ebenfalls bei einer anderen Zeit, als die charakteristischen Signalwerte des Beschleunigungssignals, anliegt.
  • Erwartungsgemäß ist in den ersten Millisekunden ein negatives Beschleunigungssignal zu erkennen, das durch das Eindringen des Beinimpactors verursacht wird. Interessant dabei ist, dass ca. nach 10 ms das Beschleunigungssignal ein ausgeprägtes positives Signal, also MaxAcc zeigt, dessen Ursache in der Relaxation des Stoßfängers verknüpft mit dem Auswerfen des Impactors in Fahrtrichtung (Impulserhaltung) zu suchen ist. Der Vorzeichenwechsel findet bei maximaler Eindringtiefe, siehe dazu das zweite Integral, statt und trennt dabei das Eindringen des Aufprallgegenstands vom Auswerfen. Auffällig dabei ist, dass das Auswerfsignal ausgeprägter ist, als das Eindringsignal.
  • 7 zeigt das Beschleunigungssignal bei einem mittigen Aufprall, das durch den mittigen Beschleunigungssensor erkannt wurde. Das Auswerfsignal ist, wie oben dargestellt und in 7 noch einmal gezeigt, ausgeprägter als das Eindringsignal. Dies ist umso ausgeprägter, je geringer die Masse des Aufprallobjekts ist. Da die Bestimmung der Masse des Aufprallobjekts ein wesentlicher Bestandteil des Fußgängerdiskriminierungsalgorithmusses ist, wurden die oben genannten Merkmale vorgeschlagen.
  • 8a und b zeigen die Massenabhängigkeit der des Auswerfvorgangs am Beispiel von zwei Fußgängeraufprallen mit 13, 5 bzw. 3,5 kg Masse. In 8a ist der Aufprall mit 13, 5 kg und in 8b der Aufprall mit 3,5 kg jeweils als Geschwindigkeitszeit und Wegzeitdiagramm dargestellt. Man erkennt, dass die Relaxierung des Stoßfängers und das Auswerten des Objekts beim 3,5 kg-Versuch früher eintritt und ausgeprägter in Erscheinung tritt. Zur Quantifizierung der Stoßfängerrelaxierung bzw. Auswerfvorgangs bieten sich die oben genannten Merkmale an.

Claims (10)

  1. Verfahren zur Ansteuerung von Personenschutzmitteln (PS), wobei die Personenschutzmittel (PS) in Abhängigkeit von einem Beschleunigungssignal einer Beschleunigungssensorik (BS 1 bis 3), die am Stoßfanger angeordnet ist, angesteuert werden, wobei für die Ansteuerung ein zeitlicher Verlauf eines vom Beschleunigungssignal abgeleiteten Signals derart ausgewertet wird, dass in Abhängigkeit von wenigstens einem Signalwert, der ein Auswerfen eines Aufprallobjekts vom Stoßfanger kennzeichnet, wenigstens ein Merkmal erzeugt wird und dass in Abhängigkeit von dem wenigstens einem Merkmal die Ansteuerung erfolgt dadurch gekennzeichnet, dass das Auswerfen anhand des zeitlichen Verlaufs des Beschleunigungssignals erkannt wird, wobei der wenigstens eine Signalwert auf ein absolutes Minimum folgt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Auswerfen anhand des zeitlichen Verlaufs des Beschleunigungssignals erkannt wird, wobei der wenigstens eine Signalwert als ein absolutes Maximum detektiert wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet dass das Signal wegbasiert erzeugt wird, wobei das wenigstens eine Merkmal als Absolutwert und/oder bezogen auf eine Eindrückung des Stoßfangers erzeugt wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Signal geschwindigkeitsbasiert erzeugt wird, wobei zur Erzeugung des wenigstens einen Merkmals ein erster Maximalwert und ein erster Minimalwert des Signals verwendet werden.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet. dass das Signal beschleunigungsbasiert wird, wobei zur Erzeugung des Merkmals ein zweiter Maximalwert und ein zweiter Minimalwert des Signals und/oder ein jeweiliges Integral von positiven und negativen Beschleunigungswerten verwendet wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Signal durch einen aufprallnächsten Beschleunigungssensor oder durch alle Beschleunigungssensoren erzeugt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ansteuerung in Abhängigkeit von einem Schwellwertvergleich des wenigstens einen Merkmals durchgeführt wird, wobei dafür wenigstens eine Schwelle verwendet wird, die konstant, zeitabhängig, geschwindigkeitsabhängig, temperaturabhängig und/oder vom Aufprallpunkt abhängig ausgeführt wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Schwellwertvergleich in einem Zeitfenster durchgeführt wird.
  9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Schwellwertvergleich in einem Auswertefenster durchgeführt wird.
  10. Vorrichtung zur Ansteuerung von Personenschutzmittel (PS) mit: - wenigstens einer Schnittstelle (IF), die ein Beschleunigungssignal einer Beschleunigungssensorik (BS 1 bis 3), die am Stoßfänger angeordnet ist, bereitstellt; - einer Auswerteschaltung (µC), die ein Auswertemodul (20) zur Auswertung eines zeitlichen Verlaufs eines vom Beschleunigungssignal abgeleiteten Signals aufweist, wobei das Auswertemodul (20) ein Detektionsmodul (21) zur Detektion wenigstens eines Signalwerts, der ein Auswerfen eines Aufprallobjekts kennzeichnet, aufweist, wobei das Auswerfen anhand des zeitlichen Verlaufs des Beschleunigungssignals erkannt wird, wobei der wenigstens eine Signalwert auf ein absolutes Minimum folgt, wobei das Auswertemodul (20) ferner ein Merkmalsmodul (22) zur Erzeugung wenigstens eines Merkmals in Abhängigkeit von wenigstens einem Signalwert aufweist, wobei die Auswerteschaltung (µC) ferner ein Ansteuerungsmodul (23) zur Ansteuerung der Personenschutzmittel (PS) in Abhängigkeit von dem wenigstens einen Merkmal aufweist.
DE102006056836.2A 2006-12-01 2006-12-01 Verfahren und Vorrichtung zur Ansteuerung von Personenschutzmitteln Active DE102006056836B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102006056836.2A DE102006056836B4 (de) 2006-12-01 2006-12-01 Verfahren und Vorrichtung zur Ansteuerung von Personenschutzmitteln

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006056836.2A DE102006056836B4 (de) 2006-12-01 2006-12-01 Verfahren und Vorrichtung zur Ansteuerung von Personenschutzmitteln

Publications (2)

Publication Number Publication Date
DE102006056836A1 DE102006056836A1 (de) 2008-06-05
DE102006056836B4 true DE102006056836B4 (de) 2018-10-31

Family

ID=39338900

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102006056836.2A Active DE102006056836B4 (de) 2006-12-01 2006-12-01 Verfahren und Vorrichtung zur Ansteuerung von Personenschutzmitteln

Country Status (1)

Country Link
DE (1) DE102006056836B4 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011106707B4 (de) * 2011-07-06 2020-07-23 Continental Automotive Gmbh Verfahren zur Bewertung eines Aufpralls mittels zumindest zweier Aufprallsensoren an einem Fahrzeug
DE102013211354B4 (de) * 2013-06-18 2024-01-25 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bestimmen einer Kollisionscharakteristik einer Kollision eines Fahrzeugs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004018356A1 (de) 2003-04-15 2004-11-04 Denso Corp., Kariya Kollisionsobjektunterscheidungsvorrichtung, die in ein Fahrzeug eingebaut werden kann
DE102004042467A1 (de) 2004-09-02 2006-03-09 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erzeugung eines Auslösesignals für eine Fußgängerschutzvorrichtung
DE102005000657A1 (de) 2005-01-04 2006-07-13 Robert Bosch Gmbh Verfahren zur Offseterkennung für eine Fußgängerschutzvorrichtung
DE102005042512A1 (de) 2005-09-07 2007-03-29 Siemens Ag Verfahren zum Aktivieren einer Fußgängerschutzvorrichtung eines Kraftfahrzeugs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004018356A1 (de) 2003-04-15 2004-11-04 Denso Corp., Kariya Kollisionsobjektunterscheidungsvorrichtung, die in ein Fahrzeug eingebaut werden kann
DE102004042467A1 (de) 2004-09-02 2006-03-09 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erzeugung eines Auslösesignals für eine Fußgängerschutzvorrichtung
DE102005000657A1 (de) 2005-01-04 2006-07-13 Robert Bosch Gmbh Verfahren zur Offseterkennung für eine Fußgängerschutzvorrichtung
DE102005042512A1 (de) 2005-09-07 2007-03-29 Siemens Ag Verfahren zum Aktivieren einer Fußgängerschutzvorrichtung eines Kraftfahrzeugs

Also Published As

Publication number Publication date
DE102006056836A1 (de) 2008-06-05

Similar Documents

Publication Publication Date Title
DE19743009B4 (de) Verfahren und Vorrichtung zur Einzelpunktabfühlung von vorderen und seitlichen Aufschlagzusammenstoßbedingungen
DE112005003518B4 (de) Aktivierungssteuereinrichtung für eine Insassenunfallschutzvorrichtung
WO2001098117A1 (de) Verfahren und vorrichtung zum erkennen eines fussgängeraufpralls
DE102010027969B4 (de) Verfahren und Vorrichtung zur Bestimmung eines Typs eines Aufpralls eines Objektes auf ein Fahrzeug
EP2066534B1 (de) Vorrichtung und verfahren zur ansteuerung von personenschutzmittel
EP1697177B1 (de) Verfahren zur ansteuerung von personenschutzmitteln
DE102013211354A1 (de) Verfahren und Vorrichtung zum Bestimmen einer Kollisionscharakteristik einer Kollision eines Fahrzeugs
DE10223522B4 (de) Kollisionsform-Entscheidungseinrichtung
EP1863682B1 (de) Verfahren zur erzeugung eines auslösesignals für eine fussgängerschutzvorrichtung
DE102010003333B4 (de) Verfahren und Vorrichtung zur Bestimmung von zumindest einem Auslöseparameter eines Personenschutzmittels eines Fahrzeugs
DE102009025021A1 (de) Verfahren zur Steuerung einer Rückhaltevorrichtung für Insassen eines Fahrzeugs
DE10202908B4 (de) Verfahren und Anordnung zur Bestimmung eines Detektionsbereiches eines Pre-Crash-Sensorsystems
EP1680310B1 (de) Verfahren zum herstellen eines kraftfahrzeuges
DE102014208143A1 (de) Verfahren und Vorrichtung zum Aktivieren eines Fußgängerschutzmittels für ein Fahrzeug und Rückhaltesystem für ein Fahrzeug
EP1444116B1 (de) Verfahren zur aktivierung einer sicherheitseinrichtung
DE102006056836B4 (de) Verfahren und Vorrichtung zur Ansteuerung von Personenschutzmitteln
EP1545940B1 (de) Anordnung zum ansteuern von rückhaltemitteln
DE102007012461B4 (de) Steuergerät und Verfahren zur Ansteuerung von Fußgängerschutzmitteln
DE102009029232B4 (de) Verfahren und Steuergerät zur Beeinflussung eines beschleunigungsbasierten Seitenaufprallalgorithums
EP1955911B1 (de) Verfahren und Vorrichtung zur Ansteuerung von Personenschutzmitteln
DE102006056839B4 (de) Verfahren und Vorrichtung zur Ansteuerung von Personenschutzmitteln für ein Fahrzeug
DE102007047404A1 (de) Verfahren zum Auslösen von einem Rückhaltemittel bei einem Fahrzeugcrash
DE102013202205B4 (de) Verfahren und Vorrichtung zur Aufprallbewertung für ein Fahrzeug
DE102007002274B4 (de) Verfahren und Vorrichtung zur Offseterkennung einer Kollision für ein Fußgängerschutzsystem
WO2006012816A1 (de) Vorrichtung und verfahren zur erzeugung eines auslösekriteriums für ein aufprallschutzsystem eines fahrzeugs

Legal Events

Date Code Title Description
R012 Request for examination validly filed

Effective date: 20130813

R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final