DE10134310A1 - Mehrphasiger Formkörper mit schneller Löslichkeit - Google Patents

Mehrphasiger Formkörper mit schneller Löslichkeit

Info

Publication number
DE10134310A1
DE10134310A1 DE2001134310 DE10134310A DE10134310A1 DE 10134310 A1 DE10134310 A1 DE 10134310A1 DE 2001134310 DE2001134310 DE 2001134310 DE 10134310 A DE10134310 A DE 10134310A DE 10134310 A1 DE10134310 A1 DE 10134310A1
Authority
DE
Germany
Prior art keywords
phase
compressed
acid
disintegrant
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE2001134310
Other languages
English (en)
Inventor
Thomas Holderbaum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE2001134310 priority Critical patent/DE10134310A1/de
Publication of DE10134310A1 publication Critical patent/DE10134310A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0078Multilayered tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0052Gas evolving or heat producing compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Gegenstand der Anmeldung sind zwei oder mehrphasige Wasch- und Reinigungsmittelkomprimate, in denen eine/mehrere wasch- und reinigungsmittelhaltige Phase(n) durch eine/mehrere desintegrationsmittelhaltige Phase(n) teilweise oder vollständig unterbrochen oder voneinander getrennt werden. Durch diesen Aufbau werden komprimierte Wasch- und Reinigungsmittel mit verbessertem Zerfall und schneller Löslichkeit erhalten.

Description

  • Die vorliegende Erfindung liegt auf dem Gebiet der komprimierten Wasch- und Reinigungsmittel, wie sie beispielsweise durch Tablettierung oder Extrusion erhalten werden und zur Dosierung von wasch- und reinigungsaktiven Substanzen verwendet werden. Gegenstand der Erfindung sind stabile Wasch- und Reinigungsmittelkomprimate, wie sie zum Waschen von Textilien in einer Haushaltswaschmaschine, für das maschinelle Geschirrspülen oder die Reinigung harter Oberflächen, als Bleichmitteltabletten zum Einsatz in Wasch- und Geschirrspülmaschinen oder als Wasserenthärtungstabletten eingesetzt werden.
  • Wasch- und Reinigungsmittelformkörper erfreuen sich wegen ihrer einfachen Handhabung beim Verbraucher ungebrochener Beliebtheit. Derartige Formkörper, wie sie beispielsweise durch Tablettierung oder Extrusion hergestellt werden können, sind einfacher zu dosieren und zu lagern als pulverförmige Reinigungsmittel und bieten aufgrund ihrer kompakten Struktur zudem Vorteile beim Transport. Ein Problem, das bei der Anwendung von wasch- und reinigungsaktiven Komprimaten jedoch immer wieder auftritt, ist deren oftmals unzureichende Zerfalls- und Lösegeschwindigkeit. Aufgrund der zur Herstellung der Komprimate eingesetzten verhältnismäßig hohen Preßdrucke, die zu einer starken Verdichtung der wasch- und reinigungsaktiven Bestandteile führen und den Komprimaten die für den Transport und Gebrauch notwendige Härte und Stabilität verleihen, zeichnen sich diese häufig durch eine verzögerte Desintegration in der wäßrigen Flotte und eine zu langsame Freisetzung der Aktivsubstanzen im Wasch- bzw. Reinigungsvorgang aus. Die verzögerte Desintegration der Tablette hat unter anderem den Nachteil, daß sich übliche Wasch- und Reinigungsmitteltabletten nicht über die Einspülkammer von Haushaltswaschmaschinen einspülen lassen, da die Tabletten nicht in hinreichend schneller Zeit in Sekundärpartikel zerfallen, die klein genug sind, um aus Einspülkammer in die Waschtrommel eingespült zu werden.
  • Zur Erhöhung der Zerfalls- und Lösegeschwindigkeit von Komprimaten sind im Stand der Technik viele Lösungsansätze entwickelt worden. Eine Möglichkeit die Zerfalls- und Lösegeschwindigkeit von Komprimaten zu erhöhen ist demnach der Zusatz von leicht löslichen Salzen wie Acetaten oder Phosphonaten.
  • So beschreibt die internationale Patentanmeldung WO 99/31215 eine Waschmitteltablette mit einer granularen Komponente (z. B. Organophosphonat) mit einer Teilchengröße von 250 bis 1200 µm und einer Wasserlöslichkeit von 10 g/l. die granulare Komponente löst sich schneller auf als der Rest der Tablette. Dadurch entstehen in der Tablette Löcher oder Kanäle, welche durch die Vergrößerung der Oberfläche die Auflösegeschwindigkeit der Tablette erhöhen.
  • Ein insbesondere aus der Pharmazie bekannter und auf das Gebiet der Wasch- und Reinigungsmitteltablette ausgedehnter Ansatz ist die Inkorporation bestimmter, auch als 'Spreng'mittel bezeichneter, Desintegrationshilfsmittel, die den Zutritt von Wasser erleichtern oder bei Zutritt von Wasser quellen bzw. gasentwickelnd oder in anderer Form desintegrierend wirken.
  • Ein- oder mehrphasige Reinigungsmitteltabletten, enthaltend unterschiedliche Konzentrationen eines quellenden Desintegrationshilfsmittels, sind Gegenstand der internationalen Patentanmeldungen WO 98/55590 und WO 00/44870. Die unterschiedlichen Sprengmittelkonzentrationen bewirken unterschiedliche Zerfallsgeschwindigkeiten der Tablettenphasen.
  • Die Kombination quellender Desintegrationshilfsmittel mit Brausesystemen in einer Wasch- und Reinigungsmitteltablette wird schließlich in der internationalen Patentanmeldung WO 98/54283 (Henkel) beschrieben, während die internationale Patentanmeldung WO 98/54284 (Procter und Gamble) die Kombination leicht löslicher Salze (z. B. Acetat, Harnstoff) mit Brausesystemen als Zerfallsbeschleuniger in Wasch- und Reinigungsmitteltabletten zum Gegenstand hat. Beide Varianten liefern stabile Tabletten mit hoher Zerfallsgeschwindigkeit.
  • Alle zuvor genannten Veröffentlichungen offenbaren ein- oder mehrphasige Wasch- und Reinigungsmitteltabletten, die ein oder mehrere Desintegrationshilfsmittel zur Beschleunigung des Tablettenzerfalls oder einzelner Phasen dieser Tabletten enthalten. Gemäß den Lehren dieser Dokumente steht die Zerfallsgeschwindigkeit der Wasch- und Reinigungsmitteltabletten in direkten Zusammenhang zur Menge des/der eingesetzten Desintegrationshilfsmittel. Eine Beschleunigung des Tablettenzerfalls kann demzufolge nur durch den Einsatz größerer Mengen des/der Desintegrationshilfsmittel erreicht werden. Da diese Desintegrationshilfsmittel in der Regel keinerlei Wasch- und Reinigungsaktivität aufweisen ist es jedoch erstrebenswert, ihren Anteil am Gesamtgewicht der entsprechenden Tabletten möglichst gering zu halten.
  • Dementsprechend bestand die Aufgabe der Erfindung darin, komprimierte Wasch- und Reinigungsmittelformulierungen bereitzustellen, die, trotz eines geringen Gehalts an Desintegrationshilfsmitteln, geringe Zerfallszeiten aufweisen.
  • Es wurde nun gefunden, daß solche komprimierten Wasch- und Reinigungsmittel kurze Zerfallszeiten aufweisen, in denen das/die eingesetzte(n) Desintegrationhilfsmittel nicht vollständig homogen über den gesamten Rauminhalt des Komprimats verteilt vorliegen, sondern vielmehr teilweise oder vollständig in der Art und Weise auf bestimmte Bereiche des Komprimats konzentriert werden, daß in wäßriger Lösung nicht nur die desintegrationsmittelhaltigen Bereiche zerfallen, sondern dieser Zerfall gleichzeitig ein Auseinanderbrechen des gesamten Formkörpers in mehrere Fragmente, beispielsweise die unterschiedlichen Phasen des Komprimats, bewirkt. Als Fragment wird in diesem Zusammenhang ein Raumkörper bezeichnet, der wenigstens 5 Vol.-%, vorzugsweise wenigstens 10 Vol.% und insbesondere wenigstens 20 Vol.% des Volumens des ursprünglichen Komprimats umfaßt. Der zuvor beschriebene Zerfall des Komprimats in zwei oder mehr Fragmente führt zu einer Vergrößerung der dem Lösungsmittel ausgesetzten Festkörperoberfläche und begünstigt auf diese Weise den Zerfalls- und Auflösungsvorgang.
  • Gegenstand der vorliegenden Anmeldung sind daher zwei- oder mehrphasige komprimierte Wasch- und Reinigungsmittelformulierungen, enthaltend Builder, Tenside sowie weitere Bestandteile von Wasch- und Reinigungsmitteln, dadurch gekennzeichnet, daß die Phase(n) des Komprimats durch (eine) desintegrationsmittelhaltige Phase(n) mindestens anteilsweise unterbrochen (ist) oder voneinander getrennt sind.
  • Erfindungsgemäße Komprimate können beispielsweise durch Tablettierung oder Coextrusion/Konfektionierung aber auch durch Extrusion und anschließende Kalandrierung/Konfektionierung, aber auch durch Walzenkompakatierung bereitgestellt werden. Im Rahmen der vorliegenden Erfindung ist es bevorzugt, daß das Komprimat durch Tablettierung oder Extrusion erzeugt wird.
  • Diese Komprimate weisen vorzugsweise eine Dichte oberhalb 900 g/l, besonders bevorzugt oberhalb 1000 g/l und insbesondere oberhalb 1100 g/l auf und zeichnen sich durch ein Gewicht zwischen 5 g und 80 g, vorzugsweise zwischen 10 g und 50 g und insbesondere zwischen 20 g und 40 g aus.
  • Werden gemäß der vorliegenden Erfindung in einem solchen Komprimat zwei oder mehrere Phasen vollständig durch eine weitere desintegrationsmittelhaltige Phase getrennt, so ist es für den erfindungsgemäßen Effekt, namentlich die Fragmentierung des Komprimats, unerheblich ob die zuerst genannten Phasen die gleiche Zusammensetzung aufweisen oder sich in ihrer Zusammensetzung unterscheiden und ein erfindungsgemäßes Komprimat kann sowohl Phasen gleicher Zusammensetzung als auch Phasen unterschiedlicher Zusammensetzung aufweisen.
  • Um einen leichten Zugang des Lösungsmittels zu der/den desintegrationsmittelhaltigen Phase(n) zu ermöglichen und einen schnellen Zerfall des Komprimats herbeizuführen, ist/sind diese Phase(n) vorteilhafterweise mit wenigstens einer ihrer Phasengrenzen Teil der Oberfläche des komprimierten Wasch- und Reinigungsmittels. Jedoch ist auch eine vollständige oder teilweise Beschichtung des Komprimats, beispielsweise durch ein zusätzliches Coating, möglich. In einem solchen Fall kann dann das Auflöseverhalten der Coatingschicht zu einem bestimmenden Faktor für die Gesamtzerfallszeit des komprimierten Wasch- und Reinigungsmittels werden.
  • Obgleich zur Erzielung des erfindungsgemäßen Effekts, namentlich des Zerfalls des ursprünglichen Komprimats in zwei oder mehrere Fragmente, desintegrationsmittelhaltige Phasen verschiedenster Raumform(en) einsetzbar sind, hat es sich als vorteilhaft erwiesen, daß die erfindungsgemäßen zwei- oder mehrphasigen komprimierten Wasch- und Reinigungsmittelformulierung, eine/mehrere desintegrationsmittelhaltige(n) Schicht(en) aufweisen, die nicht planar ist/sind, oder im Falle der Planarität der desintegrationsmittelhaltigen Phase(n), diese jedoch nicht vollständig parallel zur Oberfläche des Komprimats verläuft/verlaufen.
  • Im Rahmen der vorliegenden Erfindung ist es möglich, daß die desintegrationsmittelhaltige(n) Phase(n) die benachbarten Phasen des Komprimats vollständig voneinander trennen. Um den Einsatz von Desintegrationshilfsmitteln zu minimieren ist es erfindungsgemäß jedoch bevorzugt zwei- oder mehrphasige komprimierte Wasch- und Reinigungsmittelformulierungen bereitzustellen, deren desintegrationsmittelhaltige(n) Phase(n) die benachbarten Phasen des Komprimats nicht vollständig voneinander trennt/trennen, wobei die desintegrationsmittelhaltige(n) Phase(n) die benachbarte Phasen des Komprimats vorzugsweise auf 10 bis 90%, vorzugsweise auf 20 bis 80% und insbesondere auf 30 bis 70% der gemeinsamen Phasengrenzfläche(n) voneinander trennt/trennen.
  • Erfindungsgemäß ist es bevorzugt, wenn die desintegrationsmittelhaltige(n) Phase(n) der zwei- oder mehrphasigen komprimierten Wasch- und Reinigungsmittelformulierung das/die Desintegrationshilfsmittel in Mengen oberhalb 5 Gew.-%, vorzugsweise in Mengen oberhalb 10 Gew.-%, besonders bevorzugt in Mengen oberhalb 20 und insbesondere in Mengen oberhalb 30 Gew.-% enthält/enthalten, bezogen auf das Gewicht der Phase, enthält.
  • Weiterhin kann es für den Verlauf des Wasch- und Reinigungsgangs von Vorteil sein, wenn die desintegrationsmittelhaltige(n) Phase(n) der zwei- oder mehrphasigen komprimierten Wasch- und Reinigungsformulierung zusätzlich mindestens eine wasch- und/oder reinigungsaktive Substanz enthält/enthalten. Auf diese Weise ist die gezielte zeitliche Freisetzung bestimmter Inhaltsstoffe realisierbar. Denkbar ist in diesem Zusammenhang die frühzeitige Freisetzung von Enzymen oder Wasserenthärtungsmitteln aber auch von Alkali- oder Säureträgern zur Einstellung eines gewünschten pH-Wertes, beispielsweise zur pH-Wert gesteuerten Freisetzung weiterer Inhaltsstoffe aus den entstandenen Fragmenten des ursprünglichen Komprimats.
  • Ist eine solche frühzeitige Freisetzung einer Aktivsubstanz nicht wünschenswert oder notwendig, oder sind die Mengen der entsprechenden Aktivsubstanz gering so ist es erfindungsgemäß bevorzugt, daß die zwei- oder mehrphasige komprimierte Wasch- und Reinigungsmittelformulierung eine/mehrere desintegrationsmittelhaltige Phase(n) mit einer Dicke unterhalb 3 mm, bevorzugt unterhalb 2 mm und insbesondere unterhalb 1 mm aufweist/aufweisen, da auf diese Weise der Effekt der Fragmentierung des Komprimats verstärkt wird.
  • Neben einem oder mehreren Desintegrationshilfsmitteln enthalten die erfindungsgemäßen Komprimate weitere übliche Bestandteile von Wasch- und Reinigungsmitteln, insbesondere eine oder mehrere Aktivsubstanzen aus der Gruppe der Bleichmittel, Bleichaktivatoren, Gerüststoffe, Tenside, Enzyme, Elektrolyte, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Hydrotope, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel, Farbübertragungsinhibitoren, antimikrobiellen Wirkstoffe, Germizide, Fungizide, Antioxidantien, Korrosionsinhibitoren, Antistatika, Bügelhilfsmittel, Phobier- und Imprägniermittel, Quell- und Schiebefestmittel sowie UV-Absorber. Diese Aktivsubstanzen werden nachfolgend näher beschrieben.
  • Als wichtige Bestandteile von Wasch- und Reinigungsmitteln können neben anderen Bestandteilen Bleichmittel und Bleichkaktivatoren in den erfindungsgemäßen Komprimaten enthalten sein. Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen hat das Natriumpercarbonat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise das Natriumperborattetrahydrat und das Natriumperboratmonohydrat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Reinigungsmittelformkörper für das maschinelle Geschirrspülen können auch Bleichmittel aus der Gruppe der organischen Bleichmittel enthalten. Typische organische Bleichmittel sind die Diacylperoxide, wie z. B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesium-monoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε-Phthalimidoperoxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N- nonenylamidoperadipinsäure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2- Decyldiperoxybutan-1,4-disäure, N,N-Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.
  • Als Bleichmittel in den Komprimaten für das maschinelle Geschirrspülen können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N-Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor-5,5-dimethylhydanthoin sind ebenfalls geeignet.
  • Um beim Reinigen bei Temperaturen von 60°C und darunter eine verbesserte Bleichwirkung zu erreichen, können die erfindungsgemäßen komprimierten Wasch- und Reinigungsmittel Bleichaktivatoren enthalten. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C- Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N- Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4- dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5- dihydrofuran.
  • Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Komprimate eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru- oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
  • Neben den genannten Inhaltsstoffen Bleichmittel und Bleichaktivator sind Gerüststoffe und Tenside wichtige Inhaltsstoffe von Wasch-, Reinigungsmitteln. In den erfindungsgemäßen komprimierten Wasch- und Reinigungsmitteln können dabei alle üblicherweise in Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Carbonate, organische Cobuilder und - wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen - auch die Phosphate. Die genannten Gerüststoffe können dabei selbstverständlich auch in tensidfreien Komprimaten eingesetzt werden.
  • Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1.H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5.yH2O bevorzugt.
  • Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate weisen ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen auf. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
  • Der einsetzbare feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel

    nNa2O.(1-n)K2O.Al2O3.(2-2,5)SiO2.(3,5-5,5)H2O

    beschrieben werden kann. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
  • Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate.
  • Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-)-Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
  • Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1,91 gcm-3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gcm-3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O4), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten) übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gcm-3, hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KPO3)x] und ist leicht löslich in Wasser.
  • Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gcm-3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gcm-3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gcm-3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
  • Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1,62 gcm-3 und einen Schmelzpunkt von 73-76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gcm-3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gcm-3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z. B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt.
  • Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gcm-3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gcm-3, Schmelzpunkt 94° unter Wasserverlust). Beide Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Erhitzen von Dinatriumphosphat auf >200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gcm-3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1%igen Lösung bei 25° 10,4 beträgt.
  • Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
  • Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n = 3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%-igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:

    (NaPO3)3 + 2 KOH → Na3K2P3O10 + H2O
  • Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
  • Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Alkali- und insbesondere Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
  • Als weitere Bestandteile können Alkaliträger zugegen sein. Als Alkaliträger gelten Alkalimetallhydroxide, Alkalimetallcarbonate, Alkalimetallhydrogencarbonate, Alkalimetallsesquicarbonate, Alkalisilikate, Alkalimetasilikate, und Mischungen der vorgenannten Stoffe, wobei im Sinne dieser Erfindung bevorzugt die Alkalicarbonate, insbesondere Natriumcarbonat, Natriumhydrogencarbonat oder Natriumsesquicarbonat eingesetzt werden.
  • Wird das erfindungsgemäße Komprimat für das maschinelle Geschirrspülen eingesetzt, so sind wasserlösliche Builder bevorzugt, da sie auf Geschirr und harten Oberflächen in der Regel weniger dazu tendieren, unlösliche Rückstände zu bilden. Übliche Builder sind die niedermolekularen Polycarbonsäuren und ihre Salze, die homopolymeren und copolymeren Polycarbonsäuren und ihre Salze, die Carbonate, Phosphate und Silikate. Bevorzugt werden zur Herstellung von Tabletten für das maschinelle Geschirrspülen Trinatriumcitrat und/oder Pentanatriumtripolyphosphat und/oder Natriumcarbonat und/oder Natriumbicarbonat und/oder Gluconate und/oder silikatische Builder aus der Klasse der Disilikate und/oder Metasilikate eingesetzt. Besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat. Ebenfalls besonders bevorzugt ist ein Buildersystem, das eine Mischung aus Tripolyphosphat und Natriumcarbonat und Natriumdisilikat enthält.
  • Die erfindungsgemäßen komprimierten Wasch- und Reinigungsmittel können außer den oben beschriebenen Gerüststoffen auch die bereits erwähnten waschaktiven Substanzen enthalten.
  • Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13 -Alkylbenzolsulfonate, Olefinsulfonate, d. h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z. B. die α- sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.
  • Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
  • Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die αdäquaten Verbindungen auf der basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15- Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
  • Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
  • Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
  • Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z. B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.
  • Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
  • Eine weitere Gruppe der waschaktiven Substanzen sind die nichtionischen Tenside. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18- Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
  • Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester.
  • Eine weitere Klasse von nichtionischen Tensiden, die vorteilhaft eingesetzt werden kann, sind die Alkylpolyglycoside (APG). Einsetzbare Alkypolyglycoside genügen der allgemeinen Formel RO(G)z, in der R für einen linearen oder verzweigten, insbesondere in 2-Stellung methylverzweigten, gesättigten oder ungesättigten, aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Glycosidierungsgrad z liegt dabei zwischen 1,0 und 4,0, vorzugsweise zwischen 1,0 und 2,0 und insbesondere zwischen 1,1 und 1,4. Bevorzugt eingesetzt werden lineare Alkylpolyglucoside, also Alkylpolyglycoside, in denen der Polyglycosylrest ein Glucoserest und der Alkylrest ein n- Alkylrest ist.
  • Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
  • Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (I),


    in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
  • Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II),


    in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethtoxylierte oder Propxylierte Derivate dieses Restes.
  • [Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N- Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
  • Bei Wasch- und Reinigungsmittelkomprimaten für das maschinelle Geschirrspülen kommen als Tenside prinzipiell alle Tenside in Frage. Bevorzugt sind für diesen Anwendungszweck aber die vorstehend beschriebenen nichtionischen Tenside und hier vor allem die schwachschäumenden nichtionischen Tenside. Besonders bevorzugt sind die alkoxylierten Alkohole, besonders die ethoxylierten und/oder propoxylierten Alkohole. Dabei versteht der Fachmann allgemein unter alkoxylierten Alkoholen die Reaktionsprodukte von Alkylenoxid, bevorzugt Ethylenoxid, mit Alkoholen, bevorzugt im Sinne der vorliegenden Erfindung die längerkettigen Alkohole (C10 bis C18, bevorzugt zwischen C12 und C16, wie z. B. C11-, C12-, C13-, C14-, C15-, C16-, C17- und C18-Alkohole). In der Regel entstehen aus n Molen Ethylenoxid und einem Mol Alkohol, abhängig von den Reaktionsbedingungen ein komplexes Gemisch von Additionsprodukten unterschiedlichen Ethoxylierungsgrades. Eine weitere Ausführungsform besteht im Einsatz von Gemischen der Alkylenoxide bevorzugt des Gemisches von Ethylenoxid und Propylenoxid. Auch kann man gewünschtenfalls durch eine abschließende Veretherung mit kurzkettigen Alkylgruppen, wie bevorzugt der Butylgruppe, zur Substanzklasse der "verschlossenen" Alkoholethoxylaten gelangen, die ebenfalls im Sinne der Erfindung eingesetzt werden kann. Ganz besonders bevorzugt im Sinne der vorliegenden Erfindung sind dabei hochethoxylierte Fettalkohole oder deren Gemische mit endgruppenverschlossenen Fettalkoholethoxylaten.
  • Polymere sind ein weiterer wichtiger Bestandteil von Wasch- und Reinigungsmitteln, wobei unter Polymeren in der vorliegenden Anmeldung insbesondere Substanzen mit Builder- oder Cobuilder-Eigenschaften zu verstehen sind. Als organische Cobuilder können in den erfindungsgemäßen Wasch- und Reinigungsmitteln insbesondere Polycarboxylate/Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
  • Brauchbare organische Gerüstsubstanzen sind beispielsweise auch die Natriumsalze der nachfolgend als Bestandteil des Brausesystems genannten Polycarbonsäuren. Beispielsweise sind dies die Natriumsalze von Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
  • Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
  • Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
  • Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
  • Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
  • Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
  • Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
  • Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
  • Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate, die neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
  • Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
  • Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
  • Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
  • Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'- disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
  • Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
  • Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
  • Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
  • Reinigungsmittel, die als maschinelle Geschirrspülmittel eingesetzt werden, können zum Schutze des Spülgutes oder der Maschine Korrosionsinhibitoren enthalten, wobei besonders Silberschutzmittel im Bereich des maschinellen Geschirrspülens eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z. B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan- und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.
  • Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase oder Protease und Cellulase oder aus Cellulase und Lipase oder aus Protease, Amylase und Lipase oder Protease, Lipase und Cellulase, insbesondere jedoch Cellulase-haltige Mischungen von besonderem Interesse. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen.
  • Duftstoffe werden den erfindungsgemäßen Mitteln zugesetzt, um den ästhetischen Eindruck der Produkte zu verbessern und dem Verbraucher ein sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen.
  • Als Parfümöle bzw. Duftstoffe können im Rahmen der vorliegenden Erfindung einzelne Riechstoffverbindungen, z. B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl-carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenyl-glycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alkanale mit 8-18 C- Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, α- Isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z. B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
  • Die allgemeine Beschreibung der einsetzbaren Parfüme (siehe oben) stellt dabei allgemein die unterschiedlichen Substanzklassen von Riechstoffen dar. Um wahrnehmbar zu sein, muß ein Riechstoff flüchtig sein, wobei neben der Natur der funktionellen Gruppen und der Struktur der chemischen Verbindung auch die Molmasse eine wichtige Rolle spielt. So besitzen die meisten Riechstoffe Molmassen bis etwa 200 Dalton, während Molmassen von 300 Dalton und darüber eher eine Ausnahme darstellen. Aufgrund der unterschiedlichen Flüchtigkeit von Riechstoffen verändert sich der Geruch eines aus mehreren Riechstoffen zusammengesetzten Parfüms bzw. Duftstoffs während des Verdampfens, wobei man die Geruchseindrücke in "Kopfnote" (top note), "Herz- bzw. Mittelnote" (middle note bzw. body) sowie "Basisnote" (end note bzw. dry out) unterteilt. Da die Geruchswahrnehmung zu einem großen Teil auch auf der Geruchsintensität beruht, besteht die Kopfnote eines Parfüms bzw. Duftstoffs nicht allein aus leichtflüchtigen Verbindungen, während die Basisnote zum größten Teil aus weniger flüchtigen, d. h. haftfesten Riechstoffen besteht. Bei der Komposition von Parfüms können leichter flüchtige Riechstoffe beispielsweise an bestimmte Fixative gebunden werden, wodurch ihr zu schnelles Verdampfen verhindert wird. Bei der nachfolgenden Einteilung der Riechstoffe in "leichter flüchtige" bzw. "haftfeste" Riechstoffe ist also über den Geruchseindruck und darüber, ob der entsprechende Riechstoff als Kopf oder Herznote wahrgenommen wird, nichts ausgesagt.
  • Durch eine geeignete Auswahl der genannten Duftstoffe bzw. Parfümöle kann auf diese Weise für Textilwaschmittel oder maschinelle Geschirrspülmittel sowohl der Produktgeruch, bei maschinellen Geschirrspülmitteln zusätzlich auch der Geruch beim Öffnen der Geschirrspülmaschine beeinflußt werden. Für den letzteren Geruchseindruck ist die Verwendung haftfesterer Riechstoffe vorteilhaft, während zur Produktbeduftung auch leichterflüchtige Riechstoffe einsetzbar sind. Haftfeste Riechstoffe, die im Rahmen der vorliegenden Erfindung einsetzbar sind, sind beispielsweise die ätherischen Öle wie Angelikawurzelöl, Anisöl, Arnikablütenöl, Basilikumöl, Bayöl, Bergamottöl, Champacablütenöl, Edeltannenöl, Edeltannenzapfenöl, Elemiöl, Eukalyptusöl, Fenchelöl, Fichtennandelöl, Galbanumöl, Geraniumöl, Gingergrasöl, Guajakholzöl, Gurjunbalsamöl, Helichrysumöl, Ho-Öl, Ingweröl, Irisöl, Kajeputöl, Kalmusöl, Kamillenöl, Kampferöl, Kanagaöl, Kardamomenöl, Kassiaöl, Kiefernnadelöl, Kopalvabalsamöl, Korianderöl, Krauseminzeöl, Kümmelöl, Kuminöl, Lavendelöl, Lemongrasöl, Limetteöl, Mandarinenöl, Melissenöl, Moschuskörneröl, Myrrhenöl, Nelkenöl, Neroliöl, Niaouliöl, Olibanumöl, Orangenöl, Origanumöl, Palmarosaöl, Patschuliöl, Perubalsamöl, Petitgrainöl, Pfefferöl, Pfefferminzöl, Pimentöl, Pine-Öl, Rosenöl, Rosmarinöl, Sandelholzöl, Sellerieöl, Spiköl, Sternanisöl, Terpentinöl, Thujaöl, Thymianöl, Verbenaöl, Vetiveröl, Wacholderbeeröl, Wermutöl, Wintergrünöl, Ylang-Ylang-Öl, Ysop-Öl, Zimtöl, Zimtblätteröl, Zitronellöl, Zitronenöl sowie Zypressenöl. Aber auch die höhersiedenden bzw. festen Riechstoffe natürlichen oder synthetischen Ursprungs können im Rahmen der vorliegenden Erfindung als haftfeste Riechstoffe bzw. Riechstoffgemische, also Duftstoffe, eingesetzt werden. Zu diesen Verbindungen zählen die nachfolgend genannten Verbindungen sowie Mischungen aus diesen: Ambrettolid, α-Amylzimtaldehyd, Anethol, Anisaldehyd, Anisalkohol, Anisol, Anthranilsäuremethylester, Acetophenon, Benzylaceton, Benzaldehyd, Benzoesäureethylester, Benzophenon, Benzylalkohol, Benzylacetat, Benzylbenzoat, Benzylformiat, Benzylvalerianat, Borneol, Bomylacetat, α-Bromstyrol, n-Decylaldehyd, n- Dodecylaldehyd, Eugenol, Eugenolmethylether, Eukalyptol, Farnesol, Fenchon, Fenchylacetat, Geranylacetat, Geranylformiat, Heliotropin, Heptincarbonsäuremethylester, Heptaldehyd, Hydrochinon-Dimethylether, Hydroxyzimtaldehyd, Hydroxyzimtalkohol, Indol, Iron, Isoeugenol, Isoeugenolmethylether, Isosafrol, Jasmon, Kampfer, Karvakrol, Karvon, p- Kresolmethylether, Cumann, p-Methoxyacetophenon, Methyl-n-amylketon, Methylanthranilsäuremethylester, p-Methylacetophenon, Methylchavikol, p-Methylchinolin, Methyl-β-naphthylketon, Methyl-n-nonylacetaldehyd, Methyl-n-nonylketon, Muskon, β- Naphtholethylether, β-Naphtholmethylether, Nerol, Nitrobenzol, n-Nonylaldehyd, Nonylakohol, n-Octylaldehyd, p-Oxy-Acetophenon, Pentadekanolid, β-Phenylethylalkohol, Phenylacetaldehyd-Dimethyacetal, Phenylessigsäure, Pulegon, Safrol, Salicylsäureisoamylester, Salicylsäuremethylester, Salicylsäurehexylester, Salicylsäurecyclohexylester, Santalol, Skatol, Terpineol, Thymen, Thymol, γ-Undelacton, Vanilin, Veratrumaldehyd, Zimtaldehyd, Zimatalkohol, Zimtsäure, Zimtsäureethylester, Zimtsäurebenzylester. Zu den leichter flüchtigen Riechstoffen zählen insbesondere die niedriger siedenden Riechstoffe natürlichen oder synthetischen Ursprung, die αllein oder in Mischungen eingesetzt werden können. Beispiele für leichter flüchtige Riechstoffe sind Alkyisothiocyanate (Alkylsenföle), Butandion, Limonen, Linalool, Linaylacetat und -Propionat, Menthol, Menthon, Methyl-n-heptenon, Phellandren, Phenylacetaldehyd, Terpinylacetat, Zitral, Zitronellal.
  • Um den Zerfall der hochverdichteten erfindungsgemäßen Komprimate zu erleichtern um die Zerfallszeiten zu verkürzen, werden im Rahmen der vorliegenden Erfindung, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, eingesetzt. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
  • Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein- Derivate. Alle genannten Desintegrationshilfsmittel sind erfindungsgemäß einsetzbar.
  • Als bevorzugte Desintegrationshilfsmittel werden im Rahmen der vorliegenden Erfindung Destintegrationshilfsmittel auf Cellulosebasis eingesetzt und es ist bevorzugt, daß daß die desintegrationsmittelhaltige(n) Phase(n) der erfindungsgemäßen zwei- oder mehrphasigen komprimierten Wasch- und Reinigungsmittelformulierung, als Desintegrationshilfmittel ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompaktierter Form, enthält.
  • Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50,000 bis 500,000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen.
  • Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist. Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 µm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 µm kompaktierbar sind.
  • Zusätzlich zu den bisher genannten Inhaltsstoffen können die erfindungsgemäßen Wasch- und Reinigungsmitteltabletten ein gasfreisetzendes System aus organischen Säuren und Carbonaten/Hydrogencarbonaten enthalten.
  • Als organische Säuren, die aus den Carbonaten/Hydrogencarbonaten in wäßriger Lösung Kohlendioxid freisetzen, sind beispielsweise die festen Mono-, Oligo- und Polycarbonsäuren einsetzbar. Aus dieser Gruppe wiederum bevorzugt sind Citronensäure, Weinsäure, Bernsteinsäure, Malonsäure, Adipinsäure, Maleinsäure, Fumarsäure, Oxalsäure sowie Polyacrylsäure. Organische Sulfonsäuren wie Amidosulfonsäure sind ebenfalls einsetzbar. Kommerziell erhältlich und als Acidifizierungsmittel im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist Sokalan® DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glutarsäure (max. 50 Gew.-%) und Adipinsäure (max. 33 Gew.-%).
  • Die genannten Säuren müssen nicht stöchiometrisch zu den in den Komprimaten enthaltenen Carbonaten bzw. Hydrogencarbonaten eingesetzt werden.
  • Eine im Rahmen der vorliegenden Erfindung bevorzugtes Wasch- und Reinigungsmittelkomprimat enthält zusätzlich ein Brausesystem.
  • Das gasentwickelnde Brausesystem besteht in den erfindungsgemäßen komprimierten Wasch- und Reinigungsmitteln neben den genannten organischen Säuren aus Carbonaten und/oder Hydrogencarbonaten. Bei den Vertretern dieser Stoffklasse sind aus Kostengründen die Alkalimetallsalze deutlich bevorzugt. Bei den Alkalimetallcarbonaten bzw. -hydrogencarbonaten wiederum sind die Natrium- und Kaliumsalze aus Kostengründen gegenüber den anderen Salzen deutlich bevorzugt. Selbstverständlich müssen nicht die betreffenden reinen Alkalimetallcarbonate bzw. -hydrogencarbonate eingesetzt werden; vielmehr können Gemische unterschiedlicher Carbonate und Hydrogencarbonate bevorzugt sein.
  • Natriumcarbonat bildet ein weißes Pulver der Dichte 2,532 gcm-3, wobei man zwischen leichter calcinierter Soda mit einem Schüttgewicht von 0,5-0,55 kg/l und schwerer calcinierter Soda mit 1,0-1,1 kg/l unterscheidet. Natriumcarbonat bildet mit Wasser drei Hydrate: Natriumcarbonat-Decahydrat (Kristallsoda), Na2CO3.10H2O, farblose, monokline, eisartig aussehende Kristalle der Dichte 1,44 gcm-3, Schmelzpunkt 32-34°; Natriumcarbonat- Heptahydrat, Na2CO3.7H2O, rhombische Kristalle der Dichte 1,51 gcm-3, Schmelzpunkt 32-35°; Natriumcarbonat-Monohydrat, Na2CO3.H2O, rhombische Kristalle der Dichte 2,25 gcm-3, Schmelzpunkt 100°.
  • Natriumhydrogencarbonat ist ein weißes, alkalisch schmeckendes, geruchfreies, an trockener Luft beständiges Pulver (monokline Kristalle) der Dichte 2,159 gcm-3, das beim Erwärmen auf über 65° in CO2, H2O und Natriumcarbonat zerfällt.
  • Kaliumcarbonat (Pottasche) ist ein weißes, ungiftiges, hygroskopisches, körniges der Dichte 2,428 gcm-3, das verschiedene Hydrate bildet. Leitet man in konz. Kaliumcarbonat-Lösung viel Kohlendioxid ein, so fällt das schwerer lösliche Kaliumhydrogencarbonat aus. Im übrigen zeigt Kaliumcarbonat in seinen Eigenschaften große Ähnlichkeit mit der nahe verwandten Soda. Kaliumcarbonat-1,5-Wasser ("Pottasche-Hydrat") ist die stabile Phase des Kaliumcarbonats im Kontakt mit der gesättigten Lösung im Bereich von 0°C bis ca. 110°C und kann durch Kristallisation aus übersättigten Kaliumcarbonat-Lösungen gewonnen werden. Es kristallisiert in glasglänzenden, praktisch staubfreien Kristallen, hat eine Dichte von 2,155 gcm-3 und verliert sein Kristallwasser bei Temperaturen von 130 bis 160°C vollständig. Die meisten großtechnischen Herstellungsverfahren für Kaliumcarbonat führen zunächst zum Kaliumcarbonat-1,5-Wasser, das in Drehrohröfen bei 200 bis 350°C zu 98 bis 100%igem Kaliumcarbonat calciniert wird. Unterbleibt diese Calcinierung, wird das auskristallisierte Kaliumcarbonat-1,5-Hydrat bei 110 bis 120°C getrocknet und als Pottasche- Hydrat verkauft. Technisch gängige Herstellungsverfahren für die genannten Produkte sind beispielsweise das Verfahren mit kontinuierlicher Kristallisation (Ausgangsstoffe: KOH und CO2), das Fließbett-Verfahren (Ausgangsstoffe: KOH und CO2), das Amin-Verfahren (KOH/CO2 in Gegenwart von Isopropylamin: Mines de Potasse d'Alsace oder KOH/CO2 in Gegenwart von Triethylamin: Kali-Chemie AG) oder das Nephelin-Aufschlußverfahren (hauptsächlich ehemalige UdSSR). Von untergeordneter Bedeutung oder nur noch von historischem Interesse sind das Ionenaustauscher-Verfahren (Ausgangsstoffe: KCl und (NH4)2CO3), das Magnesia-Verfahren (Engel-Precht-Verfahren, Neustaßfurter Verfahren; Ausgangsstoffe: KCl, MgCO3.3 H2O und CO2), das Formiat-Pottasche-Verfahren (Ausgangsstoffe: Kaliumsulfat, Calciumhydroxid und Kohlenmonoxid), das Piesteritz- Verfahren (Ausgangsstoffe: Kaliumsulfat und Calciumcyanamid) sowie das Le Blanc Verfahren (Ausgangsstoffe: Kaliumsulfat, Calciumcarbonat und Kohlenstoff).
  • Erfindungsgemäß einsetzbar ist als zweite Komponente des Brausesystems auch Trona, ein Mischsalz aus Natriumcarbonat und Natriumhydrogencarbonat, das auch als Natriumsesquicarbonat oder Natriumcarbonat-Sesquihydrat bezeichnet wird. Natriumcarbonat-Sesquihydrat findet sich in der Natur als Mineral (Trona) und wird durch die Formel Na2CO3.NaHCO3.2 H2O beschrieben. Große Trona-Vorkommen befinden sich beispielsweise in den USA (Green River/Wyoming), Kenia (Magadi-See) und der Republik Sudan (Dongola). Während die Vorkommen in Afrika im Tagebau ausgebeutet werden können, wird die Trona in den USA bergmännisch gewonnen. Trona hat eine Dichte von 2,17 gcm-3 und eine Mohs'sche Härte von 2,5. Üblicherweise dient Trona zur Gewinnung reiner Soda, nach dem Natriumsesquicarbonat-Prozeß kann aber auch reines Na2CO3.NaHCO3 .2 -H2O hergestellt werden, das in den Handel gelangt. Reines Natriumsesquicarbonat bildet sich auch aus Natriumhydrogencarbonat durch Stehenlassen an feuchter Luft unter Kohlendioxid- Abspaltung oder durch Einleiten von Kohlendioxid in eine Natriumcarbonatlösung.
  • Im Rahmen der vorliegenden Erfindung ist es weiterhin bevorzugt, daß eine/mehrere weitere Phasen des Komprimats der erfindungsgemäßen zwei- oder mehrphasigen komprimierten Wasch- und Reinigungsmittelformulierungen ein Desintegrationshilfsmittel in Mengen von 0,1 bis 10 Gew.-%, vorzugsweise von 0,5 bis 7,5 Gew.-% und insbesondere von 1,0 bis 5 Gew.-% enthalten, wobei sich die Mengenangaben auf das Gewicht der jeweiligen Phase beziehen und es hat sich als vorteilhaft erwiesen, daß dieses Desintegrationshilfsmittel in den Phasen ein Brausesystem und/oder ein wasserlösliches Salz mit einer Löslichkeit oberhalb 10 g/l und/oder Harnstoff ist.
  • Zusätzlich zu den bisher ausführlich beschriebenen Komponenten können die erfindungsgemäßen Wasch- und Reinigungsmittelkomprimate weitere Inhaltsstoffe enthalten, die die anwendungstechnischen und/oder ästhetischen Eigenschaften des Textilwaschmittels weiter verbessern. Im Rahmen der vorliegenden Erfindung enthalten bevorzugte Tabletten einen oder mehrere Stoffe aus der Gruppe der Elektrolyte, pH-Stellmittel, Fluoreszenzmittel, Farbstoffe, Hydrotope, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optische Aufheller, Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel, Farbübertragungsinhibitoren, antimikrobiellen Wirkstoffen, Germizide, Fungizide, Antioxidantien, Antistatika, Bügelhilfsmittel, Phobier- und Imprägniermittel, Quell- und Schiebefestmittel sowie UV-Absorber.
  • Als Elektrolyte aus der Gruppe der anorganischen Salze kann eine breite Anzahl der verschiedensten Salze eingesetzt werden. Bevorzugte Kationen sind die Alkali- und Erdalkalimetalle, bevorzugte Anionen sind die Halogenide und Sulfate. Aus herstellungstechnischer Sicht ist der Einsatz von NaCl oder MgCl2 in den erfindungsgemäßen Mitteln bevorzugt.
  • Um den pH-Wert der erfindungsgemäßen Mittel in den gewünschten Bereich zu bringen, kann der Einsatz von pH-Stellmitteln angezeigt sein. Einsetzbar sind hier sämtliche bekannten Säuren bzw. Laugen, sofern sich ihr Einsatz nicht aus anwendungstechnischen oder ökologischen Gründen bzw. aus Gründen des Verbraucherschutzes verbietet. Üblicherweise überschreitet die Menge dieser Stellmittel 1 Gew.-% der Gesamtformulierung nicht.
  • Um den ästhetischen Eindruck der erfindungsgemäßen Mittel zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern, um diese nicht anzufärben.
  • Als Schauminhibitoren, die in den erfindungsgemäßen Komprimaten eingesetzt werden können, kommen beispielsweise Seifen, Paraffine oder Silikonöle in Betracht, die gegebenenfalls auf Trägermaterialien aufgebracht sein können. Geeignete Antiredepositionsmittel, die auch als soil repellents bezeichnet werden, sind beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxygruppen von 15 bis 30 Gew.-% und an Hydroxypropylgruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether sowie die αus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglycolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Insbesondere bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und Terephthalsäure-Polymere.
  • Optische Aufheller (sogenannte "Weißtöner") können den erfindungsgemäßen Mitteln zugesetzt werden, um Vergrauungen und Vergilbungen der behandelten Textilien zu beseitigen. Diese Stoffe ziehen auf die Faser auf und bewirken eine Aufhellung und vorgetäuschte Bleichwirkung, indem sie unsichtbare Ultraviolettstrahlung in sichtbares längerwelliges Licht umwandeln, wobei das aus dem Sonnenlicht absorbierte ultraviolette Licht als schwach bläuliche Fluoreszenz abgestrahlt wird und mit dem Gelbton der vergrauten bzw. vergilbten Wäsche reines Weiß ergibt. Geeignete Verbindungen stammen beispielsweise aus den Substanzklassen der 4,4'-Diamino-2,2'-stilbendisulfonsäuren (Flavonsäuren), 4,4'- Distyryl-biphenylen, Methylumbelliferone, Cumarine, Dihydrochinolinone, 1,3- Diarylpyrazoline, Naphthalsäureimide, Benzoxazol-, Benzisoxazol- und Benzimidazol- Systeme sowie der durch Heterocyclen substituierten Pyrenderivate.
  • Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z. B. abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Als Vergrauungsinhibitoren einsetzbar sind weiterhin Celluloseether wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxy-methylcellulose und deren Gemische.
  • Da textile Flächengebilde, insbesondere aus Reyon, Zellwolle, Baumwolle und deren Mischungen, zum Knittern eigen können, weil die Einzelfasern gegen Durchbiegen, Knicken. Pressen und Quetschen quer zur Faserrichtung empfindlich sind, können die erfindungsgemäßen Tabletten synthetische Knitterschutzmittel enthalten. Hierzu zählen beispielsweise synthetische Produkte auf der Basis von Fettsäuren, Fettsäureestern, Fettsäureamiden, -alkylolestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid umgesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter Phosphorsäureester.
  • Zur Bekämpfung von Mikroorganismen können die erfindungsgemäßen Komprimaten antimikrobielle Wirkstoffe enthalten. Hierbei unterscheidet man je nach antimikrobiellem Spektrum und Wirkungsmechanismus zwischen Bakteriostatika und Bakteriziden, Fungistatika und Fungiziden usw. Wichtige Stoffe aus diesen Gruppen sind beispielsweise Benzalkoniumchloride, Alkylarlylsulfonate, Halogenphenole und Phenolmercuriacetat, wobei bei den erfindungemäßen Mitteln auch gänzlich auf diese Verbindungen verzichtet werden kann.
  • Um unerwünschte, durch Sauerstoffeinwirkung und andere oxidative Prozesse verursachte Veränderungen an den komprimierten Wasch- und Reinigungsmitteln und/oder den behandelten Textilien zu verhindern, können die Mittel Antioxidantien enthalten. Zu dieser Verbindungsklasse gehören beispielsweise substituierte Phenole, Hydrochinone, Brenzcatechnine und aromatische Amine sowie organische Sulfide, Polysulfide, Dithiocarbamate, Phosphite und Phosphonate.
  • Ein erhöhter Tragekomfort kann aus der zusätzlichen Verwendung von Antstatika resultieren, die den erfindungsgemäßen Komprimaten zusätzlich beigefügt werden. Antistatika vergrößern die Oberflächenleitfähigkeit und ermöglichen damit ein verbessertes Abfließen gebildeter Ladungen. Äußere Antistatika sind in der Regel Substanzen mit wenigstens einem hydrophilen Molekülliganden und geben auf den Oberflächen einen mehr oder minder hygroskopischen Film. Diese zumeist grenzflächenaktiven Antistatika lassen sich in stickstoffhaltige (Amine, Amide, quartäre Ammoniumverbindungen), phosphorhaltige (Phosphorsäureester) und schwefelhaltige (Alkylsulfonate, Alkylsulfate) Antistatika unterteilen. Lauryl-(bzw. Stearyl-)dimethylbenzylammoniumchloride eignen sich ebenfalls als Antistatika für Textilien bzw. als Zusatz zu Waschmitteln, wobei zusätzlich ein Avivageeffekt erzielt wird.
  • Zur Verbesserung des Wasserabsorptionsvermögens, der Wiederbenetzbarkeit der behandelten Textilien und zur Erleichterung des Bügelns der behandelten Textilien können in den erfindungsgemäßen Komprimaten beispielsweise Silikonderivate eingesetzt werden. Diese verbessern zusätzlich das Ausspülverhalten der erfindungsgemäßen Mittel durch ihre schauminhibierenden Eigenschaften. Bevorzugte Silikonderivate sind beispielsweise Polydialkyl- oder Alkylarylsiloxane, bei denen die Alkylgruppen ein bis fünf C-Atome aufweisen und ganz oder teilweise fluoriert sind. Bevorzugte Silikone sind Polydimethylsiloxane, die gegebenenfalls derivatisiert sein können und dann aminofunktionell oder quaterniert sind bzw. Si-OH-, Si-H- und/oder Si-Cl-Bindungen aufweisen.
  • Schließlich können die erfindungsgemäßen Komprimate auch UV-Absorber enthalten, die auf die behandelten Textilien aufziehen und die Lichtbeständigkeit der Fasern verbessern. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Benzophenons mit Substituenten in 2- und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, in 3- Stellung Phenylsubstituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2-Stellung, Salicylate, organische Ni-Komplexe sowie Naturstoffe wie Umbelliferon und die körpereigene Urocansäure geeignet.
  • Die Raumformen erfindungsgemäßer Komprimate sind in ihren Dimensionen der Einspülkammer von handelsüblichen Haushaltswaschmaschinen angepaßt, so daß diese direkt in die entsprechenden Fächer der Einspülkammer eindosiert werden können, wo sie sich während des Einspülvorgangs der Nachwäsche auflöst. Alternativ können erfindungsgemäße Komprimate aber natürlich auch direkt in die Waschtrommel dosiert werden, wobei gegebenenfalls Dosierhilfen Verwendung finden können.
  • Als Komprimate werden im Rahmen der vorliegenden Erfindung Formkörper in praktisch allen sinnvoll handhabbaren Ausgestaltungen bezeichnet, beispielsweise also die Ausbildung von Formkörpern als Tafel, in Stab- bzw. Barrenform, Würfel, Quader und entsprechendes Raumelement mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der eigentlichen Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1. Die desintegrationsmittelhaltige Phase kann innerhalb der zuvor beschriebenen Raumformen ebenfalls alle technisch realisierbaren Formen einnehmen, wobei bevorzugte Ausgestaltungen bereits weiter oben erläutert wurden.
  • Bevorzugte Komprimate weisen einen kreisförmigen oder ovalen zwei- oder mehrphasigen Querschnitt auf, dessen Phase(n) durch eine weitere sprengmittelhaltige Phase mit einer gleichfalls kreisförmigen oder ovalen Grundfläche unterbrochen wird/werden, wobei die Grundfläche der sprengmittelhaltigen Phase vorzugsweise bis zum Rand des zwei- oder mehrphasigen Querschnitts des Komprimats reicht. In weiteren Ausführungsformen können der Querschnitt des Komprimats und/oder der sprengmittelhaltigen Phase dreieckige, viereckige oder beliebige andere vieleckige Grundflächen aufweisen.
  • Ein weiterer bevorzugter Formkörper, der erfindungsgemäß eingesetzt werden kann, hat eine platten- oder tafelartige Struktur mit abwechselnd dicken langen und dünnen kurzen Segmenten, so daß einzelne Segmente von diesem "Riegel" an den Sollbruchstellen, die die kurzen dünnen Segmente darstellen, abgebrochen und in die Maschine eingegeben werden können. Dieses Prinzip des "riegelförmigen" Formkörperwaschmittels kann auch in anderen geometrischen Formen, beispielsweise senkrecht stehenden Dreiecken, die lediglich an einer ihrer Seiten längsseits miteinander verbunden sind, verwirklicht werden.

Claims (12)

1. Zwei- oder mehrphasige komprimierte Wasch- und Reinigungsmittelformulierung, enthaltend Builder, Tenside sowie weitere Bestandteile von Wasch- und Reinigungsmitteln, dadurch gekennzeichnet, daß die Phase(n) des Komprimats durch (eine) desintegrationsmittelhaltige Phase(n) mindestens anteilsweise unterbrochen (ist) oder voneinander getrennt sind.
2. Zwei- oder mehrphasige komprimierte Wasch- und Reinigungsmittelformulierung, nach Anspruch 1, dadurch gekennzeichnet, daß die desintegrationsmittelhaltige(n) Schicht(en) nicht planar ist/sind.
3. Zwei- oder mehrphasige komprimierte Wasch- und Reinigungsmittelformulierung, nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die desintegrationsmittelhaltige(n) Phase(n) planar ist/sind, jedoch nicht vollständig parallel zur Oberfläche des Komprimats verläuft/verlaufen.
4. Zwei- oder mehrphasige komprimierte Wasch- und Reinigungsmittelformulierung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die desintegrationsmittelhaltige(n) Phase(n) die benachbarten Phasen des Komprimats nicht vollständig voneinander trennt/trennen.
5. Zwei- oder mehrphasige komprimierte Wasch- und Reinigungsmittelformulierung nach Anspruch 4, dadurch gekennzeichnet, daß die desintegrationsmittelhaltige(n) Phase(n) die benachbarten Phasen des Komprimats auf 10 bis 90%, vorzugsweise auf 20 bis 80% und insbesondere auf 30 bis 70% der gemeinsamen Phasengrenzfläche(n) voneinander trennt/trennen.
6. Zwei- oder mehrphasige komprimierte Wasch- und Reinigungsmittelformulierung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die desintegrationsmittelhaltige(n) Phase(n) das Desintegrationshilfsmittel in Mengen oberhalb 10 Gew.-%, vorzugsweise in Mengen oberhalb 15 Gew.-%, besonders bevorzugt in Mengen oberhalb 20 und insbesondere in Mengen oberhalb 30 Gew.-% enthält/enthalten, bezogen auf das Gewicht der Phase, enthält.
7. Zwei- oder mehrphasige komprimierte Wasch- und Reinigungsformulierung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die desintegrationsmittelhaltige(n) Phase(n) zusätzlich mindestens eine wasch- und/oder reinigungsaktive Substanz enthält/enthalten.
8. Zwei- oder mehrphasige komprimierte Wasch- und Reinigungsmittelformulierung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die desintegrationsmittelhaltige(n) Phase(n) eine Dicke unterhalb 3 mm, bevorzugt unterhalb 2 mm und insbesondere unterhalb 1 mm aufweist/aufweisen.
9. Zwei- oder mehrphasige komprimierte Wasch- und Reinigungsmittelformulierung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die desintegrationsmittelhaltige(n) Phase(n) als Desintegrationshilfmittel ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompaktierter Form, enthält.
10. Zwei- oder mehrphasige komprimierte Wasch- und Reinigungsmittelformulierung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß eine/mehrere weitere Phasen des Komprimats ein Desintegrationshilfsmittel in Mengen von 0,1 bis 10 Gew.-%, vorzugsweise von 0,5 bis 7,5 Gew.-% und insbesondere von 1,0 bis 5 Gew.-% enthalten, wobei sich die Mengenangaben auf das Gewicht der jeweiligen Phase beziehen.
11. Zwei- oder mehrphasige komprimierte Wasch- und Reinigungsmittelformulierung nach Anspruch 10, dadurch gekennzeichnet, daß das Desintegrationshilfsmittel in den Phasen ein Brausesystem und/oder ein wasserlösliches Salz mit einer Löslichkeit oberhalb 10 g/l und/oder Harnstoff ist.
12. Zwei- oder mehrphasige komprimierte Wasch- und Reinigungsmittelformulierung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß das Komprimat durch Tablettierung oder Extrusion erzeugt wird.
DE2001134310 2001-07-14 2001-07-14 Mehrphasiger Formkörper mit schneller Löslichkeit Ceased DE10134310A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE2001134310 DE10134310A1 (de) 2001-07-14 2001-07-14 Mehrphasiger Formkörper mit schneller Löslichkeit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2001134310 DE10134310A1 (de) 2001-07-14 2001-07-14 Mehrphasiger Formkörper mit schneller Löslichkeit

Publications (1)

Publication Number Publication Date
DE10134310A1 true DE10134310A1 (de) 2003-01-30

Family

ID=7691807

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2001134310 Ceased DE10134310A1 (de) 2001-07-14 2001-07-14 Mehrphasiger Formkörper mit schneller Löslichkeit

Country Status (1)

Country Link
DE (1) DE10134310A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19903288A1 (de) * 1999-01-28 2000-08-03 Henkel Kgaa Mehrphasige Waschmitteltabletten
WO2000044870A1 (en) * 1999-01-26 2000-08-03 Unilever Plc Detergent tablets

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044870A1 (en) * 1999-01-26 2000-08-03 Unilever Plc Detergent tablets
DE19903288A1 (de) * 1999-01-28 2000-08-03 Henkel Kgaa Mehrphasige Waschmitteltabletten

Similar Documents

Publication Publication Date Title
DE102004020400A1 (de) Parfümierte Feststoffe
DE102004051619A1 (de) Wasch- oder Reinigungsmittel
DE10130762C2 (de) Zusammengesetzte Waschmitteltablette
EP1263922B1 (de) Verfahren zur herstellung von formkörpern
DE19934704A1 (de) Wasch- und Reinigungsmittelformkörper mit Dispersionsmitteln
EP1340807B1 (de) Formkörper mit nachträglicher Tensiddosierung
DE102004051553B4 (de) Wasch- oder Reinigungsmittel
EP1340808B1 (de) Parfümierte Reinigungsmittelformkörper
DE10121017B4 (de) Gel-Tablette
EP1802735A1 (de) Wasch- oder reinigungsmittel
WO2002086047A1 (de) Waschmittelformkörper mit viskoelastischer phase
WO2002097025A1 (de) Verfahren und benötigte zusätze zur erhöhung der stabilität von tabletten
DE10134310A1 (de) Mehrphasiger Formkörper mit schneller Löslichkeit
DE20106897U1 (de) Wirkstofftrennung in mehrphasigen Reinigungsmittelformkörpern
DE19919443A1 (de) Brausetabletten mit Tablettierhilfsmittel und Verfahren zu ihrer Herstellung
DE10221559B4 (de) Wasch- und Reinigungsmittelformkörper mit Aktivphase
DE10242221B4 (de) Verfahren zum Bleichen von Aniontensidsäuren
DE10134309A1 (de) Coextrusion von Wasch- und Reinigungsmitteln
WO2000077150A1 (de) Lagerstabile brausetabletten
DE19918458A1 (de) Leistungsgesteigerte Reinigungsmitteltabletten für das maschinelle Geschirrspülen
DE19958471A1 (de) Wasch- und Reingigungsmittel
DE10148353A1 (de) Verfahren zur Herstellung retardiert löslicher Formkörperbeschichtungen
EP1195429A1 (de) Maschinelles Geschirreinigungsverfahren und maschinelle Geschirrspülmittel mit verbessertem Korrosionsschutz
DE10335455A1 (de) Geschirrspülmittel mit verbesserter Duftwahrnehmung
DE19930932A1 (de) Preßverfahren für Wasch- und Reinigungsmitteltabletten

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection