CN211318864U - 成像镜头、相机模块及电子装置 - Google Patents

成像镜头、相机模块及电子装置 Download PDF

Info

Publication number
CN211318864U
CN211318864U CN201922262030.0U CN201922262030U CN211318864U CN 211318864 U CN211318864 U CN 211318864U CN 201922262030 U CN201922262030 U CN 201922262030U CN 211318864 U CN211318864 U CN 211318864U
Authority
CN
China
Prior art keywords
optical
lens
imaging lens
plastic
optical lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201922262030.0U
Other languages
English (en)
Inventor
汤相岐
张临安
周明达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Largan Precision Co Ltd
Original Assignee
Largan Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Largan Precision Co Ltd filed Critical Largan Precision Co Ltd
Application granted granted Critical
Publication of CN211318864U publication Critical patent/CN211318864U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/022Mountings, adjusting means, or light-tight connections, for optical elements for lenses lens and mount having complementary engagement means, e.g. screw/thread
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/026Mountings, adjusting means, or light-tight connections, for optical elements for lenses using retaining rings or springs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Lens Barrels (AREA)

Abstract

一种成像镜头、相机模块及电子装置。成像镜头包含一塑胶镜筒、一光学透镜组及一光线吸收涂层。塑胶镜筒包含一最小开孔。光学透镜组包含多个光学透镜,其中光学透镜中包含一第一光学透镜,第一光学透镜位于光学透镜组的最物侧,且第一光学透镜包含一光学有效面、一外周面及一环形段差结构。外周面环绕光学有效面。环形段差结构连接光学有效面与外周面,且环形段差结构用以定义成像镜头的一入光瞳。光线吸收涂层的至少一部分涂布于环形段差结构,且光线吸收涂层的至少另一部分连接塑胶镜筒的最小开孔。借此,有助于成像镜头小型化,且可简化制造工序。

Description

成像镜头、相机模块及电子装置
技术领域
本揭示内容是关于一种成像镜头与相机模块,且特别是一种应用在可携式电子装置上的成像镜头与相机模块。
背景技术
近年来,可携式电子装置发展快速,例如智能电子装置、平板电脑等,已充斥在现代人的生活中,而装载在可携式电子装置上的相机模块及其成像镜头也随之蓬勃发展。但随着科技愈来愈进步,使用者对于成像镜头的品质要求也愈来愈高。因此,发展一种小型化且可有效遮蔽非成像光线的成像镜头遂成为产业上重要且急欲解决的问题。
实用新型内容
本揭示内容提供一种成像镜头、相机模块及电子装置,通过光线吸收部位作为通光孔有助于成像镜头小型化,且可简化制造工序,同时具有遮蔽非成像光线的功效。
依据本揭示内容一实施方式提供一种成像镜头,包含一塑胶镜筒、一光学透镜组及一光线吸收涂层。塑胶镜筒包含一最小开孔。光学透镜组包含多个光学透镜,其中光学透镜中包含一第一光学透镜,第一光学透镜位于光学透镜组的最物侧,且第一光学透镜包含一光学有效面、一外周面及一环形段差结构。外周面环绕光学有效面。环形段差结构连接光学有效面与外周面,且环形段差结构用以定义成像镜头的一入光瞳。光线吸收涂层的至少一部分涂布于环形段差结构,且光线吸收涂层的至少另一部分连接塑胶镜筒的最小开孔。光线吸收涂层用以将第一光学透镜固定于塑胶镜筒。入光瞳的直径为EPD,塑胶镜筒的最小开孔的直径为ψb,其满足下列条件:0.4<EPD/ψb<1.0。
依据前段所述实施方式的成像镜头,其中光线吸收涂层可为成像镜头的一光圈,并用以决定一入射光束大小。
依据前段所述实施方式的成像镜头,其中入光瞳的直径为EPD,塑胶镜筒的最小开孔的直径为ψb,其可满足下列条件:0.45<EPD/ψb<0.98。另外,其可满足下列条件:0.55<EPD/ψb<0.98。
依据前段所述实施方式的成像镜头,其中光线吸收涂层沿垂直一光轴的方向可包含至少一部分不与塑胶镜筒接触。
依据前段所述实施方式的成像镜头,其中光线吸收涂层不与塑胶镜筒重叠的至少一部分靠近成像镜头的一像侧的最大直径为ψA,入光瞳的直径为EPD,其可满足下列条件:0.6<EPD/ψA≤1。另外,其可满足下列条件:0.75<EPD/ψA≤1。
依据前段所述实施方式的成像镜头,其中光学透镜组可还包含一第二光学透镜,其设置于第一光学透镜的一像侧,第一光学透镜可包含一第一轴向连接结构,且第二光学透镜可包含一第二轴向连接结构对应第一轴向连接结构,其中第一轴向连接结构与第二轴向连接结构互相接合。
依据前段所述实施方式的成像镜头,其中光学透镜组中至少一光学透镜可包含一第三轴向连接结构,塑胶镜筒可包含一第四轴向连接结构对应第三轴向连接结构,其中第三轴向连接结构与第四轴向连接结构互相接合。
依据前段所述实施方式的成像镜头,其中光学透镜组可包含一第二光学透镜,其设置于第一光学透镜的一像侧,光线吸收涂层延伸至第二光学透镜,且光线吸收涂层用以将第一光学透镜固定至第二光学透镜与塑胶镜筒。另外,第一光学透镜与第二光学透镜可组成一粘合透镜组。
依据前段所述实施方式的成像镜头,其中光线吸收涂层的一表面可为一粗糙表面,粗糙表面的粗糙度Ra介于0.16μm至1.60μm之间。
依据本揭示内容一实施方式提供一种相机模块,包含前述实施方式的成像镜头与一电子感光元件,其中电子感光元件设置于成像镜头的一成像面。
依据本揭示内容一实施方式提供一种电子装置,包含前述实施方式的相机模块。
依据本揭示内容一实施方式提供一种成像镜头,包含一塑胶镜筒、一光学透镜组及一光线吸收涂层。光学透镜组包含多个光学透镜,其中光学透镜中包含一第一光学透镜,第一光学透镜位于光学透镜组的最物侧,且第一光学透镜包含一光学有效面、一外周面及一环形段差结构。光学有效面朝向成像镜头的一物侧。外周面环绕光学有效面。环形段差结构连接光学有效面与外周面,且环形段差结构用以定义成像镜头的一入光瞳。光线吸收涂层的至少一部分涂布于环形段差结构,且光线吸收涂层的至少另一部分连接塑胶镜筒。光线吸收涂层用以将第一光学透镜固定于塑胶镜筒。外周面包含至少一外斜面,且光线吸收涂层涂布于外斜面上,外斜面与一光轴的夹角为α,光线吸收涂层沿平行光轴的总长度为L,其满足下列条件:1度<α<50度,以及0.2mm<L<1.5mm。
依据前段所述实施方式的成像镜头,其中入光瞳的直径为EPD,塑胶镜筒的一最小开孔的直径为ψb,其可满足下列条件:0.45<EPD/ψb<0.98。
依据前段所述实施方式的成像镜头,其中涂布于外斜面的光线吸收涂层的一物侧可与塑胶镜筒互相接合。
依据前段所述实施方式的成像镜头,其中光学透镜组可包含一第二光学透镜,其设置于第一光学透镜的一像侧,光线吸收涂层延伸至第二光学透镜,且光线吸收涂层用以将第一光学透镜固定至第二光学透镜与塑胶镜筒。
依据前段所述实施方式的成像镜头,其中第一光学透镜与第二光学透镜可组成一粘合透镜组。
依据前段所述实施方式的成像镜头,其中第一光学透镜可包含一第一轴向连接结构,且第二光学透镜可包含一第二轴向连接结构对应第一轴向连接结构,其中第一轴向连接结构与第二轴向连接结构互相接合。
依据前段所述实施方式的成像镜头,其中外斜面与光轴的夹角为α,其可满足下列条件:3度≤α<35度。
依据前段所述实施方式的成像镜头,其中光线吸收涂层沿平行光轴的总长度为L,其可满足下列条件:0.4mm<L<1.4mm。
依据前段所述实施方式的成像镜头,其中光线吸收涂层沿垂直光轴的方向可包含至少一部分不与塑胶镜筒接触。
依据前段所述实施方式的成像镜头,其中光线吸收涂层不与塑胶镜筒重叠的至少一部分靠近成像镜头的一像侧的最大直径为ψA,入光瞳的直径为EPD,其可满足下列条件:0.6<EPD/ψA≤1。另外,其可满足下列条件:0.75<EPD/ψA≤1。
依据前段所述实施方式的成像镜头,其中第一光学透镜的外周面可包含至少一消降结构,消降结构由第一光学透镜的最外周往光学有效面消降。
依据本揭示内容一实施方式提供一种成像镜头,包含一塑胶镜筒、一光学透镜组及一光线吸收涂层。光学透镜组包含多个光学透镜,其中光学透镜中至少一者包含一光学有效面、一外周面及一环形段差结构。外周面环绕光学有效面。环形段差结构连接光学有效面与外周面,且环形段差结构用以定义成像镜头的一光圈,并用以决定入射光束大小。光线吸收涂层的至少一部分涂布于环形段差结构,且光线吸收涂层的至少另一部分连接塑胶镜筒。光线吸收涂层用以将光学透镜中至少一者固定于塑胶镜筒。光线吸收涂层具有一非均匀厚度,且包含至少一环形弧面。光学有效面的外径为ψY,光学透镜中至少一者的最大外径为ψL,其满足下列条件:0.5<ψY/ψL<0.95。
依据前段所述实施方式的成像镜头,其中光学透镜中至少一者的最大外径为ψL,塑胶镜筒的一最小开孔的直径为ψb,其可满足下列条件:0.7<ψL/ψb<2.0。
依据前段所述实施方式的成像镜头,其中光学有效面的外径为ψY,光学透镜中至少一者于光轴的厚度为CT,其可满足下列条件:1.0<ψY/CT<3.6。
依据前段所述实施方式的成像镜头,其中光学透镜中至少一者可包含一第三轴向连接结构,塑胶镜筒可包含一第四轴向连接结构对应第三轴向连接结构,其中第三轴向连接结构与第四轴向连接结构互相接合。
依据前段所述实施方式的成像镜头,其中外周面中与光轴具有不同距离的任意二区域,于垂直光轴的方向皆可不互相面对。
依据前段所述实施方式的成像镜头,其中光线吸收涂层沿垂直一光轴的方向可包含至少一部分不与塑胶镜筒接触,其中光线吸收涂层不与塑胶镜筒重叠的至少一部分靠近成像镜头的一像侧的最大直径为ψA,入光瞳的直径为EPD,其可满足下列条件:0.6<EPD/ψA≤1。另外,其可满足下列条件:0.75<EPD/ψA≤1。
依据本揭示内容一实施方式提供一种成像镜头,具有一光轴,包含一光学透镜组、一塑胶镜筒及一光线吸收部位。光学透镜组包含多个光学透镜,其中光学透镜中至少一者包含一光学有效面与一外周面。光学有效面朝向成像镜头的一物侧。外周面环绕光学有效面。塑胶镜筒包含一物端承靠面与一物端外表面。物端承靠面与外周面的一部分承靠,且物端承靠面与外周面于平行光轴的一方向重叠。物端外表面与物端承靠面相对地设置,且物端承靠面与物端外表面于平行光轴的方向重叠。光线吸收部位设置于塑胶镜筒的物端外表面的一物侧,并与塑胶镜筒连接,光线吸收部位与光学透镜中至少一者的外周面沿垂直光轴的一方向重叠,且光线吸收部位环绕光学有效面。光线吸收部位不与塑胶镜筒重叠的至少一部分靠近成像镜头的一像侧的最大直径为ψA,入光瞳的直径为EPD,其满足下列条件:0.75<EPD/ψA≤1。另外,其可满足下列条件:0.85<EPD/ψA≤1。
依据前段所述实施方式的成像镜头,其中光学透镜中至少一者可为一塑胶光学透镜,且光学透镜中至少一者的外周面和光线吸收部位与光学透镜中至少一者的外周面沿垂直光轴的方向重叠的一部分无注料痕。
依据前段所述实施方式的成像镜头,其中外周面可包含至少一外斜面,外斜面与光轴的夹角为α,光线吸收部位沿平行光轴的总长度为L,其可满足下列条件:1度<α<50度,以及0.2mm<L<1.5mm。
依据前段所述实施方式的成像镜头,其中光线吸收部位可具有一非均匀厚度。
附图说明
图1A绘示依照本揭示内容第一实施例中成像镜头的示意图;
图1B绘示依照图1A第一实施例中成像镜头的部分放大图;
图1C绘示依照图1A第一实施例中成像镜头的另一部分放大图;
图1D绘示依照图1A第一实施例中塑胶镜筒、第一光学透镜及光线吸收部位的部分放大图;
图1E绘示依照图1A第一实施例中成像镜头的部分***图;
图1F绘示依照图1A第一实施例中参数的示意图;
图2A绘示依照本揭示内容第二实施例中成像镜头的示意图;
图2B绘示依照图2A第二实施例中成像镜头的部分放大图;
图2C绘示依照图2A第二实施例中成像镜头的另一部分放大图;
图2D绘示依照图2A第二实施例中塑胶镜筒、第一光学透镜及光线吸收部位的部分放大图;
图2E绘示依照图2A第二实施例中成像镜头的部分***图;
图2F绘示依照图2A第二实施例中参数的示意图;
图3A绘示依照本揭示内容第三实施例中成像镜头的示意图;
图3B绘示依照图3A第三实施例中成像镜头的部分放大图;
图3C绘示依照图3A第三实施例中塑胶镜筒、第一光学透镜、第二光学透镜及光线吸收部位的部分放大图;
图3D绘示依照图3A第三实施例中成像镜头的部分***图;
图3E绘示依照图3A第三实施例中参数的示意图;
图4A绘示依照本揭示内容第四实施例中成像镜头的示意图;
图4B绘示依照图4A第四实施例中成像镜头的部分放大图;
图4C绘示依照图4A第四实施例中成像镜头的另一部分放大图;
图4D绘示依照图4A第四实施例中塑胶镜筒、第一光学透镜、第二光学透镜、第三光学透镜及光线吸收部位的部分放大图;
图4E绘示依照图4A第四实施例中成像镜头的部分***图;
图4F绘示依照图4A第四实施例中参数的示意图;
图5A绘示依照本揭示内容第五实施例中成像镜头的示意图;
图5B绘示依照图5A第五实施例中成像镜头的部分放大图;
图5C绘示依照图5A第五实施例中成像镜头的另一部分放大图;
图5D绘示依照图5A第五实施例中塑胶镜筒、第一光学透镜、第二光学透镜及光线吸收部位的部分放大图;
图5E绘示依照图5A第五实施例中成像镜头的部分***图;
图5F绘示依照图5A第五实施例中参数的示意图;
图6A绘示依照本揭示内容第六实施例中成像镜头的示意图;
图6B绘示依照图6A第六实施例中成像镜头的部分放大图;
图6C绘示依照图6A第六实施例中成像镜头的另一部分放大图;
图6D绘示依照图6A第六实施例中塑胶镜筒、第一光学透镜、第二光学透镜及光线吸收部位的部分放大图;
图6E绘示依照图6A第六实施例中成像镜头的部分***图;
图6F绘示依照图6A第六实施例中参数的示意图;
图7A绘示依照本揭示内容第七实施例中成像镜头的示意图;
图7B绘示依照图7A第七实施例中成像镜头的部分放大图;
图7C绘示依照图7A第七实施例中参数的示意图;
图8A绘示依照本揭示内容第八实施例中电子装置的示意图;
图8B绘示依照图8A第八实施例中电子装置的方块图;
图8C绘示依照图8A第八实施例中自拍场景的示意图;以及
图8D绘示依照图8A第八实施例中拍摄的影像的示意图。
【符号说明】
成像镜头:10、20、30、40、50、60、70、81a
塑胶镜筒:110、210、310、410、510、610、710
物端承靠面:111、211、711
物端外表面:112、212、312、412、512、612、712
第四轴向连接结构:113、413、613、713
容胶空间:114、214、514、614
光学透镜组:120、220、320、420、520、620、720
第一光学透镜:121、221、321、421、521、621、721
光学有效面:1211、2211、3211、4211、5211、6211、7211
外周面:1212、2212、3212、4212、5212、6212、7212
外斜面:1212a、1212b、2212a、2212b、3212a、4212a、5212a、6212a、7212a
消降结构:5212c、6212c
环形段差结构:1213、2213、3213、4213、5213、6213、7213
第一轴向连接结构:1214、2214、4214、5214、6214
第三轴向连接结构:1215、4215、6215、7215
粘合材料:3216、6216
第二光学透镜:122、222、322、422、522、622、722
第二轴向连接结构:1221、2221、4221、5221、6221
第三光学透镜:123、223、323、423、523、623、723
第四光学透镜:124、224、324、424、524、624、724
第五光学透镜:125、225、325、425、525、625、725
第六光学透镜:426
光线吸收部位:130、230、330、430、530、630、730
环形弧面:131、231、331、431、531、631、731
电子装置:80
相机模块:81
电子感光元件:81b
使用者界面:82
成像信号处理元件:83
光学防手震组件:84
感测元件:85
闪光灯模块:86
对焦辅助模块:87
X:光轴
α:外斜面与光轴的夹角
EPD:入光瞳的直径
ψb:塑胶镜筒的最小开孔的直径
ψA:光线吸收部位不与塑胶镜筒重叠的至少一部分靠近成像镜头的像侧的最大直径
L:光线吸收部位沿平行光轴的总长度
ψY:光学有效面的外径
ψL:光学透镜中至少一者的最大外径
CT:光学透镜中至少一者于光轴的厚度
具体实施方式
本揭示内容提供一种成像镜头,包含一塑胶镜筒、一光学透镜组及一光线吸收部位。光学透镜组包含多个光学透镜,其中光学透镜中至少一者包含一光学有效面与一外周面,其中外周面环绕光学有效面。光线吸收部位的至少一部分连接塑胶镜筒。借此,有助于提升遮蔽非成像光线的功效。
成像镜头具有一光轴。塑胶镜筒可包含一最小开孔、一物端承靠面及一物端外表面。物端承靠面与外周面的一部分承靠,且物端承靠面与外周面于平行光轴的一方向重叠。物端外表面与物端承靠面相对地设置,且物端承靠面与物端外表面于平行光轴的方向重叠。
光学透镜中至少一者为第一光学透镜;换句话说,光学透镜中包含一第一光学透镜,且第一光学透镜位于光学透镜组的最物侧,其中第一光学透镜的光学有效面朝向成像镜头的一物侧。第一光学透镜可还包含一环形段差结构,其中环形段差结构连接光学有效面与外周面。透过环形段差结构的构型可聚积光线吸收部位,借以提高光学密度。具体来说,外周面为从环形段差结构到第一光学透镜最外周的面,且外周面与光学有效面之间具有一高低差,透过环形段差结构连接高低差。
环形段差结构用以定义成像镜头的一入光瞳。具体来说,光学有效面为一光滑表面,而环形段差结构可具有一雾化表面,故用以界定光学有效面的区域,亦用以定义入光瞳直径。或者,环形段差结构用以定义成像镜头的一光圈,并用以决定入射光束大小。借此,有助于提升成像镜头的成像品质。
光线吸收部位可为光线吸收涂层,或为黑化的塑胶表面结构。借此,可适应性地应用于不同型态的成像镜头。
进一步来说,光线吸收部位的至少一部分可涂布于环形段差结构,且光线吸收部位的至少另一部分可连接塑胶镜筒的最小开孔,故光线吸收部位可控制成像镜头的进光量。借此,光线吸收部位作为通光孔的设计有助于成像镜头小型化。或者,光线吸收部位可设置于塑胶镜筒的物端外表面的一物侧,光线吸收部位与光学透镜中至少一者的外周面可沿垂直光轴的一方向重叠,且光线吸收部位可环绕光学有效面。借此,光线吸收部位可直接由成像镜头的外观观察而得,不须额外将成像镜头拆解。
光线吸收部位可用以将光学透镜中至少一者固定于塑胶镜筒,其中光学透镜中至少一者为第一光学透镜。具体来说,光线吸收部位原为液态,待固化后具有附着力,可作为一固定元件。借此,可省去遮光元件的使用,且可简化塑胶镜筒的制造工序,同时具有遮蔽第一光学透镜外周的非成像光线的功效。
外周面可包含至少一外斜面,且光线吸收部位涂布于外斜面上。详细来说,从环形段差结构至第一光学透镜最外周之间,任何满足斜角条件范围的面皆可为外斜面。借此,外斜面的模具设计有利于离型与脱模,并可同时提供光线吸收部位涂布于第一光学透镜的可行性。
光线吸收部位可具有一非均匀厚度,且包含至少一环形弧面。具体来说,光线吸收部位因在涂装过程中会有些许偏差而产生真圆度或同轴度的误差,一般误差值落在0.001mm至0.03mm之间。详细来说,误差值可进一步落在0mm至0.01mm之间。再者,毛细现象受雾化表面粗糙度的影响,使实际光线吸收部位的涂装范围与理想真圆形状略有出入。
光线吸收部位可为成像镜头的一光圈,并用以决定一入射光束大小。借此,有助于提升成像品质。
光线吸收部位沿垂直光轴的方向可包含至少一部分不与塑胶镜筒接触。透过第一光学透镜前推的设置,可遮蔽侧向入射的非成像光线,且于空间上不受限于塑胶镜筒的结构。
光学透镜组可还包含一第二光学透镜,其设置于第一光学透镜的像侧,第一光学透镜可包含一第一轴向连接结构,且第二光学透镜可包含一第二轴向连接结构对应第一轴向连接结构,其中第一轴向连接结构与第二轴向连接结构互相接合。进一步来说,第一轴向连接结构与第二轴向连接结构用以承接二相邻的光学透镜,并提高光学透镜之间的同心度。借此,提高解析度与组装良率。
光学透镜组中至少一光学透镜可包含一第三轴向连接结构,塑胶镜筒可包含一第四轴向连接结构对应第三轴向连接结构,其中第三轴向连接结构与第四轴向连接结构互相接合。借此,提高光学透镜与塑胶镜筒的同轴度,并增加结构稳定性。
光线吸收部位延伸至第二光学透镜,且光线吸收部位用以将第一光学透镜固定至第二光学透镜与塑胶镜筒。借此,可用以代替塑胶镜筒复杂的遮光结构与承靠结构。
第一光学透镜与第二光学透镜可组成一粘合透镜组。详细来说,第一光学透镜与第二光学透镜之间包含一粘合材料。借此,可减少成像镜头的像差,且可提升稳定性。
光线吸收部位的一表面可为一粗糙表面,粗糙表面的粗糙度Ra介于0.16μm至1.60μm之间。粗糙度Ra为0.16μm换算为粗糙度VDI约为4,粗糙度Ra为1.60μm换算为粗糙度VDI约为24。一般来说,一般光学透镜的粗糙度Ra约在0.01μm以下,一般塑胶透筒艳消表面的粗糙度Ra约为0.8μm,换算为粗糙度VDI约为18。借此,本实用新型的成像镜头具有较高的抗杂散光效率。
涂布于外斜面的光线吸收部位的一物侧可与塑胶镜筒互相接合。具体而言,光线吸收部位置入于外斜面与塑胶镜筒之间,且塑胶镜筒、光线吸收部位及外斜面沿平行光轴的方向上依序排列且互相重叠。借此,可通过更加严苛的环境测试。
第一光学透镜的外周面可包含至少一消降结构,消降结构由第一光学透镜的最外周往光学有效面消降。具体来说,包含消降结构的第一光学透镜为一I-cut的透镜构型,其使第一光学透镜的最外周由二对应的平面与二对应的弧面构成。借此,有助于缩小成像镜头的体积。
外周面中与光轴具有不同距离的任意二区域,于垂直光轴的方向皆可不互相面对。借此,不须使用凹槽结构即可界定光线吸收部位。
光学透镜中至少一者可为一塑胶光学透镜,且光学透镜中至少一者的外周面和光线吸收部位与光学透镜中至少一者的外周面沿垂直光轴的方向重叠的一部分无注料痕。借此,可更容易控制光线吸收部位涂布的区域。
入光瞳的直径为EPD,塑胶镜筒的最小开孔的直径为ψb,其满足下列条件:0.4<EPD/ψb<1.0。借此,有助于成像镜头的小型化。另外,可满足下列条件:0.45<EPD/ψb<0.98。借此,可提供成像镜头小型化的设计上较合适的范围。另外,可满足下列条件:0.55<EPD/ψb<0.98。借此,可进一步提供较高规格的光学品质。
外斜面与光轴的夹角为α,其满足下列条件:1度<α<50度。借此,有助于成像镜头的小型化。另外,可满足下列条件:3度≤α<35度。借此,外斜面可使第一光学透镜前推设置,使成像镜头更易达到小型化。
光线吸收部位沿平行光轴的总长度为L,其满足下列条件:0.2mm<L<1.5mm。借此,有效遮蔽非成像光线。另外,可满足下列条件:0.4mm<L<1.4mm。借此,可大范围地遮蔽侧向入射的非成像光线,防止漏光的可能性。
光学有效面的外径为ψY,光学透镜中至少一者的最大外径为ψL,其满足下列条件:0.5<ψY/ψL<0.95。借此,有助于成像镜头的小型化。
光线吸收部位不与塑胶镜筒重叠的至少一部分靠近成像镜头的一像侧的最大直径为ψA,入光瞳的直径为EPD,其满足下列条件:0.75<EPD/ψA≤1。借此,有助于提升遮蔽非成像光线的效果。另外,可满足下列条件:0.6<EPD/ψA≤1。另外,可满足下列条件:0.85<EPD/ψA≤1。
光学透镜中至少一者的最大外径为ψL,塑胶镜筒的一最小开孔的直径为ψb,其可满足下列条件:0.7<ψL/ψb<2.0。借此,可具有较高的组装与制造良率。
光学有效面的外径为ψY,光学透镜中至少一者于光轴的厚度为CT,其可满足下列条件:1.0<ψY/CT<3.6。借此,使光学透镜成型较为稳定,且使光圈品质得到更精准地控制。
上述本揭示内容成像镜头中的各技术特征皆可组合配置,而达到对应的功效。
本揭示内容提供一种相机模块,包含前述的成像镜头与一电子感光元件,其中电子感光元件设置于成像镜头的一成像面。
本揭示内容提供一种电子装置,包含前述的相机模块。借此,提升成像品质。
根据上述实施方式,以下提出具体实施例并配合附图予以详细说明。
<第一实施例>
图1A绘示依照本揭示内容第一实施例中成像镜头10的示意图。由图1A可知,成像镜头10具有一光轴X,且包含一塑胶镜筒110、一光学透镜组120及一光线吸收部位130,其中光学透镜组120设置于塑胶镜筒110中。具体来说,光线吸收部位130为一光线吸收涂层,亦可为黑化的塑胶表面结构,且光线吸收部位130可直接由成像镜头10的外观观察而得,不须额外将成像镜头10拆解。
光学透镜组120包含多个光学透镜;具体而言,第一实施例中由物侧至像侧依序包含第一光学透镜121、第二光学透镜122、第三光学透镜123、第四光学透镜124及第五光学透镜125,其中第一光学透镜121位于光学透镜组120的最物侧,第二光学透镜122设置于第一光学透镜121的像侧,且第三光学透镜123、第四光学透镜124及第五光学透镜125的结构、面形等光学特征可依照不同成像需求配置,并非本揭示内容的重点,将不另揭露其细节。
图1B绘示依照图1A第一实施例中成像镜头10的部分放大图。由图1B可知,光学透镜中至少有一光学透镜(具体而言,第一实施例中为第一光学透镜121)包含一光学有效面1211、一外周面1212及一环形段差结构1213,其中光学有效面1211朝向成像镜头10的物侧,外周面1212环绕光学有效面1211,环形段差结构1213连接光学有效面1211与外周面1212。进一步来说,外周面1212与光学有效面1211之间具有一高低差,由环形段差结构1213连接此高低差。
外周面1212包含至少一外斜面;具体而言,第一实施例中分别为二外斜面1212a、1212b,且光线吸收部位130涂布于外斜面1212a、1212b上。具体而言,外周面1212为从环形段差结构1213到第一光学透镜121最外周的面,且从环形段差结构1213至第一光学透镜121最外周之间,任何满足斜角条件范围的面皆可为外斜面,且外斜面1212a、1212b皆朝向成像镜头10的物侧,而外斜面1212a、1212b的模具设计为有利于离型与脱模,并可同时提供光线吸收部位130涂布于第一光学透镜121的可行性。
外周面1212中与光轴X具有不同距离的任意二区域,于垂直光轴X的方向皆可不互相面对。借此,不须使用凹槽结构即可界定光线吸收部位130。
环形段差结构1213用以定义成像镜头10的一入光瞳。具体来说,光学有效面1211为光滑表面,而环形段差结构1213具有雾化表面。借此,可用以界定光学有效面1211的区域,亦可用以定义入光瞳直径。
塑胶镜筒110包含一最小开孔(图未标示)、一物端承靠面111及一物端外表面112。物端承靠面111与外周面1212的一部分承靠,且物端承靠面111与外周面1212于平行光轴X的方向重叠。物端外表面112与物端承靠面111相对地设置,且物端承靠面111与物端外表面112于平行光轴X的方向重叠。
图1C绘示依照图1A第一实施例中成像镜头10的另一部分放大图,图1D绘示依照图1A第一实施例中塑胶镜筒110、第一光学透镜121及光线吸收部位130的部分放大图。由图1B至图1D可知,光线吸收部位130为非均匀厚度,且包含至少一环形弧面;具体而言,第一实施例中为环形弧面131。具体来说,光线吸收部位130因在涂装过程中会有些许偏差而产生真圆度或同轴度的误差,一般误差值落在0.001mm至0.03mm之间。详细来说,误差值可进一步落在0mm至0.01mm之间。再者,毛细现象受雾化表面粗糙度的影响,使实际光线吸收部位130的涂装范围与理想真圆形状略有出入。
光线吸收部位130的至少一部分涂布于环形段差结构1213,光线吸收部位130的至少另一部分连接塑胶镜筒110的最小开孔,其中环形段差结构1213的构型可聚积光线吸收部位130,借以提高光学密度。进一步来说,光线吸收部位130设置于塑胶镜筒110的物端外表面112的物侧,并与塑胶镜筒110连接,光线吸收部位130与光学透镜中至少一者的外周面沿垂直光轴X的一方向重叠,且光线吸收部位130环绕光学有效面;具体而言,第一实施例中为第一光学透镜121的光学有效面1211与外周面1212。
环形段差结构1213用以定义成像镜头10的一光圈,或光线吸收部位130可为成像镜头10的光圈,且环形段差结构1213或光线吸收部位130用以决定一入射光束大小;具体而言,第一实施例是以环形段差结构1213定义成像镜头10的光圈,且光线吸收部位130为成像镜头10的光圈。借此,有助于提升成像品质。
光线吸收部位130沿垂直光轴X的方向可包含至少一部分不与塑胶镜筒110接触。透过第一光学透镜121前推的设置,可遮蔽侧向入射的非成像光线,且于空间上不受限于塑胶镜筒110的结构。
光线吸收部位130的一表面可为一粗糙表面,粗糙表面的粗糙度Ra介于0.16μm至1.60μm之间。粗糙度Ra为0.16μm换算为粗糙度VDI约为4,粗糙度Ra为1.60μm换算为粗糙度VDI约为24。一般来说,一般光学透镜的粗糙度Ra约在0.01μm以下,一般塑胶透筒艳消表面的粗糙度Ra约为0.8μm,换算为粗糙度VDI约为18。借此,第一实施例的成像镜头10具有较高的抗杂散光效率。
涂布于外斜面1212b的光线吸收部位130的物侧可与塑胶镜筒110互相接合。具体而言,光线吸收部位130置入于外斜面1212b与塑胶镜筒110之间,且塑胶镜筒110、光线吸收部位130及外斜面1212b沿平行光轴X的方向上依序排列且互相重叠。借此,可通过更加严苛的环境测试。
具体来说,光线吸收部位130原为液态,待固化后具有附着力,可作为一固定元件,且光线吸收部位130可控制成像镜头10的进光量。借此,光线吸收部位130作为通光孔的设计有助于成像镜头10小型化,并可省去遮光元件的使用,且可简化塑胶镜筒110的制造工序,同时具有遮蔽第一光学透镜121外周的非成像光线的功效。
由图1C可知,第一光学透镜121可包含一第一轴向连接结构1214,且第二光学透镜122可包含一第二轴向连接结构1221对应第一轴向连接结构1214,其中第一轴向连接结构1214与第二轴向连接结构1221互相接合。进一步来说,第一轴向连接结构1214与第二轴向连接结构1221用以承接二相邻的光学透镜,并提高光学透镜之间的同心度;具体而言,第一实施例中,所述二相邻的光学透镜为第一光学透镜121与第二光学透镜122。借此,提高解析度与组装良率。
光学透镜组120中至少一光学透镜可包含一第三轴向连接结构1215;具体而言,第一实施例中,第一光学透镜121包含第三轴向连接结构1215,塑胶镜筒110可包含一第四轴向连接结构113对应第三轴向连接结构1215,其中第三轴向连接结构1215与第四轴向连接结构113互相接合。借此,提高光学透镜与塑胶镜筒110的同轴度,并增加结构稳定性。
具体来说,塑胶镜筒110与第一光学透镜121之间包含一容胶空间114。借此,可防止溢胶的情况发生。
图1E绘示依照图1A第一实施例中成像镜头10的部分***图。由图1E可知,光学透镜中至少一者(具体而言,第一实施例为第一光学透镜121)可为一塑胶光学透镜,且光学透镜中至少一者(具体而言,第一实施例为第一光学透镜121)的外周面1212和光线吸收部位130与光学透镜中至少一者(具体而言,第一实施例为第一光学透镜121)的外周面1212沿垂直光轴X的方向重叠的一部分无注料痕。
图1F绘示依照图1A第一实施例中参数的示意图。由图1F可知,外斜面1212a与光轴X的夹角α为5度,外斜面1212b与光轴X的夹角α为48度。
由图1D与图1F可知,第一实施例中,入光瞳的直径为EPD,塑胶镜筒110的最小开孔的直径为ψb,光线吸收部位130不与塑胶镜筒110重叠的至少一部分靠近成像镜头10的像侧的最大直径为ψA,光线吸收部位130沿平行光轴X的总长度为L,光学有效面1211的外径为ψY,光学透镜中至少一者(具体而言,第一实施例为第一光学透镜121)的最大外径为ψL,光学透镜中至少一者(具体而言,第一实施例为第一光学透镜121)于光轴X的厚度为CT,而所述参数满足下列表一条件。
Figure BDA0002321252640000151
Figure BDA0002321252640000161
值得一提的是,第一实施例中,ψY=EPD。
<第二实施例>
图2A绘示依照本揭示内容第二实施例中成像镜头20的示意图。由图2A可知,成像镜头20具有一光轴X,且包含一塑胶镜筒210、一光学透镜组220及一光线吸收部位230,其中光学透镜组220设置于塑胶镜筒210中。具体来说,光线吸收部位230为一光线吸收涂层,亦可为黑化的塑胶表面结构,且光线吸收部位230可直接由成像镜头20的外观观察而得,不须额外将成像镜头20拆解。
光学透镜组220包含多个光学透镜;具体而言,第二实施例中由物侧至像侧依序包含第一光学透镜221、第二光学透镜222、第三光学透镜223、第四光学透镜224及第五光学透镜225,其中第一光学透镜221位于光学透镜组220的最物侧,第二光学透镜222设置于第一光学透镜221的像侧,且第三光学透镜223、第四光学透镜224及第五光学透镜225的结构、面形等光学特征可依照不同成像需求配置,并非本揭示内容的重点,将不另揭露其细节。
图2B绘示依照图2A第二实施例中成像镜头20的部分放大图。由图2B可知,光学透镜中至少有一光学透镜(具体而言,第二实施例为第一光学透镜221)包含一光学有效面2211、一外周面2212及一环形段差结构2213,其中光学有效面2211朝向成像镜头20的物侧,外周面2212环绕光学有效面2211,环形段差结构2213连接光学有效面2211与外周面2212。进一步来说,外周面2212与光学有效面2211之间具有一高低差,由环形段差结构2213连接此高低差。
外周面2212包含至少一外斜面;具体而言,第二实施例中分别为二外斜面2212a、2212b,且光线吸收部位230涂布于外斜面2212a、2212b上。具体而言,外周面2212为从环形段差结构2213到第一光学透镜221最外周的面,且从环形段差结构2213至第一光学透镜221最外周之间,任何满足斜角条件范围的面皆可为外斜面,且外斜面2212a、2212b皆朝向成像镜头20的物侧,而外斜面2212a、2212b的模具设计为有利于离型与脱模,并可同时提供光线吸收部位230涂布于第一光学透镜221的可行性。
外周面2212中与光轴X具有不同距离的任意二区域,于垂直光轴X的方向皆可不互相面对。借此,不须使用凹槽结构即可界定光线吸收部位230。
环形段差结构2213用以定义成像镜头20的一入光瞳。具体来说,光学有效面2211为光滑表面,而环形段差结构2213具有雾化表面。借此,可用以界定光学有效面2211的区域,亦可用以定义入光瞳直径。
塑胶镜筒210包含一最小开孔(图未标示)、一物端承靠面211及一物端外表面212。物端承靠面211与外周面2212的一部分承靠,且物端承靠面211与外周面2212于平行光轴X的方向重叠。物端外表面212与物端承靠面211相对地设置,且物端承靠面211与物端外表面212于平行光轴X的方向重叠。
图2C绘示依照图2A第二实施例中成像镜头20的另一部分放大图,图2D绘示依照图2A第二实施例中塑胶镜筒210、第一光学透镜221及光线吸收部位230的部分放大图。由图2B至图2D可知,光线吸收部位230为非均匀厚度,且包含至少一环形弧面;具体而言,第二实施例中为环形弧面231。具体来说,光线吸收部位230因在涂装过程中会有些许偏差而产生真圆度或同轴度的误差,一般误差值落在0.001mm至0.03mm之间。详细来说,误差值可进一步落在0mm至0.01mm之间。再者,毛细现象受雾化表面粗糙度的影响,使实际光线吸收部位230的涂装范围与理想真圆形状略有出入。
光线吸收部位230的至少一部分涂布于环形段差结构2213,光线吸收部位230的至少另一部分连接塑胶镜筒210的最小开孔,其中环形段差结构2213的构型可聚积光线吸收部位230,借以提高光学密度。进一步来说,光线吸收部位230设置于塑胶镜筒210的物端外表面212的物侧,并与塑胶镜筒210连接,光线吸收部位230与光学透镜中至少一者的外周面沿垂直光轴X的一方向重叠,且光线吸收部位230环绕光学有效面;具体而言,第二实施例中为第一光学透镜221的光学有效面2211与外周面2212。
环形段差结构2213用以定义成像镜头20的一光圈,或光线吸收部位230可为成像镜头20的一光圈,且环形段差结构2213或光线吸收部位230用以决定一入射光束大小;具体而言,第二实施例是以环形段差结构2213定义成像镜头20的光圈,且光线吸收部位230为成像镜头20的光圈。借此,有助于提升成像品质。
光线吸收部位230沿垂直光轴X的方向可包含至少一部分不与塑胶镜筒210接触。透过第一光学透镜221前推的设置,可遮蔽侧向入射的非成像光线,且于空间上不受限于塑胶镜筒210的结构。
光线吸收部位230的一表面可为一粗糙表面,粗糙表面的粗糙度Ra介于0.16μm至1.60μm之间。粗糙度Ra为0.16μm换算为粗糙度VDI约为4,粗糙度Ra为1.60μm换算为粗糙度VDI约为24。一般来说,一般光学透镜的粗糙度Ra约在0.01μm以下,一般塑胶透筒艳消表面的粗糙度Ra约为0.8μm,换算为粗糙度VDI约为18。借此,第二实施例的成像镜头20具有较高的抗杂散光效率。
由图2B可知,涂布于外斜面2212b的光线吸收部位230的物侧可与塑胶镜筒210互相接合。具体而言,光线吸收部位230置入于外斜面2212b与塑胶镜筒210之间,且塑胶镜筒210、光线吸收部位230与外斜面2212b沿平行光轴X的方向上依序排列且互相重叠。借此,可通过更加严苛的环境测试。
具体来说,光线吸收部位230原为液态,待固化后具有附着力,可作为一固定元件,且光线吸收部位230可控制成像镜头20的进光量。借此,光线吸收部位230作为通光孔的设计有助于成像镜头20小型化,并可省去遮光元件的使用,且可简化塑胶镜筒210的制造工序,同时具有遮蔽第一光学透镜221外周的非成像光线的功效。
由图2C可知,第一光学透镜221可包含一第一轴向连接结构2214,且第二光学透镜222可包含一第二轴向连接结构2221对应第一轴向连接结构2214,其中第一轴向连接结构2214与第二轴向连接结构2221互相接合。进一步来说,第一轴向连接结构2214与第二轴向连接结构2221用以承接二相邻的光学透镜,并提高光学透镜之间的同心度;具体而言,第二实施例中,所述二相邻的光学透镜为第一光学透镜221与第二光学透镜222。借此,提高解析度与组装良率。
具体来说,塑胶镜筒210与第一光学透镜221之间包含一容胶空间214。借此,可防止溢胶的情况发生。
图2E绘示依照图2A第二实施例中成像镜头20的部分***图。由图2E可知,光学透镜中至少一者(具体而言,第二实施例为第一光学透镜221)可为一塑胶光学透镜,且光学透镜中至少一者(具体而言,第二实施例为第一光学透镜221)的外周面2212和光线吸收部位230与光学透镜中至少一者(具体而言,第二实施例为第一光学透镜221)的外周面2212沿垂直光轴X的方向重叠的一部分无注料痕。
图2F绘示依照图2A第二实施例中参数的示意图。由图2F可知,外斜面2212a与光轴X的夹角α为5度,外斜面2212b与光轴X的夹角α为48度。
由图2D与图2F可知,第二实施例中,入光瞳的直径为EPD,塑胶镜筒210的最小开孔的直径为ψb,光线吸收部位230不与塑胶镜筒210重叠的至少一部分靠近成像镜头20的像侧的最大直径为ψA,光线吸收部位230沿平行光轴X的总长度为L,光学有效面2211的外径为ψY,光学透镜中至少一者(具体而言,第二实施例为第一光学透镜221)的最大外径为ψL,光学透镜中至少一者(具体而言,第二实施例为第一光学透镜221)于光轴X的厚度为CT,而所述参数满足下列表二条件。
Figure BDA0002321252640000191
值得一提的是,第二实施例中,ψY=EPD,且ψA=ψb。
<第三实施例>
图3A绘示依照本揭示内容第三实施例中成像镜头30的示意图。由图3A可知,成像镜头30具有一光轴X,且包含一塑胶镜筒310、一光学透镜组320及一光线吸收部位330。具体来说,光线吸收部位330为一光线吸收涂层,亦可为黑化的塑胶表面结构,且光线吸收部位330可直接由成像镜头30的外观观察而得,不须额外将成像镜头30拆解。
光学透镜组320包含多个光学透镜;具体而言,第三实施例中由物侧至像侧依序包含第一光学透镜321、第二光学透镜322、第三光学透镜323、第四光学透镜324及第五光学透镜325,其中第一光学透镜321位于光学透镜组320的最物侧,第二光学透镜322设置于第一光学透镜321的像侧,且第三光学透镜323、第四光学透镜324及第五光学透镜325的结构、面形等光学特征可依照不同成像需求配置,并非本揭示内容的重点,将不另揭露其细节。
图3B绘示依照图3A第三实施例中成像镜头30的部分放大图。由图3B可知,光学透镜中至少有一光学透镜(具体而言,第三实施例为第一光学透镜321)包含一光学有效面3211、一外周面3212及一环形段差结构3213,其中光学有效面3211朝向成像镜头30的物侧,外周面3212环绕光学有效面3211,环形段差结构3213连接光学有效面3211与外周面3212。
图3C绘示依照图3A第三实施例中塑胶镜筒310、第一光学透镜321、第二光学透镜322及光线吸收部位330的部分放大图。由图3A至图3C可知,第一光学透镜321与第二光学透镜322组成一粘合透镜组。详细来说,第一光学透镜321与第二光学透镜322之间包含一粘合材料3216。借此,可减少成像镜头30的像差,且可提升稳定性。
外周面3212包含至少一外斜面;具体而言,第三实施例中为外斜面3212a,且光线吸收部位330涂布于外斜面3212a上。具体而言,外周面3212为从环形段差结构3213到第一光学透镜321最外周的面,且从环形段差结构3213至第一光学透镜321最外周之间,任何满足斜角条件范围的面皆可为外斜面,且外斜面3212a为朝向成像镜头30的物侧,而外斜面3212a的模具设计为有利于离型与脱模,并可同时提供光线吸收部位330涂布于第一光学透镜321的可行性。
外周面3212中与光轴X具有不同距离的任意二区域,于垂直光轴X的方向皆可不互相面对。借此,不须使用凹槽结构即可界定光线吸收部位330。
环形段差结构3213用以定义成像镜头30的一入光瞳。具体来说,光学有效面3211为光滑表面,而环形段差结构3213具有雾化表面。借此,可用以界定光学有效面3211的区域,亦可用以定义入光瞳直径。
由图3B与图3C可知,光线吸收部位330为非均匀厚度,且包含至少一环形弧面;具体而言,第三实施例中为环形弧面331。具体来说,光线吸收部位330因在涂装过程中会有些许偏差而产生真圆度或同轴度的误差,一般误差值落在0.001mm至0.03mm之间。详细来说,误差值可进一步落在0mm至0.01mm之间。再者,毛细现象受雾化表面粗糙度的影响,使实际光线吸收部位330的涂装范围与理想真圆形状略有出入。
光线吸收部位330的至少一部分涂布于环形段差结构3213,光线吸收部位330的至少另一部分连接塑胶镜筒310的最小开孔,其中环形段差结构3213的构型可聚积光线吸收部位330,借以提高光学密度。进一步来说,光线吸收部位330设置于塑胶镜筒310的一物端外表面312的物侧,并与塑胶镜筒310连接,光线吸收部位330与光学透镜中至少一者的外周面沿垂直光轴X的一方向重叠,且光线吸收部位330环绕光学有效面;具体而言,第三实施例中为第一光学透镜321的光学有效面3211与外周面3212。
环形段差结构3213用以定义成像镜头30的一光圈,或光线吸收部位330可为成像镜头30的一光圈,且环形段差结构3213或光线吸收部位330用以决定一入射光束大小;具体而言,第三实施例是以环形段差结构3213定义成像镜头30的光圈,且光线吸收部位330为成像镜头30的光圈。借此,有助于提升成像品质。
光线吸收部位330沿垂直光轴X的方向可包含至少一部分不与塑胶镜筒310接触。透过第一光学透镜321前推的设置,可遮蔽侧向入射的非成像光线,且于空间上不受限于塑胶镜筒310的结构。
第三实施例中,光线吸收部位330延伸至第二光学透镜322,且光线吸收部位330用以将第一光学透镜321固定至第二光学透镜322与塑胶镜筒310。借此,可用以代替塑胶镜筒310复杂的遮光结构与承靠结构。
光线吸收部位330的一表面可为一粗糙表面,粗糙表面的粗糙度Ra介于0.16μm至1.60μm之间。粗糙度Ra为0.16μm换算为粗糙度VDI约为4,粗糙度Ra为1.60μm换算为粗糙度VDI约为24。一般来说,一般光学透镜的粗糙度Ra约在0.01μm以下,一般塑胶透筒艳消表面的粗糙度Ra约为0.8μm,换算为粗糙度VDI约为18。借此,第三实施例的成像镜头30具有较高的抗杂散光效率。
具体来说,光线吸收部位330原为液态,待固化后具有附着力,可作为一固定元件,且光线吸收部位330可控制成像镜头30的进光量。借此,光线吸收部位330作为通光孔的设计有助于成像镜头30小型化,并可省去遮光元件的使用,且可简化塑胶镜筒310的制造工序,同时具有遮蔽第一光学透镜321外周的非成像光线的功效。
图3D绘示依照图3A第三实施例中成像镜头30的部分***图。由图3D可知,光学透镜中至少一者(具体而言,第三实施例为第一光学透镜321)可为一塑胶光学透镜,且光学透镜中至少一者(具体而言,第三实施例为第一光学透镜321)的外周面3212和光线吸收部位330与光学透镜中至少一者(具体而言,第三实施例为第一光学透镜321)的外周面3212沿垂直光轴X的方向重叠的一部分无注料痕。
图3E绘示依照图3A第三实施例中参数的示意图。由图3E可知,外斜面3212a与光轴X的夹角α为5度。
由图3C与图3E可知,第三实施例中,入光瞳的直径为EPD,塑胶镜筒310的最小开孔的直径为ψb,光线吸收部位330不与塑胶镜筒310重叠的至少一部分靠近成像镜头30的像侧的最大直径为ψA,光线吸收部位330沿平行光轴X的总长度为L,光学有效面3211的外径为ψY,光学透镜中至少一者(具体而言,第三实施例为第一光学透镜321)的最大外径为ψL,光学透镜中至少一者(具体而言,第三实施例为第一光学透镜321)于光轴X的厚度为CT,而所述参数满足下列表三条件。
Figure BDA0002321252640000221
值得一提的是,第三实施例中,ψY=EPD。
<第四实施例>
图4A绘示依照本揭示内容第四实施例中成像镜头40的示意图。由图4A可知,成像镜头40具有一光轴X,且包含一塑胶镜筒410、一光学透镜组420及一光线吸收部位430。具体来说,光线吸收部位430为一光线吸收涂层,亦可为黑化的塑胶表面结构,且光线吸收部位430可直接由成像镜头40的外观观察而得,不须额外将成像镜头40拆解。
光学透镜组420包含多个光学透镜;具体而言,第四实施例中由物侧至像侧依序包含第一光学透镜421、第二光学透镜422、第三光学透镜423、第四光学透镜424、第五光学透镜425及第六光学透镜426,其中第一光学透镜421位于光学透镜组420的最物侧,第二光学透镜422设置于第一光学透镜421的像侧,且第四光学透镜424、第五光学透镜425及第六光学透镜426的结构、面形等光学特征可依照不同成像需求配置,并非本揭示内容的重点,将不另揭露其细节。
图4B绘示依照图4A第四实施例中成像镜头40的部分放大图。由图4B可知,光学透镜中至少有一光学透镜(具体而言,第四实施例为第一光学透镜421)包含一光学有效面4211、一外周面4212及一环形段差结构4213,其中光学有效面4211朝向成像镜头40的物侧,外周面4212环绕光学有效面4211,环形段差结构4213连接光学有效面4211与外周面4212。进一步来说,外周面4212与光学有效面4211之间具有一高低差,由环形段差结构4213连接此高低差。
外周面4212包含至少一外斜面;具体而言,第四实施例中为外斜面4212a,且光线吸收部位430涂布于外斜面4212a上。具体而言,外周面4212为从环形段差结构4213到第一光学透镜421最外周的面,且从环形段差结构4213至第一光学透镜421最外周之间,任何满足斜角条件范围的面皆可为外斜面,且外斜面4212a为朝向成像镜头40的物侧,而外斜面4212a的模具设计为有利于离型与脱模,并可同时提供光线吸收部位430涂布于第一光学透镜421的可行性。
外周面4212中与光轴X具有不同距离的任意二区域,于垂直光轴X的方向皆可不互相面对。借此,不须使用凹槽结构即可界定光线吸收部位430。
环形段差结构4213用以定义成像镜头40的一入光瞳。具体来说,光学有效面4211为光滑表面,而环形段差结构4213具有雾化表面。借此,可用以界定光学有效面4211的区域,亦可用以定义入光瞳直径。
图4C绘示依照图4A第四实施例中成像镜头40的另一部分放大图,图4D绘示依照图4A第四实施例中塑胶镜筒410、第一光学透镜421、第二光学透镜422、第三光学透镜423及光线吸收部位430的部分放大图。由图4B至图4D可知,光线吸收部位430为非均匀厚度,且包含至少一环形弧面;具体而言,第四实施例中为环形弧面431。具体来说,光线吸收部位430因在涂装过程中会有些许偏差而产生真圆度或同轴度的误差,一般误差值落在0.001mm至0.03mm之间。详细来说,误差值可进一步落在0mm至0.01mm之间。再者,毛细现象受雾化表面粗糙度的影响,使实际光线吸收部位430的涂装范围与理想真圆形状略有出入。
光线吸收部位430的至少一部分涂布于环形段差结构4213,光线吸收部位430的至少另一部分连接塑胶镜筒410的最小开孔,其中环形段差结构4213的构型可聚积光线吸收部位430,借以提高光学密度。进一步来说,光线吸收部位430设置于塑胶镜筒410的一物端外表面412的物侧,并与塑胶镜筒410连接,光线吸收部位430与光学透镜中至少一者的外周面沿垂直光轴X的一方向重叠,且光线吸收部位430环绕光学有效面;具体而言,第四实施例中为第一光学透镜421的光学有效面4211与外周面4212。
环形段差结构4213用以定义成像镜头40的一光圈,或光线吸收部位430可为成像镜头40的一光圈,且环形段差结构4213或光线吸收部位430用以决定一入射光束大小;具体而言,第四实施例是以环形段差结构4213定义成像镜头40的光圈,且光线吸收部位430为成像镜头40的光圈。借此,有助于提升成像品质。
光线吸收部位430沿垂直光轴X的方向可包含至少一部分不与塑胶镜筒410接触。透过第一光学透镜421前推的设置,可遮蔽侧向入射的非成像光线,且于空间上不受限于塑胶镜筒410的结构。
第四实施例中,光线吸收部位430延伸至第二光学透镜422,且光线吸收部位430用以将第一光学透镜421固定至第二光学透镜422与塑胶镜筒410。借此,可用以代替塑胶镜筒410复杂的遮光结构与承靠结构。
光线吸收部位430的一表面可为一粗糙表面,粗糙表面的粗糙度Ra介于0.16μm至1.60μm之间。粗糙度Ra为0.16μm换算为粗糙度VDI约为4,粗糙度Ra为1.60μm换算为粗糙度VDI约为24。一般来说,一般光学透镜的粗糙度Ra约在0.01μm以下,一般塑胶透筒艳消表面的粗糙度Ra约为0.8μm,换算为粗糙度VDI约为18。借此,第四实施例的成像镜头40具有较高的抗杂散光效率。
具体来说,光线吸收部位430原为液态,待固化后具有附着力,可作为一固定元件,且光线吸收部位430可控制成像镜头40的进光量。借此,光线吸收部位430作为通光孔的设计有助于成像镜头40小型化,并可省去遮光元件的使用,且可简化塑胶镜筒410的制造工序,同时具有遮蔽第一光学透镜421外周的非成像光线的功效。
由图4C可知,第一光学透镜421可包含一第一轴向连接结构4214,且第二光学透镜422可包含一第二轴向连接结构4221对应第一轴向连接结构4214,其中第一轴向连接结构4214与第二轴向连接结构4221互相接合。进一步来说,第一轴向连接结构4214与第二轴向连接结构4221用以承接二相邻的光学透镜,并提高光学透镜之间的同心度;具体而言,第四实施例中,所述二相邻的光学透镜为第一光学透镜421与第二光学透镜422。借此,提高解析度与组装良率。
光学透镜组420中至少一光学透镜可包含一第三轴向连接结构4215;具体而言,第四实施例中第三光学透镜423包含第三轴向连接结构4215,塑胶镜筒410可包含一第四轴向连接结构413对应第三轴向连接结构4215,其中第三轴向连接结构4215与第四轴向连接结构413互相接合。借此,提高光学透镜与塑胶镜筒410的同轴度,并增加结构稳定性。
图4E绘示依照图4A第四实施例中成像镜头40的部分***图。由图4E可知,光学透镜中至少一者(具体而言,第四实施例为第一光学透镜421)可为一塑胶光学透镜,且光学透镜中至少一者(具体而言,第四实施例为第一光学透镜421)的外周面4212和光线吸收部位430与光学透镜中至少一者(具体而言,第四实施例为第一光学透镜421)的外周面4212沿垂直光轴X的方向重叠的一部分无注料痕。
图4F绘示依照图4A第四实施例中参数的示意图。由图4F可知,外斜面4212a与光轴X的夹角α为20度。
由图4D与图4F可知,第四实施例中,入光瞳的直径为EPD,塑胶镜筒410的最小开孔的直径为ψb,光线吸收部位430不与塑胶镜筒410重叠的至少一部分靠近成像镜头40的像侧的最大直径为ψA,光线吸收部位430沿平行光轴X的总长度为L,光学有效面4211的外径为ψY,光学透镜中至少一者(具体而言,第四实施例为第一光学透镜421)的最大外径为ψL,光学透镜中至少一者(具体而言,第四实施例为第一光学透镜421)于光轴X的厚度为CT,而所述参数满足下列表四条件。
Figure BDA0002321252640000261
值得一提的是,第四实施例中,ψY=EPD,且ψA=ψb。
<第五实施例>
图5A绘示依照本揭示内容第五实施例中成像镜头50的示意图。由图5A可知,成像镜头50具有一光轴X,且包含一塑胶镜筒510、一光学透镜组520及一光线吸收部位530。具体来说,光线吸收部位530为一光线吸收涂层,亦可为黑化的塑胶表面结构,且光线吸收部位530可直接由成像镜头50的外观观察而得,不须额外将成像镜头50拆解。
光学透镜组520包含多个光学透镜;具体而言,第五实施例中由物侧至像侧依序包含第一光学透镜521、第二光学透镜522、第三光学透镜523、第四光学透镜524及第五光学透镜525,其中第一光学透镜521位于光学透镜组520的最物侧,第二光学透镜522设置于第一光学透镜521的像侧,且第三光学透镜523、第四光学透镜524及第五光学透镜525的结构、面形等光学特征可依照不同成像需求配置,并非本揭示内容的重点,将不另揭露其细节。
图5B绘示依照图5A第五实施例中成像镜头50的部分放大图。由图5B可知,光学透镜中至少有一光学透镜(具体而言,第五实施例为第一光学透镜521)包含一光学有效面5211、一外周面5212及一环形段差结构5213,其中光学有效面5211朝向成像镜头50的物侧,外周面5212环绕光学有效面5211,环形段差结构5213连接光学有效面5211与外周面5212。
外周面5212包含至少一外斜面;具体而言,第五实施例中为外斜面5212a,且光线吸收部位530涂布于外斜面5212a上。具体而言,外周面5212为从环形段差结构5213到第一光学透镜521最外周的面,且从环形段差结构5213至第一光学透镜521最外周之间,任何满足斜角条件范围的面皆可为外斜面,且外斜面5212a为朝向成像镜头50的物侧,而外斜面5212a的模具设计为有利于离型与脱模,并可同时提供光线吸收部位530涂布于第一光学透镜521的可行性。
第一光学透镜521的外周面5212可包含至少一消降结构5212c,消降结构5212c由第一光学透镜5212c的最外周往光学有效面5211消降。具体而言,第五实施例中,消降结构5212c的数量为二。具体来说,包含消降结构5212c的第一光学透镜521为一I-cut的透镜构型,其使第一光学透镜521的最外周由二对应的平面与二对应的弧面构成。借此,有助于缩小成像镜头50的体积。
外周面5212中与光轴X具有不同距离的任意二区域,于垂直光轴X的方向皆可不互相面对。借此,不须使用凹槽结构即可界定光线吸收部位530。
环形段差结构5213用以定义成像镜头50的一入光瞳。具体来说,光学有效面5211为光滑表面,而环形段差结构5213具有雾化表面。借此,可用以界定光学有效面5211的区域,亦可用以定义入光瞳直径。
图5C绘示依照图5A第五实施例中成像镜头50的另一部分放大图,图5D绘示依照图5A第五实施例中塑胶镜筒510、第一光学透镜521、第二光学透镜522及光线吸收部位530的部分放大图。由图5B至图5D可知,光线吸收部位530为非均匀厚度,且包含至少一环形弧面;具体而言,第五实施例中为环形弧面531。具体来说,光线吸收部位530因在涂装过程中会有些许偏差而产生真圆度或同轴度的误差,一般误差值落在0.001mm至0.03mm之间。详细来说,误差值可进一步落在0mm至0.01mm之间。再者,毛细现象受雾化表面粗糙度的影响,使实际光线吸收部位530的涂装范围与理想真圆形状略有出入。
光线吸收部位530的至少一部分涂布于环形段差结构5213,光线吸收部位530的至少另一部分连接塑胶镜筒510的最小开孔,其中环形段差结构5213的构型可聚积光线吸收部位530,借以提高光学密度。进一步来说,光线吸收部位530设置于塑胶镜筒510的一物端外表面512的物侧,并与塑胶镜筒510连接,光线吸收部位530与光学透镜中至少一者的外周面沿垂直光轴X的一方向重叠,且光线吸收部位530环绕光学有效面;具体而言,第五实施例中为第一光学透镜521的光学有效面5211与外周面5212。
环形段差结构5213用以定义成像镜头50的一光圈,或光线吸收部位530可为成像镜头50的一光圈,且环形段差结构5213或光线吸收部位530用以决定一入射光束大小;具体而言,第五实施例是以环形段差结构5213定义成像镜头50的光圈,且光线吸收部位530为成像镜头50的光圈。借此,有助于提升成像品质。
光线吸收部位530沿垂直光轴X的方向可包含至少一部分不与塑胶镜筒510接触。透过第一光学透镜521前推的设置,可遮蔽侧向入射的非成像光线,且于空间上不受限于塑胶镜筒510的结构。
第五实施例中,光线吸收部位530延伸至第二光学透镜522,且光线吸收部位530用以将第一光学透镜521固定至第二光学透镜522与塑胶镜筒510。借此,可用以代替塑胶镜筒510复杂的遮光结构与承靠结构。
光线吸收部位530的一表面可为一粗糙表面,粗糙表面的粗糙度Ra介于0.16μm至1.60μm之间。粗糙度Ra为0.16μm换算为粗糙度VDI约为4,粗糙度Ra为1.60μm换算为粗糙度VDI约为24。一般来说,一般光学透镜的粗糙度Ra约在0.01μm以下,一般塑胶透筒艳消表面的粗糙度Ra约为0.8μm,换算为粗糙度VDI约为18。借此,第五实施例的成像镜头50具有较高的抗杂散光效率。
具体来说,光线吸收部位530原为液态,待固化后具有附着力,可作为一固定元件,且光线吸收部位530可控制成像镜头50的进光量。借此,光线吸收部位530作为通光孔的设计有助于成像镜头50小型化,并可省去遮光元件的使用,且可简化塑胶镜筒510的制造工序,同时具有遮蔽第一光学透镜521外周的非成像光线的功效。
由图5C可知,第一光学透镜521可包含一第一轴向连接结构5214,且第二光学透镜522可包含一第二轴向连接结构5221对应第一轴向连接结构5214,其中第一轴向连接结构5214与第二轴向连接结构5221互相接合。进一步来说,第一轴向连接结构5214与第二轴向连接结构5221用以承接二相邻的光学透镜,并提高光学透镜之间的同心度;具体而言,第五实施例中,二相邻的光学透镜为第一光学透镜521与第二光学透镜522。借此,提高解析度与组装良率。
具体来说,塑胶镜筒510与第二光学透镜522之间包含一容胶空间514。借此,可防止溢胶的情况发生。
图5E绘示依照图5A第五实施例中成像镜头50的部分***图。由图5E可知,光学透镜中至少一者(具体而言,第五实施例为第一光学透镜521)可为一塑胶光学透镜,且光学透镜中至少一者(具体而言,第五实施例为第一光学透镜521)的外周面5212和光线吸收部位530与光学透镜中至少一者(具体而言,第五实施例为第一光学透镜521)的外周面5212沿垂直光轴X的方向重叠的一部分无注料痕。
图5F绘示依照图5A第五实施例中参数的示意图。由图5F可知,外斜面5212a与光轴X的夹角α为3度。
由图5D与图5F可知,第五实施例中,入光瞳的直径为EPD,塑胶镜筒510的最小开孔的直径为ψb,光线吸收部位530不与塑胶镜筒510重叠的至少一部分靠近成像镜头50的像侧的最大直径为ψA,光线吸收部位530沿平行光轴X的总长度为L,光学有效面5211的外径为ψY,光学透镜中至少一者(具体而言,第五实施例为第一光学透镜521)的最大外径为ψL,光学透镜中至少一者(具体而言,第五实施例为第一光学透镜521)于光轴X的厚度为CT,而所述参数满足下列表五条件。
Figure BDA0002321252640000291
值得一提的是,第五实施例中,ψY=EPD。
<第六实施例>
图6A绘示依照本揭示内容第六实施例中成像镜头60的示意图。由图6A可知,成像镜头60具有一光轴X,且包含一塑胶镜筒610、一光学透镜组620及一光线吸收部位630。具体来说,光线吸收部位630为一光线吸收涂层,亦可为黑化的塑胶表面结构,且光线吸收部位630可直接由成像镜头60的外观观察而得,不须额外将成像镜头60拆解。
光学透镜组620包含多个光学透镜;具体而言,第六实施例中由物侧至像侧依序包含第一光学透镜621、第二光学透镜622、第三光学透镜623、第四光学透镜624及第五光学透镜625,其中第一光学透镜621位于光学透镜组620的最物侧,第二光学透镜622设置于第一光学透镜621的像侧,且第三光学透镜623、第四光学透镜624及第五光学透镜625的结构、面形等光学特征可依照不同成像需求配置,并非本揭示内容的重点,将不另揭露其细节。
图6B绘示依照图6A第六实施例中成像镜头60的部分放大图。由图6B可知,光学透镜中至少有一光学透镜(具体而言,第六实施例为第一光学透镜621)包含一光学有效面6211、一外周面6212及一环形段差结构6213,其中光学有效面6211朝向成像镜头60的物侧,外周面6212环绕光学有效面6211,环形段差结构6213连接光学有效面6211与外周面6212。
图6C绘示依照图6A第六实施例中成像镜头60的另一部分放大图,图6D绘示依照图6A第六实施例中塑胶镜筒610、第一光学透镜621、第二光学透镜622及光线吸收部位630的部分放大图。由图6A至图6D可知,第一光学透镜621与第二光学透镜622组成一粘合透镜组。详细来说,第一光学透镜621与第二光学透镜622之间包含一粘合材料6216。借此,可减少成像镜头60的像差,且可提升稳定性。
外周面6212包含至少一外斜面;具体而言,第六实施例中为外斜面6212a,且光线吸收部位630涂布于外斜面6212a上。具体而言,外周面6212为从环形段差结构6213到第一光学透镜621最外周的面,且从环形段差结构6213至第一光学透镜621最外周之间,任何满足斜角条件范围的面皆可为外斜面,且外斜面6212a为朝向成像镜头60的物侧,而外斜面6212a的模具设计为有利于离型与脱模,并可同时提供光线吸收部位630涂布于第一光学透镜621的可行性。
第一光学透镜621的外周面6212可包含至少一消降结构6212c,消降结构6212c由第一光学透镜6212c的最外周往光学有效面6211消降。具体而言,第六实施例中,消降结构6212c的数量为二。具体来说,包含消降结构6212c的第一光学透镜621为一I-cut的透镜构型,其使第一光学透镜621的最外周由二对应的平面与二对应的弧面构成。借此,有助于缩小成像镜头60的体积。
外周面6212中与光轴X具有不同距离的任意二区域,于垂直光轴X的方向皆可不互相面对。借此,不须使用凹槽结构即可界定光线吸收部位630。
环形段差结构6213用以定义成像镜头60的一入光瞳。具体来说,光学有效面6211为光滑表面,而环形段差结构6213具有雾化表面。借此,可用以界定光学有效面6211的区域,亦可用以定义入光瞳直径。
由图6B至图6D可知,光线吸收部位630为非均匀厚度,且包含至少一环形弧面;具体而言,第六实施例中为环形弧面631。具体来说,光线吸收部位630因在涂装过程中会有些许偏差而产生真圆度或同轴度的误差,一般误差值落在0.001mm至0.03mm之间。详细来说,误差值可进一步落在0mm至0.01mm之间。再者,毛细现象受雾化表面粗糙度的影响,使实际光线吸收部位630的涂装范围与理想真圆形状略有出入。
光线吸收部位630的至少一部分涂布于环形段差结构6213,光线吸收部位630的至少另一部分连接塑胶镜筒610的最小开孔,其中环形段差结构6213的构型可聚积光线吸收部位630,借以提高光学密度。进一步来说,光线吸收部位630设置于塑胶镜筒610的一物端外表面612的物侧,并与塑胶镜筒610连接,光线吸收部位630与光学透镜中至少一者的外周面沿垂直光轴X的一方向重叠,且光线吸收部位630环绕光学有效面;具体而言,第六实施例中为第一光学透镜621的光学有效面6211与外周面6212。
环形段差结构6213用以定义成像镜头60的一光圈,或光线吸收部位630可为成像镜头60的一光圈,且环形段差结构6213或光线吸收部位630用以决定一入射光束大小;具体而言,第六实施例是以环形段差结构6213定义成像镜头60的光圈,且光线吸收部位630为成像镜头60的光圈。借此,有助于提升成像品质。
光线吸收部位630沿垂直光轴X的方向可包含至少一部分不与塑胶镜筒610接触。透过第一光学透镜621前推的设置,可遮蔽侧向入射的非成像光线,且于空间上不受限于塑胶镜筒610的结构。
第六实施例中,光线吸收部位630延伸至第二光学透镜622,且光线吸收部位630用以将第一光学透镜621固定至第二光学透镜622与塑胶镜筒610。借此,可用以代替塑胶镜筒610复杂的遮光结构与承靠结构。
光线吸收部位630的一表面可为一粗糙表面,粗糙表面的粗糙度Ra介于0.16μm至1.60μm之间。粗糙度Ra为0.16μm换算为粗糙度VDI约为4,粗糙度Ra为1.60μm换算为粗糙度VDI约为24。一般来说,一般光学透镜的粗糙度Ra约在0.01μm以下,一般塑胶透筒艳消表面的粗糙度Ra约为0.8μm,换算为粗糙度VDI约为18。借此,第六实施例的成像镜头60具有较高的抗杂散光效率。
具体来说,光线吸收部位630原为液态,待固化后具有附着力,可作为一固定元件,且光线吸收部位630可控制成像镜头60的进光量。借此,光线吸收部位630作为通光孔的设计有助于成像镜头60小型化,并可省去遮光元件的使用,且可简化塑胶镜筒610的制造工序,同时具有遮蔽第一光学透镜621外周的非成像光线的功效。
由图6C可知,第一光学透镜621可包含一第一轴向连接结构6214,且第二光学透镜622可包含一第二轴向连接结构6221对应第一轴向连接结构6214,其中第一轴向连接结构6214与第二轴向连接结构6221互相接合。进一步来说,第一轴向连接结构6214与第二轴向连接结构6221用以承接二相邻的光学透镜,并提高光学透镜之间的同心度;具体而言,第六实施例中,二相邻的光学透镜为第一光学透镜621与第二光学透镜622。借此,提高解析度与组装良率。
光学透镜组620中至少一光学透镜可包含一第三轴向连接结构6215;具体而言,第六实施例中第二光学透镜622包含第三轴向连接结构6215,塑胶镜筒610可包含一第四轴向连接结构613对应第三轴向连接结构6215,其中第三轴向连接结构6215与第四轴向连接结构613互相接合。借此,提高光学透镜与塑胶镜筒610的同轴度,并增加结构稳定性。
具体来说,塑胶镜筒610与第二光学透镜622之间包含一容胶空间614。借此,可防止溢胶的情况发生。
图6E绘示依照图6A第六实施例中成像镜头60的部分***图。由图6E可知,光学透镜中至少一者(具体而言,第六实施例为第一光学透镜621)可为一塑胶光学透镜,且光学透镜中至少一者(具体而言,第六实施例为第一光学透镜621)的外周面6212和光线吸收部位630与光学透镜中至少一者(具体而言,第六实施例为第一光学透镜621)的外周面6212沿垂直光轴X的方向重叠的一部分无注料痕。
图6F绘示依照图6A第六实施例中参数的示意图。由图6F可知,外斜面6212a与光轴X的夹角α为3度。
由图6D与图6F可知,第六实施例中,入光瞳的直径为EPD,塑胶镜筒610的最小开孔的直径为ψb,光线吸收部位630不与塑胶镜筒610重叠的至少一部分靠近成像镜头60的像侧的最大直径为ψA,光线吸收部位630沿平行光轴X的总长度为L,光学有效面6211的外径为ψY,光学透镜中至少一者(具体而言,第六实施例为第一光学透镜621)的最大外径为ψL,光学透镜中至少一者(具体而言,第六实施例为第一光学透镜621)于光轴X的厚度为CT,而所述参数满足下列表六条件。
Figure BDA0002321252640000331
值得一提的是,第六实施例中,ψY=EPD。
<第七实施例>
图7A绘示依照本揭示内容第七实施例中成像镜头70的示意图。由图7A可知,成像镜头70具有一光轴X,且包含一塑胶镜筒710、一光学透镜组720及一光线吸收部位730,其中光学透镜组720设置于塑胶镜筒710中。具体来说,光线吸收部位730为一光线吸收涂层。
光学透镜组720包含多个光学透镜;具体而言,第七实施例中由物侧至像侧依序包含第一光学透镜721、第二光学透镜722、第三光学透镜723、第四光学透镜724及第五光学透镜725,其中第一光学透镜721位于光学透镜组720的最物侧,第二光学透镜722设置于第一光学透镜721的像侧,且第三光学透镜723、第四光学透镜724及第五光学透镜725的结构、面形等光学特征可依照不同成像需求配置,并非本揭示内容的重点,将不另揭露其细节。
图7B绘示依照图7A第七实施例中成像镜头70的部分放大图。由图7B可知,光学透镜中至少有一光学透镜(具体而言,第七实施例为第一光学透镜721)包含一光学有效面7211、一外周面7212及一环形段差结构7213,其中外周面7212环绕光学有效面7211,环形段差结构7213连接光学有效面7211与外周面7212。
外周面7212包含至少一外斜面;具体而言,第七实施例中为外斜面7212a,且光线吸收部位730涂布于外斜面7212a上。具体而言,外周面7212为从环形段差结构7213到第一光学透镜721最外周的面,且从环形段差结构7213至第一光学透镜721最外周之间,任何满足斜角条件范围的面皆可为外斜面,且外斜面7212a为朝向成像镜头70的物侧,而外斜面7212a的模具设计为有利于离型与脱模,并可同时提供光线吸收部位730涂布于第一光学透镜721的可行性。
外周面7212中与光轴X具有不同距离的任意二区域,于垂直光轴X的方向皆可不互相面对。借此,不须使用凹槽结构即可界定光线吸收部位730。
光学有效面7211为光滑表面,而环形段差结构7213具有雾化表面。借此,可用以界定光学有效面7211的区域。
塑胶镜筒710包含一最小开孔(图未标示)、一物端承靠面711及一物端外表面712。物端承靠面711与外周面7212的一部分承靠,且物端承靠面711与外周面7212于平行光轴X的方向重叠。物端外表面712与物端承靠面711相对地设置,且物端承靠面711与物端外表面712于平行光轴X的方向重叠。
由图7B可知,光线吸收部位730为非均匀厚度,且包含至少一环形弧面;具体而言,第七实施例中为环形弧面731。具体来说,光线吸收部位730因在涂装过程中会有些许偏差而产生真圆度或同轴度的误差,一般误差值落在0.001mm至0.03mm之间。详细来说,误差值可进一步落在0mm至0.01mm之间。再者,毛细现象受雾化表面粗糙度的影响,使实际光线吸收部位730的涂装范围与理想真圆形状略有出入。
光线吸收部位730的至少一部分涂布于环形段差结构7213,光线吸收部位730的至少另一部分连接塑胶镜筒710,其中环形段差结构7213的构型可聚积光线吸收部位730,借以提高光学密度。进一步来说,光线吸收部位730与光学透镜中至少一者的外周面沿垂直光轴X的一方向重叠,且光线吸收部位730环绕光学有效面;具体而言,第七实施例中为第一光学透镜721的光学有效面7211与外周面7212。
环形段差结构7213用以定义成像镜头70的一光圈,或光线吸收部位730可为成像镜头70的一光圈,且环形段差结构7213或光线吸收部位730用以决定一入射光束大小;具体而言,第七实施例是以环形段差结构7213定义成像镜头70的光圈,且光线吸收部位730为成像镜头70的光圈。借此,有助于提升成像品质。
光线吸收部位730的一表面可为一粗糙表面,粗糙表面的粗糙度Ra介于0.16μm至1.60μm之间。粗糙度Ra为0.16μm换算为粗糙度VDI约为4,粗糙度Ra为1.60μm换算为粗糙度VDI约为24。一般来说,一般光学透镜的粗糙度Ra约在0.01μm以下,一般塑胶透筒艳消表面的粗糙度Ra约为0.8μm,换算为粗糙度VDI约为18。借此,第七实施例的成像镜头70具有较高的抗杂散光效率。
具体来说,光线吸收部位730原为液态,待固化后具有附着力,可作为一固定元件,且光线吸收部位730可控制成像镜头70的进光量。借此,光线吸收部位730作为通光孔的设计有助于成像镜头70小型化,并可省去遮光元件的使用,且可简化塑胶镜筒710的制造工序,同时具有遮蔽第一光学透镜721外周的非成像光线的功效。
光学透镜组720中至少一光学透镜可包含一第三轴向连接结构7215;具体而言,第七实施例中第一光学透镜721包含第三轴向连接结构7215,塑胶镜筒710可包含一第四轴向连接结构713对应第三轴向连接结构7215,其中第三轴向连接结构7215与第四轴向连接结构713互相接合。借此,提高光学透镜与塑胶镜筒710的同轴度,并增加结构稳定性。
图7C绘示依照图7A第七实施例中参数的示意图。由图7C可知,外斜面7212a与光轴X的夹角α为45度。
由图7C可知,第七实施例中,入光瞳的直径为EPD,塑胶镜筒710的最小开孔的直径为ψb,光线吸收部位730沿平行光轴X的总长度为L,光学有效面7211的外径为ψY,光学透镜中至少一者(具体而言,第七实施例为第一光学透镜721)的最大外径为ψL,光学透镜中至少一者(具体而言,第七实施例为第一光学透镜721)于光轴X的厚度为CT,而所述参数满足下列表七条件。
Figure BDA0002321252640000361
<第八实施例>
图8A绘示依照本揭示内容第八实施例中电子装置80的示意图,图8B绘示依照图8A第八实施例中电子装置80的方块图。由图8A与图8B可知,电子装置80是一智能手机,且包含一相机模块81与一使用者界面82。相机模块包含一成像镜头81a与一电子感光元件81b,其中电子感光元件81b设置于成像镜头81a的一成像面(图未绘示)。第八实施例的相机模块81设置于使用者界面82侧边的区域,其中使用者界面82可为触控屏幕或显示屏幕,并不以此为限。
成像镜头81a可为前述第一实施例至第七实施例中的任一者,其包含一塑胶镜筒(图未绘示)、一光学透镜组(图未绘示)及一光线吸收部位(图未绘示),但本实用新型不以此为限。
进一步来说,使用者透过电子装置80的使用者界面82进入拍摄模式。此时成像镜头81a汇集成像光线在电子感光元件81b上,并输出有关影像的电子信号至成像信号处理元件(Image Signal Processor,ISP)83。
因应电子装置80的相机规格,电子装置80可还包含一光学防手震组件84,是可为OIS防抖回馈装置,进一步地,电子装置80可还包含至少一个辅助光学元件(未另标号)及至少一个感测元件85。第八实施例中,辅助光学元件为闪光灯模块86与对焦辅助模块87,闪光灯模块86可用以补偿色温,对焦辅助模块87可为红外线测距元件、激光对焦模块等。感测元件85可具有感测物理动量与作动能量的功能,如加速计、陀螺仪、霍尔元件(Hall EffectElement),以感知使用者的手部或外在环境施加的晃动及抖动,进而有利于电子装置80中成像镜头81a配置的自动对焦功能及光学防手震组件84的发挥,以获得良好的成像品质,有助于依据本揭示内容的电子装置80具备多种模式的拍摄功能,如优化自拍、低光源HDR(High Dynamic Range,高动态范围成像)、高解析4K(4K Resolution)录影等。此外,使用者可由触控屏幕直接目视到相机的拍摄画面,并在触控屏幕上手动操作取景范围,以达成所见即所得的自动对焦功能。
此外,电子装置80可进一步包含但不限于显示单元(Display)、控制单元(ControlUnit)、储存单元(Storage Unit)、随机存取存储器(RAM)、只读储存单元(ROM)或其组合。
图8C绘示依照图8A第八实施例中自拍场景的示意图,图8D绘示依照图8A第八实施例中拍摄的影像的示意图。由图8A至图8D可知,成像镜头81a与使用者界面82皆朝向使用者,在进行自拍(selfie)或直播(live streaming)时,可同时观看拍摄影像与进行界面的操作,并于拍摄后可得到如图8D的拍摄的影像。借此,搭配本揭示内容的成像镜头81a可提供较佳的拍摄体验。
虽然本实用新型已以实施例揭露如上,然其并非用以限定本实用新型,任何所属技术领域中具有通常知识者,在不脱离本实用新型的精神和范围内,当可作些许的更动与润饰,故本实用新型的保护范围当视所附的权利要求书所界定的范围为准。

Claims (38)

1.一种成像镜头,其特征在于,包含:
一塑胶镜筒,包含一最小开孔;
一光学透镜组,包含多个光学透镜,其中所述多个光学透镜中包含一第一光学透镜,该第一光学透镜位于该光学透镜组的最物侧,且该第一光学透镜包含:
一光学有效面;
一外周面,环绕该光学有效面;及
一环形段差结构,其连接该光学有效面与该外周面,且该环形段差结构用以定义该成像镜头的一入光瞳;以及
一光线吸收涂层,其中该光线吸收涂层的至少一部分涂布于该环形段差结构,且该光线吸收涂层的至少另一部分连接该塑胶镜筒的该最小开孔;
其中,该光线吸收涂层用以将该第一光学透镜固定于该塑胶镜筒;
其中,该入光瞳的直径为EPD,该塑胶镜筒的该最小开孔的直径为ψb,其满足下列条件:
0.4<EPD/ψb<1.0。
2.根据权利要求1所述的成像镜头,其特征在于,该光线吸收涂层为该成像镜头的一光圈,并用以决定一入射光束大小。
3.根据权利要求1所述的成像镜头,其特征在于,该入光瞳的直径为EPD,该塑胶镜筒的该最小开孔的直径为ψb,其满足下列条件:
0.45<EPD/ψb<0.98。
4.根据权利要求1所述的成像镜头,其特征在于,该入光瞳的直径为EPD,该塑胶镜筒的该最小开孔的直径为ψb,其满足下列条件:
0.55<EPD/ψb<0.98。
5.根据权利要求1所述的成像镜头,其特征在于,该光线吸收涂层沿垂直一光轴的方向包含至少一部分不与该塑胶镜筒接触。
6.根据权利要求5所述的成像镜头,其特征在于,该光线吸收涂层不与该塑胶镜筒重叠的该至少一部分靠近该成像镜头的一像侧的最大直径为ψA,该入光瞳的直径为EPD,其满足下列条件:
0.6<EPD/ψA≤1。
7.根据权利要求6所述的成像镜头,其特征在于,该光线吸收涂层不与该塑胶镜筒重叠的该至少一部分靠近该成像镜头的该像侧的最大直径为ψA,该入光瞳的直径为EPD,其满足下列条件:
0.75<EPD/ψA≤1。
8.根据权利要求5所述的成像镜头,其特征在于,该光学透镜组还包含一第二光学透镜,其设置于该第一光学透镜的一像侧,该第一光学透镜包含一第一轴向连接结构,且该第二光学透镜包含一第二轴向连接结构对应该第一轴向连接结构,其中该第一轴向连接结构与该第二轴向连接结构互相接合。
9.根据权利要求8所述的成像镜头,其特征在于,该光学透镜组中至少一光学透镜包含一第三轴向连接结构,该塑胶镜筒包含一第四轴向连接结构对应该第三轴向连接结构,其中该第三轴向连接结构与该第四轴向连接结构互相接合。
10.根据权利要求5所述的成像镜头,其特征在于,该光学透镜组包含一第二光学透镜,其设置于该第一光学透镜的一像侧,该光线吸收涂层延伸至该第二光学透镜,且该光线吸收涂层用以将该第一光学透镜固定至该第二光学透镜与该塑胶镜筒。
11.根据权利要求5所述的成像镜头,其特征在于,该光学透镜组包含一第二光学透镜,其设置于该第一光学透镜的一像侧,且该第一光学透镜与该第二光学透镜组成一粘合透镜组。
12.根据权利要求1所述的成像镜头,其特征在于,该光线吸收涂层的一表面为一粗糙表面,该粗糙表面的粗糙度Ra介于0.16μm至1.60μm之间。
13.一种相机模块,其特征在于,包含:
如权利要求1所述的成像镜头;以及
一电子感光元件,其设置于该成像镜头的一成像面。
14.一种电子装置,其特征在于,包含:
如权利要求13所述的相机模块。
15.一种成像镜头,其特征在于,包含:
一塑胶镜筒;
一光学透镜组,包含多个光学透镜,其中所述多个光学透镜中包含一第一光学透镜,该第一光学透镜位于该光学透镜组的最物侧,且该第一光学透镜包含:
一光学有效面,其朝向该成像镜头的一物侧;
一外周面,环绕该光学有效面;及
一环形段差结构,其连接该光学有效面与该外周面,且该环形段差结构用以定义该成像镜头的一入光瞳;以及
一光线吸收涂层,其中该光线吸收涂层的至少一部分涂布于该环形段差结构,且该光线吸收涂层的至少另一部分连接该塑胶镜筒;
其中,该光线吸收涂层用以将该第一光学透镜固定于该塑胶镜筒;
其中,该外周面包含至少一外斜面,且该光线吸收涂层涂布于该至少一外斜面上,该至少一外斜面与一光轴的夹角为α,该光线吸收涂层沿平行该光轴的总长度为L,其满足下列条件:
1度<α<50度;以及
0.2mm<L<1.5mm。
16.根据权利要求15所述的成像镜头,其特征在于,该入光瞳的直径为EPD,该塑胶镜筒的一最小开孔的直径为ψb,其满足下列条件:
0.45<EPD/ψb<0.98。
17.根据权利要求15所述的成像镜头,其特征在于,涂布于该至少一外斜面的该光线吸收涂层的一物侧与该塑胶镜筒互相接合。
18.根据权利要求15所述的成像镜头,其特征在于,该光学透镜组包含一第二光学透镜,其设置于该第一光学透镜的一像侧,该光线吸收涂层延伸至该第二光学透镜,且该光线吸收涂层用以将该第一光学透镜固定至该第二光学透镜与该塑胶镜筒。
19.根据权利要求18所述的成像镜头,其特征在于,该第一光学透镜与该第二光学透镜组成一粘合透镜组。
20.根据权利要求18所述的成像镜头,其特征在于,该第一光学透镜包含一第一轴向连接结构,且该第二光学透镜包含一第二轴向连接结构对应该第一轴向连接结构,其中该第一轴向连接结构与该第二轴向连接结构互相接合。
21.根据权利要求15所述的成像镜头,其特征在于,该至少一外斜面与该光轴的夹角为α,其满足下列条件:
3度≤α<35度。
22.根据权利要求15所述的成像镜头,其特征在于,该光线吸收涂层沿平行该光轴的总长度为L,其满足下列条件:
0.4mm<L<1.4mm。
23.根据权利要求22所述的成像镜头,其特征在于,该光线吸收涂层沿垂直该光轴的方向包含至少一部分不与该塑胶镜筒接触。
24.根据权利要求23所述的成像镜头,其特征在于,该光线吸收涂层不与该塑胶镜筒重叠的该至少一部分靠近该成像镜头的一像侧的最大直径为ψA,该入光瞳的直径为EPD,其满足下列条件:
0.6<EPD/ψA≤1。
25.根据权利要求24所述的成像镜头,其特征在于,该光线吸收涂层不与该塑胶镜筒重叠的该至少一部分靠近该成像镜头的该像侧的最大直径为ψA,该入光瞳的直径为EPD,其满足下列条件:
0.75<EPD/ψA≤1。
26.根据权利要求15所述的成像镜头,其特征在于,该第一光学透镜的该外周面包含至少一消降结构,该至少一消降结构由该第一光学透镜的最外周往该光学有效面消降。
27.一种成像镜头,其特征在于,包含:
一塑胶镜筒;
一光学透镜组,包含多个光学透镜,其中所述多个光学透镜中至少一者包含:
一光学有效面;
一外周面,环绕该光学有效面;及
一环形段差结构,其连接该光学有效面与该外周面,且该环形段差结构用以定义该成像镜头的一光圈,并用以决定入射光束大小;以及
一光线吸收涂层,其中该光线吸收涂层的至少一部分涂布于该环形段差结构,且该光线吸收涂层的至少另一部分连接该塑胶镜筒;
其中,该光线吸收涂层用以将所述多个光学透镜中该至少一者固定于该塑胶镜筒;
其中,该光线吸收涂层具有一非均匀厚度,且包含至少一环形弧面;
其中,该光学有效面的外径为ψY,所述多个光学透镜中该至少一者的最大外径为ψL,其满足下列条件:
0.5<ψY/ψL<0.95。
28.根据权利要求27所述的成像镜头,其特征在于,所述多个光学透镜中该至少一者的最大外径为ψL,该塑胶镜筒的一最小开孔的直径为ψb,其满足下列条件:
0.7<ψL/ψb<2.0。
29.根据权利要求27所述的成像镜头,其特征在于,该光学有效面的外径为ψY,所述多个光学透镜中该至少一者于该光轴的厚度为CT,其满足下列条件:
1.0<ψY/CT<3.6。
30.根据权利要求27所述的成像镜头,其特征在于,所述多个光学透镜中该至少一者包含一第三轴向连接结构,该塑胶镜筒包含一第四轴向连接结构对应该第三轴向连接结构,其中该第三轴向连接结构与该第四轴向连接结构互相接合。
31.根据权利要求27所述的成像镜头,其特征在于,该外周面中与该光轴具有不同距离的任意二区域,于垂直该光轴的方向皆不互相面对。
32.根据权利要求27所述的成像镜头,其特征在于,该光线吸收涂层沿垂直一光轴的方向包含至少一部分不与该塑胶镜筒接触,其中该光线吸收涂层不与该塑胶镜筒重叠的该至少一部分靠近该成像镜头的一像侧的最大直径为ψA,该入光瞳的直径为EPD,其满足下列条件:
0.6<EPD/ψA≤1。
33.根据权利要求27所述的成像镜头,其特征在于,该光线吸收涂层沿垂直一光轴的方向包含至少一部分不与该塑胶镜筒接触,其中该光线吸收涂层不与该塑胶镜筒重叠的该至少一部分靠近该成像镜头的一像侧的最大直径为ψA,该入光瞳的直径为EPD,其满足下列条件:
0.75<EPD/ψA≤1。
34.一种成像镜头,其特征在于,具有一光轴,包含:
一光学透镜组,包含多个光学透镜,其中所述多个光学透镜中至少一者包含:
一光学有效面,其朝向该成像镜头的一物侧;及
一外周面,环绕该光学有效面;一塑胶镜筒,包含:
一物端承靠面,其与该外周面的一部分承靠,且该物端承靠面与该外周面于平行该光轴的一方向重叠;及
一物端外表面,其与该物端承靠面相对地设置,且该物端承靠面与该物端外表面于平行该光轴的该方向重叠;以及
一光线吸收部位,其设置于该塑胶镜筒的该物端外表面的一物侧,并与该塑胶镜筒连接,该光线吸收部位与所述多个光学透镜中该至少一者的该外周面沿垂直该光轴的一方向重叠,且该光线吸收部位环绕该光学有效面;
其中,该光线吸收部位不与该塑胶镜筒重叠的该至少一部分靠近该成像镜头的一像侧的最大直径为ψA,该入光瞳的直径为EPD,其满足下列条件:
0.75<EPD/ψA≤1。
35.根据权利要求34所述的成像镜头,其特征在于,所述多个光学透镜中该至少一者为一塑胶光学透镜,且所述多个光学透镜中该至少一者的该外周面和该光线吸收部位与所述多个光学透镜中该至少一者的该外周面沿垂直该光轴的方向重叠的一部分无注料痕。
36.根据权利要求34所述的成像镜头,其特征在于,该外周面包含至少一外斜面,该至少一外斜面与该光轴的夹角为α,该光线吸收部位沿平行该光轴的总长度为L,其满足下列条件:
1度<α<50度;以及
0.2mm<L<1.5mm。
37.根据权利要求34所述的成像镜头,其特征在于,该光线吸收部位具有一非均匀厚度。
38.根据权利要求34所述的成像镜头,其特征在于,该光线吸收部位不与该塑胶镜筒重叠的该至少一部分靠近该成像镜头的该像侧的最大直径为ψA,该入光瞳的直径为EPD,其满足下列条件:
0.85<EPD/ψA≤1。
CN201922262030.0U 2019-09-25 2019-12-17 成像镜头、相机模块及电子装置 Withdrawn - After Issue CN211318864U (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW108134707A TWI731418B (zh) 2019-09-25 2019-09-25 成像鏡頭、相機模組及電子裝置
TW108134707 2019-09-25

Publications (1)

Publication Number Publication Date
CN211318864U true CN211318864U (zh) 2020-08-21

Family

ID=72082560

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201922262030.0U Withdrawn - After Issue CN211318864U (zh) 2019-09-25 2019-12-17 成像镜头、相机模块及电子装置
CN201911298389.1A Active CN112649938B (zh) 2019-09-25 2019-12-17 成像镜头、相机模块及电子装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201911298389.1A Active CN112649938B (zh) 2019-09-25 2019-12-17 成像镜头、相机模块及电子装置

Country Status (3)

Country Link
US (1) US20210088752A1 (zh)
CN (2) CN211318864U (zh)
TW (1) TWI731418B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112649938A (zh) * 2019-09-25 2021-04-13 大立光电股份有限公司 成像镜头、相机模块及电子装置
CN114911020A (zh) * 2021-02-09 2022-08-16 大立光电股份有限公司 成像镜头、相机模组与电子装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113064256B (zh) * 2019-12-31 2023-04-11 玉晶光电(厦门)有限公司 光学成像镜头模块
KR20210098765A (ko) * 2020-02-03 2021-08-11 주식회사 세코닉스 렌즈 조립 구조체 및 렌즈 조립 구조체를 갖는 스마트기기
TWI732541B (zh) * 2020-04-27 2021-07-01 大立光電股份有限公司 成像透鏡組與成像鏡頭模組
CN115704926A (zh) * 2021-08-12 2023-02-17 大立光电股份有限公司 相机模块、影像模块及电子装置
TWI812422B (zh) * 2022-03-24 2023-08-11 大立光電股份有限公司 成像鏡頭、相機模組及電子裝置
JP2024007111A (ja) * 2022-07-05 2024-01-18 株式会社ダイセル レンズユニット

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8995064B2 (en) * 2011-08-22 2015-03-31 Nikon Corporation Zoom lens, imaging apparatus, and method for manufacturing zoom lens
KR20160091085A (ko) * 2015-01-23 2016-08-02 삼성전자주식회사 반사 굴절 광학계 및 이미지 촬영 장치
CN205210390U (zh) * 2015-11-17 2016-05-04 瑞声声学科技(苏州)有限公司 镜头模组
CN205210493U (zh) * 2015-11-17 2016-05-04 瑞声声学科技(苏州)有限公司 镜头模组
TWM520143U (zh) * 2015-12-17 2016-04-11 大立光電股份有限公司 成像鏡頭模組及電子裝置
CN105549173A (zh) * 2016-01-28 2016-05-04 宁波舜宇光电信息有限公司 光学镜头和摄像模组及其组装方法
WO2018055845A1 (ja) * 2016-09-23 2018-03-29 富士フイルム株式会社 レンズユニット
CN207216058U (zh) * 2017-09-20 2018-04-10 浙江舜宇光学有限公司 塑胶透镜及镜头
TWI647480B (zh) * 2018-01-30 2019-01-11 大立光電股份有限公司 具有雙色模造光學元件的成像鏡頭與電子裝置
US20210018715A1 (en) * 2018-03-30 2021-01-21 Kyocera Corporation Image lens unit and electronic device
CN208636492U (zh) * 2018-08-04 2019-03-22 瑞声科技(新加坡)有限公司 一种镜头模组
CN208636526U (zh) * 2018-08-15 2019-03-22 瑞声科技(新加坡)有限公司 一种镜头模组
CN110196478B (zh) * 2019-06-10 2022-03-22 Oppo广东移动通信有限公司 镜头、相机模组和电子装置
TWI731418B (zh) * 2019-09-25 2021-06-21 大立光電股份有限公司 成像鏡頭、相機模組及電子裝置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112649938A (zh) * 2019-09-25 2021-04-13 大立光电股份有限公司 成像镜头、相机模块及电子装置
CN112649938B (zh) * 2019-09-25 2023-01-20 大立光电股份有限公司 成像镜头、相机模块及电子装置
CN114911020A (zh) * 2021-02-09 2022-08-16 大立光电股份有限公司 成像镜头、相机模组与电子装置
CN114911020B (zh) * 2021-02-09 2023-11-10 大立光电股份有限公司 成像镜头、相机模组与电子装置

Also Published As

Publication number Publication date
TWI731418B (zh) 2021-06-21
CN112649938B (zh) 2023-01-20
CN112649938A (zh) 2021-04-13
TW202113416A (zh) 2021-04-01
US20210088752A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
CN211318864U (zh) 成像镜头、相机模块及电子装置
CN108693629B (zh) 含有塑胶透镜的成像透镜组、成像镜头模块及电子装置
CN210742587U (zh) 成像镜头模块、相机模块及电子装置
CN211826845U (zh) 成像镜头、相机模块及电子装置
TWI701473B (zh) 成像鏡頭模組、相機模組及電子裝置
CN214011607U (zh) 成像镜头、取像装置与电子装置
TW202036068A (zh) 成像鏡頭模組及電子裝置
CN211236418U (zh) 成像镜头模块与电子装置
CN213210572U (zh) 成像透镜组与成像镜头模块
CN213780493U (zh) 成像镜头、取像装置及电子装置
TWI742687B (zh) 塑膠透鏡與成像鏡頭
TW202223472A (zh) 使用固定元件的成像鏡頭與電子裝置

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned

Granted publication date: 20200821

Effective date of abandoning: 20230120

AV01 Patent right actively abandoned

Granted publication date: 20200821

Effective date of abandoning: 20230120