CN216696591U - 一种高压电路的逻辑控制电路和锂电池管理芯片 - Google Patents

一种高压电路的逻辑控制电路和锂电池管理芯片 Download PDF

Info

Publication number
CN216696591U
CN216696591U CN202122947404.XU CN202122947404U CN216696591U CN 216696591 U CN216696591 U CN 216696591U CN 202122947404 U CN202122947404 U CN 202122947404U CN 216696591 U CN216696591 U CN 216696591U
Authority
CN
China
Prior art keywords
voltage
tube
coupled
control circuit
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202122947404.XU
Other languages
English (en)
Inventor
吴文贡
胡养聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Danyuan Semiconductor Co ltd
Original Assignee
Shenzhen Biyi Microelectronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Biyi Microelectronics Co ltd filed Critical Shenzhen Biyi Microelectronics Co ltd
Priority to CN202122947404.XU priority Critical patent/CN216696591U/zh
Application granted granted Critical
Publication of CN216696591U publication Critical patent/CN216696591U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Logic Circuits (AREA)

Abstract

本实用新型提供了一种高压电路的逻辑控制电路,包括:高压管,耦接在输入电压和地之间,输出端耦接互锁式控制电路,用于基于输入电压和高压管漏电流产生参考电压;互锁式控制电路,其信号端接入控制电平信号,控制端耦接高压管的输出端以接入参考电压,基于控制电平信号和参考电压生成输出电压并控制其输出,并互锁关断内部电流,所述输出电压用于控制高压电路的工作状态。本实用新型利用高压管的漏电流特性得到逻辑控制电路所需的压降,并通过互锁式控制将电流关断,实现减小锂电池管理芯片在电池未启动时的功耗,延长锂电池包的待机时间。

Description

一种高压电路的逻辑控制电路和锂电池管理芯片
技术领域
本实用新型涉及电子领域,具体但不限于涉及一种高压电路的逻辑控制电路和锂电池管理芯片。
背景技术
在锂电池管理应用中,产品存储或者运输过程需要的时间可长达数月或者更长的时间,当电池包到达最终用户手中时,期望在这个期间内电池包的电量能够维持在一个比较高的状态,这对锂电池管理芯片的功耗提出了挑战。电池管理芯片为了减小功耗,需要将大部分电路的功耗关闭,只保留芯片启动的检测电路,将功耗降到最低。不同于电源电压小于5V的低压电路,要将一个高压电路的功耗关闭,需要一个高压逻辑控制电路,产生相对于电源电压的逻辑控制信号。
已有高压逻辑控制方案如图1所示。当SD信号为高电平时,SDB为低电平。此时NM1导通,NM2关闭;PM1的栅极被下拉到超过阈值电压,PM1导通,将PM2和PM3的栅极上拉到VIN,关闭高压电路的耗电。当SD信号为低电平时,SDB为高电平,PM1的栅极靠电阻上拉到VIN,PM1关闭,高压电路正常工作。该控制方案在NM3和NM4两个支路产生电流消耗,锂电池管理芯片在没有启动的时候需要将电流消耗控制在1微安以内,NM3和NM4的电流消耗导致其他电路设计难度增加,而且需要很大的电阻R1来产生PM1导通需要的压降。
有鉴于此,需要提供一种新的结构或控制方法,以期解决上述至少部分问题。
实用新型内容
针对现有技术中的一个或多个问题,本实用新型提出了一种高压电路的逻辑控制电路,利用高压管的漏电流特性得到逻辑控制电路所需的压降,并通过互锁式控制将电流关断,实现减小锂电池管理芯片在电池未启动时的功耗,延长锂电池包的待机时间。
实现本实用新型目的的技术解决方案为:
根据本实用新型的一个方面,一种高压电路的逻辑控制电路,包括:
高压管,耦接在输入电压和地之间,输出端耦接互锁式控制电路,用于基于输入电压和高压管漏电流产生参考电压;
互锁式控制电路,其信号端接入控制电平信号,控制端耦接高压管的输出端以接入参考电压,基于控制电平信号和参考电压生成输出电压并控制其输出,并互锁关断内部电流,所述输出电压用于控制高压电路的工作状态。
可选的,所述高压管通过稳压二极管或二极管连接的mos管接入输入电压,所述二极管连接的mos管包括若干个栅极与漏极短接的mos管,相邻mos管的漏极和源极相连,首端mos管的源极耦接输入电压,末端mos管的漏极耦接高压管的源极。
可选的,所述高压管的栅极和源极相连,且源极耦接稳压二极管或二极管连接的mos管,同时源极作为输出端耦接互锁式控制电路。
可选的,互锁式控制电路包括相互耦接的第一控制电路和第二控制电路,第一控制电路和第二控制电路的信号端分别接入相反的控制电平信号,第一控制电路和第二控制电路的控制端均耦接高压管的输出端,基于相反的控制电平信号控制第一控制电路或第二控制电路基于参考电压生成输出电压。
可选的,第一控制电路包括第一开关管,第二控制电路包括第二开关管,第一开关管与第二开关管相互耦接并形成互锁,当第一开关管导通时,第二开关管关闭,当第二开关管导通时,第一开关管关闭。
可选的,第一开关管的栅极耦接第二开关管的漏极,第二开关管的栅极耦接第一开关管的漏极,第一开关管的源极和第二开关管的源极均接入输入电压。
可选的,第一控制电路包括第三开关管,第二控制电路包括第四开关管,第三开关管的第一端与第四开关管的第一端均耦接高压管的输出端,第三开关管或第四开关管在导通时基于参考电压生成输出电压。
可选的,第一控制电路包括第三开关管,第二控制电路包括第四开关管,第三开关管的源极耦接第二开关管的栅极和第一开关管的漏极,第四开关管的源极耦接第一开关管的栅极和第二开关管的漏极,第三开关管的栅极与第四开关管的栅极均耦接高压管的输出端,第三开关管或第四开关管在导通时基于参考电压生成输出电压并通过第三开关管的源极或第四开关管的源极输出。
可选的,第一控制电路包括第五开关管,第二控制电路包括第六开关管,第五开关管接入第一控制电平信号并基于第一控制电平信号导通或关断,第六开关管接入第二控制电平信号并基于第二控制电平信号导通或关断。
可选的,第一控制电路包括第五开关管,第二控制电路包括第六开关管,第五开关管的漏极耦接第三开关管的漏极,第六开关管的漏极耦接第四开关管的漏极,第五开关管的栅极耦接第一控制电平信号,第六开关管的栅极耦接第二控制电平信号。
可选的,所述第一控制电平信号与所述第二控制电平信号为相反的控制电平信号。
可选的,所述第一开关管、第二开关管、第三开关管、第四开关管均为PMOS管,第五开关管、第六开关管均为NMOS开关管。
可选的,互锁式控制电路的输出端通过开关管耦接高压电路,所述开关管的控制端耦接互锁式控制电路的输出端,输出端耦接高压电路,开关管基于互锁式控制电路的输出电压导通或关断来控制高压电路,当开关管处于第一工作状态时,高压电路不工作,当开关管处于第二工作状态时,高压电路正常工作。
可选的,所述开关管的源极接入输入电压,栅极耦接互锁式控制电路的输出端,漏极耦接高压电路。
根据本实用新型的另一个方面,一种锂电池管理芯片,包括:
控制电平发生电路,用于生成控制电平信号;以及
如上述任一的高压电路的逻辑控制电路,与控制电平发生电路相连,输出端耦接锂电池的高压电路,用于根据控制电平信号产生控制高压电路的逻辑控制信号。
根据本实用新型的另一个方面一种高压电路的逻辑控制电路,包括:
高压管,耦接在输入电压和地之间,输出端耦接互锁式控制电路,用于基于输入电压和高压管漏电流产生参考电压;
互锁式控制电路,包括依次耦接的互锁电路、输出电压生成电路和控制电平接收电路,其中,互锁电路,用于互锁关断其内部开关管,避免内部开关管同时导通;输出电压生成电路的输入端耦接高压管的输出端,用于基于参考电压生成输出电压;控制电平接收电路输入端耦接控制电平信号,用于基于控制电平信号控制输出电压的输出,所述输出电压用于控制高压电路的工作状态。
可选的,所述互锁电路包括第一开关管和第二开关管,输出电压生成电路包括第三开关管和第四开关管,控制电平接收电路包括第五开关管和第六开关管,其中,第一开关管的源极和第二开关管的源极均接入输入电压,第一开关管的栅极耦接第二开关管的漏极和第四开关管的源极,第二开关管的栅极耦接第一开关管的漏极和第三开关管的源极,且第三开关管的源极或第四开关管的源极用于输出输出电压,第三开关管的栅极与第四开关管的栅极均耦接高压管的输出端,第三开关管的漏极耦接第五开关管的漏极,第四开关管的漏极耦接第六开关管的漏极,第五开关管的栅极耦接第一控制电平信号,第六开关管的栅极耦接第二控制电平信号,第五开关管的源极、第六开关管的源极均耦接地。
可选的,所述第一控制电平信号与所述第二控制电平信号为相反的控制电平信号。
可选的,输出电压生成电路的输出端通过开关管耦接高压电路,所述开关管的栅极耦接输出电压生成电路的输出端,源极耦接输入电压,漏极耦接高压电路,所述开关管基于输出电压实现导通或关断,当开关管导通时,高压电路不工作,当开关管关闭时,高压电路正常工作。
本实用新型采用以上技术方案与现有技术相比,具有以下技术效果:
本实用新型的高压电路的逻辑控制电路,整个电路不需要电流源,耗电仅为高压管的漏电流,这个电流一般情况下小于1纳安,通过利用高压管的漏电流特性得到逻辑控制电路所需要的压降,并通过互锁式控制将电流完全关闭,使得消耗的电流可以忽略不计,减小了锂电池管理芯片在未启动时的功耗,同时实现了延长锂电池包的待机时间。
附图说明
附图用来提供对本实用新型的进一步理解,与说明描述一起用于解释本实用新型的实施例,并不构成对本实用新型的限制。在附图中:
图1示出了现有技术的高压逻辑控制方案示意图。
图2示出了本实用新型一实施例的高压电路的逻辑控制电路示意图。
图3示出了本实用新型另一方面的高压电路的逻辑控制电路示意图。
具体实施方式
为了进一步理解本实用新型,下面结合实施例对本实用新型优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本实用新型的特征和优点,而不是对本实用新型权利要求的限制。
该部分的描述只针对几个典型的实施例,本实用新型并不仅局限于实施例描述的范围。不同实施例的组合、不同实施例中的一些技术特征进行相互替换,相同或相近的现有技术手段与实施例中的一些技术特征进行相互替换也在本实用新型描述和保护的范围内。
说明书中的“耦接”或“连接”既包含直接连接,也包含间接连接。间接连接为通过中间媒介进行的连接,如通过电传导媒介如导体的连接,其中电传导媒介可含有寄生电感或寄生电容,也可通过说明书中实施例所描述的中间电路或部件的连接;间接连接还可包括可实现相同或相似功能的基础上通过其他有源器件或无源器件的连接,如通过开关、信号放大电路、跟随电路等电路或部件的连接。“多个”或“多”表示两个或两个以上。
根据本实用新型的一个方面,一种高压电路的逻辑控制电路,如图2所示,包括高压mos管PM8和互锁式控制电路1,其中:
高压mos管PM8,耦接在输入电压VIN和地之间,输出端耦接互锁式控制电路1,用于基于输入电压和高压管漏电流产生参考电压。一般,电压小于5V为低压管,电压超过5V为高压管。通过二极管连接的mos管能够得到相对于输入电压VIN的逻辑低电平。在一个实施例中,高压mos管PM8的栅极和源极相连,利用高压mos管PM8的漏电流特性得到一个非常小的电流,源极通过二极管连接的mos管接入输入电压VIN,且源极作为输出端耦接互锁式控制电路,此时源极的输出电压为输入电压VIN减去二极管连接的mos管的总VSG,高压mos管PM8的漏极接地。优选的,二极管连接的mos管包括4个栅极与漏极短接的mos管PM4、PM5、PM6、PM7,相邻mos管的漏极和源极相连,即:PM4的漏极耦接PM5的源极,PM5的漏极耦接PM6的源极,PM6的漏极耦接PM7的源极,首端mos管PM4的源极耦接输入电压VIN,末端mos管PM7的漏极耦接高压管PM8的源极。在另一个实施例中,可以用稳压二极管代替二极管连接的mos管实现得到相对于输入电压VIN的逻辑低电平,即高压mos管PM8的源极通过稳压二极管耦接输入电压VIN,但稳压二极管与二极管连接的mos管相比,稳压二极管占用较多面积,而二极管连接的mos管与高压管共用衬底而占用面积很小。
互锁式控制电路1,第一端接入输入电压VIN,第二端接地,信号端接入控制电平信号,控制端耦接高压管PM8的输出端并接入参考电压,互锁式控制电路1基于控制电平信号和参考电压生成输出电压并控制其输出,并互锁关断内部电流,所述输出电压用于控制高压电路的工作状态。在一个实施例中,所述电平信号由低压逻辑电路产生,低压逻辑电路采用现有的低压逻辑电路来实现。
在一个实施例中,互锁式控制电路1包括相互耦接的第一控制电路和第二控制电路,第一控制电路和第二控制电路互锁式耦接且内部电流关断,第一控制电路和第二控制电路的信号端分别接入相反的控制电平信号,第一控制电路和第二控制电路的控制端均耦接高压管PM8的输出端,且基于相反的控制电平信号控制第一控制电路或第二控制电路基于参考电压产生输出电压。
在第二个实施例中,互锁式控制电路包括第一控制电路和第二控制电路,第一控制电路和第二控制电路的信号端分别接入相反的控制电平信号,第一控制电路和第二控制电路的控制端均耦接高压管PM8的输出端。其中,第一控制电路包括第一开关管PM9,第二控制电路包括第二开关管PM10,第一开关管PM9与第二开关管PM10相互耦接并形成互锁,当第一开关管PM9导通时,第二开关管PM10关闭,当第二开关管PM10导通时,第一开关管PM9关闭。优选的,第一开关管PM9的栅极耦接第二开关管PM10的漏极,第二开关管PM10的栅极耦接第一开关管PM9的漏极,第一开关管PM9的源极和第二开关管PM10的源极均接入输入电压VIN。优选的,所述第一开关管、第二开关管均为PMOS管。
在第三个实施例中,互锁式控制电路包括第一控制电路和第二控制电路,第一控制电路和第二控制电路的信号端分别接入相反的控制电平信号,第一控制电路和第二控制电路的控制端均耦接高压管PM8的输出端。其中,第一控制电路包括第三开关管PM11,第二控制电路包括第四开关管PM12,第三开关管PM11的第一端与第四开关管PM12的第一端均耦接高压管PM8的输出端,第三开关管PM11或第四开关管PM12在导通时基于参考电压生成输出电压。优选的,所述第三开关管、第四开关管均为PMOS管。
在第四个实施例中,互锁式控制电路包括第一控制电路和第二控制电路,第一控制电路和第二控制电路的信号端分别接入相反的控制电平信号,第一控制电路和第二控制电路的控制端均耦接高压管的输出端。其中,第一控制电路包括第一开关管PM9和第三开关管PM11,第二控制电路包括第二开关管PM10和第四开关管PM12,第一开关管PM9与第二开关管PM10相互耦接并形成互锁,当第一开关管PM9导通时,第二开关管PM10关闭,当第二开关管PM10导通时,第一开关管PM9关闭,第三开关管PM11与第四开关管PM12均耦接高压管PM8的输出端并基于参考电压生成输出电压。优选的,第一开关管PM9的栅极耦接第二开关管PM10的漏极,第二开关管PM10的栅极耦接第一开关管PM9的漏极,第一开关管PM9的源极和第二开关管PM10的源极均接入输入电压VIN,第三开关管PM11的源极耦接第二开关管PM10的栅极和第一开关管PM9的漏极,第四开关管PM12的源极耦接第一开关管PM9的栅极和第二开关管PM10的漏极,第三开关管PM11的栅极与第四开关管PM12的栅极均耦接高压管PM8的输出端,且第三开关管PM11或第四开关管PM12在导通时基于参考电压生成输出电压,且第三开关管PM11的源极或第四开关管PM12的源极作为输出端输出所述输出电压。优选的,所述第一开关管、第二开关管、第三开关管、第四开关管均为PMOS管。
在第五个实施例中,互锁式控制电路包括第一控制电路和第二控制电路,第一控制电路和第二控制电路的信号端分别接入相反的控制电平信号,第一控制电路和第二控制电路的控制端均耦接高压管PM8的输出端。其中,第一控制电路包括第五开关管NM1,第二控制电路包括第六开关管NM2,第五开关管NM1与第六开关管NM2分别接入相反的控制电平信号,第五开关管NM1与第六开关管NM2基于控制电平信号而导通或关断。优选的,所述第五开关管、第六开关管均为NMOS开关管。
在第六个实施例中,互锁式控制电路包括第一控制电路和第二控制电路,第一控制电路和第二控制电路的信号端分别接入相反的控制电平信号,第一控制电路和第二控制电路的控制端均耦接高压管的输出端。其中,第一控制电路包括第一开关管PM9、第三开关管PM11和第五开关管NM1,第二控制电路包括第二开关管PM10、第四开关管PM12和第六开关管NM2,第一开关管PM9与第二开关管PM10相互耦接并形成互锁,当第一开关管PM9导通时,第二开关管PM10关闭,当第二开关管PM10导通时,第一开关管PM9关闭,第三开关管PM11与第四开关管PM12均耦接高压管PM8的输出端并在导通时基于参考电压生成输出电压,第五开关管NM1与第六开关管NM2分别接入相反的控制电平信号,且第五开关管NM1与第六开关管NM2基于控制电平信号而导通或关断。优选的,第一开关管PM9的栅极耦接第二开关管PM10的漏极,第二开关管PM10的栅极耦接第一开关管PM9的漏极,第一开关管PM9的源极和第二开关管PM10的源极均接入输入电压VIN,,第三开关管PM11的源极耦接第二开关管PM10的栅极和第一开关管PM9的漏极,第四开关管PM12的源极耦接第一开关管PM9的栅极和第二开关管PM10的漏极,第三开关管PM11的栅极与第四开关管PM12的栅极均耦接高压管PM8的输出端,第五开关管NM1的漏极耦接第三开关管PM11的漏极,第六开关管NM2的漏极耦接第四开关管PM12的漏极,第五开关管NM1的栅极耦接第一控制电平信号SDB,第六开关管NM2的栅极耦接第二控制电平信号SD,第五开关管NM1的源极和第六开关管NM2的源极均接地,所述第一控制电平信号SDB与所述第二控制电平信号SD为相反的控制电平信号。优选的,所述第一开关管PM9、第二开关管PM10、第三开关管PM11、第四开关管PM12均为PMOS管,第五开关管NM1、第六开关管NM2均为NMOS开关管。
在一个实施例中,互锁式控制电路1的输出端通过开关管PM1耦接高压电路2。所述开关管PM1的控制端耦接互锁式控制电路1的输出端,输出端耦接高压电路2,开关管PM1基于互锁式控制电路1的输出电压导通或关断,当开关管PM1导通时,高压电路2不工作,当开关管PM1关闭时,高压电路2正常工作。优选的,所述开关管PM1的源极接入输入电压VIN,栅极耦接互锁式控制电路1的输出端,漏极耦接高压电路2。
本方案通过将高压管PM8的源级和栅极相连接,利用高压管PM8的漏电流特性得到一个非常小的电流,将mos管PM4-PM7按照二极管连接方式连接,得到第三开关管PM11和第四开关管PM12的栅极电压为VIN-4VSG
当第六开关管NM2接入的SD信号为高电平时,第五开关管NM1接入的SDB信号为低电平。此时,第六开关管NM2和第四开关管PM12均导通,第四开关管PM12的源极电压为栅极电压加上阈值电压,即第四开关管PM12的源极电压为VIN-4VSG+V。则,开关管PM1和第一开关管PM9均导通,开关管PM1导通将高压电路2(图2中虚线框内为高压电路)的电流关闭,第一开关管PM9导通将第二开关管PM10关闭,即第一开关管PM9和第二开关管PM10形成互锁。由于第二开关管PM10、第五开关管NM1关闭,第一开关管PM9、第六开关管NM2导通,因此第一控制电路和第二控制电路两个支路都没有电流。
当第六开关管NM2接入的SD信号为低电平时,第五开关管NM1接入的SDB信号为高电平。此时,第五开关管NM1和第三开关管PM11均导通,第三开关管PM11的源极电压为栅极电压加上阈值电压,即第三开关管PM11的源极电压为VIN-4VSG+V。则,第二开关管PM10导通,第二开关管PM10导通将第一开关管PM9和开关管PM1均关闭,开关管PM1关闭使高压电路正常工作。由于第五开关管NM1、第二开关管PM10导通,第一开关管PM9、第六开关管NM2关闭,因此第一控制电路和第二控制电路两个支路都没有电流。
由此可知,本方案的高压电路的逻辑控制电路消耗的电流仅为高压管PM8产生的漏电流,这个漏电流一般情况下小于1纳安。
本方案还可以采用引入电流源的方式来替代高压管PM8,但是电流源的产生需要增加额外的电路,并且引入的电流源由于匹配误差,可能会导致一个超过预期值的电流消耗。
本方案可以应用于锂电池管理芯片,所述锂电池管理芯片包括检测电路和上述任一的高压电路的逻辑控制电路,其中,:检测电路与锂电池相连,用于检测锂电池电压;高压电路的逻辑控制电路与检测电路相连,输出端耦接高压电路,用于根据锂电池电压产生控制高压电路的逻辑控制信号。
根据本实用新型的另一个方面,一种高压电路的逻辑控制电路,如图3所示,包括:
高压管PM8,耦接在输入电压和地之间,输出端耦接互锁式控制电路1,用于基于输入电压和高压管漏电流产生参考电压。优选的,所述高压管通过稳压二极管或二极管连接的mos管接入输入电压。
互锁式控制电路1,包括依次耦接的互锁电路11、输出电压生成电路12和控制电平接收电路13,其中,互锁电路11,用于互锁关断其内部开关管,避免内部开关管同时导通;输出电压生成电路12的输入端耦接高压管PM8的输出端,用于基于参考电压生成输出电压;控制电平接收电路13的输入端耦接控制电平信号,用于在控制电平信号控制下控制输出电压的输出,所述输出电压用于控制高压电路2的工作状态。
在一个实施例中,输出电压生成电路12的输出端通过开关管PM1耦接高压电路2。优选的,所述开关管PM1的栅极耦接输出电压生成电路12的输出端,源极耦接输入电压,漏极耦接高压电路2,开关管PM1基于输出电压生成电路12的输出电压实现导通或关断,其中,当开关管PM1导通时,高压电路2不工作,当开关管PM1关闭时,高压电路2正常工作;或者是,当开关管PM1导通时,高压电路2正常工作,当开关管PM1关断时,高压电路2不工作。
在一个实施例中,所述互锁电路11包括第一开关管PM9和第二开关管PM10,输出电压生成电路12包括第三开关管PM11和第四开关管PM12,控制电平接收电路13包括第五开关管NM1和第六开关管NM2,其中,第一开关管PM9的源极和第二开关管PM10的源极均接入输入电压VIN,第一开关管PM9的栅极耦接第二开关管PM10的漏极和第四开关管PM12的源极,第二开关管PM10的栅极耦接第一开关管PM9的漏极和第三开关管PM11的源极,第三开关管PM11的栅极与第四开关管PM12的栅极均耦接高压管PM8的输出端,第三开关管PM11的源极或第四开关管PM12的源极作为输出端耦接高压电路2,第三开关管PM11的漏极耦接第五开关管NM1的漏极,第四开关管PM12的漏极耦接第六开关管NM2的漏极,第五开关管NM1的栅极、第六开关管NM2的栅极分别耦接相反的控制电平信号,第五开关管NM1的源极、第六开关管NM2的源极均耦接地。优选的,所述第一开关管PM9、第二开关管PM10、第三开关管PM11、第四开关管PM12均为PMOS管,第五开关管NM1、第六开关管NM2均为NMOS开关管。在另一个实施例中,所述互锁电路11包括第一开关管PM9和第二开关管PM10,输出电压生成电路12包括第三开关管PM11和第四开关管PM12,控制电平接收电路13包括第五开关管NM1和第六开关管NM2,其中,第一开关管PM9的源极和第二开关管PM10的源极均接入输入电压VIN,第一开关管PM9的栅极耦接第二开关管PM10的漏极和第四开关管PM12的源极,第二开关管PM10的栅极耦接第一开关管PM9的漏极和第三开关管PM11的源极,且第三开关管PM11的源极或第四开关管PM12的源极耦接开关管PM1的控制端,第三开关管PM11的栅极与第四开关管PM12的栅极均耦接高压管PM8的输出端,第三开关管PM11的漏极耦接第五开关管NM1的漏极,第四开关管PM12的漏极耦接第六开关管NM2的漏极,第五开关管NM1的栅极耦接第一控制电平信号,第六开关管NM2的栅极耦接第二控制电平信号,第五开关管NM1的源极、第六开关管NM2的源极均耦接地。优选的,所述第一控制电平信号与所述第二控制电平信号为相反的控制电平信号。优选的,所述第一开关管PM9、第二开关管PM10、第三开关管PM11、第四开关管PM12均为PMOS管,第五开关管NM1、第六开关管NM2均为NMOS开关管。
本领域技术人员应当知道,说明书或附图所涉逻辑控制中的“高电平”与“低电平”、“置位”与“复位”、“与门”与“或门”、“同相输入端”与“反相输入端”等逻辑控制可相互调换或改变,通过调节后续逻辑控制而实现与上述实施例相同的功能或目的。
这里本实用新型的描述和应用是说明性的,并非想将本实用新型的范围限制在上述实施例中。说明书中所涉及的效果或优点等相关描述可因具体条件参数的不确定或其它因素影响而可能在实际实验例中不能体现,效果或优点等相关描述不用于对实用新型范围进行限制。这里所披露的实施例的变形和改变是可能的,对于那些本领域的普通技术人员来说实施例的替换和等效的各种部件是公知的。本领域技术人员应该清楚的是,在不脱离本实用新型的精神或本质特征的情况下,本实用新型可以以其它形式、结构、布置、比例,以及用其它组件、材料和部件来实现。在不脱离本实用新型范围和精神的情况下,可以对这里所披露的实施例进行其它变形和改变。

Claims (25)

1.一种高压电路的逻辑控制电路,其特征在于,包括:
高压管,耦接在输入电压和地之间,输出端耦接互锁式控制电路,用于基于输入电压和高压管漏电流产生参考电压;
互锁式控制电路,其信号端接入控制电平信号,控制端耦接高压管的输出端以接入参考电压,基于控制电平信号和参考电压生成输出电压并控制其输出,并互锁关断内部电流,所述输出电压用于控制高压电路的工作状态。
2.根据权利要求1所述的高压电路的逻辑控制电路,其特征在于,所述高压管通过稳压二极管或二极管连接的mos管接入输入电压,所述二极管连接的mos管包括若干个栅极与漏极短接的mos管,相邻mos管的漏极和源极相连,首端mos管的源极耦接输入电压,末端mos管的漏极耦接高压管的源极。
3.根据权利要求2所述的高压电路的逻辑控制电路,其特征在于,所述高压管的栅极和源极相连,且源极耦接稳压二极管或二极管连接的mos管,同时源极作为输出端耦接互锁式控制电路。
4.根据权利要求1所述的高压电路的逻辑控制电路,其特征在于,互锁式控制电路包括相互耦接的第一控制电路和第二控制电路,第一控制电路和第二控制电路的信号端分别接入相反的控制电平信号,第一控制电路和第二控制电路的控制端均耦接高压管的输出端,在相反的控制电平信号控制下第一控制电路或第二控制电路基于参考电压生成输出电压。
5.根据权利要求4所述的高压电路的逻辑控制电路,其特征在于,第一控制电路包括第一开关管,第二控制电路包括第二开关管,第一开关管与第二开关管相互耦接并形成互锁,当第一开关管导通时,第二开关管关闭,当第二开关管导通时,第一开关管关闭。
6.根据权利要求5所述的高压电路的逻辑控制电路,其特征在于,第一开关管的栅极耦接第二开关管的漏极,第二开关管的栅极耦接第一开关管的漏极,第一开关管的源极和第二开关管的源极均接入输入电压。
7.根据权利要求4所述的高压电路的逻辑控制电路,其特征在于,第一控制电路包括第三开关管,第二控制电路包括第四开关管,第三开关管的第一端与第四开关管的第一端均耦接高压管的输出端,第三开关管或第四开关管在导通时基于参考电压生成输出电压。
8.根据权利要求5所述的高压电路的逻辑控制电路,其特征在于,第一控制电路包括第三开关管,第二控制电路包括第四开关管,第三开关管的源极耦接第二开关管的栅极和第一开关管的漏极,第四开关管的源极耦接第一开关管的栅极和第二开关管的漏极,第三开关管的栅极与第四开关管的栅极均耦接高压管的输出端,第三开关管或第四开关管在导通时基于参考电压生成输出电压并通过第三开关管的源极或第四开关管的源极输出。
9.根据权利要求6所述的高压电路的逻辑控制电路,其特征在于,第一控制电路包括第三开关管,第二控制电路包括第四开关管,第三开关管的源极耦接第二开关管的栅极和第一开关管的漏极,第四开关管的源极耦接第一开关管的栅极和第二开关管的漏极,第三开关管的栅极与第四开关管的栅极均耦接高压管的输出端,第三开关管或第四开关管在导通时基于参考电压生成输出电压并通过第三开关管的源极或第四开关管的源极输出。
10.根据权利要求4所述的高压电路的逻辑控制电路,其特征在于,第一控制电路包括第五开关管,第二控制电路包括第六开关管,第五开关管接入第一控制电平信号并基于第一控制电平信号导通或关断,第六开关管接入第二控制电平信号并基于第二控制电平信号导通或关断。
11.根据权利要求8所述的高压电路的逻辑控制电路,其特征在于,第一控制电路包括第五开关管,第二控制电路包括第六开关管,第五开关管的漏极耦接第三开关管的漏极,第六开关管的漏极耦接第四开关管的漏极,第五开关管的栅极耦接第一控制电平信号,第六开关管的栅极耦接第二控制电平信号。
12.根据权利要求9所述的高压电路的逻辑控制电路,其特征在于,第一控制电路包括第五开关管,第二控制电路包括第六开关管,第五开关管的漏极耦接第三开关管的漏极,第六开关管的漏极耦接第四开关管的漏极,第五开关管的栅极耦接第一控制电平信号,第六开关管的栅极耦接第二控制电平信号。
13.根据权利要求10所述的高压电路的逻辑控制电路,其特征在于,所述第一控制电平信号与所述第二控制电平信号为相反的控制电平信号。
14.根据权利要求11所述的高压电路的逻辑控制电路,其特征在于,所述第一控制电平信号与所述第二控制电平信号为相反的控制电平信号。
15.根据权利要求12所述的高压电路的逻辑控制电路,其特征在于,所述第一控制电平信号与所述第二控制电平信号为相反的控制电平信号。
16.根据权利要求11所述的高压电路的逻辑控制电路,其特征在于,所述第一开关管、第二开关管、第三开关管、第四开关管均为PMOS管,第五开关管、第六开关管均为NMOS开关管。
17.根据权利要求12所述的高压电路的逻辑控制电路,其特征在于,所述第一开关管、第二开关管、第三开关管、第四开关管均为PMOS管,第五开关管、第六开关管均为NMOS开关管。
18.根据权利要求4-17任一所述的高压电路的逻辑控制电路,其特征在于,互锁式控制电路的输出端通过开关管耦接高压电路,所述开关管的控制端耦接互锁式控制电路的输出端,输出端耦接高压电路,开关管基于互锁式控制电路的输出电压导通或关断来控制高压电路,当开关管处于第一工作状态时,高压电路不工作,当开关管处于第二工作状态时,高压电路正常工作。
19.根据权利要求18所述的高压电路的逻辑控制电路,其特征在于,所述开关管的源极接入输入电压,栅极耦接互锁式控制电路的输出端,漏极耦接高压电路。
20.一种锂电池管理芯片,其特征在于,包括:
控制电平发生电路,用于生成控制电平信号;以及
如权利要求1-19任一所述的高压电路的逻辑控制电路,与控制电平发生电路相连,输出端耦接锂电池的高压电路,用于根据控制电平信号产生控制高压电路的逻辑控制信号。
21.一种高压电路的逻辑控制电路,其特征在于,包括:
高压管,耦接在输入电压和地之间,输出端耦接互锁式控制电路,用于基于输入电压和高压管漏电流产生参考电压;
互锁式控制电路,包括依次耦接的互锁电路、输出电压生成电路和控制电平接收电路,其中,互锁电路,用于互锁关断其内部开关管,避免内部开关管同时导通;输出电压生成电路的输入端耦接高压管的输出端,用于基于参考电压生成输出电压;控制电平接收电路输入端耦接控制电平信号,用于基于控制电平信号控制输出电压的输出,所述输出电压用于控制高压电路的工作状态。
22.根据权利要求21所述的高压电路的逻辑控制电路,其特征在于,所述互锁电路包括第一开关管和第二开关管,输出电压生成电路包括第三开关管和第四开关管,控制电平接收电路包括第五开关管和第六开关管,其中,第一开关管的源极和第二开关管的源极均接入输入电压,第一开关管的栅极耦接第二开关管的漏极和第四开关管的源极,第二开关管的栅极耦接第一开关管的漏极和第三开关管的源极,且第三开关管的源极或第四开关管的源极用于输出输出电压,第三开关管的栅极与第四开关管的栅极均耦接高压管的输出端,第三开关管的漏极耦接第五开关管的漏极,第四开关管的漏极耦接第六开关管的漏极,第五开关管的栅极耦接第一控制电平信号,第六开关管的栅极耦接第二控制电平信号,第五开关管的源极、第六开关管的源极均耦接地。
23.根据权利要求22所述的高压电路的逻辑控制电路,其特征在于,所述第一控制电平信号与所述第二控制电平信号为相反的控制电平信号。
24.根据权利要求21所述的高压电路的逻辑控制电路,其特征在于,输出电压生成电路的输出端通过开关管耦接高压电路,所述开关管的栅极耦接输出电压生成电路的输出端,源极耦接输入电压,漏极耦接高压电路,所述开关管基于输出电压实现导通或关断,当开关管导通时,高压电路不工作,当开关管关闭时,高压电路正常工作。
25.根据权利要求21所述的高压电路的逻辑控制电路,其特征在于,所述高压管通过稳压二极管或二极管连接的mos管接入输入电压。
CN202122947404.XU 2021-11-26 2021-11-26 一种高压电路的逻辑控制电路和锂电池管理芯片 Active CN216696591U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202122947404.XU CN216696591U (zh) 2021-11-26 2021-11-26 一种高压电路的逻辑控制电路和锂电池管理芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202122947404.XU CN216696591U (zh) 2021-11-26 2021-11-26 一种高压电路的逻辑控制电路和锂电池管理芯片

Publications (1)

Publication Number Publication Date
CN216696591U true CN216696591U (zh) 2022-06-07

Family

ID=81835272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202122947404.XU Active CN216696591U (zh) 2021-11-26 2021-11-26 一种高压电路的逻辑控制电路和锂电池管理芯片

Country Status (1)

Country Link
CN (1) CN216696591U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202023101569U1 (de) 2023-03-28 2023-04-27 Yousef Ahamd Kareri Intelligentes System für das Leistungsmanagement von Lithiumbatterien durch ein Wärmeableitungsmodell und die Kontrolle des internen Lecks der Batterie

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202023101569U1 (de) 2023-03-28 2023-04-27 Yousef Ahamd Kareri Intelligentes System für das Leistungsmanagement von Lithiumbatterien durch ein Wärmeableitungsmodell und die Kontrolle des internen Lecks der Batterie

Similar Documents

Publication Publication Date Title
JP4939895B2 (ja) レベルシフタ回路
KR100841730B1 (ko) 슈미트 트리거를 이용한 오실레이터
CN102200797B (zh) 基准电压电路
CN114244332A (zh) 一种高压电路的逻辑控制电路、控制方法和锂电池管理芯片
CN105915042B (zh) 一种用于Buck变换器的软启动和软关断电路
CN107947539B (zh) 开关电源驱动供电电路及开关电源
CN115133629B (zh) 充电控制电路、控制方法以及锂电池高边驱动电路
CN112003368B (zh) 一种电源切换电路
CN216696591U (zh) 一种高压电路的逻辑控制电路和锂电池管理芯片
CN103490726A (zh) 一种低压振荡器
US6717456B2 (en) Level conversion circuit
TWI405393B (zh) 電荷幫浦驅動電路以及電荷幫浦系統
CN104124951A (zh) 用于驱动晶体管的电路
CN209201038U (zh) 一种多电压域复位延迟电路
US7315196B2 (en) Voltage generating circuit that produces internal supply voltage from external supply voltage
JPH0267817A (ja) Cmosアナログスイッチ
CN113050740B (zh) 一种低功耗启动电路
KR100576449B1 (ko) 내부전압 발생회로
CN111342828B (zh) 一种多电压域复位延迟电路
CN106528250B (zh) 双电源烧写电平发生电路
CN105515555A (zh) 采用脉冲触发方式实现主电路上电的启动电路
EP2933922A1 (en) Transistor circuit of low shutoff-state current
CN217770032U (zh) 一种应用在电池管理芯片中的振荡器电路
CN117713788B (zh) 基于薄栅氧化层工艺的高压开关的控制电路
JP4467150B2 (ja) 駆動回路

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220701

Address after: 518000 R & D room, room 3304, block a, building 8, Shenzhen International Innovation Valley (Building 8, Zone C, phase III, Vanke Cloud City), Dali community, Xili street, Nanshan District, Shenzhen, Guangdong

Patentee after: Shenzhen Danyuan Semiconductor Co.,Ltd.

Address before: 518000 room 3303, block a, block 8, area C, Wanke Yuncheng phase III, Liuxin 4th Street, Xili community, Xili street, Nanshan District, Shenzhen City, Guangdong Province

Patentee before: Shenzhen Biyi Microelectronics Co.,Ltd.