CN209586523U - 一种集成太阳能甲烷干式重整的富氧燃烧发电*** - Google Patents

一种集成太阳能甲烷干式重整的富氧燃烧发电*** Download PDF

Info

Publication number
CN209586523U
CN209586523U CN201920141948.7U CN201920141948U CN209586523U CN 209586523 U CN209586523 U CN 209586523U CN 201920141948 U CN201920141948 U CN 201920141948U CN 209586523 U CN209586523 U CN 209586523U
Authority
CN
China
Prior art keywords
carbon dioxide
solar energy
regenerator
heat exchanger
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201920141948.7U
Other languages
English (en)
Inventor
许诚
辛团团
李少奎
陈远杭
王敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201920141948.7U priority Critical patent/CN209586523U/zh
Application granted granted Critical
Publication of CN209586523U publication Critical patent/CN209586523U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本实用新型公开了属于太阳能辅助火力发电领域的一种集成太阳能甲烷干式重整的富氧燃烧发电***。该***主要由太阳能重整反应器、多流换热器、压缩机、燃烧室、透平、回热器、空气分离装置等部分组成。在该***中,聚集的高温太阳能为甲烷二氧化碳催化重整反应提供热量,产生的合成气富氧燃烧直接加热驱动超临界二氧化碳发电,燃烧产物可从尾气中分离;火力发电产生的二氧化碳可用于燃料合成,进行资源化利用;***通过增设多流换热器、低压透平,实现热量和压力的高效回收。该***通过燃料侧集成太阳能,可减少太阳能波动对动力循环的影响;同时通过富氧燃烧直接加热的超临界二氧化碳动力循环,实现碳基燃料发电零排放。

Description

一种集成太阳能甲烷干式重整的富氧燃烧发电***
技术领域
本实用新型属于太阳能辅助火力发电领域,特别涉及一种集成太阳能甲烷干式重整的富氧燃烧发电***,具体说是一种太阳能驱动的甲烷与二氧化碳催化重整反应集成于富氧燃烧直接加热的超临界二氧化碳发电***。
背景技术
太阳能具有分布广泛、储量丰富、清洁可再生等优良特性,被视为最有前景的绿色能源之一;同时,太阳能的波动性、间歇性制约着太阳能的发展。将太阳能集成到火力发电被认为是近中期一种高效利用太阳能热的有效途径。通常,太阳能通过加热循环工质(如给水、蒸汽、空气等)的方式辅助火力发电,不仅可以达到较高的热电转化效率,而且能有效减小太阳能间歇性对电力输出的影响;然而,太阳能的输入份额受***参数的制约,为提高太阳能输入份额,往往需要复杂的***调节措施或高效的储能手段。从燃料侧集成太阳能有望进一步增加太阳能的输入份额,并且通过燃料对太阳能进行稳定的化学储能,减少太阳能波动性对动力循环热力性能的影响。
甲烷二氧化碳重整反应,又称为甲烷干式重整,是一个高强度吸热的过程,为太阳能燃料侧集成提供了条件。甲烷干式重整是在高温催化条件下,天然气的主要成分甲烷与二氧化碳发生重整反应,生成高热值合成气;太阳能驱动重整反应可有效转化成合成气中稳定的化学能,并可通过高参数的动力循环进行高效利用。将甲烷二氧化碳重整产生的合成气用于传统的燃气轮机发电,虽然可以达到较高的能量利用效率,并且由于太阳能的输入可有效降低碳排放;但是仍然无法避免二氧化碳及其他污染物的排放,而且甲烷干式重整反应需要二氧化碳作为反应物,往往需要增加额外的捕碳设备。
富氧燃烧直接加热驱动的超临界二氧化碳动力循环可从排气中直接分离获取二氧化碳,实现碳基燃料零排放发电。在该动力循环中,含碳燃料与氧气燃烧,直接加热超临界二氧化碳,产生的高温高压烟气进入透平做功发电,透平排气通过回热器、冷却器等降温冷却,分离出燃烧产生的水分及酸性气体;脱水后的高浓度二氧化碳通过压缩机加压后可方便的分离出燃烧产生的二氧化碳。该动力循环无需复杂的捕碳设备,采用富氧燃烧方式实现碳基燃料发电零排放;并且利用超临界二氧化碳在临界点附近压缩耗功小以及采用回热手段,提高发电效率。若直接加热的超临界二氧化碳动力循环与太阳能驱动的甲烷干式重整集成,不仅可在保证高效发电的前提下实现零排放,而且动力循环产生的二氧化碳可以作为甲烷重整燃料合成的原料,实现二氧化碳的资源化利用;由此提高可再生能源的发电比例,降低化石能源消耗,实现碳基燃料发电零排放。
实用新型内容
本实用新型的目的是针对现有技术的不足,提出一种集成太阳能甲烷干式重整的富氧燃烧发电***,其特征在于,混合器通过多流换热器左侧换热管与太阳能重整反应器连接,太阳能重整反应器又通过多流换热器中间换热管与合成气冷却器连接;合成气冷却器连接储气室与合成气压缩机;储气室通过合成气压缩机与燃烧室连接;空气分离器通过氧气压缩机也与燃烧室连接;燃烧室与高压透平、1号回热器右侧回热管、2号回热器右侧回热管、烟气冷却器、高压酸液分离器、二氧化碳压缩机、2号回热器左侧回热管、1号回热器左侧回热管串联形成回路;二氧化碳压缩机又连接二氧化碳储存室,并通过多流换热器右侧换热管连接于1号回热器左侧回热管与2号回热器左侧回热管的连接节点;1号回热器右侧回热管与2号回热器右侧回热管的连接节点与低压透平、低压酸液分离器、混合器依次连接;高压透平与低压透平、发电机串联;太阳能通过定日镜投射到反射器上,然后聚集到太阳能重整反应器。
本实用新型的有益效果:太阳能通过甲烷二氧化碳催化重整从燃料侧与火力发电集成,可减少太阳辐射强度波动对动力循环的影响,并以化学能的形式实现稳定储存;同时,通过与富氧燃烧直接加热的超临界二氧化碳动力循环集成,可提高发电效率,实现零排放,并为甲烷干式重整提供反应所需二氧化碳,具有以下特点:
(1)通过储气室储存太阳能催化重整反应产生的过量的合成气,可适应太阳能辐射强度的波动,减少对动力循环的影响,同时实现太阳能的稳定的化学储能;当产生的合成气不足维持电力输出时,***可直接燃烧消耗甲烷,无需复杂的备用运行措施。
(2)太阳能重整反应器产生的高温合成气可通过多流换热器加热重整反应所需的常压二氧化碳和动力循环中一部分超临界二氧化碳,进行热量的高效回收,提高***能量的整体利用效率。
(3)从动力循环回热器抽取一定温度下的低压烟气,通过低压透平做功,降低至大气压力,与甲烷催化重整反应压力一致;同时温度可降低环境温度,分离燃烧产生的酸性气体和水分后,可用于甲烷的重整反应,无需增加额外的节流、冷却装置,并有效回收烟气的压力进一步提高***的能量利用效率。
(4)太阳能甲烷二氧化碳重整应用于富氧燃烧直接加热的超临界二氧化碳动力循环,可以在保证高效发电的前提下实现零排放,无需增加复杂的捕碳设备;同时,动力循环***燃烧产生的二氧化碳可以通过甲烷干式重整合成燃料,实现二氧化碳的资源化利用。
附图说明
图1为集成太阳能甲烷干式重整的富氧燃烧二氧化碳发电***示意图。
图中:1-混合器,2-多流换热器,3-太阳能重整反应器,4-合成气冷却器,5-储气室,6-合成气压缩机,7-空气分离器,8-氧气压缩机,9-燃烧室,10-高压透平,11-低压透平,12-发电机,13-1号回热器,14-2号回热器,15-烟气冷却器,16-高压酸液分离器,17-二氧化碳压缩机,18-二氧化碳储存室,19-低压酸液分离器,20-定日镜,21-反射器。
具体实施方式
本实用新型提出了集成太阳能甲烷干式重整的富氧燃烧发电***,下面结合附图予以说明。
如图1所示的集成太阳能甲烷干式重整的富氧燃烧二氧化碳发电***,混合器1通过多流换热器2左侧换热管与太阳能重整反应器3连接,太阳能重整反应器3又通过多流换热器2中间换热管连接与合成气冷却器4;合成气冷却器4连接储气室5,并通过合成气压缩机6与燃烧室9连接;空气分离器7通过氧气压缩机8也与燃烧室9连接;燃烧室9与高压透平10、1号回热器13右侧回热管、2号回热器14右侧回热管、烟气冷却器15、高压酸液分离器16、二氧化碳压缩机17、2号回热器14左侧回热管、1号回热器13左侧回热管串联形成回路;二氧化碳压缩机17又连接二氧化碳储存室18,并通过多流换热器2右侧换热管连接于1号回热器13左侧回热管与2号回热器14左侧回热管的连接节点;1号回热器13右侧回热管与2号回热器14右侧回热管的连接节点与低压透平11、低压酸液分离器19、混合器1依次连接;高压透平10与低压透平11、发电机12串联;太阳能通过定日镜20投射到反射器21上,然后聚集到太阳能重整反应器3。
本实用新型的富氧燃烧发电原理,天然气通过混合器1与来自低压酸液分离器19的低压二氧化碳混合,天然气二氧化碳混合气体通过多流换热器2预加热,然后送至太阳能重整反应器3;天然气的主要成分甲烷与二氧化碳在太阳能重整反应器3内发生催化重整反应,产生的高温合成气依次通过多流换热器2、合成冷却器4冷却降温;冷却后的合成气一部分通入储气室5,其余通过合成气压缩机6加压送至燃烧室9;空气通过空气分离器7产生高纯度氧气,然后通过氧气压缩机8加压送至燃烧室9;高压合成气与高压氧气在燃烧室9燃烧,直接加热来自1号回热器13左侧回热管的超临界二氧化碳;燃烧室9产生的高温高压烟气通过高压透平10做功,产生的高温排气进入1号回热器13右侧回热管换热降温;1号回热器13右侧回热管出口的一部分烟气分离送至低压透平11做功,产生的低压低温排气通过低压酸液分离器19分离出酸液,低压酸液分离器19出口的高纯度低压二氧化碳送至混合器1与天然气混合;1号回热器13右侧回热管出口的其余烟气依次通过2号回热器14右侧回热管、烟气冷却器15冷却降温,然后通过高压酸液分离器16分离出酸液;高压酸液分离器16产生的高纯度二氧化碳通过二氧化碳压缩机17加压,形成的一部分超临界二氧化碳依次通过2号回热器14左侧回热管、1号回热器13左侧回热管预加热,然后送至燃烧室9,用于调节燃烧室温度;二氧化碳压缩机17出口的另一部分超临界二氧化碳通过多流换热器2加热,然后与2号回热器14左侧回热管出口超临界二氧化碳汇合,其余超临界二氧化碳作为燃烧产物储存在二氧化碳储存室18;高压透平10与低压透平11产生的轴功,通过发电机12发电做功;太阳辐射能依次通过定日镜20、反射器21聚集到太阳能重整反应器3,太阳能重整反应器3的反应温度为700-900℃,出口的高温合成气通过多流换热器2分别加热混合器1出口的天然气、二氧化碳的混合物和二氧化碳压缩机17出口的一部分超临界二氧化碳;驱动天然气的主要成分甲烷与二氧化碳发生重整反应。
其中,1号回热器13右侧回热管出口的一部分低压二氧化碳通过低压透平11做功,压力和温度分别降低至1atm和环境温度,回收二氧化碳的压力低压透平11产生的常压二氧化碳经低压酸液分离器19分离酸性气体和水分后,参与天然气主要成分甲烷的重整反应。太阳能重整反应器3所用的催化剂为金属基催化剂(镍基、钌基、铑基)、碳基催化剂或二者混合物。
当太阳辐射强度足够大时,即太阳能重整反应器3所消耗的二氧化碳的量大于燃烧产生的二氧化碳的量,二氧化碳储存室18的超临界二氧化碳需通入多流换热器2右侧换热管,以维持超临界二氧化碳动力循环所需的二氧化碳工质的量。
当辐照强度增强时,天然气和来自低压酸液分离器19的二氧化碳通入混合器1的流量增大,二氧化碳压缩机17出口的超临界二氧化碳通入二氧化碳储存室18的流量减小,合成气冷却器4出口的一部分合成气储存在储气室5内;当辐照强度变弱或无太阳能时,天然气和来自低压酸液分离器19的二氧化碳通入混合器1的流量减小,二氧化碳压缩机17出口的超临界二氧化碳通入二氧化碳储存室18的流量增大,储气室5储存的合成气需通过合成气压缩机6通入燃烧室9;当储气室5燃料不足时,天然气直接通过合成气压缩机6通入燃烧室9,以维持发电量。

Claims (1)

1.一种集成太阳能甲烷干式重整的富氧燃烧发电***,其特征在于,混合器(1)通过多流换热器(2)左侧换热管与太阳能重整反应器(3)连接,太阳能重整反应器(3)又通过多流换热器(2)中间换热管与合成气冷却器(4)连接;合成气冷却器(4)连接储气室(5)和合成气压缩机(6);储气室(5)通过合成气压缩机(6)与燃烧室(9)连接;空气分离器(7)通过氧气压缩机(8)也与燃烧室(9)连接;燃烧室(9)与高压透平(10)、1号回热器(13)右侧回热管、2号回热器(14)右侧回热管、烟气冷却器(15)、高压酸液分离器(16)、二氧化碳压缩机(17)、2号回热器(14)左侧回热管、1号回热器(13)左侧回热管串联形成回路;二氧化碳压缩机(17)又连接二氧化碳储存室(18),并通过多流换热器(2)右侧换热管连接于1号回热器(13)左侧回热管与2号回热器(14)左侧回热管的连接节点;1号回热器(13)右侧回热管与2号回热器(14)右侧回热管的连接节点与低压透平(11)、低压酸液分离器(19)、混合器(1)依次连接;高压透平(10)与低压透平(11)、发电机(12)串联;太阳能通过定日镜(20)投射到反射器(21)上,然后聚集到太阳能重整反应器(3)。
CN201920141948.7U 2019-01-28 2019-01-28 一种集成太阳能甲烷干式重整的富氧燃烧发电*** Withdrawn - After Issue CN209586523U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201920141948.7U CN209586523U (zh) 2019-01-28 2019-01-28 一种集成太阳能甲烷干式重整的富氧燃烧发电***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201920141948.7U CN209586523U (zh) 2019-01-28 2019-01-28 一种集成太阳能甲烷干式重整的富氧燃烧发电***

Publications (1)

Publication Number Publication Date
CN209586523U true CN209586523U (zh) 2019-11-05

Family

ID=68380806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201920141948.7U Withdrawn - After Issue CN209586523U (zh) 2019-01-28 2019-01-28 一种集成太阳能甲烷干式重整的富氧燃烧发电***

Country Status (1)

Country Link
CN (1) CN209586523U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109723557A (zh) * 2019-01-28 2019-05-07 华北电力大学 集成太阳能甲烷干式重整的富氧燃烧二氧化碳发电***
CN113738467A (zh) * 2021-09-23 2021-12-03 浙江浙能温州液化天然气有限公司 一种利用液化天然气进行带碳捕集发电的集成***

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109723557A (zh) * 2019-01-28 2019-05-07 华北电力大学 集成太阳能甲烷干式重整的富氧燃烧二氧化碳发电***
CN113738467A (zh) * 2021-09-23 2021-12-03 浙江浙能温州液化天然气有限公司 一种利用液化天然气进行带碳捕集发电的集成***
CN113738467B (zh) * 2021-09-23 2023-07-14 浙江浙能温州液化天然气有限公司 一种利用液化天然气进行带碳捕集发电的集成***

Similar Documents

Publication Publication Date Title
CN108439336B (zh) 一种零排放氢电联产***
CN110544785B (zh) 一种天然气自热重整质子交换膜燃料电池分布式热电联产***及方法
CN106784936B (zh) 一种基于化学链燃烧的氢气储能、热电联产及co2捕获的***及方法
CN101540410B (zh) 天然气制氢与质子交换膜燃料电池集成发电的方法及装置
CN203783662U (zh) 利用生物质和太阳能来制取甲醇及发电的多联产装置
CN109361001A (zh) 一种整体煤气化固体氧化物燃料电池发电***及工艺
CN109004244A (zh) 基于太阳能甲醇重整制氢的固体氧化物燃料电池联合***
CN114892180B (zh) 一种光伏光热驱动的热化学与电解耦合制氢***及方法
CN209586523U (zh) 一种集成太阳能甲烷干式重整的富氧燃烧发电***
CN208589494U (zh) 基于太阳能甲醇重整制氢的固体氧化物燃料电池联合***
CN208982172U (zh) 一种零碳排放的三循环整体煤气化燃料电池发电***
CN210516883U (zh) 天然气自热重整质子交换膜燃料电池分布式热电联产***
Wang et al. Thermodynamic performance comparison of SOFC-MGT-CCHP systems coupled with two different solar methane steam reforming processes
CN113005475B (zh) 一种基于氨基热化学能储能的太阳能高温电解水耦合制氢的***及工艺
CN109723557B (zh) 集成太阳能甲烷干式重整的富氧燃烧二氧化碳发电***
CN103373705A (zh) 中低温太阳热能品位提升与co2一体化分离的方法和装置
CN109119660A (zh) 基于城市天然气的热电氢多联产***
CN110283623A (zh) 一种新型生物质-太阳能分布式多联产***
CN109361000A (zh) 整体煤气化固体氧化物燃料电池-蒸汽轮机联合发电***及工艺
CN110257106A (zh) 一种采用水煤浆气化的整体煤气化燃料电池发电***及方法
CN113565681B (zh) 一种使用电加热气化炉的耦合***及其多能转化方法
CN214836590U (zh) 一种太阳能驱动甲烷湿重整的零排放发电***
CN201402833Y (zh) 基于天然气制氢与质子交换膜燃料的电池集成发电装置
CN209569080U (zh) 一种利用太阳能驱动二氧化碳热分解的零排放发电***
CN208706777U (zh) 基于城市天然气的热电氢多联产***

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20191105

Effective date of abandoning: 20230801

AV01 Patent right actively abandoned

Granted publication date: 20191105

Effective date of abandoning: 20230801

AV01 Patent right actively abandoned
AV01 Patent right actively abandoned