DE10100812B4 - Diversityantenne auf einer dielektrischen Fläche in einer Fahrzeugkarosserie - Google Patents

Diversityantenne auf einer dielektrischen Fläche in einer Fahrzeugkarosserie Download PDF

Info

Publication number
DE10100812B4
DE10100812B4 DE10100812A DE10100812A DE10100812B4 DE 10100812 B4 DE10100812 B4 DE 10100812B4 DE 10100812 A DE10100812 A DE 10100812A DE 10100812 A DE10100812 A DE 10100812A DE 10100812 B4 DE10100812 B4 DE 10100812B4
Authority
DE
Germany
Prior art keywords
antenna
wire
signals
network
electronically controllable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE10100812A
Other languages
English (en)
Other versions
DE10100812A1 (de
Inventor
Prof. Dr.-Ing. Lindenmeier Heinz
Prof. Dr.-Ing. Hopf Jochen
Dr.-Ing. Reiter Leopold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE10100812A priority Critical patent/DE10100812B4/de
Priority to EP02000324A priority patent/EP1225653B1/de
Priority to US10/041,419 priority patent/US6603434B2/en
Priority to JP2002003302A priority patent/JP2002314318A/ja
Priority to KR10-2002-0001500A priority patent/KR100492429B1/ko
Publication of DE10100812A1 publication Critical patent/DE10100812A1/de
Application granted granted Critical
Publication of DE10100812B4 publication Critical patent/DE10100812B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radio Transmission System (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Support Of Aerials (AREA)

Abstract

Antenne für die Verwendung zum Diversityempfang im Meterwellen- und Dezimeterwellenbereich auf einer leitend umrahmten, im wesentlichen aus rechteckförmigen Teilflächen zusammengesetzten, dielektrischen Fläche in einer Kraftfahrzeugkarosserie, z. B. in einem Dachausschnitt oder einem Kofferraum mit dielektrischem Kofferraumdeckel, wobei die Antenne aus einem im wesentlichen drahtförmigen Antennenleiter (38) besteht, welcher einfach parallel zu mindestens einem Teil der leitenden Berandung (1) der dielektrischen Fläche (7) in einem Abstand (9a) von weniger als einem Viertel der dort bestehenden Breite der dielektrischen Fläche (7) geführt ist und der drahtförmige Antennenleiter (38) eine Unterbrechungsstelle mit einem Antennenanschlussklemmenpaar (13, 14) aufweist und mindestens an einer weiteren Unterbrechungsstelle (15, 16) ein zweipoliges elektronisch steuerbares Impedanznetzwerk (11) seriell eingebracht ist und die Position der Unterbrechungsstelle mit dem Antennenanschlussklemmenpaar (13, 14) und die Position der weiteren Unterbrechungsstelle (15, 16) derart gewählt sind, dass alle durch die Unterbrechungsstellen (15, 16) gebildeten Teilabschnitte des drahtförmigen Antennenleiters (38) nicht kürzer sind als...

Description

  • Die Erfindung bezieht sich auf eine Mehrantennen-Diversityantennenanlage auf einer leitend umrahmten dielektrischen Fläche in einer Fahrzeugkarosserie im Meter- und Dezimeterwellenbereich z. B. für den Hör- bzw. Fernsehrundfunkempfang. Sie geht aus von einem Mehrantennensystem, wie es für die Gestaltung eines Antennen-Diversitysystems verwendet wird. Solche Mehrantennensysteme sind z. B. beschrieben in EP 0 269 723 B1 , DE 36 18 452 C2 , DE 39 14 424 C2 , 14, DE 37 19 692 C2 , DE 36 19 704 C2 für Windschutzscheiben bzw. Heckfensterscheiben. Bei hinreichender HF-mäßiger Entkopplung der Antennen treten Empfangsstörungen, welche im Zusammenhang mit zeitlichen Pegeleinbrüchen aufgrund der Mehrwegeausbreitung der elektromagnetischen Wellen erfolgen, bei unterschiedlicher Positionierung des Fahrzeugs im Empfangsfeld auf. Dieser Effekt ist beispielhaft anhand der 3 und 4 in EP 0 269 723 B1 erläutert. Die Wirkungsweise eines Antennen-Diversitysystems besteht darin, bei Auftreten einer Empfangsstörung im Signal der aufgeschalteten Antenne auf eine andere Antenne umzuschalten und in einem vorgegebenen Empfangsfeld die Zahl der zu Empfangsstörungen führenden Pegelunterschreitungen am Empfängereingang so klein wie möglich zu gestalten. Die Pegeleinbrüche, aufgetragen über der Fahrstrecke und somit auch über der Zeit, treten nicht deckungsgleich auf. Die Wahrscheinlichkeit, ein ungestörtes Signal unter den verfügbaren Antennen zu finden, wächst mit der Anzahl der Antennensignale und der diversitätsmäßigen Entkopplung zwischen diesen Signalen. Eine diversitätsmäßige Entkopplung der Antennensignale im Sinne der vorliegenden Erfindung liegt vor, wenn die Empfangssignale, insbesondere im Hinblick auf Empfangsstörungen, wie z. B. Einbrüche des HF-Pegels, unterschiedlich sind. Zur Gewinnung guter Diversity-Leistungsfähigkeit werden in der Praxis meist 3 bis 4 hinreichend diversitätsmäßig entkoppelter Antennensignale gefordert, die nach dem Stande der Technik in der Regel auf der Heckfensterscheibe unter Ausgestaltung des Heizfelds eines Kraftfahrzeugs gestaltet sind. Hierzu ist für jede Antenne ein Anschlussnetzwerk – und aus Gründen guter Signal/Rauschverhältnisse – mit einem Antennenverstärker vorzusehen. Solche Anschlussnetzwerke sind in der Vielzahl sehr aufwändig insbesondere zusammen mit den jeweils notwendigen Hochfrequenz-Verbindungsleitungen zum Empfänger.
  • Die moderne Fahrzeugtechnik sieht künftig mehr auch den Einsatz von Kunststoffkarosserieteilen z. B. als Kunststoffheckdeckel oder als Kunststoffteile in der ansonsten metallisch ausgeführten Fahrzeugkarosserie vor.
  • In der JP 02-62131 A1 ist eine flächig gestaltete, aus miteinander gitterförmig verbundenen, teilweise auch mäanderförmig gestalteten drahtförmigen Leitern als kompliziertes Antennensystems auf einer Fensterscheibe für Diversityempfang dargestellt. An zwei Stellen der flächig gestalteten netzartigen Struktur sind an Unterbrechungsstellen der drahtförmigen Antennenleiter jeweils eine schaltbare Diode zur Umschaltung der Empfangseigenschaften der flächigen Antenne eingebracht. Die Antennenspannung am Antennenanschluß 24 ist gegen die leitende Berandung – also nicht massefrei – abgegriffen. Der Abgriff der für den Diversityempfang notwendigen Signalvielfalt ist somit nachteilig auf ausschließlich massebezogene Empfangssignale beschränkt. Der besondere Nachteil einer Diversityantenne dieser Art besteht jedoch in ihrem aufgrund der flächenhaften Gestaltung, vergleichsweise großen Bauraum. Zum Beispiel ist eine einfache Verlegung der komplizierten vernetzten Drahtstruktur auf der Fläche eines Kofferraumdeckels aus Kunststoff nicht möglich. Wie in der JP 02-62131 A1 ist auch das in der JP 08-65024 angegebene Antennensystems für Diversityempfang flächig und kompliziert gestaltet und die Antennenspannung wird gegen die leitende Berandung – also ebenso nicht massefrei – abgegriffen. Das in der JP 08-107306 beschriebene geschaltete Antennensystem besteht aus zwei flächig gestalteten und über Schaltdioden alternativ verbunden Antennenteilen, von denen das eine Antennenteil durch das gesamte Heizfeld dargestellt ist und bei der nachteiligen Großflächigkeit ebenso nachteilig aussschließlich massebezogene Empfangssignale für den Diversityempfang möglich sind.
  • In der DE 195 35 250 ist ebenfalls ein Antennensystem geschrieben, bei dein die Empfangsspannungen massebezogen abgegriffen werden. Dort sind in den 2 und 4 Antennenstrukturen 5 und 6 für unterschiedliche Frequenzbereiche z. B. in der Kunstoffheckklappe bzw. im Dachausschnitt eines Fahrzeugs gezeigt. In der DE 195 35 250 A1 werden jeweils gesonderte Antennen für verschiedene Frequenzbereiche angegeben und es wird unter der Zielsetzung, möglichst kleine Verkopplungen durch möglichst große Abstände unter den Antennen der verschiedenen Frequenzbereiche zu erreichen, eine sinnvolle räumliche Verteilung dieser Antennen auf den begrenzt verfügbaren Bauraum vorgeschlagen. Nach diesem Stand der Technik müssten zusätzlich z. B. für den Empfang des UKW-Rundfunks, vier Anschlussnetzwerke, d. h. Antennenverstärker, eingesetzt werden, deren Verbindung mit der Fahrzeugmasse am Montagepunkt und deren Verkabelung mit einem erheblichen Aufwand verbunden und auch sehr umständlich wäre. Für die Gestaltung von Mehrantennendiversitysystemen mit z. B. 4 voneinander aufgrund großer räumlicher Abstände voneinander diversitätsmäßig entkoppelten Antennen mit Antennenverstärkern mit Masseanschluß für den Diversity-UKW-Empfang und davon separat ausgeführten 4 Antennen für den Diversity-Empfang von terrestrischen Fernsehsignalen nach der in der DE 195 35 250 A1 angegebenen Lehre fehlt demnach aufgrund der relativ großen Wellenlängen in diesen Frequenzbereichen der Bauraum.
  • Die vorliegende Erfindung geht aus von der DE 36 19 704 C2 . Dort ist eine Antennenanordnung für Diversityempfang in einer von der Fahrzeugkarosserie elektrisch leitend umrahmten Fensterscheibe eines Kraftfahrzeugs beschrieben mit mehreren gesonderten Antennen und voneinander getrennten Antennenanschlussstellen zur wahlweisen Durchschaltung zu eine Diversiy-Anordnung. Der Abgriff der Empfangsspannung der voneinander getrennten Antennen erfolgt – wie in allen genannten Anordnungen gemäß dem Stand der Technik – ebenfalls jeweils zwischen dem Ende einer Drahtstruktur und einem benachbarten Massepunkt auf der leitenden Fensterumrahmung. Somit ist der Abgriff stets auf ausschließlich massebezogene Empfangssignale beschränkt, wodurch die Vielfalt der gestaltbaren Empfangssignale für die Diversityfunktion nachteilig eingeschränkt ist.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Bauraum sparende Diversityantenne für eine Diversityantennenanlage in einem Fahrzeug nach dem Oberbegriff des Anspruchs 1 mit unterschiedlich anwählbaren Empfangssignalen zu gestalten, wobei die mittlere Empfangsqualität möglichst gut ist und die in den unterschiedlichen Antennensignalen während der Fahrt gleichzeitig auftretenden Empfangsstörungen möglichst gering ist.
  • Diese Aufgabe wird erfindungsgemäß bei einer Diversityantenne für eine Diversityantennenanlage nach dem Oberbegriff des Anspruchs 1 durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.
  • Erfindungsgemäße Ausführungsbeispiele sind in den angegebenen Zeichnungen dargestellt und werden im Folgenden näher beschrieben. Im Einzelnen zeigen:
  • 1: Grundformen einer Antenne nach der Erfindung
    • a) mit drahtförmigem Antennenleiter 38 der Länge 9b im Abstand 9a parallel zur leitenden Berandung 1 mit daraus resultierend wirksamen Teilkapazitäten 45 als hochfrequente Verbindung zur leitenden Berandung 1, mit zweipoligem elektronisch steuerbarem Impedanznetzwerk 11 in der weiteren Unterbrechungsstelle 15, 16 zur Erreichung unterschiedlicher, diversitätsmäßig entkoppelter Antennensignale 44 am Antennenanschlussklemmenpaar 13, 14.
    • b) mit drahtförmigem Antennenleiter 38 mit konzentrierten Impedanzen Z1, Z2 als hochfrequenzmäßig wirksame Verbindungen 42, 43 zur leitenden Berandung 1.
    • c) als Antenne mit Antennenanschlussklemmenpaar 13, 14 seriell zur Impedanz Z1 in der hochfrequenzmäßig wirksamen Verbindung 42 des drahtförmigem Antennenleiters 38 zur leitenden Berandung 1.
    • d) als Antenne mit Antennenanschlussklemmenpaar 13, 14 in der niederohmig ausgeführten Verbindung 42, sodass mit der niederohmigen Verbindung 43 eine Schleife 6 mit zweipoligem elektronisch steuerbarem Impedanznetzwerk 11 in der weiteren Unterbrechungsstelle 15, 16 gegeben ist.
    • e) als Antenne wie in 1c, wobei jedoch anstelle der Verbindung 43 als Impedanz Z2 (im Bild angedeutet) die Impedanz eines weiteren Antennenleiters 38a wirksam ist und in Fortsetzung dieses Prinzips weitere Antennenleiter 38b und 38c mit weiteren Unterbrechungsstellen 15, 16 in voneinander hinreichend großem Abstand mit jeweils einem seriell eingebracht elektronisch steuerbaren Impedanznetzwerk 11 vorhanden sind. Bevorzugte Abstände zwischen den elektronisch steuerbaren Impedanznetzwerken 11 sind nicht kleiner als etwa λ/8. Besonders bevorzugte Abstände sind λ/4 und mehr.
    • f) als Antenne ähnlich wie in 1e jedoch mit beidseitiger Fortsetzung des drahtförmigen Antennenleiters 38 durch weitere Antennenleiter 38a, 38b, 38c nach einer Seite und dem weiteren Antennenleiter 38d nach der anderen Seite, wobei die Impedanz dieses Antennenleiters 38d, angedeutet als wirksame Impedanz Z2 anstelle der Verbindung 43, durch Ausformung des Antennenleiters 38d geeignet gestaltet ist.
    • g) als Antenne ähnlich wie in 1a mit Antennenanschlussklemmenpaar 13, 14 im drahtförmigen Antennenleiter 38 und mit beidseitiger Fortsetzung des drahtförmigen Antennenleiters 38 durch den weiteren Antennenleiter 38a nach einer Seite und dem weiteren Antennenleiter 38b nach der anderen Seite.
    • h) als Antenne ähnlich wie in 1g mit Antennenanschlussklemmenpaar 13, 14 im drahtförmigen Antennenleiter 38 zum Abgriff der massefreien Antennenssignale 44b und mit Antennenanschlussklemmenpaar 10, 14 zum Abgriff der massebezogenen Antennenssignale 44a.
  • 2: Entstehung der diversitätsmäßig unterschiedlichen Antennensignale am Antennenanschlussklemmenpaar 13, 14 bei unterschiedlichen Zuständen des elektronisch steuerbaren Impedanznetzwerks 11 durch die sich dabei ergebende unterschiedliche Überlagerung der magnetischen Effekte, bewirkt durch die magnetischen Feldlinien 3, und der elektrischen Effekte, bewirkt durch die elektrischen Feldlinien 2.
  • 3: Realisierung einer Antenne nach 2. Das Anschlussnetzwerk 25 enthält Anpassnetzwerke und/oder Verstärker 17,18 zur wahlweisen massefreien oder massebezogenen Antennensignalauskopplung mittels eines elektronischen Umschalters 19 über die Netzwerkkomponenten 17, 18 z. B. zu getrennten Antennenanschlussleitungen 46, 46a.
  • 4: Antenne in einem Kofferraumdeckel. Der Schaltprozessor 31 im Anschlussnetzwerk 25 liefert die Steuersignale 20 an die Steuersignaleingänge 20a und 20b zur Ansteuerung der steuerbaren Impedanznetzwerke 11a und 11b über die hochfrequenzmäßig unwirksame Steuerleitung 47 zur Erzeugung der diversitätsmäßig unterschiedlichen Antennensignale am Eingang des Anp. NW und/oder Verstärkers für massebezogene Antennensignale 18.
  • 5: Wie 4, jedoch mit zwei elektronisch steuerbaren Impedanznetzwerken 11a und 11b in einer Anordnung mit Ringstruktur 5. Der elektronische Umschalter 19 ermöglicht die wechselweise Auswertung massebezogener Antennensignale zwischen dem Antennenanschlussklemmenpaar 10, 14 und massefreier Antennensignale zwischen dem Antennenanschlussklemmenpaar 13 und 14 in der Antennenanschlussleitung 46.
  • 6: Ausführungsformen des elektronisch steuerbaren Impedanznetzwerks 11:
    • a) Grundfunktionsbild eines elektronisch steuerbaren Impedanznetzwerks 11 mit elektronischem Schaltelelment 12, Steuereingang 20a, Steuersignal 20 und geschalteten Klemmen 15 und 16.
    • b) Elektronisches Schaltelelement 12 als Schalt- oder PIN-Diode 22 mit hochfrequent durchlässigem Impedanznetzwerk 26 für die Antennensignale und Weiterleitung des Gleichstroms, wenn keine gesonderte Steuerleitung 47 vorhanden ist.
    • c) Elektronisch steuerbares Impedanznetzwerk 11 für Durchlässigkeit im AM-Frequenzbereich und Sperrung in darüber liegenden Frequenzbereichen des Rundfunks durch die Drossel 21. Wahlweise Verbindung weiterführender Teile des Antennenleiters 38 über die hoch- bzw. niederohmig geschaltete Diode 22.
    • d) Elektronisch steuerbares Impedanznetzwerk 11 mit im VHF/UHF-Frequenzbereich sperrendem, aber AM und FM durchlässigem Impedanznetzwerk 26a und im AM-Frequenzbereich durchlässigem aber im FM sperrendem Impedanznetzwerk 26b.
    • e) Elektronisch steuerbares Impedanznetzwerk 11 mit zueinander parallel geführten Steuerleitungen 47, 47a für den Hin- und Rückstrom des Steuersignals 20 mit Koppelkapazität 24 zur gemeinsamen Bildung eines drahtförmigen Antennenleiters 38 bzw. 38a bzw. 38b.... Drossel 21 dient zur Sperrung hochfrequenter Signale bei sperrender Diode 22.
    • f) Elektronisch steuerbares Impedanznetzwerk 11, wie in 6e, jedoch mit Impedanznetzwerk 26 zur frequenzselektiven Weiterleitung von Antennensignalen
    • g) Elektronisch steuerbares Impedanznetzwerk 11 mit Logikschaltung 49 zur Adressierung mehrerer durch drahtförmige Antennenleiter 38, 38a, 38b... miteinander verbundener elektronisch steuerbarer Impedanznetzwerke 11 für mehrere zueinander parallel geführter, drahtförmiger Leiter zur Gestaltung mehrerer Steuerleitungen 47, 47a, 47b, welche durch zusätzliche Koppelkapazitäten 24 miteinander verkoppelt sind und zusammen als drahtförmiger Antennenleiter 38 bzw. 38a bzw. 38b... wirken.
    • h) Elektronisch steuerbares Impedanznetzwerk 11, wie in den 6f und 6g, jedoch für frequenzselektive Adressierung in unterschiedlichen Frequenzbereichen.
  • 7: Antennensystem wie in 5, jedoch mit zwei Anschlussnetzwerken 25a und 25b in der Nähe der Heckdeckelscharniere zur Auswertung mehrerer unterschiedlicher sowohl massefreier als auch massebezogener Antennensignale mit Hilfe verschiedener Schalterstellungen in den Anschlussnetzwerken 25a und 25b.
  • 8: Antennensystem wie in 7 mit Empfänger 33, jedoch mit Diversityprozessor 30, Schaltprozessor 31 zur Erzeugung der Steuersignale des Diversityprozessors 27. Schaltadresssignaleinspeisung 34, Frequenzweiche HF/ZF 32, elektronische Umschalter 19, AM-Verstärker 29, Netzwerkkomponenten 17, 18 sind ebenfalls in die Anschlussnetzwerke 25a bzw. 25b integriert.
  • 9: Antennensystem wie in 8, erweitert um 4 TV-Antennen mit TV-Verstärkern 36a, 36b, 36c, 36d und den TV-Antennenanschlusskabel 37a, 37b, 37c, 37d.
  • 10: Antennensystem wie in 9, wobei beispielhaft die in den elektronisch steuerbaren Impedanznetzwerken 11a, b, c geschlossenen HF-Verbindungen für 4 unterschiedliche FM-Empfangssignale FM1–FM4, für 4 unterschiedliche TV-Empfangssignale TV1–TV4 und ein AM-Empfangssignal angegeben sind.
  • 11: Mögliche Anordnung der Elemente des Antennensystems nach 10 im aufgeklappten Heckdeckel.
  • 12: Anordnung eines Antennensystems nach der Erfindung in einem Dachausschnitt eines Fahrzeugs.
  • Mit der Erfindung ist die vorteilhafte Möglichkeit verbunden, mit nur einer Leiterstruktur, welche raumsparend im Randbereich der dielektrischen Fläche 7 verlegt ist, und mit nur einem Anschlussnetzwerk 25 eine Vielzahl von diversitätsmäßig unterschiedlichen Antennensignalen zu erzeugen. Die elektronisch steuerbaren Impedanznetzwerke 11, für welche keine Verbindung zur Fahrzeugmasse notwendig ist, können dabei auf einfache Weise raumsparend gestaltet und untergebracht werden. Vorteilhaft ist auch, dass die Beweglichkeit des Heckdeckels durch die Massefreiheit der elektronisch steuerbaren Impedanznetzwerke 11 nicht eingeschränkt ist.
  • Die Wirkungsweise der Erfindung wird anhand der in 1 gezeigten Grundformen von Antennen beschrieben. In 1a ist auf einer dielektrischen Fläche 7 ein drahtförmiger Antennenleiter 38 der Länge 9b im Abstand 9a parallel zur leitenden Berandung 1 angebracht. Aufgrund der Konzentration der elektrischen Feldlinien 2 und der magnetischen Feldlinien 3, welche die empfangenen elektromagnetischen Wellen in unmittelbarer Nähe der leitenden Berandung 1 hervorrufen, ist die Einkopplung sowohl der elektrisch als auch der magnetisch eingekoppelten Komponenten des Empfangssignals in den drahtförmigen Antennenleiter 38 auch bei sehr kleinem Abstand 9a relativ groß. Hierbei bewirkt der Kanteneffekt an der leitenden Berandung 1 die Konzentration der elektrischen Feldlinien 2 und der an der Kante auftretende konzentrierte Kantenstrom 4 die Konzentration der magnetischen Feldlinien 3 in unmittelbarer Nähe zur Kante der leitenden Berandung 1. Aufgrund der im wesentlichen statischen Verteilungen sowohl der elektrischen Feldlinien 2 als auch der magnetischen Feldlinien 3 in Kantennähe bemisst sich der minimal notwendige Abstand 9a nicht an der Wellenlänge der empfangenen Wellen. Vielmehr ist es z. B. bei λ = 3 m Wellenlänge mit einem Abstand 9a von λ/50 bereits möglich, ausreichende Antenneneigenschaften zu erzielen. Zur Erzeugung diversitätsmäßig unterschiedlicher Antennensignale an einer geeigneten Unterbrechungsstelle am Antennenanschlussklemmenpaar 13, 14 mit der daran liegenden Antennenspannung 44 wird erfindungsgemäß ein elektronisch steuerbares Impedanznetzwerk 11 in den drahtförmigen Antennenleiter 38 seriell eingebracht, welches als Schalter dargestellt ist. Befindet sich weder das Antennenanschlussklemmenpaar 13, 14 noch das elektronisch steuerbare Impedanznetzwerk 11 an einem Ende des drahtförmigen Antennenleiters 38 und ist ferner der Abstand zwischen dem Antennenanschlussklemmenpaar 13, 14 und dem elektronisch steuerbaren Impedanznetzwerk 11 hinreichend groß, dann ergeben sich bei unterschiedlichen Impedanzen in der weiteren Unterbrechungsstelle 15, 16 unterschiedliche Antennensignale 44. Dies erklärt sich durch die Wirkung der zwischen dem drahtförmigen Antennenleiter 38 und der leitenden Berandung 1 wirksamen, laufenden Kapazität, welche als 45 angedeutet ist. Somit ergeben sich bei unterschiedlichen Impedanzen unterschiedliche Überlagerungen der magnetischen Effekte aufgrund der von den magnetischen Feldlinien 3 erzeugten Schleifenspannung und der durch die elektrischen Feldlinien 2 erzeugten elektrischen Effekte. Infolge der Komplexität des Einflusses des im Vergleich zur Wellenlänge großen Fahrzeugs auf die Stromverteilung auf der Karosserie und somit auch auf den Kantenstrom 4 und mit diesem einhergehenden magnetischen Feldlinien 3 und infolge der sich davon weitgehend dekorreliert ausbildenden elektrischen Feldlinien 2 sind auch die unterschiedlichen Antennensignale 44 diversitätsmäßig unterschiedlich.
  • In 1b werden die am Antennenleiter 38 wirksamen Ersatzkapazitäten 45 durch hochfrequenzmäßig wirksame Verbindungen 42 und 43 in Form der Impedanzen Z1 und Z2 verbunden mit der leitenden Berandung 1 unterstützt. Werden die hochfrequenzmäßig wirksamen Verbindungen 42 und 43 durch die Impedanzen Z1 und Z2 niederohmig ausgeführt, so bilden die leitende Berandung 1, die hochfrequenzmäßigen niederohmigen Verbindungen 42 und 43 sowie der Antennenleiter 38 eine Schleife 6, wenn zusätzlich das elektronische Schaltelement 12 niederohmig die weitere Unterbrechungsstelle 15, 16 überbrückt mit einer entsprechenden Antennenspannung 44. Bei hochohmig geschaltetem elektronisch steuerbarem Impedanznetzwerk 11 ist die Antennenspannung 44 diversitätsmäßig unterschiedlich.
  • In einer weiteren Grundform der Erfindung ist in 1c das Antennenanschlussklemmenpaar 13, 14 in eine der hochfrequenzmäßig wirksamen Verbindungen 42 oder 43 des drahtförmiger Antennenleiters 38 seriell eingebracht.
  • In einer weiteren Ausführungsform einer Antenne nach der Erfindung ist in 1d der drahtförmige Antennenleiter 38 an seinen Enden als Verbindungen 42 und 43 zur leitenden Berandung 1 ausgeformt, sodass mit Hilfe unterschiedlicher Impedanzen des elektronisch steuerbaren Impedanznetzwerks 11 zwischen einer magnetisch empfangenden Antennenwirkung bei Niederohmigkeit und einer davon dekorreliert elektrisch empfangenden Antenne bei Hochohmigkeit umgeschaltet werden kann.
  • In einer vorteilhaften Weiterbildung der Erfindung ist in 1e ein erster weiterer Antennenleiter 38a an eines der beiden Enden des Antennenleiters 38 angeschlossen und der erste weitere Antennenleiter 38a derart gestaltet, dass die mit dem Anschluss einhergehende hochfrequenzmäßige Belastung der geeignet eingestellten Impedanz Z2 entspricht und die hochfrequenzmäßig wirksame Verbindung 43 bildet. Wird ein zweiter weiterer Antennenleiter 38b an das andere Ende des ersten weiteren Antennenleiters 38a angeschlossen, so wird in Fortsetzung dieses Prinzips auch dieser zweite weitere Antennenleiter 38b so gestaltet, dass die mit dem Anschluss einhergehende hochfrequenzmäßige Belastung der geeignet eingestellten Impedanz entspricht und die hochfrequenzmäßig wirksame Verbindung 43 oder 42 bildet. Hierbei wird der zweite weitere Antennenleiter 38b zu einem weiteren Teilstück der Berandung 1 parallelgeführt. Die Antennenspannung 44 wird im dargestellten Beispiel am Antennenanschlussklemmenpaar 13, 14 massebezogen abgegriffen. Enthält jeder der weiteren Antennenleiter ein elektronisch steuerbares Impedanznetzwerk 11 in geeignetem Abstand voneinander, so entsteht die in 1e dargestellte Struktur, mit der sich mit unterschiedlichen Einstellungen der elektronisch steuerbaren Impedanznetzwerke 11 eine Vielfalt von diversitätsmäßig unterschiedlichen Antennenspannungen 44 erzielen lassen.
  • Der erfindungsgemäße Vorteil dieser Anordnung gegenüber den in der Einleitung beschriebenen Antennenanordnugen nach dem Stande der Technik besteht darin, dass sich die unterschiedlichen Antennensignale an einer einzigen Antennenanschlussstelle an dem Antennenanschlussklemmenpaar 13, 14 einstellen und diese Signale in einem einzigen Anschlussnetzwerk 25 massefrei abgegriffen werden können in Verbindung mit dem in der Aufgabe der Erfindung geforderten kleinen Bauraum. Gegenüber dem aus der DE 36 19 704 C2 bekannten Stand der Technik liefert der nicht massebezogene Abgriff der Unterbrechungsstelle einen zusätzlichen Antennenabschnitt zur einfachen Erhöhung der Diversitätszahl. Somit entfällt auch die bei entfernt voneinander angebrachten Antennen bestehende Vielzahl solcher Anschlussnetzwerke 25 sowie deren Verbindung hin zu einem weiteren gemeinsamen Anschlussnetzwerk 25 zur Weiterverarbeitung der Signale im Diversitysystem. Zusätzlich löst die Antenne nach der Erfindung das Problem, sowohl den Abgriff von massefreien Empfangsspannungen als auch von massebezogen Empfangsspannungen an einem Ort zu ermöglichen, wie es weiter unten beschrieben ist. Damit ist sehr vorteilhaft eine zusätzliche nennenswerte Erhöhung der Vielfalt von diversitytätsmäßig unterschiedlichen Empfangsspannungen verbunden.
  • Zur Erweiterung der Vielfalt der verfügbaren Antennenspannungen 44 wird in 1f in analoger Fortsetzung des Erfindungsgedankens bei massebezogenem Abgriff der Antennenspannung 44 die wirksame Impedanz Z2 an Stelle der Verbindung 43 durch geeignet gestaltete Ausformung des Antennenleiters 38d realisiert. An seinem anderen Ende ist der drahtförmige Antennenleiter 38 in analoger Weise zu 1e mit den weiteren Antennenleitern 38a, b, c... ausgestaltet.
  • In weiterer vorteilhafter Ausgestaltung der Erfindung kann die Antennenspannung 44 bei Platzierung des Antennenanschlussklemmenpaar 13, 14 als Unterbrechungsstelle im parallel zur leitenden Berandung 1 geführten Teil des drahtförmigen Antennenleiters 38 massefrei abgegriffen werden. Wie in 1g dargestellt, ist der drahtförmige Antennenleiter 38 beidseitig mit weiteren Antennenleitern 38a bzw. 38b fortgesetzt.
  • In einer besonders vorteilhaften Ausgestaltung der Erfindung ist in 1h eine erste Unterbrechungsstelle für ein Antennenanschlussklemmenpaar 13, 14 zum massefreien Abgriff der Antennenspannung 44b vorhanden und ein weiteres Antennenanschlussklemmenpaar 14, 10 zum Abgriff der davon diversitätsmäßig unterschiedlichen Empfangsspannung 44a. Der Abgriff der massebezogenen Antennenspannung 44a erfolgt zwischen der Unterbrechungsstelle 14 des Antennenleiters 38 und der leitenden Berandung 1, der durch den Massepunkt 10 beschrieben ist. Durch Abgriff beider Antennenspannungen 44 an einer gemeinsamen Stelle können auch beide Signale in einem einzigen Anschlussnetzwerk 25 weiterverarbeitet werden.
  • Anhand der 2 wird die Wirkungsweise einer vorteilhaften Grundform einer Antenne nach der Erfindung in einem Kunststoffkofferraumdeckel, welcher die dielektrische Fläche 7 darstellt, erläutert. Hierbei ist der Antennenleiter 38 als Ringstruktur 5 mit der Breite 9f und der Länge 9e im wesentlichen parallel zu drei Teilstücken der leitenden Berandung 1 geführt. Die diversitätsmäßig unterschiedlichen Antennensignale am Antennenanschlussklemmenpaar 13, 14 entstehen durch die unterschiedlichen Einstellungen des elektronisch steuerbaren Impedanznetzwerks 11. Die Antennensignale können dabei sowohl massefrei am Klemmenpaar 13, 14 oder massebezogen am Klemmenpaar 13, 10 bzw. 14, 10 abgegriffen werden. Die unterschiedliche Erregung der Ringstruktur mit ihrer weiteren Unterbrechungsstelle 15, 16 beruht darauf, dass sich bei den unterschiedlichen Einstellungen des elektronisch steuerbaren Impedanznetzwerks 11 bei offener und geschlossener Ringstruktur bei massebezogenem Abgriff des Antennensignals und massefreiem Abgriff des Antennensignals die Wirkung der elektrischen und magnetischen Erregung unterschiedlich auswirken, sodass die gewünschte Vielfalt der diversitätsmäßig unterschiedlichen Antennensignale gegeben ist. Dies wird durch das Ersatzschaltbild mit den Ersatzelementen der Ersatzinduktivitäten 50 und der Ersatzkapazitäten 45 in Verbindung mit den elektrischen Feldlinien 2 und magnetischen Feldlinien 3 verdeutlicht.
  • 3 zeigt die Realisierung einer Antenne nach 2. Hierbei werden die Antennensignale einem Anschlussnetzwerk 25 zugeführt. Das Anschlussnetzwerk 25 enthält ein Anpassnetzwerk und/oder einen Verstärker 17 zur massefreien Antennensignalauskopplung an den Klemmen 13, 14 und ein Anpassnetzwerk und/oder Verstärker 18 massebezogenen Antennensignalauskopplung zwischen den Klemmen 14 und 10. Mittels eines elektronischen Umschalters 19 kann wahlweise eines der beiden Antennensignale über die Netzwerkkomponenten 17, 18 z. B. getrennten Antennenanschlussleitungen 46, 46a zugeführt werden. Besonders vorteilhaft wird das Steuersignal 20 zur Ansteuerung des Umschalters 19 auch zur Ansteuerung des elektronisch steuerbaren Impedanznetzwerks 11 in Form eines elektronischen Schaltelements 12 mitgenutzt, um eine HF-mäßige Auftrennung der Ringstruktur zu bewirken. Dieses Steuersignal 20 kann z. B. von einem Diversityprozessor abgeleitet sein.
  • In 4 ist die vorteilhafte Ausgestaltung des Antennenleiters 38 entsprechend 1e in einem Kofferraumdeckel gezeigt. Der Antennenleiter 38 wird um einen ersten weiteren Antennenleiter 38a und einen weiteren ersten weiteren Antennenleiter 38b erweitert, die durch die weiteren Unterbrechungsstellen 15a, 16a und 15b, 16b über die elektronisch steuerbaren Impedanznetzwerke 11a und 11b verbunden sind. Mit dem im Anschlussnetzwerk 25 implementierten Schaltprozessor 31 werden die elektronisch steuerbaren Impedanznetzwerke 11a und 11b angesteuert, der die Steuersignale 20 für die Steuersignaleingänge 20a und 20b liefert, die diesen über eine hochfrequenzmäßig unwirksame Steuerleitung 47 zugeführt werden zur Erzeugung der diversitätsmäßig unterschiedlichen Antennensignale am Eingang des Anpassungsnetzwerks und/oder Verstärkers 18 für massebezogene Antennensignale.
  • In vorteilhafter Weiterentwicklung der Erfindung werden in 5, ausgehend von den 3 und 4, zwei elektronisch steuerbare Impedanznetzwerke 11a und 11b in die Ringstruktur 5 eingebracht. Werden die steuerbaren elektronischen Impedanznetzwerke 11a bzw. 11b als elektronische Schaltelemente 12 in Form von PIN-Dioden realisiert, so kann der Antennenleiter 38 die Funktion der Steuerleitung 47 zusätzlich übernehmen, wenn folgende Antennensignale abgegriffen werden sollen: Wenn die elektronischen Schaltelemente 12 geöffnet sind, so können beispielsweise 3 unterschiedliche Antennensignale abgegriffen werden: a) massebezogener Abgriff an dem Klemmenpaar 14, 10, b) massebezogener Abgriff am Klemmenpaar 13, 10, c) massefreier Abgriff am Klemmenpaar 13, 14. Werden die elektronischen Schaltelelemente 12 leitend geschaltet, so kann am Klemmenpaar 13, 14 ein zu c) unterschiedliches Antennensignal abgegriffen werden. Um also 4 unterschiedliche Antennensignale zu erhalten, muß der Schaltprozessor 31 über die Steuersignale 20 nur einmal aktiviert werden. Die elektronischen Umschalter 19, angesteuert durch die Steuersignale 20, führen die Antennensignale dem Anpassnetzwerk und/oder Verstärker 17 für massefrei abgegriffene Antennensignale bzw. 18 für massebezogen abgegriffene Antennensignale zu. Ausgangsseitig werden im Anschlussnetzwerk 25 die verstärkten bzw. angepassten Antennensignale entsprechend den Steuersignalen 20 über einen elektronischen Umschalter 19 einer Antennenanschlussleitung 46 zugeführt.
  • In 6 sind einige Beispiele vorteilhafter Ausführungsformen des elektronisch steuerbaren Impedanznetzwerks 11 dargestellt. Diese Netzwerke benötigen keine Verbindungen zur Fahrzeugmasse an ihrem Montagepunkt, wenn die Steuersignale 20 zur Steuerung der Impedanzen der elektronisch steuerbaren Impedanznetzwerke 11 entweder, soweit möglich, über den drahtförmigen Antennenleiter 38 direkt oder erfindungsgemäß über Steuerleitungen 47, 47a, 47b erfolgt, welche hochfrequent unwirksam unmittelbar parallel zum drahtförmigen Antennenleiter 38 geführt sind, sodass der so gebildete Strang elektrisch wie ein drahtförmiger Antennenleiter 38 wirkt. Die elektronisch steuerbaren Impedanznetzwerke 11 werden vorzugsweise als elektronischer Schalter 12 ausgeführt, wobei als Schaltelemente bevorzugt Schalt- oder PIN-dioden 22 zum Einsatz kommen. Sollen Steuersignale 20 über ein elektronisch steuerbares Impedanznetzwerk 11 hinweg einem weiteren drahtförmigen Antennenleiter 38 mit Steuerleitung 47, 47a, 47b zugeführt werden, so geschieht dies erfindungsgemäß über eine Drossel 21, um die Längs impedanz des elektronisch steuerbaren Impedanznetzwerks 11 bei hochohmig geschalteter Schaltdiode 22 nicht zu beeinträchtigen. Vorteilhafte Ausführungsformen für verschiedene Anwendungsfälle sind in den 6a bis 6h dargestellt.
  • Hierin zeigt 6a das Prinzipschaltbild eines elektronisch steuerbaren Impedanznetzwerks 11 in seiner einfachsten Ausführungsform, lediglich bestehend aus einem elektronischen Schaltelement 12, welches über das Steuersignal 20 an seinem Steuereingang 20a geschaltet wird. Somit besitzt dieses elektronische Schaltelement die Funktion eines Schalters mit den Klemmen 15 und 16.
  • In 6b ist der elektronische Schalter 12 als Schalt- oder PIN-Diode 22 ausgeführt. Der Antennenleiter 38 übernimmt gleichzeitig die Funktion der Steuerleitung 47. Das Impedanznetzwerk 26 ist so ausgestaltet, dass z. B. der UKW-Frequenzbereich über den Serienresonanzkreis durchlässig ist und für alle anderen Rundfunkfrequenzen undurchlässig wird. Die parallel geschaltete Induktivität dient zum einen der Weiterleitung des Gleichstroms und zum anderen kann z. B. im TV-Band 1 eine Parallelresonanz erzeugt werden, so dass die Sperrwirkung des Impedanznetzwerks 26 in diesem Frequenzbereich erhöht wird.
  • In 6c ist das elektronisch steuerbare Impedanznetzwerk 11 für den AM-Frequenzbereich durchlässig gestaltet und für die darüber liegenden Frequenzbereiche des Rundfunks durch die Drossel 21 gesperrt. Der Kondensator 23 dient der Gleichstromtrennung. Über die niederohmig geschaltete Diode 22 können z. B. weiterführende Teile des Antennenleiters 38a mit dem Antennenleiter 38 verbunden werden.
  • In 6d ist das elektronisch steuerbare Impedanznetzwerk 11 derart gestaltet, dass z. B. das Impedanznetzwerk 26a die VHF/UHF-Frequenzbereiche sperrt, aber AM- und FM-Signale durchlässt, während das Impedanznetzwerk 26b den AM-Frequenzbereich durchlässt und den FM-Frequenzbereich sperrt.
  • In 6g ist das Prinzipschaltbild eines elektronisch steuerbaren Impedanznetzwerks 11 angegeben, welches eine adressierbare Schaltfunktion z. B. über eine gestufte Gleichspannung als Steuersignal 20 zulässt. Sollen z. B. mehrere elektronisch steuerbare Impedanznetzwerke 11 in einer Ringstruktur 5 zu unterschiedlichen Zeitpunkten und für unterschiedliche Frequenzbereiche an unterschiedlichen Positionen in der Ringstruktur 5 adressierbar sein, benötigt man zur Ansteuerung mindestens 2 Leiter. Zweckmäßig ist die Verwendung von drei Leitern. Ein Leiter wird durch den Antennenleiter 38 selbst gebildet, die zwei weiteren Leiter 47a und 47b bilden die Steuerleitungen. Alle 3 Leiter sind hochfrequenzmäßig über Koppelkondensatoren 34 parallelgeschaltet und wirken bei enger räumlicher Nachbarschaft als ein Antennenleiter 38. Die Steuerleitung 47a liefert z. B. das Schaltadresssignal in Form einer gestuften Gleichspannung im einfachsten Fall. Der Antennenleiter 38 kann zusätzlich eine Versorgungsgleichspannung für die Schaltsignaladressauswertung in der Logikschaltung 49 liefern und die Steuerleitung 47b dient als Rückleiter. Die Ankopplung dieser Leitungen am Ein- und Ausgang des elektronisch steuerbaren Impedanznetzwerks 11 an die Logikschaltung 49 erfolgt über Drosseln 21, welche im betrachteten Frequenzbereich ausreichend hochohmig sind. Die Schaltadresssignalauswertung in der Logikschaltung 49 ist hier am einfachsten durch Fensterdiskriminatoren realisierbar.
  • In den 6e und 6f sind einfache Schaltbeispiele dargestellt, wobei die Ansteuerung des elektronischen Schaltelelementes 12 in Form einer Diode 22 über einen Hin- und Rückleiter erfolgt.
  • 6h zeigt das elektronisch steuerbare Impedanznetzwerk 11 für unterschiedliche Frequenzbereiche adressierbar schaltbar ausgestaltet.
  • In 7 ist für das in 5 dargestellte Beispiel einer Antenne im Heckdeckel zur weiteren Steigerung der Vielfalt der diversitätsmäßig unterschiedlichen Antennensignale auf vorteilhafte Weise um ein Anschlussnetzwerk 25 erweitert. Die problemfreie Anbringung von zwei Anschlusseinheiten 25a und 25b in der Nähe der Heckdeckelscharniere mit der dort verfügbaren Möglichkeit des Anschlusses an die Fahrzeugmasse ermöglicht die Auswertung mehrerer unterschiedlicher sowohl massefreier als auch massebezogener Antennensignale mit Hilfe verschiedener Schalterstellungen in den Anschlussnetzwerken 25a und 25b. Die ausgewählten Antennenspannungen 44 stehen an den Antennenanschlussleitungen 46, 46a getrennt zur Verfügung. Diese Signale können auf vorteilhafte Weise einem Antennendiversityempfänger mit zwei Signaleingängen für gleichphasige Überlagerung der Empfangssignale zugeführt werden. Solche Empfänger werden bevorzugt für den UKW-Rundfunkempfang eingesetzt und sind z. B. aus der US 4,079,318 A sowie aus dem US-Patent 5,517,696 A bekannt. Diese Diversityempfänger zielen darauf ab, durch gleichphasige Überlagerung zweier oder auch mehrerer Antennensignale im Summenzweig ein größeres Nutzsignal zu erzielen als mit einer Einzelantenne. Durch erfindungsgemäße Ergänzung eines derartigen Diversitysystems mit einem Scanning-Diversitysystem mit einem Detektor zur Anzeige von Empfangsstörungen im Summenzweig und einem Diversityprozessor 30 zur Generierung von Steuersignalen 20 zur Auswahl zweier ungestörter Signale in den Antennenanschlussleitungen 46, 46a kann mit einer Antenne nach der vorliegenden Erfindung die Häufigkeit von Empfangsstörungen im Gebiet mit Mehrwegeausbreitung und Pegeleinbrüchen weiterhin um ein Vielfaches reduziert werden.
  • Für ein reines Scanning-Diversitysystem mit nur einem zu jedem Zeitpunkt selektierten und über die Antennenanschlussleitung 46 dem Empfänger 33 zugeleitetem Antennensignal 44 ist in 8 eine vorteilhafte Weiterbildung des Antennensystems nach 7 dargestellt. Hierbei wird die im Anschlussnetzwerk 25b mit Hilfe der elektronischen Umschalter 19 selektierte Antennenspannung 44 über die Antennenanschlussleitung 46a dem Anschlussnetzwerk 25a zugeleitet, um dort wahlweise zur Weiterleitung an die Antennenanschlussleitung 46 zur Verfügung zu stehen. Mit Hilfe der HF/ZF-Frequenzweiche 32 werden die vom Empfänger 33 kommenden ZF-Signale dem Diversityprozessor 30 mit Schaltprozessor 31 zugeführt. Letzterer steuert sowohl die elektronischen Umschalter 19 als auch die Schaltadresssignaleinspeisung 34 an. Die über die Antennenanschlussleitung 46a geleiteten Schaltsignale steuern über die Schaltadresssignalauswertung 35 die elektronischen Umschalter 19b und initiieren Steuersignale 20 zur Steuerung der elektronisch steuerbaren Impedanznetzwerke 11. Zusätzlich kann ein AM-Verstärker 29 im Anschlussnetzwerk 25a untergebracht sein.
  • Auf sehr vorteilhafte Weise kann in einer weiteren Ausgestaltung der Erfindung gem. 9 das Antennensystem wie in 8 um 4 TV-Antennen mit TV-Verstärkern 36a, 36b, 36c, 36d für das terrestrische Fernsehen (Bd1, VHF, UHF) erweitert werden. Moderne TV-Diversitysysteme benötigen häufig 4 getrennte Antennensignale, welche gleichzeitig verfügbar sein sollen. Diese Signale werden in 9 über die TV-Antennenanschlußkabel 37a, 37b, 37c, 37d dem TV-Diversitysystem zugeleitet.
  • In 10 sind für ein Antennensystem wie in 9 beispielhaft die in den elektronisch steuerbaren Impedanznetzwerken 11a, b, c geschlossenen HF-Verbindungen für 4 unterschiedliche FM-Empfangssignale FM1 bis FM4, für 4 unterschiedliche TV-Empfangssignale TV1 bis TV4 und ein AM-Empfangssignal angegeben. Mit dieser Anordnung als Ringstruktur mit drei elektronisch steuerbaren Impedanznetzwerken 11 und nur zwei Anschlussnetzwerken 25 werden Antennensignale mit sehr hoher Diversityeffizienz erreicht. Diese wird durch Wahl eines vorteilhaften Abstandes zwischen den elektronisch steuerbaren Impedanznetzwerken 11 untereinander und zwischen den Anschlussnetzwerken 25 und den elektronisch steuerbaren Impedanznetzwerken 11 erreicht. Bei der vorgegebenen Ringstruktur zeigen sich Abstände 9d (s. z. B. 5), die nicht kleiner sind als etwa λ/8, als sehr vorteilhaft. Eine sichere Diversifizierung der Antennensignale wird mit Abständen von λ/4. und mehr erreicht. Diese Abstände können bei UKW und den in der Frequenz darüber liegenden VHF/UHF-Frequenzen in Personenkraftwagen eingehalten werden. Aufgrund der möglichen Nähe der drahtförmigen Antennenleiter 38 zum Rand des Kofferraumdeckels und der klein gestaltbaren Baugröße der elektronisch steuerbaren Impedanznetzwerke 11 bleibt in der Mitte der Horizontalfläche viel Fläche für die Unterbringung von Telefon- und Satellitenantennen oder weiterer Antennenstrukturen für Zusatzdienste, z. B. Fernwirkfunktionen. Hierbei ist jedoch darauf zu achten, dass insbesondere durch deren Anschlusskabel die Funktion der erfindungsgemäßen Diversityantenne nicht beeinträchtigt wird. Dies kann zum einen dadurch geschehen, dass Mantelströme z. B. auf den Telefonzuleitungskabeln durch geeignete Maßnahmen im Nutzfrequenzbereich der Diversityantenne unterbunden werden oder durch geeignete Kabelverlegung eine ausreichende Entkopplung zur Diversityantenne herbeigeführt wird. Durch die starke elektromagnetische Kopplung der drahtförmigen Antennenleiter 38 mit der leitenden Berandung 1 des dielektrisch gestalteten Kofferraumdeckels im geschlossenen Zustand kann die Verkopplung mit den übrigen Antennen häufig vorteilhaft klein gestaltet werden.
  • 11 zeigt für ein Antennensystem gemäß den 7, 8, 9 und 10 eine vorteilhafte Anordnung der Elemente des Antennensystems im aufgeklappten Heckdeckel. Der Massebezug für die Anschlussnetzwerke 25 kann dabei über die stets metallisch ausgeführte Kofferraumdeckelbefestigung 39 erfolgen.
  • Im modernen Fahrzeugbau werden Kunststofflächen auch in Ausschnitten des metallischen Fahrzeugdachs 41 eingesetzt. 12 zeigt eine Ausführungsform der Antennenanordnung nach der Erfindung, wie sie in einer zu 7, 8, 9 analogen Weise in einem Dachausschnitt eingesetzt werden kann.
  • Bezugszeichenliste
  • 1
    leitende Berandung
    2
    elektrische Feldlinien
    3
    magnetische Feldlinien
    4
    Kantenstrom
    5
    Ringstruktur
    6
    Schleife
    7
    dielektrische Fläche
    8
    Rücklichter
    9b
    Länge des Antennenleiters 38
    9a
    Abstand des Antennenleiters von der leitenden Berandung
    9c, 9c'
    Abstand Ant.anschlussklemmenpaar zu 11
    9d
    Abstand zwischen elektronisch steuerbaren Impedanznetzwerken 11
    10
    Massepunkt
    11
    elektronisch steuerbares Impedanznetzwerk
    12
    elektronisches Schaltelement bzw. elektronischer Schalter
    13, 14
    Antennenanschlussklemmenpaar
    15, 16
    weitere Unterbrechungsstelle
    Z1, Z2
    Impedanzen
    38
    drahtförmiger Antennenleiter
    38a
    erster weiterer Antennenleiter
    38b
    zweiter weiterer Antennenleiter
    42, 43
    hochfrequenzmäßig wirksame Verbindungen
    44
    Antennensignal bzw. Antennenspannung
    17
    Anp. NW und/oder Verst. für massefreie Antennensignale
    18
    Anp. NW und/oder Verst. für massebezogene Antennensignale
    46
    Antennenanschlussleitung
    17, 18
    Netzwerkkomponenten
    19
    Elektronischer Umschalter
    20
    Steuersignal
    20a, 20b...
    Steuersignaleingang
    21
    Drossel
    22
    Schaltdiode
    23
    Kondensator
    24
    Koppelkapazität
    25
    Anschlussnetzwerk
    25a
    erstes Anschlussnetzwerk
    25b
    zweites Anschlussnetzwerk
    26
    Impedanznetzwerk
    27
    Steuersignale des Schaltprozessors
    29
    AM-Verstärker
    30
    Diversityprozessor
    31
    Schaltprozessor
    32
    Frequenzweiche HF/ZF
    33
    Empfänger
    34
    Schaltadresssignaleinspeisung
    35
    Schaltadresssignalauswertung
    36
    TV-Verstärker
    37
    TV-Antennenanschlusskabel
    39
    Kofferraumdeckelbefestigung
    40
    Fahrzeugmasse
    41
    Fahrzeugdach
    45
    Ersatzkapazität
    47, 47a, 47b
    Steuerleitung
    49
    Logikschaltung
    50
    Ersatzinduktivität

Claims (20)

  1. Antenne für die Verwendung zum Diversityempfang im Meterwellen- und Dezimeterwellenbereich auf einer leitend umrahmten, im wesentlichen aus rechteckförmigen Teilflächen zusammengesetzten, dielektrischen Fläche in einer Kraftfahrzeugkarosserie, z. B. in einem Dachausschnitt oder einem Kofferraum mit dielektrischem Kofferraumdeckel, wobei die Antenne aus einem im wesentlichen drahtförmigen Antennenleiter (38) besteht, welcher einfach parallel zu mindestens einem Teil der leitenden Berandung (1) der dielektrischen Fläche (7) in einem Abstand (9a) von weniger als einem Viertel der dort bestehenden Breite der dielektrischen Fläche (7) geführt ist und der drahtförmige Antennenleiter (38) eine Unterbrechungsstelle mit einem Antennenanschlussklemmenpaar (13, 14) aufweist und mindestens an einer weiteren Unterbrechungsstelle (15, 16) ein zweipoliges elektronisch steuerbares Impedanznetzwerk (11) seriell eingebracht ist und die Position der Unterbrechungsstelle mit dem Antennenanschlussklemmenpaar (13, 14) und die Position der weiteren Unterbrechungsstelle (15, 16) derart gewählt sind, dass alle durch die Unterbrechungsstellen (15, 16) gebildeten Teilabschnitte des drahtförmigen Antennenleiters (38) nicht kürzer sind als λ/8, so dass die bei den unterschiedlichen Einstellungen des mindestens einen steuerbaren Impedanznetzwerks (11) am Antennenanschlussklemmenpaar (13, 14) anstehenden Antennensignale (44) für die Verwendung zum Diversityempfang unterschiedlich sind.
  2. Antenne nach Anspruch 1, dadurch gekennzeichnet, dass der drahtförmige Antennenleiter (38) in einem im Vergleich zur Länge (9b) des drahtförmigen Antennenleiters (38) und im Vergleich zur Wellenlänge λ kleinen Abstand (9a) von jedoch mindestens λ/50 entfernt von der leitenden Berandung (1) geführt ist, wodurch an dem in den Längszug zur leitenden Berandung (1) geführten, an einer Unterbrechungsstelle des drahtförmigen Antennenleiters (38, 38a, 38b, ...) seriell eingebrachten Antennenanschlussklemmenpaar (13, 14) die Antennensignale (44) massefrei, d. h. ohne hochfrequent leitende Verbindung zur leitenden Berandung (1) abgreifbar sind.
  3. Antenne nach einem der Ansprüche 1 bis 2 dadurch gekennzeichnet, dass das zweipolige elektronisch steuerbare Impedanznetzwerk (11) als elektronischer Schalter (12) ausgeführt ist.
  4. Antenne nach einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, dass ein erster oder/und ein zweiter weiterer drahtförmiger Antennenleiter (38a bzw. 38b) vorhanden ist oder sind, von denen jeder ebenso drahtförmig ausgebildet und jeweils an einem der beiden freien Enden des drahtförmigen Antennenleiters (38) angeschlossen ist und in Fortsetzung des drahtförmigen Antennenleiters (38) zumindest teilweise in elektrisch kleinem Abstand (9a) von jedoch mindestens λ/50 von der leitenden Berandung (1) einfach parallel geführt ist und in den weiteren drahtförmigen Antennenleitern (38a, 38b) jeweils mindestens eine weitere Unterbrechungsstelle (15, 16) ausgebildet ist und die Abstände der Unterbrechungsstellen (15, 16) voneinander größer als λ/8 und vorzugsweise größer er als λ/4 sind und in welche jeweils ein elektronisch steuerbares Impedanznetzwerk (11) bzw. ausgebildet als elektronischer Schalter (12) seriell eingebracht ist.
  5. Antenne nach Anspruch einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass ein erstes Antennenanschlussklemmenpaar (13, 14) in eine Unterbrechungsstelle im Längszug des drahtförmigen Antennenleiters (38) zum Abgriff der massefreien Antennenssignale 144b) eingebracht ist und am selben Ort ein weiteres Antennenanschlussklemmenpaar (10, 14) in eine elektrisch kurze hochfrequenzmäßig wirksame Verbindung (42) des drahtförmigen Antennenleiters (38) mit der leitenden Berandung (1) vorhanden ist, sodass an einem Ort sowohl die zwischen dem Antennenleiter (38) und der leitenden Berandung (1) bestehenden massebezogenen Antennenssignale (44a) als auch die am weiteren Antennenanschlussklemmenpaar (13, 14) befindlichen massefreien Antennensignale 44b des drahtförmigen Antennenleiters (38) verfügbar sind.
  6. Antenne nach Anspruch 5 dadurch gekennzeichnet, dass ein elektronischer Umschalter (19) vorhanden ist, an dessen einem Ausgang eine Netzwerkkomponente (17) einer Antennendiversityanlage zum Abgriff der massefreien Antennenssignale (44b) und an dessen anderem Ausgang eine Netzwerkkomponente (18) dieser Antennendiversityanlage zum Abgriff der massebezogenen Antennenssignale (44a) angeschlossen ist.
  7. Antenne nach Anspruch 6 dadurch gekennzeichnet, dass der drahtförmige Antennenleiter (38) als Ringstruktur (5) in einem Abstand von mindestens λ/50 von der leitenden Berandung (1) mit mindestens einem zweipoligen elektronisch steuerbaren Impedanznetzwerk (11) innerhalb der dielektrischen Fläche (7) geführt ist, wodurch sowohl das massebezogene Antennensignal zwischen der Ringstruktur (5) und der leitenden Berandung (1) als auch das massefreie Antennensignal im Längszug des drahtförmigen Antennenleiters (38) zur Weiterverarbeitung in den Netzwerkkomponenten (17, 18) einer Antennendiversityanlage verfügbar ist.
  8. Antenne nach einem der Ansprüche 1 bis 7 dadurch gekennzeichnet, dass am elektronisch steuerbaren Impedanznetzwerk (11) mindestens ein Steuersignaleingang (20a) zur Einstellung des wirksamen Impedanzwerts zwischen dem ersten HF-Anschluss (15) und dem zweiten NF-Anschluss (16) vorhanden ist.
  9. Antenne nach Anspruch 8 dadurch gekennzeichnet, dass im elektronisch steuerbaren Impedanznetzwerk (11) mindestens ein digital einstellbares elektronisches Schaltelement (12) mit diskreten Schaltzuständen, gegebenenfalls in Verbindung mit Blindwiderständen zur Einstellung diskreter Impedanzwerte vorhanden ist und die Einstellung der diskreten Impedanzwerte durch Anlegen einer oder ggfs. mehrerer digitaler Steuersignale (20) erfolgt.
  10. Antenne nach einem der Ansprüche 8 und 9 dadurch gekennzeichnet, dass im elektronisch steuerbaren Impedanznetzwerk (11) zwischen den Anschlussklemmen der mindestens einen weiteren Unterbrechungsstelle (15, 16) das in seiner hochfrequenzmäßig wirksamen Durchlässigkeit durch Steuersignale (20) steuerbare elektronisches Schaltelement (12) geschaltet ist, welches vorzugsweise als eine zwischen einem hochfrequenzmäßig geschlossenen und hochfrequenzmäßig offenen Zustand steuerbare Schaltdiode (22) gestaltet ist, und am Impedanznetzwerk (11) ein Steuersignaleingang (20a) vorhanden ist, an welchem die Steuersignale (20) zur Steuerung der hochfrequenzmäßig wirksamen Durchlässigkeit des steuerbaren elektronischen Schaltelements (12) zugeführt sind.
  11. Antenne nach einem der Ansprüche 8 bis 10 dadurch gekennzeichnet, dass das elektronisch steuerbare Impedenznetzwerk (11) als eine zwischen einem hochfrequenzmäßig geschlossenen und hochfrequenzmäßig offenen Zustand steuerbare Schaltdiode (22) gestaltet ist und zur Zuführung des Steuersignals (20) in Form des Durchlassstroms der Diode bzw. deren Sperrspannung eine Zweidrahtleitung (47, 47a) als Steuerleitung gestaltet ist, derart, dass die Zweidrahtleitung durch kapazitive und induktive Kopplung der Leiter der Zweidrahtleitung hochfrequenzmäßig als ein einziger drahtförmiger Antennenleiter (38) gebildet ist und das Steuersignal (20) zwischen den beiden Leitern der Zweidrahtleitung geleitet wird.
  12. Antenne nach einem der Ansprüche 8 bis 11 dadurch gekennzeichnet, dass zur Trennung von hochfrequenten Antennensignalen und Steuersignalen (20) eine nur hochfrequent niederohmige Koppelkapazität (24) und eine nur hochfrequent hochohmige Drossel (21) in dem elektronisch steuerbaren Impedanznetzwerk (11) vorhanden sind.
  13. Antenne nach einem der Ansprüche 11 bis 12 dadurch gekennzeichnet, dass zur Weiterleitung von Steuersignalen (20) über ein erstes elektronisch steuerbares Impedanznetzwerk (11a) hinweg zu einem weiteren elektronisch steuerbaren Impedanznetzwerk (11b) mit Hilfe eines weiteren als Zweidraht- bzw. als Mehrdrahtleitung ausgeführten drahtförmigen Antennenleiters (38) im ersten steuerbaren Impedanznetzwerk (11a) die hochfrequenten Signale sperrende Schaltelemente, wie z. B. Drosseln (21), zur Überbrückung des elektronischen Schaltelements (12) vorhanden sind.
  14. Antenne nach einem der Ansprüche 11 bis 13 dadurch gekennzeichnet, dass zur adressierbaren Steuerung des elektronischen Schaltelements (12) mit Hilfe codierter Steuersignale (20) im elektronisch steuerbaren Impedanznetzwerk (11) eine Logikschaltung (49) vorhanden ist, welche ggfs. auch entsprechend codierte Signale an ein weiteres steuerbares Impedanznetzwerk (11) über einen weiteren als Zweidraht- bzw. als Mehrdrahtleitung ausgeführten drahtförmigen Antennenleiter (38) abgibt.
  15. Antenne nach einem der Ansprüche 1 bis 14 dadurch gekennzeichnet, dass zur frequenzselektiven Weiterleitung bzw. Sperrung von hochfrequenten Signalen unterschiedlicher Rundfunkbereiche zwischen den Anschlussklemmen mindestes einer Unterbrechungsstelle (15, 16) des drahtförmigen Antennenleiters (38) im elektronisch steuerbaren Impedanznetzwerk (11) ein bzw. mehrere Impedanznetzwerke (26) vorhanden ist bzw. sind.
  16. Antenne nach einem der Ansprüche 6 bis 15 dadurch gekennzeichnet, dass ein Anschlussnetzwerk (25) an das Antennenanschlussklemmenpaar (13, 14) angeschlossen ist, in welchem das massefreie und/oder das massebezogene Antennensignal (44) jeweils über Netzwerkkomponenten (17, 18) an einen Empfänger (33) angepasst ist und in dem Anschlussnetzwerk (25) ein Schaltprozessor (31) zur Erzeugung der Steuersignale (20) vorhanden ist und die Steuersignale (20) über die ebenfalls an das Anschlussnetzwerk (25) angeschlossene Steuerleitung (47, 47a, 47b) an das elektronisch steuerbare Impedanznetzwerk (11) bzw. die elektronisch steuerbaren Impedanznetzwerke (11) weitergeleitet sind.
  17. Antenne nach Anspruch 16 dadurch gekennzeichnet, dass ein Diversityprozessor (30) mit einem Steuersignale (20) erzeugenden Schaltprozessor (31) und neben dem mindestens einen elektronisch steuerbaren Impedenznetzwerk (11) mindestens ein ebenso steuerbarer elektronischer Umschalter (19) zur Auswahl zwischen massebezogenen Antennensignalen (44a) und massefreien Antennensignalen (44b) vorhanden sind.
  18. Antenne nach einem der Ansprüche 5 bis 17 dadurch gekennzeichnet, dass die dielektrische Fläche (7) durch einen Kunststoffkofferraumdeckel gebildet ist, welcher von der elektrisch leitenden Autokarosserie als leitende Berandung (1) umgeben ist, und das Anschlussnetzwerk (25) in der Nähe der mit der Fahrzeugmasse verbundenen Kofferraumdeckelbefestigung (39) angebracht ist und der Massepunkt (10) durch die hochfrequente Masse des elektrisch mit der Kofferraumdeckelbefestigung (39) verbunden Anschlussnetzwerks (25), gebildet ist.
  19. Antenne nach Anspruch 18 dadurch gekennzeichnet, dass zur weiteren Diversifizierung der Empfangssignale bzw. zur Gestaltung von zwei gleichzeitig verfügbaren Empfangssignalen z. B. für Diversityempfänger mit zwei Eingängen zur phasengleichen Überlagerung der Signale im Empfänger in Verbindung mit einem Scanning-Diversitysystem ein erstes Anschlussnetzwerk (25a) in der Nähe der Kofferraumdeckelbefestigung (39) auf der einen Seite und ein zweites Anschlußnetzwerk (25b) in der Nähe der Kofferraumdeckelbefestigung (39) auf der anderen Seite des Kunststoffkofferraumdeckels vorhanden ist.
  20. Antenne nach einem der Ansprüche 1 bis 19 dadurch gekennzeichnet, dass die dielektrische Fläche (7) in einen Ausschnitt des metallischen Kraftfahrzeugdachs (41) eingesetzt ist und dieser Ausschnitt vorzugsweise etwa quadratisch gestaltet ist und sich vorzugsweise über den wesentlichen Teil der Dachbreite erstreckt.
DE10100812A 2001-01-10 2001-01-10 Diversityantenne auf einer dielektrischen Fläche in einer Fahrzeugkarosserie Expired - Fee Related DE10100812B4 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE10100812A DE10100812B4 (de) 2001-01-10 2001-01-10 Diversityantenne auf einer dielektrischen Fläche in einer Fahrzeugkarosserie
EP02000324A EP1225653B1 (de) 2001-01-10 2002-01-04 Diversityantenne auf einer dielektrischen Fläche in einer Fahrzeugkarosserie
US10/041,419 US6603434B2 (en) 2001-01-10 2002-01-07 Diversity antenna on a dielectric surface in a motor vehicle body
JP2002003302A JP2002314318A (ja) 2001-01-10 2002-01-10 自動車の誘電性表面上のダイバーシチアンテナ
KR10-2002-0001500A KR100492429B1 (ko) 2001-01-10 2002-01-10 자동차 차체 내의 유전체 표면 상의 다이버시티 안테나

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10100812A DE10100812B4 (de) 2001-01-10 2001-01-10 Diversityantenne auf einer dielektrischen Fläche in einer Fahrzeugkarosserie

Publications (2)

Publication Number Publication Date
DE10100812A1 DE10100812A1 (de) 2002-07-11
DE10100812B4 true DE10100812B4 (de) 2011-09-29

Family

ID=7670131

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10100812A Expired - Fee Related DE10100812B4 (de) 2001-01-10 2001-01-10 Diversityantenne auf einer dielektrischen Fläche in einer Fahrzeugkarosserie

Country Status (5)

Country Link
US (1) US6603434B2 (de)
EP (1) EP1225653B1 (de)
JP (1) JP2002314318A (de)
KR (1) KR100492429B1 (de)
DE (1) DE10100812B4 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100355148C (zh) 1999-09-20 2007-12-12 弗拉克托斯股份有限公司 多级天线
DE69910847T4 (de) 1999-10-26 2007-11-22 Fractus, S.A. Ineinandergeschachtelte mehrbandgruppenantennen
ATE302473T1 (de) 2000-01-19 2005-09-15 Fractus Sa Raumfüllende miniaturantenne
JP2004501543A (ja) 2000-04-19 2004-01-15 アドバンスド オートモーティブ アンテナズ ソシエダット デ レスポンサビリダット リミタダ 改良された自動車用マルチレベルアンテナ
WO2002084790A1 (en) * 2001-04-16 2002-10-24 Fractus, S.A. Dual-band dual-polarized antenna array
EP1436858A1 (de) 2001-10-16 2004-07-14 Fractus, S.A. Multibandantenne
EP1436857B1 (de) * 2001-10-16 2008-01-23 Fractus, S.A. Mehrfrequenz-mikrostreifen-patch-antenne mit parasitär gekoppelten elementen
US9755314B2 (en) 2001-10-16 2017-09-05 Fractus S.A. Loaded antenna
CN100382385C (zh) * 2001-10-16 2008-04-16 弗拉克托斯股份有限公司 加载天线
DE20221959U1 (de) 2002-05-16 2009-11-19 Kathrein-Werke Kg Antennenanordnung
JP2004193680A (ja) * 2002-12-06 2004-07-08 Fujitsu Ten Ltd 車載用アンテナおよびダイバシティ受信装置
CA2451484C (en) * 2003-01-21 2013-02-05 Decoma International Inc. Roof article transporter assembly
DE102004032192A1 (de) 2004-07-02 2006-01-19 Volkswagen Ag Antennenvorrichtung für ein Kraftfahrzeug und entsprechendes Kraftfahrzeug
DE102006039357B4 (de) * 2005-09-12 2018-06-28 Heinz Lindenmeier Antennendiversityanlage zum Funkempfang für Fahrzeuge
US8738103B2 (en) 2006-07-18 2014-05-27 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
DE102007017478A1 (de) * 2007-04-13 2008-10-16 Lindenmeier, Heinz, Prof. Dr. Ing. Empfangsanlage mit einer Schaltungsanordnung zur Unterdrückung von Umschaltstörungen bei Antennendiversity
EP2037593A3 (de) * 2007-07-10 2016-10-12 Delphi Delco Electronics Europe GmbH Antennendiversityanlage für den relativ breitbandigen Funkempfang in Fahrzeugen
DE102007039914A1 (de) * 2007-08-01 2009-02-05 Lindenmeier, Heinz, Prof. Dr. Ing. Antennendiversityanlage mit zwei Antennen für den Funkempfang in Fahrzeugen
DE102008003532A1 (de) * 2007-09-06 2009-03-12 Lindenmeier, Heinz, Prof. Dr. Ing. Antenne für den Satellitenempfang
PT2209221T (pt) * 2009-01-19 2018-12-27 Fuba Automotive Electronics Gmbh Sistema de recepção para a soma de sinais de antena em fase
KR101124435B1 (ko) * 2009-11-02 2012-03-21 포항공과대학교 산학협력단 차량용 전송선로 및 안테나
DE102009011542A1 (de) * 2009-03-03 2010-09-09 Heinz Prof. Dr.-Ing. Lindenmeier Antenne für den Empfang zirkular in einer Drehrichtung der Polarisation ausgestrahlter Satellitenfunksignale
DE102009023514A1 (de) * 2009-05-30 2010-12-02 Heinz Prof. Dr.-Ing. Lindenmeier Antenne für zirkulare Polarisation mit einer leitenden Grundfläche
US8294625B2 (en) * 2010-02-04 2012-10-23 GM Global Technology Operations LLC Antenna diversity system
CN108091986A (zh) * 2016-11-23 2018-05-29 北京遥感设备研究所 一种超短波和短波复用车载共形天线
US10566685B2 (en) * 2017-09-15 2020-02-18 Cnh Industrial America Llc Integrated mounting for vehicle immobilizer system antenna
DE102018002661A1 (de) 2018-03-31 2019-10-02 Heinz Lindenmeier Antennen-Einrichtung für die bidirektionale Kommunikation auf Fahrzeugen

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262131A (ja) * 1988-08-29 1990-03-02 Nissan Motor Co Ltd ダイバーシティ用アンテナ
DE3619704C2 (de) * 1986-06-12 1991-09-19 Heinz Prof. Dr.-Ing. 8033 Planegg De Lindenmeier
DE3719692C2 (de) * 1987-06-12 1991-09-19 Heinz Prof. Dr.-Ing. 8033 Planegg De Lindenmeier
DE3911178C2 (de) * 1989-04-06 1992-02-13 Heinz Prof. Dr.-Ing. 8033 Planegg De Lindenmeier
DE3914424C2 (de) * 1989-05-01 1992-02-27 Heinz Prof. Dr.-Ing. 8033 Planegg De Lindenmeier
EP0269723B1 (de) * 1986-06-02 1993-03-31 FUBA Automotive GmbH Diversity-antennenanordnung
DE4321805A1 (de) * 1992-06-30 1994-01-27 Nippon Sheet Glass Co Ltd FM-Übertragungsantenneneinrichtung für Kraftfahrzeuge und TV-Übertragungsantenneneinrichtung für Kraftfahrzeuge
JPH0865024A (ja) * 1994-08-24 1996-03-08 Nissan Motor Co Ltd 車両用ガラスアンテナ
JPH08107306A (ja) * 1994-10-05 1996-04-23 Mazda Motor Corp ダイバシティアンテナ
JPH08163013A (ja) * 1994-12-01 1996-06-21 Tokyo Gas Co Ltd 自動管理無線システムに用いられるダイバーシチアンテナ
DE19535250A1 (de) * 1995-09-22 1997-03-27 Fuba Automotive Gmbh Mehrantennensystem für Kraftfahrzeuge
EP0803928A2 (de) * 1996-04-23 1997-10-29 Nippon Sheet Glass Co. Ltd. Scheibenantennensystem
DE19806834A1 (de) * 1997-03-22 1998-09-24 Lindenmeier Heinz Antennenanlage für den Hör- und Fernsehrundfunkempfang in Kraftfahrzeugen
DE19730173A1 (de) * 1997-07-15 1999-01-21 Fuba Automotive Gmbh Kraftfahrzeug-Karosserie aus Kunststoff mit Antennen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062326Y2 (ja) * 1988-07-18 1994-01-19 マツダ株式会社 車両用ガラスアンテナ構造
US4866453A (en) * 1988-08-15 1989-09-12 General Motors Corporation Vehicle slot antenna with parasitic slot
US5266960A (en) 1989-05-01 1993-11-30 Fuba Hans Kolbe Co. Pane antenna having at least one wire-like antenna conductor combined with a set of heating wires
US5801663A (en) 1989-05-01 1998-09-01 Fuba Automotive Gmbh Pane antenna having at least one wire-like antenna conductor combined with a set of heating wires
JPH06318811A (ja) * 1993-03-12 1994-11-15 Nippon Sheet Glass Co Ltd 窓ガラスアンテナ装置
JPH0993018A (ja) * 1995-09-22 1997-04-04 Asahi Glass Co Ltd 自動車用ガラスアンテナ
JPH10215114A (ja) * 1997-01-30 1998-08-11 Harada Ind Co Ltd 車両用窓ガラスアンテナ装置
JPH1168440A (ja) * 1997-08-19 1999-03-09 Harada Ind Co Ltd 車両用総合アンテナ装置
US6449469B1 (en) * 1999-03-01 2002-09-10 Visteon Global Technologies, Inc. Switched directional antenna for automotive radio receivers

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3618452C2 (de) * 1986-06-02 1997-04-10 Lindenmeier Heinz Diversity-Antennenanordnung für den Empfang frequenzmodulierter Signale in der Heckscheibe eines Kraftfahrzeugs mit einem darin befindlichen Heizfeld
EP0269723B1 (de) * 1986-06-02 1993-03-31 FUBA Automotive GmbH Diversity-antennenanordnung
DE3619704C2 (de) * 1986-06-12 1991-09-19 Heinz Prof. Dr.-Ing. 8033 Planegg De Lindenmeier
DE3719692C2 (de) * 1987-06-12 1991-09-19 Heinz Prof. Dr.-Ing. 8033 Planegg De Lindenmeier
JPH0262131A (ja) * 1988-08-29 1990-03-02 Nissan Motor Co Ltd ダイバーシティ用アンテナ
DE3911178C2 (de) * 1989-04-06 1992-02-13 Heinz Prof. Dr.-Ing. 8033 Planegg De Lindenmeier
DE3914424C2 (de) * 1989-05-01 1992-02-27 Heinz Prof. Dr.-Ing. 8033 Planegg De Lindenmeier
DE4321805A1 (de) * 1992-06-30 1994-01-27 Nippon Sheet Glass Co Ltd FM-Übertragungsantenneneinrichtung für Kraftfahrzeuge und TV-Übertragungsantenneneinrichtung für Kraftfahrzeuge
JPH0865024A (ja) * 1994-08-24 1996-03-08 Nissan Motor Co Ltd 車両用ガラスアンテナ
JPH08107306A (ja) * 1994-10-05 1996-04-23 Mazda Motor Corp ダイバシティアンテナ
JPH08163013A (ja) * 1994-12-01 1996-06-21 Tokyo Gas Co Ltd 自動管理無線システムに用いられるダイバーシチアンテナ
DE19535250A1 (de) * 1995-09-22 1997-03-27 Fuba Automotive Gmbh Mehrantennensystem für Kraftfahrzeuge
EP0803928A2 (de) * 1996-04-23 1997-10-29 Nippon Sheet Glass Co. Ltd. Scheibenantennensystem
DE19806834A1 (de) * 1997-03-22 1998-09-24 Lindenmeier Heinz Antennenanlage für den Hör- und Fernsehrundfunkempfang in Kraftfahrzeugen
DE19730173A1 (de) * 1997-07-15 1999-01-21 Fuba Automotive Gmbh Kraftfahrzeug-Karosserie aus Kunststoff mit Antennen

Also Published As

Publication number Publication date
KR100492429B1 (ko) 2005-05-31
DE10100812A1 (de) 2002-07-11
US20020126055A1 (en) 2002-09-12
EP1225653A2 (de) 2002-07-24
EP1225653B1 (de) 2013-03-13
EP1225653A3 (de) 2009-11-25
JP2002314318A (ja) 2002-10-25
KR20020060615A (ko) 2002-07-18
US6603434B2 (en) 2003-08-05

Similar Documents

Publication Publication Date Title
DE10100812B4 (de) Diversityantenne auf einer dielektrischen Fläche in einer Fahrzeugkarosserie
EP1076375B1 (de) Diversityantenne für eine Diversityanlage in einem Fahrzeug
EP1138097B1 (de) Halfloop-antenne
EP1619752B1 (de) Antennenmodul
EP0386678B1 (de) Aktive Fahrzeug-Empfangsantenne, deren Antennenleiter auf oder in einer in eine metallische Fahrzeugkarosserie eingesetzten nichtleitfähigen Fläche angebracht sind
DE69821037T2 (de) Fensterscheibenantenne für Kraftfahrzeug
DE69913962T2 (de) Mehrband-fahrzeugantenne
EP1406349A2 (de) Aktive Breitband-Empfangsantenne mit Empfangspegel-Regelung
DE19833780B4 (de) Fernsehsignal-Empfangstuner und Fernsehsignal-Empfangseinheit für einen Personal Computer
EP1366540B1 (de) Diversity-antennensystem fuer bewegte fahrzeuge
DE102014016851B3 (de) MIMO Schlitzantenne für Kraftfahrzeuge
EP1327284B1 (de) Stossfängerantennenanordnung
DE112019006399T5 (de) Fahrzeuginternes übertragungssystem
EP1716647B1 (de) Funkempfangssystem mit zwei empfangsantennen und zwei daran angeschlossenen empfängern
DE19603514C2 (de) Mobiles Funkempfangssystem mit Antennendiversity
EP2248221B1 (de) Antennenanordnung für ein kraftfahrzeug
DE2952793C2 (de) Abstimmbare Empfängereingangsschaltung
DE4406240A1 (de) Integriertes Antennensystem auf der Heckfensterscheibe eines Kraftfahrzeugs
DE602005003419T2 (de) Antenne mit variabler Richtcharakteristik
DE102021203836B4 (de) Antennenmodul für ein Kraftfahrzeug
DE102023101324A1 (de) Einkabel-funkantennensystem für ein fahrzeug
DE602004003152T2 (de) Fernsehtuner
WO2001028038A1 (de) Antenne
DE60312956T2 (de) Antennenverstärker und geteilt aufgebauter Antennenverstärker
EP1059732B1 (de) Abstimmbarer AM/FM-Antennenverstärker

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
R018 Grant decision by examination section/examining division
R020 Patent grant now final

Effective date: 20111230

R084 Declaration of willingness to licence
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee