CN1946923A - 内燃机的控制装置 - Google Patents

内燃机的控制装置 Download PDF

Info

Publication number
CN1946923A
CN1946923A CNA2005800134306A CN200580013430A CN1946923A CN 1946923 A CN1946923 A CN 1946923A CN A2005800134306 A CNA2005800134306 A CN A2005800134306A CN 200580013430 A CN200580013430 A CN 200580013430A CN 1946923 A CN1946923 A CN 1946923A
Authority
CN
China
Prior art keywords
mentioned
air
combustion engine
value
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800134306A
Other languages
English (en)
Other versions
CN100476179C (zh
Inventor
安井裕司
齐藤光宣
田上裕
东谷幸祐
佐藤正浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of CN1946923A publication Critical patent/CN1946923A/zh
Application granted granted Critical
Publication of CN100476179C publication Critical patent/CN100476179C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0226Variable control of the intake valves only changing valve lift or valve lift and timing
    • F02D13/023Variable control of the intake valves only changing valve lift or valve lift and timing the change of valve timing is caused by the change in valve lift, i.e. both valve lift and timing are functionally related
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/048Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of a variable crank stroke length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • F02D13/0238Variable control of the intake valves only changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/032Electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/08Redundant elements, e.g. two sensors for measuring the same parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

本发明提供了一种内燃机的控制装置。本发明的内燃机控制装置即使在存在所计算出的吸入空气量的可靠性下降的可能性的情况下,也能提高燃料控制和点火正时控制的控制精度,并可削减制造成本。控制装置根据气门升程、凸轮相位以及压缩比计算第1估计进气量,根据由空气流量传感器所检测出的空气流量计算第2估计进气量,当根据发动机转速、气门升程、凸轮相位以及压缩比所计算的估计流量Gin_vt为Gin_vt≤Gin1时,根据第1估计进气量决定燃料喷射量,当Gin2≤Gin_vt时,根据第2估计进气量决定燃料喷射量。

Description

内燃机的控制装置
技术领域
本发明涉及对通过可变进气机构自由地改变吸入到气缸内的吸入空气量的内燃机的燃料量和点火正时进行控制的内燃机控制装置。
背景技术
以往,作为自由地变更通过可变进气机构吸入到气缸内的吸入空气量的内燃机控制装置,公知有在专利文献1中记载的控制装置。该控制装置通过可变进气机构控制吸入空气量,具有:检测内燃机的进气通路内的空气流量的空气流量传感器;检测曲轴的旋转状态的曲轴角传感器;检测油门踏板开度(以下称为“油门开度”)的油门开度传感器;以及输入来自这些传感器的检测信号的控制器。控制器根据曲轴角传感器的检测信号计算内燃机转速,并根据空气流量传感器的检测信号计算吸入空气量。并且,在内燃机中,作为可变进气机构,设置有节气门机构和可变气门升程机构,使用该节气门机构自由地改变进气通路内的空气流量,并使用可变气门升程机构自由地改变进气门的升程(以下称为“气门升程”)。
在该控制装置中,如下所述,使用控制器控制吸入空气量。首先,根据内燃机转速、油门开度以及吸入空气量,判定内燃机处于什么样的运转负荷区域内。然后,当判定为内燃机处于包含怠速运转区域在内的低转速低负荷区域内时,通过可变气门升程机构把气门升程控制成规定的低升程,并通过节气门机构把节气门开度控制成与发动机转速和油门开度对应的值。另一方面,当判定为内燃机处于从中转速中负荷区域至高转速高负荷区域内时,把节气门控制成全开状态,并把气门升程控制成与发动机转速和油门开度对应的值。
专利文献1:日本特开2003-254100号公报
在上述以往的控制装置中,由于空气流量传感器的分辨率低,存在不能适当地计算吸入空气量的情况。例如,在内燃机中,有以下内燃机,即:为了减小进气通路内的流动阻力,以提高气缸内的进气填充效率,把进气通路的口径设定成大的值(即大口径)。在把上述以往的控制装置应用于这种内燃机的情况下,当内燃机处于低转速低负荷区域内时,由于进气流速成为极低的值,因而在上述以往的控制装置中,由于空气流量传感器的分辨率低,不能适当地计算吸入空气量,吸入空气量控制的控制精度下降。其结果,当根据这种吸入空气量控制提供给燃烧室的燃料量时,其控制精度也下降,从而可能导致燃料效率和排气特性的恶化。除此之外,由于在应用了上述以往的控制装置的内燃机内设置有节气门机构,因而相应地使进气通路内的流动阻力上升。
并且,在内燃机中,也有以下情况,即:在高负荷区域内发生进气脉动,或者进气流速过高,从而根据空气流量传感器的检测信号计算出的吸入空气量的可靠性降低,在这种情况下,也发生上述问题。
另一方面,在内燃机的点火正时控制中,以往执行以下方法,即:作为表示内燃机的负荷的负荷参数,使用发动机转速和吸入空气量,并且使用针对这种负荷参数预先设定了点火正时的映射值的点火正时映射图,而且假设在上述大口径的内燃机中也使用这种控制方法来控制点火正时。然而,如上所述,在以往的控制装置中,由于在低负荷区域中,因空气流量传感器的分辨率低而不能适当地计算出吸入空气量,因而点火正时控制的控制精度也降低。并且,由于气缸中的进气填充效率根据发动机转速而变化,开始发生爆震的高负荷区域内的吸入空气量的最大值也根据发动机转速而变化,因而在这种高负荷区域内,有必要在对于每个设定发动机转速使吸入空气量的设定数及其最大值相互不同的同时,进行极细致的设定。这样,点火正时映射图的数据量增大,从而使数据采样用的测量次数增多,并招致ROM等的存储介质的容量上升,结果,制造成本增大。除此之外,如上所述,在高负荷区域中根据空气流量传感器的检测信号计算出的吸入空气量的可靠性低的内燃机中,点火正时控制的控制精度也低下。
发明内容
本发明是为了解决上述课题而作成的,本发明的目的在于提供即使在存在所计算出的吸入空气量的可靠性低的可能性的情况下,也能提高燃料控制和点火正时控制的控制精度,并可削减制造成本的内燃机控制装置。
为了达到上述目的,根据本发明的第1方式,提供了一种控制装置,该控制装置在自由变更通过可变进气机构吸入到气缸内的吸入空气量的内燃机中,控制提供给燃烧室内的燃料量,其特征在于,该控制装置具有:工作状态参数检测单元,其检测表示可变进气机构的工作状态的工作状态参数;第1估计进气量计算单元,其根据工作状态参数,计算第1估计进气量作为吸入空气量的估计值;空气流量检测单元,其检测在内燃机的进气通路内流动的空气流量;第2估计进气量计算单元,其根据空气流量,计算第2估计进气量作为吸入空气量的估计值;负荷参数检测单元,其检测表示内燃机的负荷的负荷参数;以及燃料量决定单元,其在该负荷参数处于规定的第1范围内时,根据上述第1估计进气量决定上述燃料量,在上述负荷参数处于不同于上述规定的第1范围的规定的第2范围内时,根据上述第2估计进气量决定上述燃料量。
根据该内燃机的控制装置的构成,第1估计进气量是作为吸入空气量的估计值,根据表示可变进气机构的工作状态的工作状态参数来计算的,第2估计进气量是作为吸入空气量的估计值,根据在内燃机的进气通路内流动的空气的流量来计算的,并且,当表示内燃机的负荷的负荷参数处于规定的第1范围内时,根据第1估计进气量来决定提供给燃烧室内的燃料量。因此,通过把该规定的第1范围设定成由于由空气流量检测单元所检测的空气流量的可靠性降低而使第1估计进气量的可靠性超过第2估计进气量的可靠性的负荷区域,即使在这样的负荷区域内,也能根据第1估计进气量适当地决定燃料量。例如,在进气通路被设定成大口径的内燃机的情况下,在低负荷区域内,空气流量成为极小的值,从而使第1估计进气量的可靠性超过第2估计进气量的可靠性,因而可以把规定的第1范围设定成这种低负荷区域。另一方面,在高负荷区域内发生进气脉动、或者进气流速过高而使第1估计进气量的可靠性超过第2估计进气量的可靠性的内燃机的情况下,可以把规定的第1范围设定成这种高负荷区域。
而且,当负荷参数处于与规定的第1范围不同的规定的第2范围内时,由于提供给燃烧室内的燃料量是根据检测进气量来决定的,因而通过把该规定的第2范围设定成使第2估计进气量的可靠性超过第1估计进气量的可靠性的负荷区域,即使在这种负荷区域内,也可以根据第2估计进气量适当地计算燃料量。如上所述,由于即使在第1估计进气量的可靠性超过第2估计进气量的可靠性的负荷区域及其相反的负荷区域内,也能适当地决定燃料量,因而可提高燃料控制的控制精度即空燃比控制的控制精度。其结果,可改善燃料效率和排气特性(另外,本说明书中的“工作状态参数的检测”、“负荷参数的检测”以及“空气流量的检测”不限于使用传感器直接检测工作状态参数、负荷参数以及空气流量,还包括进行计算或估计)。
优选的是,规定的第1范围和规定的第2范围被设定成相互不重复;当负荷参数处于规定的第1范围和规定的第2范围之间时,燃料量决定单元根据第1估计进气量和第2估计进气量决定燃料量。
根据该优选方式的构成,当负荷参数处于规定的第1范围和规定的第2范围之间时,根据第1估计进气量和第2估计进气量来决定燃料量,因而与把燃料量决定中使用的吸入空气量估计值从第1估计进气量和第2估计进气量的一方直接切换到另一方的情况不同,可避免因燃料量变化而引起的扭矩级差的发生等,可提高运转性。
优选的是,上述控制装置还具有:第1故障判定单元,其判定空气流量检测单元是否发生故障;当由第1故障判定单元判定为空气流量检测单元发生故障时,燃料量决定单元与负荷参数值无关地根据第1估计进气量计算燃料量。
根据该优选方式的构成,当判定为空气流量检测单元发生故障时,与负荷参数值无关地根据第1估计进气量来计算燃料量,因而即使当由于空气流量检测单元的故障而使第2估计进气量的可靠性下降时,也可以根据第1估计进气量适当地计算燃料量,可确保燃料控制中的良好控制精度。
优选的是,上述控制装置还具有:第2故障判定单元,其判定可变进气机构是否发生故障;以及驱动单元,其在通过第2故障判定单元判定为可变进气机构发生故障时,驱动可变进气机构,以使吸入空气量成为规定值,燃料量决定单元在第2故障判定单元判定为可变进气机构发生故障时,根据规定值来决定燃料量。
根据该优选方式的构成,由于在判定为可变进气机构发生故障时,驱动可变进气机构,以使吸入空气量成为规定值,并根据规定值来决定燃料量,因而通过把该规定值设定成合适的值,可避免伴随发动机转速上升的加速,同时,可在避免由发动机转速的下降引起的减速的同时继续进行运转。这样,在内燃机用作车辆的动力源的情况下,可确保车辆的必要最低限度的行驶性能。
为了达到上述目的,根据本发明的第2方式,提供了一种内燃机的控制装置,其特征在于,该控制装置具有:吸入空气量计算单元,其计算吸入到内燃机的气缸内的吸入空气量;发动机转速检测单元,其检测内燃机的发动机转速;最大吸入空气量计算单元,其根据发动机转速,计算在该发动机转速下可吸入到气缸内的最大吸入空气量;以及点火正时决定单元,其根据吸入空气量和最大吸入空气量的一方与另一方的比、以及发动机转速,决定内燃机的点火正时。
根据该内燃机的控制装置的构成,由于内燃机的点火正时是根据吸入空气量与最大吸入空气量之比和发动机转速来决定的,因而可使用针对该比值和发动机转速设定的点火正时映射图来决定点火正时。在这样决定点火正时的情况下,吸入空气量和最大吸入空气量的一方和另一方的比成为从值0到值1的范围内的值、或者从值1到无限大的范围内的值,并且吸入空气量成为接近最大吸入空气量的值,在发生爆震的高负荷区域内,该比值成为包含值1在内的值1附近的值,并且对于发动机转速的相互不同的多个设定值,对于各设定值不会发生变动。这样,在根据发动机转速和该比值设定了点火正时映射图的数据的情况下,可在发动机转速的多个设定值之间,针对该比值设定为相同的数目,因而与针对发动机转速和吸入空气量设定点火正时映射图的数据的以往情况相比,可减少数据总数,可相应地削减ROM等的存储介质的存储容量,可削减制造成本。
优选的是,内燃机具有:可变进气机构,其自由地变更吸入空气量,上述控制装置还具有:工作状态参数检测单元,其检测表示可变进气机构的工作状态的工作状态参数;空气流量检测单元,其检测在内燃机的进气通路内流动的空气流量;以及负荷参数检测单元,其检测表示内燃机的负荷的负荷参数,当负荷参数在规定的第1范围内时,吸入空气量计算单元根据工作状态参数计算吸入空气量,并且当负荷参数在与规定的第1范围不同的规定的第2范围内时,根据空气流量计算吸入空气量。
根据该优选方式的构成,当负荷参数在规定的第1范围内时,根据表示可变进气机构的工作状态的工作状态参数来计算吸入空气量,并且当负荷参数在与规定的第1范围不同的规定的第2范围内时,根据在内燃机的进气通路内流动的空气流量来计算吸入空气量,并且根据这样计算出的吸入空气量来决定点火正时。因此,通过把该规定的第1范围设定成由于工作状态参数检测值的可靠性超过空气流量检测值的可靠性而使根据工作状态参数计算出的吸入空气量的可靠性超过根据空气流量计算出的吸入空气量的可靠性的负荷区域,即使在这种负荷区域内,也能根据吸入空气量适当地决定点火正时。例如,如上所述,在进气通路被设定成大口径的内燃机的情况下,只要把规定的第1范围设定成低负荷区域即可,另一方面,在高负荷区域内空气流量检测值的可靠性低于工作状态参数检测值的可靠性的内燃机的情况下,可以把规定的第1范围设定成这种高负荷区域。
而且,当负荷参数在与规定的第1范围不同的规定的第2范围内时,由于吸入空气量是根据空气流量来计算的,因而通过把该规定的第2范围设定成由于空气流量的可靠性超过工作状态参数的可靠性而使根据空气流量计算出的吸入空气量的可靠性超过根据工作状态参数计算出的吸入空气量的可靠性的负荷区域,即使在这种负荷区域内,也能根据吸入空气量适当地决定点火正时。如上所述,由于在根据空气流量计算出的吸入空气量的可靠性超过根据工作状态参数计算出的吸入空气量的可靠性的负荷区域及其相反的负荷区域内,都能适当地决定点火正时,因而可提高点火正时控制的控制精度。其结果,可改善燃料效率和燃烧稳定性。
更优选的是,规定的第1范围和规定的第2范围被设定成相互不重复;当负荷参数在规定的第1范围和规定的第2范围之间时,吸入空气量计算单元根据工作状态参数和空气流量计算吸入空气量。
根据该优选方式的构成,由于当负荷参数在规定的第1范围和规定的第2范围之间时,吸入空气量是根据工作状态参数和空气流量来计算的,因而与把点火正时决定中使用的吸入空气量从根据空气流量计算出的值和根据工作状态参数计算出的值中的一方直接切换到另一方的情况不同,可避免由点火正时变化而引起的扭矩级差的发生等,可提高运转性。
更优选的是,上述控制装置还具有:第1故障判定单元,其判定空气流量检测单元是否发生故障;当由第1故障判定单元判定为空气流量检测单元发生故障时,吸入空气量计算单元与负荷参数值无关地根据工作状态参数计算吸入空气量。
根据该优选方式的构成,由于当判定为空气流量检测单元发生故障时,与负荷参数值无关地根据工作状态参数来计算吸入空气量,因而即使由于空气流量检测单元的故障而使空气流量检测值的可靠性下降时,也能适当地计算点火正时,可确保点火正时控制中的良好控制精度。
更优选的是,上述控制装置的特征在于,上述控制装置还具有:第2故障判定单元,其判定可变进气机构是否发生故障;驱动单元,其在由第2故障判定单元判定为可变进气机构发生故障时,驱动可变进气机构,以使吸入空气量成为规定值;以及故障时目标转速设定单元,其在由第2故障判定单元判定为可变进气机构发生故障时,设定成为发动机转速的目标的故障时目标转速;当由第2故障判定单元判定为可变进气机构发生故障时,点火正时决定单元根据规定的反馈控制算法决定点火正时,以使发动机转速成为故障时目标转速。
根据该优选方式的构成,由于当判定为可变进气机构发生故障时,驱动可变进气机构,以使吸入空气量成为规定值,并根据规定的反馈控制算法决定点火正时,使发动机转速成为故障时目标转速,因而通过把规定值和故障时目标转速设定成适当的值,可避免伴随发动机转速上升的加速,同时,可在避免由发动机转速的下降引起的减速的同时继续进行运转。这样,在内燃机用作车辆的动力源的情况下,可确保车辆的必要最低限度的行驶性能。
在上述本发明的第1方式和第2方式中,优选的是,可变进气机构包含以下机构中的至少一方,即:变更内燃机的进气凸轮轴相对于曲轴的相位的可变凸轮相位机构,变更内燃机的进气门升程的可变气门升程机构,以及变更内燃机的压缩比的可变压缩比机构。
根据该优选方式的构成,由于可变进气机构包含以下机构中的至少一方,即:变更内燃机的进气凸轮轴相对于曲轴的相位的可变凸轮相位机构,变更内燃机的进气门升程的可变气门升程机构,以及变更内燃机的压缩比的可变压缩比机构,因而可省略节气门机构,从而可减少进气通路内的流动阻力,提高填充效率,并可削减制造成本。
附图说明
图1是示出应用了本发明一个实施方式的控制装置的内燃机的概略结构的示意图。
图2是示出控制装置的概略结构的方框图。
图3是示出内燃机的可变式进气门驱动机构和排气门驱动机构的概略结构的剖面图。
图4是示出可变式进气门驱动机构的可变气门升程机构的概略结构的剖面图。
图5是示出(a)升程致动器的短臂位于最大升程位置的状态和(b)位于最小升程位置的状态的图。
图6是示出(a)可变气门升程机构的下连杆位于最大升程位置时的进气门的打开状态和(b)位于最小升程位置时的进气门的打开状态的图。
图7是分别示出可变气门升程机构的下连杆位于最大升程位置时的进气门的气门升程曲线(实线)和位于最小升程位置时的气门升程曲线(双点划线)的图。
图8是示意性示出可变凸轮相位机构的概略构成的图。
图9是分别示出通过可变凸轮相位机构把凸轮相位设定成最滞后值时的进气门的气门升程曲线(实线)和把凸轮相位设定成最超前值时的进气门的气门升程曲线(双点划线)的图。
图10(a)是示意性示出把压缩比设定成低压缩比时的可变压缩比机构的整体结构的图,(b)是示出把压缩比设定成高压缩比时的可变压缩比机构中的控制轴和压缩比致动器附近的结构的图。
图11是示出燃料喷射控制器的概略结构的方框图。
图12是示出在基本估计进气量Gcyl_vt_base的计算中使用的映射图的一例的图。
图13是示出在校正系数K_gcyl_vt的计算中使用的映射图的一例的图。
图14是示出在压缩比校正系数K_gcyl_cr的计算中使用的表的一例的图。
图15是示出在过渡系数Kg的计算中使用的表的一例的图。
图16是示出点火正时控制器的概略结构的方框图。
图17是示出在最大估计进气量Gcyl_max的计算中使用的表的一例的图。
图18是示出在校正系数K_gcyl_max的计算中使用的映射图的一例的图。
图19是示出Cr=Crmin&Cain=Cainrt用的基本点火正时映射图的一例的图。
图20是示出Cr=Crmin&Cain=Cainad用的基本点火正时映射图的一例的图。
图21是示出把计算进气量Gcyl和发动机转速NE设定为参数的基本点火正时映射图的比较例的图。
图22是示出燃料喷射控制处理的流程图。
图23是示出基本燃料喷射量Tcyl_bs的计算处理的流程图。
图24是示出点火正时控制处理的流程图。
图25是示出通常点火正时控制处理的流程图。
图26是示出可变机构控制处理的流程图。
图27是示出在发动机起动中,在目标气门升程Liftin_cmd的计算中使用的表的一例的图。
图28是示出在发动机起动中,在目标凸轮相位Cain_cmd的计算中使用的表的一例的图。
图29是示出在催化剂暖机控制中,在目标气门升程Liftin_cmd的计算中使用的映射图的一例的图。
图30是示出在催化剂暖机控制中,在目标凸轮相位Cain_cmd的计算中使用的映射图的一例的图。
图31是示出在通常运转中,在目标气门升程Liftin_cmd的计算中使用的映射图的一例的图。
图32是示出在通常运转中,在目标凸轮相位Cain_cmd的计算中使用的映射图的一例的图。
图33是示出在通常运转中,在目标压缩比Cr_cmd的计算中使用的映射图的一例的图。
图34是示出可变气门升程机构、可变凸轮相位机构、可变压缩比机构以及空气流量传感器的故障判定处理的流程图。
具体实施方式
以下,参照附图对根据本发明的一个实施方式的内燃机的控制装置进行说明。该控制装置1,如图2所示,具有ECU 2,该ECU 2如后所述,根据内燃机(以下称为“发动机”)3的运转状态,执行燃料喷射控制和点火正时控制等的控制处理。
如图1和图3所示,发动机3是具有多组气缸3a和活塞3b(仅示出了1组)的直列多缸汽油发动机,安装在未作图示的带有自动变速器的车辆上。发动机3具有:设置在每个气缸3a上而且分别对进气口和排气口进行开闭的进气门4和排气门7,用于驱动进气门4的进气凸轮轴5和进气凸轮6,对进气门4进行开闭驱动的可变式进气门驱动机构40,用于驱动排气门7的排气凸轮轴8和排气凸轮9,对排气门7进行开闭驱动的排气门驱动机构30,变更压缩比的可变压缩比机构80,燃料喷射阀10,以及火花塞11(参照图2)等。另外,在以下说明中,设发动机3为直列4缸发动机。
进气门4的杆4a滑动自如地嵌合在导向装置4b上,该导向装置4b固定在气缸盖3c上。而且,如图4所示,进气门4具有上下弹簧座4c、4d、以及设置在它们之间的气门弹簧4e,进气门4被该气门弹簧4e朝关闭方向施力。
并且,进气凸轮轴5和排气凸轮轴8分别通过未作图示的支架,可自由转动地安装在气缸盖3c上。在该进气凸轮轴5的一端部上同轴地配置有进气链轮(未作图示),设置成可自由旋转。该进气链轮通过未作图示的正时皮带与曲轴3d连接,并通过后述的可变凸轮相位机构70与进气凸轮轴5连结。根据以上结构,曲轴3d每旋转2周,进气凸轮轴5就旋转1周。并且,针对每个气缸3a,在进气凸轮轴5上以与其一体旋转的方式设置有进气凸轮6。
而且,可变式进气门驱动机构40伴随进气凸轮轴5的旋转,对各气缸3a的进气门4进行开闭驱动,并无级地改变进气门4的升程和气门正时,关于其详情,在后面描述。另外,在本实施方式中,假设“进气门4的升程(以下称为“气门升程”)”表示进气门4的最大扬程。
另一方面,排气门7的杆7a可自由滑动地嵌合在导向装置7b上,该导向装置7b固定在气缸盖3c上。而且,排气门7具有上下弹簧座7c、7d、以及设置在它们之间的气门弹簧7e,排气门7被该气门弹簧7e朝关闭方向施力。
并且,排气凸轮轴8具有与其一体的排气链轮(未作图示),通过该排气链轮和未作图示的正时皮带与曲轴3d连接,这样,曲轴3d每旋转2周,排气凸轮轴8就旋转1周。而且,针对每个气缸3a,在排气凸轮轴8上以与其一体旋转的方式设置有排气凸轮9。
而且,排气门驱动机构30具有摇臂31,伴随排气凸轮9的旋转,该摇臂31摆动,从而在克服气门弹簧7e的推力的同时,对排气门7进行开闭驱动。
另一方面,对于每个气缸3a设置了燃料喷射阀10,并在倾斜状态下安装在气缸盖3c上,以便直接把燃料喷射到燃烧室内。即,发动机3构成为直喷发动机。并且,燃料喷射阀10与ECU 2电连接,如后所述,通过ECU 2控制打开时间和打开正时,从而执行燃料喷射控制。
并且,也对于每个气缸3a设置了火花塞11,并安装在气缸盖3c上。火花塞11与ECU 2电连接,由ECU 2控制放电状态,以便按照与后述的点火正时对应的定时使燃烧室内的混合气体然烧。
另一方面,发动机3上设置有曲轴角传感器20和水温传感器21。该曲轴角传感器20由磁转子和MRE拾取器构成,伴随曲轴3d的旋转,向ECU 2输出作为脉冲信号的CRK信号和TDC信号。该CRK信号每隔规定曲轴角(例如10°)输出1个脉冲,ECU 2根据该CRK信号,计算发动机3的发动机转速NE。并且,TDC信号是表示各气缸3a的活塞3b位于比进气行程的TDC位置少许靠近跟前的规定曲轴角位置的信号,每隔规定曲轴角输出1个脉冲。在本实施方式中,曲轴角传感器20相当于负荷参数检测单元和发动机转速检测单元,发动机转速NE相当于负荷参数。
并且,水温传感器21由例如热敏电阻等构成,向ECU 2输出表示发动机水温TW的检测信号。该发动机水温TW是在发动机3的气缸体3h内循环的冷却水的温度。
而且,在发动机3的进气管12中,省略了节气门机构,并将其进气通路12a形成为大口径,从而将流动阻力设定成比通常的发动机小。在该进气管12内设置有空气流量传感器22和进气温度传感器23(参照图2)。
该空气流量传感器22(空气流量检测单元)由热线式空气流量计构成,向ECU 2输出表示在进气通路12a内流动的空气的流量(以下称为“空气流量”)Gin的检测信号。另外,空气流量Gin的单位是g/sec。并且,进气温传感器23向ECU 2输出表示在进气通路12a内流动的空气的温度(以下称为“进气温度”)TA的检测信号。
而且,在发动机3的排气管13上,在未作图示的催化装置的上游侧设置有LAF传感器24。LAF传感器24由氧化锆和铂电极等构成,在从比理论空燃比浓的浓区域到极稀区域的宽范围的空燃比区域内,线性地检测排气中的氧浓度,向ECU 2输出表示该氧浓度的检测信号。ECU 2根据该LAF传感器24的检测信号值,计算表示排气中的空燃比的检测空燃比KACT。另外,该检测空燃比KACT具体地说是作为与空燃比的倒数成正比的当量比来计算的。
下面,对上述的可变式进气门驱动机构40进行说明。该可变式进气门驱动机构40,如图4所示,由进气凸轮轴5、进气凸轮6、可变气门升程机构50以及可变凸轮相位机构70等构成。
该可变气门升程机构50(可变进气机构)是伴随进气凸轮轴5的旋转而对进气门4进行开闭驱动,并在规定的最大值Liftinmax和最小值Liftinmin之间对气门升程Liftin进行无级变更的机构,具有:设置在每个气缸3a上的四节连杆式摇臂机构51,以及同时驱动这些摇臂机构51的升程致动器60(参照图5)等。
各摇臂机构51由摇臂52和上下连杆53、54等构成。该上连杆53的一端部通过上销55可自由回转地安装在摇臂52的上端部上,另一端部可自由回转地安装在摇臂轴56上。该摇臂轴56通过未作图示的支架安装在气缸盖3c上。
并且,在摇臂52的上销55上可自由转动地设置有滚子57。该滚子57与进气凸轮6的凸轮面抵接,当进气凸轮6旋转时,在被该凸轮面引导的同时在进气凸轮6上转动。这样,摇臂52在上下方向被驱动,并且上连杆53以摇臂轴56为中心转动。
而且,在摇臂52的进气门4侧的端部安装有调整螺栓52a。当摇臂52伴随进气凸轮6的旋转而在上下方向移动时,该调节螺栓52a在克服气门弹簧4e的推力的同时,在上下方向驱动气门杆4a,开闭进气门4。
并且,下连杆54的一端部通过下销58可自由转动地安装在摇臂52的下端部,在下连杆54的另一端部可自由转动地安装有连接轴59。下连杆54通过该连接轴59与升程致动器60的后述的短臂65连接。
另一方面,如图5所示,升程致动器60具有电机61、螺母62、连杆63、长臂64以及短臂65等。该电机61与ECU 2连接,配置在发动机3的顶盖3g的外侧。电机61的旋转轴成为形成有外螺纹的螺纹轴61a,在该螺纹轴61a上,螺合有螺母62。该螺母62通过连杆63与长臂64连接。该连杆63的一端部通过销63a可自由旋转地安装在螺母62上,另一端部通过销63b可自由转动地安装在长臂64的一端部上。
并且,长臂64的另一端部通过转动轴66安装在短臂65的一端部上。该转动轴66截面形成为圆形,贯通发动机3的顶盖3g,并且可自由转动地支撑在其上。伴随该转动轴66的转动,长臂64和短臂65与其一体地转动。
而且,在短臂65的另一端部可自由转动地安装有上述的连接轴59,这样,短臂65通过连接轴59与下连杆54连接。
下面,对以上这样构成的可变气门升程机构50的工作进行说明。在该可变气门升程机构50中,当向升程致动器60输入来自ECU 2的后述的升程控制输入U_Liftin时,螺纹轴61a旋转,通过伴随于此的螺母62的移动,长臂64和短臂65以转动轴66为中心转动,并且伴随该短臂65的转动,摇臂机构51的下连杆54以下销58为中心转动。即,通过升程致动器60驱动了下连杆54。
此时,通过ECU 2的控制,短臂65的转动范围被限制在图5(a)所示的最大升程位置和图5(b)所示的最小升程位置之间,这样,下连杆54的转动范围也被限制在图4中的实线所示的最大升程位置和图4中的双点划线所示的最小升程位置之间。
在下连杆54位于最大升程位置的情况下,在由摇臂轴56、上下销55、58以及连接轴59构成的四节连杆中,构成为上销55和下销58的中心间的距离比摇臂轴56和连接轴59的中心间的距离长,这样,如图6(a)所示,当进气凸轮6旋转时,调整螺栓52a的移动量大于进气凸轮6与滚子57的抵接点的移动量。
另一方面,在下连杆54位于最小升程位置的情况下,在上述四节连杆中,构成为上销55和下销58的中心间的距离比摇臂轴56和连接轴59的中心间的距离短,这样,如图6(b)所示,当进气凸轮6旋转时,调整螺栓52a的移动量小于进气凸轮6与滚子57的抵接点的移动量。
由于以上的原因,当下连杆54位于最大升程位置时,进气门4以比位于最小升程位置时大的气门升程Liftin打开。具体地说,在进气凸轮6的旋转中,当下连杆54位于最大升程位置时,进气门4按照图7的实线所示的气门升程曲线打开,气门升程Liftin表现出其最大值Liftinmax。另一方面,当下连杆54位于最小升程位置时,按照图7的双点划线所示的气门升程曲线打开,气门升程Liftin表现出其最小值Liftinmin。
因此,在该可变气门升程机构50中,通过经由致动器60使下连杆54在最大升程位置和最小升程位置之间转动,可使气门升程Liftin在最大值Liftinmax和最小值Liftinmin之间无级变化。
另外,在该可变气门升程机构50内设置有未作图示的锁定机构,当升程控制输入U_Liftin被设定成后述的故障时用值U_Liftin_fs时,或者当由于断线等而使来自ECU 2的升程控制输入U_Liftin输入不到升程致动器60时,由该锁定机构锁定可变气门升程机构50的工作。即,禁止由可变气门升程机构50进行的气门升程Liftin的变更,气门升程Liftin被保持为最小值Liftinmin。另外,在凸轮相位Cain被保持为后述的锁定值且压缩比Cr被保持为最小值Crmin的情况下,该最小值Litfinmin被设定成作为吸入空气量可确保后述的规定的故障时用值Gcyl_fs的值。该规定的故障时用值Gcyl_fs(规定值)被设定成在停车中可适当地进行怠速运转或发动机起动,同时在行驶中可维持低速行驶状态的值。
并且,在发动机3内设置有转动角传感器25(参照图2),该转动角传感器25检测转动轴66即短臂65的转动角,并对ECU 2输出该检测信号。ECU 2根据该转动角传感器25的检测信号,计算气门升程Liftin。在本实施方式中,转动角传感器25相当于工作状态参数检测单元和负荷参数检测单元,气门升程Liftin相当于工作状态参数和负荷参数。
下面,对上述的可变凸轮相位机构70(可变进气机构)进行说明。该可变凸轮相位机构70把进气凸轮轴5对曲轴3d的相对相位(以下称为“凸轮相位”)Cain无级地变更到超前侧或滞后侧,设置在进气凸轮轴5的进气链轮侧的端部。如图8所示,可变凸轮相位机构70具有:外壳71,3叶片式的叶轮72,油压泵73以及电磁阀机构74等。
该外壳71与进气凸轮轴5上的进气链轮构成为一体,具有相互等间隔地形成的3个隔壁71a。叶轮72同轴地安装在进气凸轮轴5的进气链轮侧的端部上,从进气凸轮轴5朝外方呈放射状延伸,并可旋转地收容在外壳71内。此外,在外壳71中,在隔壁71a和叶轮72之间形成有3个超前室75和3个滞后室76。
油压泵73是与曲轴3d连接的机械式油压泵,当曲轴3d旋转时,伴随于此,油压泵73通过油路77c吸入蓄积在发动机3的油盘3e内的润滑用油,并在使该油升压的状态下,通过油路77c把该油提供给电磁阀机构74。
电磁阀机构74是组合滑阀机构74a和电磁元件74b而成的机构,通过超前油路77a和滞后油路77b,与超前室75和滞后室76分别连接,并把从油压泵73所提供的油压作为超前油压Pad和滞后油压Prt分别输出到超前室75和滞后室76。电磁阀机构74的电磁元件74b与ECU 2电连接,当输入来自ECU 2的后述的相位控制输入U_Cain时,通过使滑阀机构74a的滑阀体根据相位控制输入U_Cain在规定的移动范围内移动,使超前油压Pad和滞后油压Prt全都变化。
在以上的可变凸轮相位机构70中,在油压泵73的工作中,电磁阀机构74根据控制输入U_Cain进行工作,从而把超前油压Pad提供到超前室75,把滞后油压Prt提供到滞后室76,由此,叶轮72和外壳71之间的相对相位变更为超前侧或滞后侧。结果,上述的凸轮相位Cain在最滞后值Cainrt(例如相当于凸轮角0°的值)和最超前值Cainad(例如相当于凸轮角55°的值)之间连续变化,由此,进气门4的气门正时在图9的实线所示的最滞后正时和图9的双点划线所示的最超前正时之间无级变更。
另外,在该可变凸轮相位机构70内设置有未作图示的锁定机构,当来自油压泵73的供给油压低时,当相位控制输入U_Cain被设定成后述的故障时用值U_Cain_fs时,以及当由于断线等而使相位控制输入U_Cain输入不到电磁阀机构74时,由该锁定机构锁定可变凸轮相位机构70的工作。即,禁止由可变凸轮相位机构70进行的凸轮相位Cain的变更,凸轮相位Cain被保持为规定的锁定值。该规定的锁定值,如上所述,在气门升程Liftin被保持为最小值Liftinmin、且压缩比Cr被保持为最小值Crmin的情况下,被设定成作为吸入空气量可确保规定的故障时用值Gcyl_fs的值。
如上所述,在本实施方式的可变式进气门驱动机构40中,气门升程Liftin由可变气门升程机构50无级地变更,并且凸轮相位Cain即进气门4的气门正时由可变凸轮相位机构70在上述的最滞后正时和最超前正时之间无级地变更。并且,气门升程Liftin和凸轮相位Cain分别由ECU 2,如后所述,通过可变气门升程机构50和可变凸轮相位机构70来控制。
另一方面,在进气凸轮轴5的与可变凸轮相位机构70相反侧的端部设置有凸轮角传感器26(参照图2)。该凸轮角传感器26由例如磁转子和MRE拾取器构成,伴随进气凸轮轴5的旋转,每隔规定的凸轮角(例如1°)向ECU 2输出作为脉冲信号的CAM信号。ECU 2根据该CAM信号和上述的CRK信号,计算凸轮相位Cain。在本实施方式中,凸轮角传感器26相当于工作状态参数检测单元和负荷参数检测单元,凸轮相位Cain相当于工作状态参数和负荷参数。
下面,参照图10对上述可变压缩比机构80(可变进气机构)进行说明。该可变压缩比机构80是通过变更活塞3b的上死点位置即活塞3b的行程,使压缩比Cr在规定的最大值Crmax和最小值Crmin之间无级变更的机构,由连接在活塞3b和曲轴3d之间的复合连杆机构81、用于控制复合连杆机构81的工作的控制轴85、以及用于驱动控制轴85的压缩比致动器87等构成。
复合连杆机构81由上连杆82、下连杆83以及控制连杆84等构成。上连杆82相当于所谓的连杆(comod),其上端部通过活塞销3f可自由转动地连接在活塞3b上,下端部通过销83a可自由转动地连接在下连杆83的一端部上。
下连杆83是三角形状,上连杆82的连接端部以外的2个端部分别通过曲轴销83b可自由转动地连接在曲轴3d上,通过控制销83c可自由转动地连接在控制连杆84的一端部上。根据以上结构,活塞3b的往复运动通过复合连杆机构81被传递到曲轴3d,转换成曲轴3d的回转运动。
并且,控制轴85与曲轴3d一样,在图中的深度方向延伸,具有:由气缸体可自由转动地支撑的回转轴部85a,以及与其一体的偏心轴部85b和臂86。控制连杆84的下端部可自由转动地连接在该偏心轴部85b上。并且,臂86的前端部成为叉部86a,压缩比致动器87的驱动轴87b的前端部可自由转动地连接在该叉部86a上。
压缩比致动器87是由电机和减速机构(全都未作图示)组合而成的装置,具有内置了该电机和减速机构的壳体87a和可在从该壳体87a出入的方向上移动的驱动轴87b等。在该压缩比致动器87中,当根据来自ECU 2的后述的压缩比控制输入U_Cr在正反旋转方向上驱动电机时,驱动轴87b在从壳体87a最突出的低压缩比位置(图10(a)中所示的位置)和最退回到壳体87a侧的高压缩比位置(图10(b)中所示的位置)之间移动。
根据以上构成,在该可变压缩比机构80中,当致动器87的驱动轴87b从低压缩比位置移动到高压缩比位置侧时,控制轴85通过臂86被驱动成以回转轴部85a为中心朝图中逆时针方向转动,伴随于此,偏心轴部85b移动到下方。由此,控制连杆84整体被压下,伴随于此,下连杆83以曲轴销83b为中心朝图中顺时针方向转动,并且上连杆82以活塞销3f为中心朝图中逆时针方向转动。其结果,活塞销3f、上销83a以及曲轴销83b与低压缩比位置时相比更接近直线状,从而使活塞3b到达上死点时的连接活塞销3f和曲轴销83b的直线距离变长(即,活塞3b的行程变长),燃烧室的容积减小,从而使压缩比Cr增高。
另一方面,与上述相反,当致动器87的驱动轴87b从高压缩比位置移动到低压缩比位置侧时,回转轴部85a朝图中顺时针方向转动,伴随于此,偏心轴部85b移动到上方,从而使控制连杆84整体压上。由此,通过与上述完全相反的动作,使下连杆83朝逆时针方向转动,并使上连杆82朝顺时针方向转动。这样,使活塞3b到达上死点时的连接活塞销3f和曲轴销83b的直线距离缩短(即,活塞3b的行程缩短),燃烧室的容积增大,从而使压缩比Cr降低。如上所述,在该可变压缩比机构80中,通过改变控制轴85的转动角,使压缩比Cr在上述规定的最大值Crmax和最小值Crmin之间无级地变化。
另外,在该可变压缩比机构80内设置有未作图示的锁定机构,当压缩比控制输入U_Cr被设定成后述的故障时用值U_Cr_fs时,以及当由于断线等而使压缩比控制输入U_Cr输入不到压缩比致动器87时,由该锁定机构锁定可变压缩比机构80的动作。即,禁止由可变压缩比机构80进行的压缩比Cr的变更,压缩比Cr被保持为最小值Crmin。该最小值Crmin,如上所述,在气门升程Liftin被保持为最小值Liftinmin、且凸轮相位Cain被保持为规定的锁定值的情况下,被设定成作为吸入空气量可确保规定的故障时用值Gcyl_fs的值。
并且,在发动机3内,在控制轴85的附近设置有控制角传感器27(参照图2),该控制角传感器27对ECU 2输出表示控制轴85的转动角的检测信号。ECU 2根据该控制角传感器27的检测信号计算压缩比Cr。在本实施方式中,控制角传感器27相当于工作状态参数检测单元和负荷参数检测单元,压缩比Cr相当于工作状态参数和负荷参数。
而且,如图2所示,油门开度传感器28和点火开关(以下称为“IG·SW”)29连接在ECU 2上。该油门开度传感器28把表示车辆的未作图示的油门踏板的踩下量(以下称为“油门开度”)AP的检测信号输出到ECU 2。并且,IG·SW 29通过点火钥匙(未作图示)操作进行接通/断开,并把表示其接通/断开状态的信号输出到ECU 2。
ECU 2由CPU、RAM、ROM以及I/O接口(全都未作图示)等所构成的微计算机构成,ECU 2根据上述各种传感器20~28的检测信号以及IG·SW 29的接通/断开信号等,判别发动机3的运转状态,并执行各种控制。具体地说,ECU 2如后所述,根据运转状态执行燃料喷射控制和点火正时控制。除此以外,通过可变气门升程机构50和可变凸轮相位机构70分别控制气门升程Liftin和凸轮相位Cain,并通过可变压缩比机构80控制压缩比Cr。
另外,在本实施方式中,ECU 2相当于:工作状态参数检测单元,第1估计进气量计算单元,第2估计进气量计算单元,负荷参数检测单元,燃料量决定单元,第1故障判定单元,第2故障判定单元,驱动单元,吸入空气量计算单元,发动机转速检测单元,最大吸入空气量计算单元,点火正时决定单元以及故障时目标转速设定单元。
下面,对本实施方式的控制装置1进行说明。该控制装置1具有执行燃料喷射控制的燃料喷射控制器100(参照图11)和执行点火正时控制的点火正时控制器120(参照图16),这些控制器,具体地说,全都由ECU 2构成。
首先,对燃料喷射控制器100(燃料量决定单元)进行说明。该燃料喷射控制器100,如下所述,是针对各燃料喷射阀10计算燃料喷射量TOUT(燃料量)的控制器,如图11所示,具有:第1和第2估计进气量计算部101、102,过渡系数计算部103,放大要素104、105,加法要素106,放大要素107,空燃比校正系数计算部108,总校正系数计算部109,乘法要素110以及燃料附着校正部111。
在该第1估计进气量计算部101(第1估计进气量计算单元)中,如下所述,根据发动机转速NE、气门升程Liftin、凸轮相位Cain以及压缩比Cr计算第1估计进气量Gcyl_vt。
具体地说,首先,通过根据发动机转速NE和气门升程Liftin检索图12所示的映射图,计算基本估计进气量Gcyl_vt_base。在该图中,NE1~NE3是NE1<NE2<NE3的关系成立的发动机转速NE的规定值,这一点在以下的说明中也是一样。
在该映射图中,基本估计进气量Gcyl_vt_base在NE=NE1或NE2的情况下,在气门升程Liftin小的区域内,被设定成气门升程Liftin越大则越大的值,在气门升程Liftin接近最大值Liftinmax的区域内,被设定成气门升程Liftin越大则越小的值。这是因为,在低/中转速区域内,在气门升程Liftin接近最大值Liftinmax的区域内越是成为大的值,进气门4的打开时间就越长,从而由于进气回吹而使填充效率下降。并且,基本估计进气量Gcyl_vt_base在NE=NE3的情况下,被设定成气门升程Liftin越大则越大的值。这是因为,在高转速区域内,在气门升程Liftin大的区域内,由于进气的惯性力而难以发生上述的进气回吹,因而气门升程Liftin越大,填充效率就越高。
并且,通过根据发动机转速NE和凸轮相位Cain检索图13所示的映射图,计算校正系数K_gcyl_vt。在该映射图中,校正系数K_gcyl_vt在NE=NE1或NE2的情况下,在凸轮相位Cain接近最滞后值Cainrt的区域内,被设定成越接近最滞后值Cainrt则越小的值,在除此以外的区域内,被设定成凸轮相位Cain越是最超前值Cainad侧的值则越小的值。这是因为,在低/中转速区域内,在凸轮相位Cain接近最滞后值Cainrt的区域内,越接近最滞后值Cainrt,进气门4的关闭定时就越滞后,从而由于进气回吹而使填充效率下降,在除此以外的区域内,凸轮相位Cain越接近最超前值Cainad,由于伴随气门重叠度的增大内部EGR量增大而使填充效率下降。并且,在NE=NE3的情况下,校正系数K_gcyl_vt在凸轮相位Cain接近最滞后值Cainrt的区域内,被设定成固定的值(值1),在除此以外的区域内,被设定成凸轮相位Cain越是最超前值Cainad侧的值则越小的值。这是因为,在高转速区域内,即使在凸轮相位Cain接近最超前值Cainad的区域内,由于上述进气的惯性力而难以发生进气回吹。
然后,通过根据压缩比Cr检索图14中所示的表,计算压缩比校正系数K_gcyl_cr。在该表中,压缩比校正系数K_gcyl_cr被设定成压缩比Cr越高则越大的值。这是因为,在可变压缩比机构80中,压缩比Cr越高,活塞3b的行程就越长,排气量则越大。
然后,使用以上这样计算的基本估计进气量Gcyl_vt_base、校正系数K_gcyl_vt以及压缩比校正系数K_gcyl_cr,根据下式(1)计算第1估计进气量Gcyl_vt。
Gcyl_vt=K_gcyl_vt·K_gcyl_cr·Gcyl_vt_base           ……(1)
并且,在过渡系数计算部103中,按以下这样计算过渡系数Kg。首先,使用由第1估计进气量计算部101所计算出的第1估计进气量Gcyl_vt以及发动机转速NE,根据下式(2)计算估计流量Gin_vt(单位:g/sec)。
Gin_vt=2·Gcyl_vt·NE/60                         ……(2)
然后,通过根据该估计流量Gin_vt检索图15所示的表,计算过渡系数Kg。在该图中,Gin1、2是Gin1<Gin2的关系成立的规定值。把该规定值Gin1设定为在Gin_vt≤Gin1的范围内,由于进气通路12a内的空气流量小而由空气流量传感器22的分辨率导致第1估计进气量Gcyl_vt的可靠性超过后述的第2估计进气量Gcyl_afm的可靠性的值。并且,把规定值Gin2设定为在Gin2≤Gin_vt的范围内,由于进气通路12a内的空气流量大而使第2估计进气量Gcyl_afm的可靠性超过第1估计进气量Gcyl_vt的可靠性的值。而且,在该表中,过渡系数Kg在Gin_vt≤Gin1的范围内,被设定成值0,在Gin2≤Gin_vt的范围内,被设定成值1,并在Gin1<Gin_vt<Gin2的范围内,被设定成在值0和值1之间且与估计流量Gin_vt成正比的值。关于该理由在后面描述。
另一方面,在第2估计进气量计算部102(第2估计进气量计算单元)中,根据空气流量Gin和发动机转速NE,使用下式(3)计算第2估计进气量Gcyl_afm(单位:g)。
Gcyl_afm=Gin·60/(2·NE)                        ……(3)
在放大要素104、105中,计算将以上这样计算出的第1和第2估计进气量Gcyl_vt、Gcyl_afm分别放大到(1-Kg)、Kg倍后的值。然后,在加法要素106中,根据这样放大后的值,通过下式(4)的加权平均运算,计算出计算进气量Gcyl。
Gcyl=Kg·Gcyl_afm+(1-Kg)·Gcyl_vt  ……(4)
参照该式(4)可以明白,当Kg=0时,即在上述的Gin_vt≤Gin1的范围内,为Gcyl=Gcyl_vt,当Kg=1时,即在Gin2≤Gin_vt的范围内,为Gcyl=Gcyl_afm,并且当0<Kg<1时,即在Gin1<Gin_vt<Gin2的范围内,计算进气量Gcyl中的第1和第2估计进气量Gcyl_vt、Gcy_afm的加权程度由过渡系数Kg的值决定。
然后,在放大要素107中,根据计算进气量Gcyl(吸入空气量),使用下式(5)计算基本燃料喷射量Tcyl_bs。
Tcyl_bs=Kgt·Gcyl                               ……(5)
这里,Kgt是针对各燃料喷射阀10预先设定的换算系数。
并且,在空燃比校正系数计算部108中,根据检测空燃比KACT和目标空燃比KCMD,使用包括反馈控制算法在内的规定控制算法(未作图示)计算空燃比校正系数KSTR。
然后,在总校正系数计算部109中,通过根据发动机水温TW和进气温度TA等的表示运转状态的各种参数检索未作图示的映射图和表,计算各种校正系数,并通过对这些各种校正系数进行相乘,来计算总校正系数KTOTAL。
然后,在乘法要素110中,使用下式(6)计算要求燃料喷射量Tcyl。
Tcyl=Tcyl_bs·KSTR·KTOTAL                        ……(6)
然后,在燃料附着校正部111中,通过对以上这样计算出的要求燃料喷射量Tcyl实施规定的燃料附着校正处理,来计算燃料喷射量TOUT。然后,控制燃料喷射阀10,以使燃料喷射阀10的燃料喷射定时和开阀时间成为基于该燃料喷射量TOUT的值。
如上式(5)、(6)所示,在燃料喷射控制器100中,燃料喷射量TOUT根据计算进气量Gcyl来计算,如式(4)所示,当Kg=0时,为Gcyl=Gcyl_vt,当Kg=1时,为Gcyl=Gcyl_afm。这是因为,如上所述,在Gin_vt≤Gin1的范围内,由于第1估计进气量Gcyl_vt的可靠性超过第2估计进气量Gcyl_afm的可靠性,因而在这种范围内,通过根据可靠性更高的第1估计进气量Gcyl_vt计算燃料喷射量TOUT,确保良好的计算精度。并且,这是因为,在Gin2≤Gin_vt的范围内,由于进气通路12a内的空气流量大而使第2估计进气量Gcyl_afm的可靠性超过第1估计进气量Gcyl_vt的可靠性,因而在这种范围内,通过根据可靠性更高的第2估计进气量Gcyl_afm计算燃料喷射量TOUT,确保良好的计算精度。
并且,当0<Kg<1时,计算进气量Gcyl中的第1和第2估计进气量Gcyl_vt、Gcyl_afm的加权程度由过渡系数Kg的值决定。这是因为,由于考虑到以下情况,即:当从Gcyl_vt、Gcyl_afm的一方直接切换到另一方时,第1和第2估计进气量Gcyl_vt、Gcyl_afm的值的差比较大,由此产生扭矩级差,因而对该情况加以避免。即,如上所述,在过渡系数Kg是0<Kg<1的Gin1<Gin_vt<Gin2的范围内,由于过渡系数Kg被设定成与估计流量Gin_vt成正比的值,因而当估计流量Gin_vt在Gin1和Gin2之间变化时,伴随于此,过渡系数Kg逐渐变化,从而使计算进气量Gcyl从Gcyl_vt、Gcyl_afm的一方侧的值逐渐变化到另一方侧的值。结果,可避免产生扭矩级差。
下面,参照图16对点火正时控制器120(点火正时决定单元)进行说明。如该图所示,在该点火正时控制器120中,由于其一部分与上述燃料喷射控制器100构成相同,因而以下对相同结构附上相同标号,省略其说明。点火正时控制器120,如下所述,是计算点火正时Iglog的控制器,具有:第1和第2估计进气量计算部101、102,过渡系数计算部103、放大要素104、105,加法要素106,最大估计进气量计算部121,除法要素122,基本点火正时计算部123,点火校正值计算部124以及加法要素125。
在最大估计进气量计算部121(最大吸入空气量计算单元)中,如下所述,根据发动机转速NE、凸轮相位Cain以及压缩比Cr计算最大估计进气量Gcyl_max(最大吸入空气量)。具体地说,首先,通过根据发动机转速NE检索图17所示的表,计算最大估计进气量的基本值Gcyl_max_base。在该表中,基本值Gcyl_max_base在低中转速区域内,被设定成发动机转速NE越高则越大的值,在高转速区域内,被设定成发动机转速NE越高则越小的值,并且当是中转速区域的规定值时,被设定成表现出其最大值。这是因为,从驾驶性的观点出发,进气***构成为在中转速区域的规定值时填充效率最高。
并且,通过根据发动机转速NE和凸轮相位Cain检索图18所示的映射图,计算校正系数K_gcyl_max。在该映射图中,校正系数K_gcyl_max在NE=NE1或NE2的情况下,在凸轮相位Cain接近最滞后值Cainrt的区域内,被设定成越接近最滞后值Cainrt则越小的值,在除此以外的区域内,被设定成凸轮相位Cain越是最超前值Cainad侧的值则越小的值。而且,在NE=NE3的情况下,校正系数K_gcyl_max在凸轮相位Cain接近最滞后值Cainrt的区域内,被设定成固定的值(值1),在除此以外的区域内,被设定成凸轮相位Cain越是最超前值Cainad侧的值则越小的值。这样设定校正系数K_gcyl_max的理由与在上述的校正系数K_gcyl_max的计算中使用的图13的映射图的说明中所述的理由相同。
然后,如上所述,通过根据压缩比Cr检索图14所示的表,来计算压缩比校正系数K_gcyl_cr。然后,使用以上这样计算出的最大估计进气量的基本值Gcy_max_base、校正系数K_gcyl_max以及压缩比校正系数K_gcyl_cr,根据下式(7)计算最大估计进气量Gcyl_max。
Gcyl_max=K_gcyl_max·K_gcyl_cr·Gcyl_max_base      ……(7)
另一方面,在除法要素122中,使用下式(8)来计算归一化进气量Kgcyl(比)。
Kgcyl=Gcyl/Gcyl_max                                ……(8)
然后,在基本点火正时计算部123中,如下所述,通过根据归一化进气量Kgcyl、发动机转速NE、凸轮相位Cain以及压缩比Cr检索基本点火正时映射图,计算基本点火正时Iglog_map。在该情况下,作为基本点火正时映射图,准备了Cr=Crmin用的1组映射图和Cr=Crmax用的1组映射图,Cr=Crmin用的1组由以下构成,即:图19所示的Cr=Crmin&Cain=Cainrt用的映射图,图20所示的Cr=Crmin&Cain=Cainad用的映射图,以及Cr=Crmin且凸轮相位Cain处于最滞后值Cainrt和最超前值Cainad之间时与多段的凸轮相位Cain的值分别对应地设定的多个映射图(未作图示)。并且,尽管未作图示,Cr=Crmax用的1组映射图也与Cr=Crmin用的1组映射图同样地构成。
在以上的基本点火正时映射图的检索中,根据归一化进气量Kgcyl、发动机转速NE、凸轮相位Cain以及压缩比Cr的值选择多个值,并通过该多个选择值的插值运算,来计算基本点火正时Iglog_map。
如上所述,在基本点火正时计算部123中,使用规一化进气量Kgcyl作为用于设定基本点火正时映射图的映射值的参数,其理由如下。即,如以往那样,在取代归一化进气量Kgcyl而以计算进气量Gcyl作为参数设定基本点火正时映射图的映射值的情况下,例如,可获得图21所示的基本点火正时映射图。如该图所示,在该基本点火正时映射图中,计算进气量Gcyl的最大设定值互不相同,并且在计算进气量Gcyl大的区域(由椭圆包围的区域),即开始发生爆震的高负荷区域内的映射值的设定数(由黑圆表示的格子点数)对于每一个发动机转速NE都不同。这是因为,由于气缸3a中的进气填充效率根据发动机转速NE而变化,开始发生爆震的高负荷区域内的吸入空气量的最大值也根据发动机转速NE而变化。
与此相对,在基本点火正时计算部123的基本点火正时映射图中,由于使用归一化进气量Kgcyl作为参数而取代计算进气量Gcyl,因而如图19、20所示可知,即使在开始发生爆震的高负荷区域,即Kgcyl处于包含值1的值1附近的区域内,也能在发动机转速的各设定值NE1~NE3之间,把映射值的数目设定成相同的数,由此,与图21的映射图相比可减少设定数据量。即,这是因为,如本实施方式那样,通过使用归一化进气量Kgcyl作为参数而取代计算进气量Gcyl,可减少ECU 2的ROM的存储容量,相应地可削减制造成本。
此外,在上述的点火校正值计算部124中,通过根据进气温度TA、发动机水温TW以及目标空燃比KCMD等检索未作图示的映射图和表,计算各种校正值,根据这些各种校正值,计算点火校正值Diglog。
然后,在加法要素125中,使用下式(9)计算点火正时Iglog。
Iglog=Iglog_map+Diglog                            ……(9)
然后,把火花塞11控制成按照与该点火正时Iglog对应的放电定时进行放电。
以下,参照图22对由ECU 2执行的燃料喷射控制处理进行说明。本处理是针对各燃料喷射阀10计算燃料喷射量TOUT的处理,与TDC信号的产生定时同步地执行。
首先,在步骤1(图中简称为“S1”。下同)中,计算基本燃料喷射量Tcyl_bs。该基本燃料喷射量Tcyl_bs的计算处理,具体地说,如图23所示那样执行。即,首先,在步骤10中,使用上述式(3)计算第2估计进气量Gcyl_afm。
t然后,在步骤11中,使用上述方法计算第1估计进气量Gcyl_vt。即,通过根据发动机转速NE和气门升程Liftin检索图12所示的映射图,计算基本估计进气量Gcyl_vt_base,通过根据发动机转速NE和凸轮相位Cain检索图13所示的映射图,计算校正系数K_gcyl_vt,然后,通过根据压缩比Cr检索图14所示的表,计算压缩比校正系数K_gcyl_cr。然后,根据这3个值Gcyl_vt_base、K_gcyl_vt、K_gcyl_cr,使用上述式(1)计算第1估计进气量Gcyl_vt。
然后,在步骤12中,使用上述式(2)计算估计流量Gin_vt。之后,进到步骤13,判别可变机构故障标志F_VDNG是否是“1”。
该可变机构故障标志F_VDNG当在后述的故障判定处理中,判定为可变气门升程机构50、可变凸轮相位机构70以及可变压缩比机构80中的至少一方发生故障时被设定成“1”,判定为全都是正常时被设定成“0”。另外,在以下说明中,把可变气门升程机构50、可变凸轮相位机构70以及可变压缩比机构80统称为“3个可变机构”。
当步骤13的判别结果是“否”,即3个可变机构全都是正常时,进到步骤14,判别空气流量传感器故障标志F_AFMNG是否是“1”。该空气流量传感器故障标志F_AFMNG当在后述的故障判定处理中,判定为空气流量传感器22发生故障时被设定成“1”,判定为是正常时被设定成“0”。
当步骤14的判别结果是“否”,即空气流量传感器22是正常时,进到步骤15,如上所述,通过根据估计流量Gin_vt检索图15所示的表,计算过渡系数Kg。
另一方面,当步骤14的判别结果是“是”,即空气流量传感器22发生故障时,进到步骤16,把过渡系数Kg设定成值0。
在继步骤15或16之后的步骤17中,使用上述式(4)对计算进气量Gcyl进行计算。然后,在步骤18中,把基本燃料喷射量Tcyl_bs设定成换算系数与计算进气量的积Kgt·Gcyl之后,结束本处理。
另一方面,当步骤13的判别结果是“是”,即判定为3个可变机构中的至少一方发生故障时,进到步骤19,把计算进气量Gcyl设定成上述规定的故障时用值Gcyl_fs。然后,在执行上述步骤18之后,结束本处理。
回到图22,在步骤1中,如上所述计算出基本燃料喷射量Tcyl_bs,之后进到步骤2,计算总校正系数KTOTAL。具体地说,如上所述,通过根据各种运转参数(例如进气温度TA、大气压PA、发动机水温TW、油门开度AP等)检索各种表和映射图,计算各种校正系数,并通过将这些各种校正系数进行相乘,计算总校正系数KTOTAL。
然后,进到步骤3,通过根据油门开度AP和计算进气量Gcyl检索未作图示的映射图,计算目标空燃比KCMD。该目标空燃比KCMD基本上被设定成理论空燃比(14.5),以使催化剂装置的排气净化性能保持在良好状态。
然后,进到步骤4,根据目标空燃比KCMD和检测空燃比KACT,使用包括反馈控制算法在内的规定控制算法计算空燃比校正系数KSTR。
然后,进到步骤5,使用上述式(6)计算要求燃料喷射量Tcyl。之后,在步骤6中,如上所述,通过对要求燃料喷射量Tcyl实施规定的燃料附着校正处理,计算燃料喷射量TOUT。之后,结束本处理。由此,控制燃料喷射阀10,以使燃料喷射阀10的燃料喷射定时和开阀时间成为基于该燃料喷射量TOUT的值。
下面,参照图24对由ECU 2执行的点火正时控制处理进行说明。本处理是如下计算点火正时Iglog的处理,与TDC信号的产生定时同步,继上述的燃料喷射控制处理之后执行。
在该处理中,首先,在步骤30中,判别上述的可变机构故障标志F_VDNG是否是“1”。当该判别结果是“否”,即3个可变机构全都是正常时,进到步骤31,判别发动机起动标志F_ENGSTART是否是“1”。
该发动机起动标志F_ENGSTART是通过在未作图示的判定处理中,根据发动机转速NE和IG·SW 29的输出信号,判定是否是在发动机起动控制中即反冲起动(cranking)中来设定的,具体地说,当是发动机起动控制中时被设定成“1”,当是除此以外时被设定成“0”。
当步骤31的判别结果是“是”,即处于发动机起动控制中时,进到步骤32,把点火正时Iglog设定成规定的起动时用值Ig_crk(例如BTDC10°,之后结束本处理。
另一方面,当步骤31的判别结果是“否”,即不是发动机起动控制中时,进到步骤33,判别油门开度AP是否小于规定值APREF。该规定值APREF是用于判别未踩下油门踏板的值,被设定成可判别未踩下油门踏板的值(例如1°
当该判别结果是“是”,即未踩下油门踏板时,进到步骤34,判别从发动机3的起动结束后开始的经过时间即催化剂暖机控制的执行时间Tcat是否小于规定值Tcatlmt(例如30sec)。该催化剂暖机控制是用于在发动机起动后迅速激活设置在排气管13内的催化剂装置内的催化剂的控制。当该判别结果是“是”,即Tcat<Tcatlmt时,应执行催化剂暖机控制,进到步骤35,计算催化剂暖机用值Ig_ast。该催化剂暖机用值Ig_ast,具体地说,是使用下式(10)~(12)的响应指定型控制算法(滑模控制算法或反向步进(back-stepping)控制算法)来计算的。
Ig _ ast = Ig _ ast _ base - Krch · σ ( k ) - Kadp · Σ i = 0 k σ ( i ) . . . ( 10 )
σ(k)=Enast(k)+pole·Enast(k-1)                     ……(11)
Enast(k)=NE(k)-NE_ast                               ……(12)
另外,式(10)~(12)中的带有符号(k)的各离散数据表示是与规定的控制周期(在本实施方式是TDC信号的产生周期)同步地采样(或计算)的数据,符号k表示各离散数据的采样周期的序号。例如,符号k表示本次控制定时中采样的值,符号k-1表示上次控制定时中采样的值。这一点在以下的离散数据中也是一样。另外,在以下说明中,适当省略各离散数据中的符号(k)等。
在式(10)中,Ig_ast_base表示规定的催化剂暖机用的基准点火正时(例如BTDC5°Krch、Kadp表示规定的反馈增益。并且,σ是按式(11)所定义的切换函数。在该式(11)中,pole是被设定成使-1<pole<0的关系成立的响应指定参数,Enast是使用式(12)计算的跟随误差。在式(12)中,NE_ast是规定的催化剂暖机用的目标转速(例如1800rpm)。使用以上的控制算法把催化剂暖机用值Ig_ast计算为使发动机转速NE收敛于上述催化剂暖机用目标转速NE_ast的值。
然后,进到步骤36,把点火正时Iglog设定成上述催化剂暖机用值Ig_ast,之后结束本处理。
另一方面,当步骤33或34的判别结果是“否”时,即Tcat≥Tcatlmt时,或者当踩下油门踏板时,进到步骤37,执行通常点火正时控制处理。
该通常点火正时控制处理,具体地说,如图25所示执行。首先,在步骤50中,通过上述手法计算最大估计进气量Gcyl_max。即,通过根据发动机转速NE检索图17所示的表,计算最大估计进气量的基本值Gcyl_max_base,通过根据发动机转速NE和凸轮相位Cain检索图18所示的映射图,计算校正系数K_gcyl_max,以及通过根据压缩比Cr检索图14所示的表,计算压缩比校正系数K_gcyl_cr。然后,根据以上计算出的3项即Gcyl_max_base、K_gcyl_max、K_gcyl_cr,使用上述式(7)计算最大估计进气量Gcyl_max。
然后,在步骤51中,通过上述式(8)计算归一化进气量Kgcyl。之后,在步骤52中,使用上述方法计算基本点火正时Iglog_map。即,根据归一化进气量Kgcyl、发动机转速NE、凸轮相位Cain以及压缩比Cr检索图19、20等的基本点火正时映射图,选择多个值,并通过该多个选择值的插值运算,计算基本点火正时Iglog_map。
然后,在步骤53中,使用上述方法计算点火校正值Diglog。即,通过根据进气温度TA、发动机水温TW以及目标空燃比KCMD等检索未作图示的映射图和表,计算各种校正值,根据这些各种校正值计算点火校正值Diglog。然后,在步骤54中,通过上述式(9)计算点火正时Iglog。
回到图24,在步骤37中,如上所述执行通常点火正时控制处理,之后结束本处理。
另一方面,当步骤30的判别结果是“是”,即3个可变机构中的至少一方发生故障时,进到步骤38,计算故障时用值Ig_fs。该故障时用值Ig_fs,具体地说,使用下式(13)~(15)的响应指定型控制算法(滑模控制算法或反向步进控制算法)来计算。
Ig _ fs = Ig _ fs _ base - Krc h # · σ # ( k ) - Kad p # · Σ i = 0 k σ # ( i ) . . . ( 13 )
σ#(k)=Enfs(k)+pole#·Enfs(k-1)               ……(14)
Enfs(k)=NE(k)-NE_fs                              ……(15)
在上述式(13)中,Ig_fs_base表示规定的故障时用的基准点火正时(例如TDC±0°Krch#、Kadp#表示规定的反馈增益。并且,σ#是按式(14)所定义的切换函数。在该式(14)中,pole#是被设定成使-1<pole#<0的关系成立的响应指定参数,Enfs是通过式(15)计算的跟随误差。在式(15)中,NE_fs是规定的故障时目标转速(例如2000rpm)。使用以上的控制算法把故障时用值Ig_fs计算为为使发动机转速NE收敛于上述故障时目标转速NE_fs的值。
然后,进到步骤39,把点火正时Iglog设定成上述故障时用值Ig_fs,之后结束本处理。
以下,参照图26对由ECU 2执行的可变机构控制处理进行说明。本处理是计算用于分别控制3个可变机构的3个控制输入U_Liftin、U_Cain、U_Cr的处理,按照规定的控制周期(例如5msec)执行。
在该处理中,首先,在步骤60中,判别上述可变机构故障标志F_VDNG是否是“1”。当该判别结果是“否”,即3个可变机构全都是正常时,进到步骤61,判别上述发动机起动标志F_ENGSTART是否是“1”。
当该判别结果是“是”,即发动机在起动控制中时,进到步骤62,通过根据发动机水温TW检索图27所示的表,计算目标气门升程Liftin_cmd。
在该表中,目标气门升程Liftin_cmd在发动机水温TW高于规定值TWREF1的范围内,被设定成发动机水温TW越低则越大的值,并且在TW≤TWREF1的范围内,被设定成规定值Liftinref。这是因为,由于在发动机水温TW低的情况下,可变气门升程机构50的摩擦增大,因而对此进行补偿。
然后,在步骤63,通过根据发动机水温TW检索图28所示的表,来计算目标凸轮相位Cain_cmd。
在该表中,目标凸轮相位Cain_cmd在发动机水温TW高于规定值TWREF2的范围内,被设定成发动机水温TW越低就越是滞后侧的值,并且在TW≤TWREF2的范围内,被设定成规定值Cainref。这是为了在发动机水温TW低的情况下,与发动机水温TW高的情况相比把凸轮相位Cain控制到滞后侧,减小气门重叠度,从而提高进气流速,实现燃烧的稳定化。
然后,在步骤64中,把目标压缩比Cr_cmd设定成规定的起动时用值Cr_cmd_crk。该起动时用值Cr_cmd_crk被设定成提高反冲起动中的发动机转速NE、可抑制产生未燃HC的低压缩比侧的值。
然后,进到步骤65,使用下式(16)~(19)所示的目标值滤波型2自由度滑模控制算法计算升程控制输入U_Liftin。
U _ Liftin = - Krch _ lf · σ _ lf ( k ) - Kadp _ lf · Σ i = 0 k σ _ lf ( i ) . . . ( 16 )
σ_lf(k)=E_lf(k)+pole_lf·E_lf(k-1)                    ……(17)
E_lf(k)=Liftin(k)-Lift_in_cmdf(k)                      ……(18)
Liftin_cmd_f(k)=-pole_flf·Liftin_cmd_f(k-1)
                  +(1+pole_f_lf)Liftin_cmd(k)           ……(19)
在该式(16)中,Krch_lf表示规定的趋近律增益,Kadp_lf表示规定的自适应律增益,而且,σ_lf是按式(17)所定义的切换函数。在该式(17)中,pole_lf是被设定成使-1<pole_lf<0的关系成立的响应指定参数,E_lf是使用式(18)计算的跟随误差。在该式(18)中,Liftin_cmd_f是目标气门升程的滤波值,是通过式(19)所示的一次延迟滤波算法来计算的。在该式(19)中,pole_f_lf是被设定成使-1<pole_f_lf<0的关系成立的目标值滤波设定参数。
然后,进到步骤66,通过下式(20)~(23)所示的目标值滤波型2自由度滑模控制算法计算相位控制输入U(Cain。
U _ Cain = - Krch _ ca · σ _ ca ( k ) - Kadp _ ca · Σ i = 0 k σ _ ca ( i ) . . . ( 20 )
σ_ca(k)=E_ca(k)+pole_ca·E_ca(k-1)               ……(21)
E_ca(k)=Cain(k)-Cain_cmd_f(k)                     ……(22)
Cain_cmd_f(k)=-pole_f_ca·Cain_cmd_f(k-1)+(1+pole_f_ca)Cain_cmd(k)
                                                   ……(23)
在该式(20)中,Krch_ca表示规定的趋近律增益,Kadp_ca表示规定的自适应律增益,而且,σca是按式(21)所定义的切换函数。在该式(21)中,pole_ca是被设定成使-1<pole_ca<0的关系成立的响应指定参数,E_ca是通过式(22)计算的跟随误差。在该式(22)中,Cain_cmd_f是目标凸轮相位的滤波值,是使用式(23)所示的一次延迟滤波算法来计算的。在该式(23)中,pole_f_ca是被设定成使-1<pole_f_ca<0的关系成立的目标值滤波设定参数。
然后,进到步骤67,使用下式(24)~(27)所示的目标值滤波型2自由度滑模控制算法计算压缩比控制输入U_Cr。
U _ Cr = - Krch _ cr · σ _ cr ( k ) - Kadp _ cr · Σ l = 0 k σ _ cr ( i ) . . . ( 24 )
σ_cr(k)=E_cr(k)+pole_cr·E_cr(k-1)               ……(25)
E_cr(k)=Cr(k)-Cr_cmd_f(k)                         ……(26)
Cr_cmd_f(k)=-pole_f_cr·Cr_cmd_f(k-1)+(1+pole_f_cr)Cr_cmd(k)
                                                   ……(27)
在该式(24)中,Krch_r表示规定的趋近律增益,Kadp_cr表示规定的自适应律增益,而且,σ_cr是按式(25)所定义的切换函数。在该式(25)中,pole_cr是被设定成使-1<pole_cr<0的关系成立的响应指定参数,E_cr是通过式(26)计算的跟随误差。在该式(26)中,Cr_cmd_f是目标压缩比滤波值,是使用式(27)所示的一次延迟滤波算法来计算的。在该式(27)中,pole_f_cr是被设定成使-1<pole_f_cr<0的关系成立的目标值滤波设定参数。
在以上步骤67中,计算压缩比控制输入U_Cr,之后结束本处理。另一方面,当步骤61的判别结果是“否”,即不是发动机起动控制中时,进到步骤68,判别油门开度AP是否小于规定值APREF。当该判别结果是“是”,即未踩下油门踏板时,进到步骤69,判别催化剂暖机控制执行时间Tcat是否小于规定值Tcatlmt。
当该判别结果是“是”,即Tcat<Tcatlmt时,应执行催化剂暖机控制,进到步骤70,通过根据催化剂暖机控制执行时间Tcat和发动机水温TW检索图29所示的映射图,计算目标气门升程Liftin_cmd。在该图中,TW1~TW3表示TW1<TW2<TW3的关系成立的发动机水温TW的规定值,这一点在以下说明中也是一样。
在该映射图中,目标气门升程Liftin_cmd被设定成发动机水温TW越低则越大的值。这是因为,由于发动机水温TW越低,催化剂活化所需要的时间就越长,因而通过增大排气容积,缩短催化剂活化所需要的时间。除此以外,在该映射图中,目标气门升程Liftin_cmd在催化剂暖机控制执行时间Tcat短的期间,即在直到经过一定时间为止的期间内,被设定成执行时间Tcat越长则越大的值,在执行时间Tcat经过一定程度之后,被设定成执行时间Tcat越长则越小的值。这是为了避免在随着执行时间Tcat的经过,发动机3的暖机进行,从而摩擦下降的情况下,如果不减少吸入空气量,则为使发动机转速NE维持在目标值,点火正时处于过度滞后控制的状态,燃烧状态变得不稳定。
然后,在步骤71中,通过根据催化剂暖机控制执行时间Tcat和发动机水温TW检索图30所示的映射图,来计算目标凸轮相位Cain_cmd。在该映射图中,目标凸轮相位Cain_cmd被设定成发动机水温TW越低就越是超前侧的值。这是因为,由于发动机水温TW越低,如上所述催化剂活化所需要的时间就越长,因而通过减少泵气损失(pumping loss),并增大吸入空气量,缩短催化剂活化所需要的时间。除此以外,在该映射图中,目标凸轮相位Cain_cmd在催化剂暖机控制执行时间Tcat短的期间,被设定成执行时间Tcat越长就越是滞后侧的值,在执行时间Tcat经过某种程度之后,被设定成执行时间Tcat越长就越是超前侧的值。这是根据与在图29的说明中所述相同的理由。
然后,在步骤72中,把目标压缩比Cr_cmd设定成规定的暖机控制用值Cr_cmd_ast。该暖机控制用值Cr_cmd_ast被设定成可降低热效率并提高排气温度的低压缩比侧的值,以缩短催化剂活化所需要的时间。
继步骤72之后,如上所述,执行步骤65~67,之后结束本处理。
另一方面,当步骤68或69的判别结果是“否”时,即Tcat≥Tcatlmt时,或者当踩下油门踏板时,进到步骤73,通过根据发动机转速NE和油门开度AP检索图31所示的映射图,计算目标气门升程Liftin_cmd。在该图中,AP1~AP3表示AP1<AP2<AP3的关系成立的油门开度AP的规定值,这一点在以下的说明中也是一样。
在该映射图中,目标气门升程Liftin_cmd被设定成发动机转速NE越高、或者油门开度AP越大则越大的值。这是因为,发动机转速NE越高、或者油门开度AP越大,对发动机3的要求输出则越大,从而要求更大的吸入空气量。
然后,在步骤74中,通过根据发动机转速NE和油门开度AP检索图32所示的映射图,来计算目标凸轮相位Cain_cmd。在该映射图中,目标凸轮相位Cain_cmd当油门开度AP小且在中转速区域内时,被设定成与除此以外时相比靠近超前侧的值。这是因为,在这种运转状态下,有必要降低内部EGR量,减少泵气损失。
然后,在步骤75中,通过根据发动机转速NE和油门开度AP检索图33所示的映射图,来计算目标压缩比Cr_cmd。在该映射图中,目标压缩比Cr_cmd被设定成发动机转速NE越高、或者油门开度AP越大则越小的值。这是为了越是高负荷区域,即,越容易发生爆震,就越成为低压缩比,从而避免点火正时处于被控制为太过滞后的状态,避免燃烧效率的下降。
继步骤75之后,如上所述,执行步骤65~67之后,结束本处理。
另一方面,当步骤60的判别结果是“是”,即3个可变机构中的至少一方发生故障时,进到步骤76,把升程控制输入U_Liftin设定成规定的故障时用值U_Liftin_fs,把相位控制输入U_Cain设定成规定的故障时用值U_Cain_fs,把压缩比控制输入U_Cr设定成规定的故障时用值U_Cr_fs之后,结束本处理。这样,如上所述,气门升程Liftin被保持为最小值Liftinmin,凸轮相位Cain被保持为规定的锁定值,压缩比Cr被保持为最小值Crmin,由此,可在停车中适当地执行怠速运转或发动机起动,同时可在行驶中维持低速行驶状态。
下面,参照图34对由ECU 2执行的3个可变机构和空气流量传感器22的故障判定处理进行说明。本处理是判定3个可变机构和空气流量传感器22是否发生故障的处理,按照规定的控制周期(例如5msec)执行。
在该处理中,首先,在步骤80中,判别可变气门升程机构50是否处于故障状态。具体地说,当气门升程Liftin和目标气门升程Liftin_cmd之间的偏差的绝对值超过规定阈值的状态继续了规定时间以上时,或者当升程控制输入U_Liftin的绝对值超过规定值的状态继续了规定时间以上时,判别为可变气门升程机构50处于故障状态,当是除此以外时,判别为可变气门升程机构50正常。
当该判别结果是“是”,即可变气门升程机构50处于故障状态时,为了对此进行表示,进到步骤81,把升程机构故障标志F_VDNG1设定成“1”。另一方面,当步骤80的判别结果是“否”,即可变气门升程机构50是正常时,为了对此进行表示,进到步骤82,把升程机构故障标志F_VDNG1设定成“0”。
在继步骤81或82之后的步骤83中,判别可变凸轮相位机构70是否处于故障状态。具体地说,当凸轮相位Cain和目标凸轮相位Cain_cmd之间的偏差的绝对值超过规定阈值的状态继续了规定时间以上时,或者当相位控制输入U_Cain的绝对值超过规定阈值的状态继续了规定时间以上时,判别为可变凸轮相位机构70处于故障状态,当是除此以外时,判别为可变凸轮相位机构70是正常。
当该判别结果是“是”,即可变凸轮相位机构70处于故障状态时,为了对此进行表示,进到步骤84,把相位机构故障标志F_VDNG2设定成“1”。另一方面,当步骤83的判别结果是“否”,即可变凸轮相位机构70是正常时,为了对此进行表示,进到步骤85,把相位机构故障标志F_VDNG2设定成“0”。
在继步骤84或85之后的步骤86中,判别可变压缩比机构80是否处于故障状态。具体地说,当压缩比Cr和目标压缩比Cr_cmd的偏差的绝对值超过规定阈值的状态继续了规定时间以上时,或者当压缩比控制输入U_Cr的绝对值超过规定阈值的状态继续了规定时间以上时,判别为可变压缩比机构80处于故障状态,当是除此以外时,判别为可变压缩比机构80是正常。
当该判别结果是“是”,即可变压缩比机构80处于故障状态时,为了对此进行表示,进到步骤87,把压缩比机构故障标志F_VDNG3设定成“1”。另一方面,当步骤86的判别结果是“否”,即可变压缩比机构80是正常时,为了对此进行表示,进到步骤88,把压缩比机构故障标志F_VDNG3设定成“0”。
在继步骤87或88之后的步骤89中,判别以上3个故障标志F_VDNG1~3是否全都是“0”。当该判别结果是“否”,即3个可变机构中的至少一方发生故障时,为了对此进行表示,进到步骤90,把可变机构故障标志F_VDNG设定成“1”。
另一方面,当步骤89的判别结果是“否”,即3个可变机构全都是正常时,为了对此进行表示,进到步骤91,把可变机构故障标志F_VDNG设定成“0”。
在继步骤90或91之后的步骤92中,判别空气流量传感器22是否处于故障状态。具体地说,根据第1估计进气量Gcyl_vt,检索在空气流量传感器22正常的情况下的预先设定了第2估计进气量Gcyl_afm相对于第1估计进气量Gcyl_vt的上限值和下限值的故障判定表。然后,在第2估计进气量Gcyl_afm处于由上限值和下限值的检索值所规定的范围外的情况下,判别为空气流量传感器22处于故障状态,在范围内时,判别为空气流量传感器22正常。
当步骤92的判别结果是“是”,即空气流量传感器22处于故障状态时,为了对此进行表示,进到步骤93,把空气流量传感器故障标志F_AFMNG设定成“1”之后,结束本处理。
另一方面,当步骤92的判别结果是“否”,即空气流量传感器22正常时,为了对此进行表示,进到步骤94,把空气流量传感器故障标志F_AFMNG设定成“0”之后,结束本处理。
如上所述,根据本实施方式的控制装置1,根据气门升程Liftin、凸轮相位Cain以及压缩比Cr来计算出第1估计进气量Gcyl_vt,根据由空气流量传感器22所检测出的空气流量Gin来计算出第2估计进气量Gcyl_afm。然后,作为第1和第2估计进气量Gcyl_vt、Gcyl_afm的加权平均值,使用式(4)来计算出计算进气量Gcyl,并且在Gin_vt≤Gin1的范围内,为Gcyl=Gcyl_vt,在Gin2≤Gin_vt的范围内,为Gcyl=Gcyl_afm。
在燃料喷射控制处理中,由于燃料喷射量TOUT是根据计算进气量Gcyl来计算的,因而当Gin_vt≤Gin1时,即,由于进气通路12a内的空气流量小而使空气流量传感器22的检测信号的可靠性低,并使第1估计进气量Gcyl_vt的可靠性超过第2估计进气量Gcyl_afm的可靠性时,可以根据可靠性更高一方的第1估计进气量Gcyl_vt,精度良好地计算燃料喷射量TOUT。并且,当Gin2≤Gin vt时,即,由于进气通路12a内的空气流量大而使空气流量传感器22的检测信号的可靠性高,并使第2估计进气量Gcyl_afm的可靠性超过第1估计进气量Gcyl_vt的可靠性时,可以根据可靠性更高一方的第2估计进气量Gcyl_afm,精度良好地计算燃料喷射量TOUT。如上所述,在第1估计进气量Gcyl_vt的可靠性超过第2估计进气量Gcyl_afm的可靠性的低负荷区域、或者反过来的负荷区域内,都能精度良好地计算燃料喷射量TOUT,因而可提高燃料喷射控制的控制精度即空燃比控制的控制精度。其结果,可改善燃料效率和排气特性。
而且,由于计算进气量Gcyl中的第1和第2估计进气量Gcyl_vt、Gcyl_afm的加权程度由过渡系数Kg的值决定,并且当Gin1<Gin_vt<Gin2时,过渡系数Kg被设定成与估计流量Gin_vt成正比的值,因而当估计流量Gin_vt在Gin1和Gin2之间变化时,伴随于此,过渡系数Kg逐渐变化,从而使计算进气量Gcyl从Gcyl_vt、Gcyl_afm的一方侧的值逐渐变化到另一方侧的值。由此,可以避免当从第1和第2估计进气量Gcyl_vt、Gcyl_afm的一方直接切换到另一方时,由于第1和第2估计进气量Gcyl_vt、Gcyl_afm的差大,因而燃料喷射量TOUT变化,由此而产生扭矩级差。
并且,当判定为空气流量传感器22处于故障状态时,为Gcyl=Gcyl_vt,在所有的负荷区域内根据第1估计进气量Gcyl_vt来计算燃料喷射量TOUT,因而即使当由于空气流量传感器22的故障而使第2估计进气量Gcyl_afm的可靠性下降时,也可根据第1估计进气量Gcyl_vt适当地计算燃料喷射量TOUT,可确保燃料喷射控制中的良好控制精度。
而且,当判定为3个可变机构中的至少一方处于故障状态时,把3个可变机构的控制输入U_Liftin、U_Cain、U_Cr全都分别设定成规定的故障时用值U_Liftin_fs、U_Cain_fs、U_Cr_fs,以使吸入空气量成为规定的故障时用值Gcyl_fs。除此之外,即使当由于断线等而使控制输入U_Liftin、U_Cain、U_Cr分别输入不到3个可变机构时,也可由锁定机构将气门升程Liftin、凸轮相位Cain以及压缩比Cr保持为使吸入空气量成为规定的故障时用值Gcyl_fs的值。由此,可避免由吸入空气量的增大引起的发动机输出的上升,可避免伴随于此的加速,同时可在避免由发动机转速NE的下降引起的减速的同时继续进行运转,其结果,可确保车辆的必要最低限度的行驶性能。
另一方面,在点火正时控制中,基本点火正时Iglog_map是使用针对归一化进气量Kgcyl和发动机转速NE设定的点火正时映射图来计算的。该归一化进气量Kgcyl由于是作为计算进气量Gcyl与最大估计进气量Gcyl_max之比来计算的,因而成为从值0到值l的范围内的值,并且计算进气量Gcyl成为接近最大估计进气量Gcyl_max的值,在发生爆震的高负荷区域内,归一化进气量Kgcy1成为包含值1的值1附近的值,即使对于相互不同的发动机转速NE的设定值NE1~NE3,也可将点火正时映射图的设定数据数在设定值NE1~NE3之间针对归一化进气量Kgcyl设定成相同的数目。由此,与针对发动机转速NE和吸入空气量设定点火正时映射图的数据的以往情况相比,可减少数据总数,相应地可削减ROM等的存储介质的存储容量,可削减制造成本。
并且,如上所述,由于点火正时Iglog是使用计算进气量Gcyl与最大估计进气量Gcyl_max之比即归一化进气量Kgcyl来计算的,因而当Gin_vt≤Gin1时,或者Gin2≤Gin_vt时,即,即使在第1和第2估计进气量Gcyl_vt、Gcyl_afm的一方的可靠性超过另一方的负荷区域内,也能根据可靠性更高一方的值,精度良好地计算点火正时Iglog。由此,可提高点火正时控制的控制精度,其结果,可改善燃料效率和燃烧稳定性。
而且,如上所述,在Gin1<Gin_vt<Gin2的范围内,当估计流量Gin_vt在Gin1和Gin2之间变化时,计算进气量Gcyl从Gcyl_vt、Gcyl_afm的一方侧的值逐渐变化到另一方侧的值,因而可以避免从第1和第2估计进气量Gcyl_vt、Gcyl_afm的一方直接切换到另一方时,由于第1和第2估计进气量Gcyl_vt、Gcyl_afm之差较大而点火正时Iglog变化,由此而发生扭矩级差。
并且,当判定为空气流量传感器22处于故障状态时,如上所述,为Gcyl=Gcyl_vt,在所有的负荷区域内,根据第1估计进气量Gcyl_vt计算归一化进气量Kgcyl,并且使用这种归一化进气量Kgcyl计算点火正时Iglog,因而即使当由于空气流量传感器22的故障而使第2估计进气量Gcyl_afm的可靠性下降时,也能根据第1估计进气量Gcyl_vt来适当地计算点火正时Iglog,可确保点火正时控制中的良好控制精度。
而且,如上所述,当判定为3个可变机构中的至少一方处于故障状态时,或者当由于断线等而使控制输入U_Liftin、U_Cain、U_Cr分别输入不到3个可变机构时,也可使用锁定机构,将气门升程Liftin、凸轮相位Cain以及压缩比Cr保持为使吸入空气量成为规定的故障时用值Gcyl_fs的值,并可根据响应指定型控制算法[式(13)~(15)]控制点火正时的故障时用值Ig_fs,以使发动机转速NE成为故障时目标转述NE_fs。由此,可避免伴随发动机转速NE上升的加速,同时,可在避免由发动机转速NE的下降引起的减速的同时继续进行运转,其结果,可确保车辆的必要最低限度的行驶性能。
此外,省略了发动机3的节气门机构,并将进气通路12a构成为大口径,从而可减少进气通路12a内的流动阻力,提高填充效率,并可削减制造成本。
另外,实施方式是把本发明的控制装置1应用于车辆用的内燃机3的例子,然而本发明的控制装置不限于此,可应用于船舶用和发电用等的各种用途的内燃机。
并且,实施方式是作为可变进气机构使用可变气门升程机构50、可变凸轮相位机构70以及可变压缩比机构80的例子,然而可变进气机构不限于这些,只要是能变更吸入到发动机3的燃烧室内的吸入空气量的装置即可。例如,作为可变进气机构,可以使用以往的节气门机构。
而且,实施方式是把作为比值的归一化进气量Kgcyl设定成Kgcyl=Gcyl/Gcyl_max的例子,然而也可以设定成Kgcyl=Gcyl_max/Gcyl。在这样设定的情况下,归一化进气量Kgcyl成为从值1起无限大的范围的值,并且在计算进气量Gcyl成为接近最大估计进气量Gcyl_max的值的区域,即发生爆震的高负荷区域内,归一化进气量Kgcyl成为包含值1的值1附近的值,在多个发动机转速NE的设定值之间不会产生偏差。其结果,与实施方式一样,可将基本点火正时映射图的设定数据数在多个发动机转速NE的设定值之间针对归一化进气量Kgcyl设定成相同的数目。由此,与针对发动机转速NE和吸入空气量来设定基本点火正时映射图的数据的情况相比,可减少数据总数,相应地可削减ROM等的存储介质的存储容量,可削减制造成本。
另一方面,实施方式是根据作为负荷参数的发动机转速NE、凸轮相位Cain以及压缩比Cr计算出第1估计进气量Gcyl_vt和估计流量Gin_vt的例子,然而在第1估计进气量Gcyl_vt和估计流量Gin_vt的计算中使用的负荷参数不限于此,只要是表示发动机3的负荷的参数即可。例如,可以使用目标凸轮相位Cain_cmd和目标压缩比Cr_cmd,也可以使用气门升程Liftin和/或目标气门升程Liftin_cmd。
并且,实施方式是根据发动机转速NE、凸轮相位Cain以及压缩比Cr计算出最大估计进气量Gcyl_max的例子,然而可以根据表示发动机负荷的其他参数来计算最大估计进气量Gcyl_max。例如,可以根据发动机转速NE以及目标凸轮相位Cain_cmd和/或目标压缩比Cr_cmd计算最大估计进气量Gcyl_max,也可以根据发动机转速NE以及气门升程Liftin和目标气门升程Liftin_cmd中的一方计算最大估计进气量Gcyl_max。
而且,实施方式是将本发明的控制装置1应用于内燃机3的例子,该内燃机3将进气通路构成为大口径,从而当空气流量Gin小时即低负荷时,第1估计进气量Gcyl_vt的可靠性超过第2估计进气量Gcyl_afm,并当高负荷时,第2估计进气量Gcyl_afm的可靠性超过第1估计进气量Gcyl_vt,然而本发明的控制装置1不限于此,也能应用于在第1和第2估计进气量Gcyl_vt、Gcyl_afm之间具有使两者的可靠性高低颠倒的负荷区域的发动机。例如,也可以应用于以下内燃机,即:在低负荷区域内,第2估计进气量Gcyl_afm的可靠性超过第1估计进气量Gcyl_vt,并且在高负荷区域内,由于发生进气脉动、或者进气流速过高而使第1估计进气量Gcyl_vt的可靠性超过第2估计进气量Gcyl_afm。在该情况下,只要把式(4)中的Gcyl_afm的乘法项设定成(1-Kg),把Gcyl_vt的乘法项设定成Kg即可。
并且,实施方式是把基本燃料喷射量Tcyl_bs作为换算系数与计算进气量的积Kgt·Gcyl来计算的例子,然而也可以构成为通过根据计算进气量Gcyl检索表,来计算基本燃料喷射量Tcyl_bs。在该情况下,只要使用按照每个燃料喷射阀10预先设定的表即可。
产业上的利用可能性
根据该内燃机的控制装置,第1估计进气量是作为吸入空气量的估计值,根据表示可变进气机构的工作状态的工作状态参数来计算的,第2估计进气量是作为吸入空气量的估计值,根据在内燃机的进气通路内流动的空气流量来计算的,同时在表示内燃机负荷的负荷参数处于规定的第1范围内时,根据第1估计进气量来决定提供给燃烧室内的燃料量。因此,通过把该规定的第1范围设定成由于空气流量检测单元所检测的空气流量的可靠性降低而使第1估计进气量的可靠性超过第2估计进气量的可靠性的负荷区域,即使在这种负荷区域内,也能根据第1估计进气量适当地决定燃料量。
而且,当负荷参数处于与规定的第1范围不同的规定的第2范围内时,由于提供给燃烧室内的燃料量是根据检测进气量来决定的,因而通过把该规定的第2范围设定成使第2估计进气量的可靠性超过第1估计进气量的可靠性的负荷区域,即使在这种负荷区域内,也能根据第2估计进气量适当地计算燃料量。如上所述,在第1估计进气量的可靠性超过第2估计进气量的可靠性的负荷区域以及相反的负荷区域内,都能适当地决定燃料量,因而可提高燃料控制的控制精度即空燃比控制的控制精度。其结果,可改善燃料效率和排气特性。
因此,本发明应用于内燃机的控制装置,即使在具有所计算出的吸入空气量的可靠性低下的可能性的情况下,也能提高燃料控制和点火正时控制的控制精度,从而可改善燃料效率和排气特性,并可削减制造成本,在此方面是有用的。

Claims (11)

1.一种内燃机的控制装置,该控制装置在通过可变进气机构自由变更吸入到气缸内的吸入空气量的内燃机中,控制提供给燃烧室内的燃料量,其特征在于,该控制装置具有:
工作状态参数检测单元,其检测表示上述可变进气机构的工作状态的工作状态参数;
第1估计进气量计算单元,其根据该工作状态参数,计算第1估计进气量作为上述吸入空气量的估计值;
空气流量检测单元,其检测在上述内燃机的进气通路内流动的空气流量;
第2估计进气量计算单元,其根据该空气流量,计算第2估计进气量作为上述吸入空气量的估计值;
负荷参数检测单元,其检测表示上述内燃机的负荷的负荷参数;以及
燃料量决定单元,其在该负荷参数处于规定的第1范围内时,根据上述第1估计进气量决定上述燃料量,在上述负荷参数处于不同于上述规定的第1范围的规定的第2范围内时,根据上述第2估计进气量决定上述燃料量。
2.根据权利要求1所述的内燃机的控制装置,其特征在于,上述规定的第1范围和上述规定的第2范围被设定成相互不重复;
上述燃料量决定单元在上述负荷参数处于上述规定的第1范围和上述规定的第2范围之间时,根据上述第1估计进气量和上述第2估计进气量决定上述燃料量。
3.根据权利要求1所述的内燃机的控制装置,其特征在于,该控制装置还具有:第1故障判定单元,其判定上述空气流量检测单元是否发生故障;
当通过该第1故障判定单元判定为上述空气流量检测单元发生故障时,上述燃料量决定单元与上述负荷参数的值无关地根据上述第1估计进气量算出上述燃料量。
4.根据权利要求1所述的内燃机的控制装置,其特征在于,该控制装置还具有:
第2故障判定单元,其判定上述可变进气机构是否发生故障;以及
驱动单元,其在通过该第2故障判定单元判定为上述可变进气机构发生故障时,驱动上述可变进气机构,使上述吸入空气量成为规定值;
上述燃料量决定单元在通过上述第2故障判定单元判定为上述可变进气机构发生故障时,根据上述规定值决定上述燃料量。
5.根据权利要求1至4中的任意一项所述的内燃机的控制装置,其特征在于,上述可变进气机构包含以下机构中的至少一方,即:变更上述内燃机的进气凸轮轴相对于曲轴的相位的可变凸轮相位机构,变更上述内燃机的进气门升程的可变气门升程机构,以及变更上述内燃机的压缩比的可变压缩比机构。
6.一种内燃机的控制装置,其特征在于,该控制装置具有:
吸入空气量计算单元,其计算吸入到内燃机的气缸内的吸入空气量;
发动机转速检测单元,其检测上述内燃机的发动机转速;
最大吸入空气量计算单元,其根据该发动机转速,计算在该发动机转速下可吸入到上述气缸内的最大吸入空气量;以及
点火正时决定单元,其根据上述吸入空气量和上述最大吸入空气量的一方与另一方的比、以及上述发动机转速,决定上述内燃机的点火正时。
7.根据权利要求6所述的内燃机的控制装置,其特征在于,上述内燃机具有:自由地变更上述吸入空气量的可变进气机构,上述内燃机的控制装置还具有:
工作状态参数检测单元,其检测表示该可变进气机构的工作状态的工作状态参数;
空气流量检测单元,其检测在上述内燃机的进气通路内流动的空气流量;以及
负荷参数检测单元,其检测表示上述内燃机的负荷的负荷参数;
当上述负荷参数在规定的第1范围内时,上述吸入空气量计算单元根据上述工作状态参数计算上述吸入空气量,并当上述负荷参数在不同于上述规定的第1范围的规定的第2范围内时,根据上述空气流量计算上述吸入空气量。
8.根据权利要求7所述的内燃机的控制装置,其特征在于,上述规定的第1范围和上述规定的第2范围被设定成相互不重复;
当上述负荷参数在上述规定的第1范围和上述规定的第2范围之间时,上述吸入空气量计算单元根据上述工作状态参数和上述空气流量来计算上述吸入空气量。
9.根据权利要求7所述的内燃机的控制装置,其特征在于,该控制装置还具有:第1故障判定单元,其判定上述空气流量检测单元是否发生故障;
当通过该第1故障判定单元判定为上述空气流量检测单元发生故障时,上述吸入空气量计算单元与上述负荷参数的值无关地根据上述工作状态参数计算上述吸入空气量。
10.根据权利要求7所述的内燃机的控制装置,其特征在于,该控制装置还具有:
第2故障判定单元,其判定上述可变进气机构是否发生故障;
驱动单元,其在通过该第2故障判定单元判定为上述可变进气机构发生故障时,驱动上述可变进气机构,使上述吸入空气量成为规定值;以及
故障时目标转速设定单元,其在通过上述第2故障判定单元判定为上述可变进气机构发生故障时,设定成为上述发动机转速的目标的故障时目标转速;
当通过上述第2故障判定单元判定为上述可变进气机构发生故障时,上述点火正时决定单元根据规定的反馈控制算法决定上述点火正时,使上述发动机转速成为上述故障时目标转速。
11.根据权利要求7至10中的任意一项所述的内燃机的控制装置,其特征在于,上述可变进气机构包含以下机构中的至少一方,即:变更上述内燃机的进气凸轮轴相对于曲轴的相位的可变凸轮相位机构,变更上述内燃机的进气门升程的可变气门升程机构,以及变更上述内燃机的压缩比的可变压缩比机构。
CNB2005800134306A 2004-04-28 2005-04-21 内燃机的控制装置 Expired - Fee Related CN100476179C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP133677/2004 2004-04-28
JP2004133677A JP4376119B2 (ja) 2004-04-28 2004-04-28 内燃機関の制御装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNA2008101658145A Division CN101408138A (zh) 2004-04-28 2005-04-21 内燃机的控制装置

Publications (2)

Publication Number Publication Date
CN1946923A true CN1946923A (zh) 2007-04-11
CN100476179C CN100476179C (zh) 2009-04-08

Family

ID=35241739

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2008101658145A Pending CN101408138A (zh) 2004-04-28 2005-04-21 内燃机的控制装置
CNB2005800134306A Expired - Fee Related CN100476179C (zh) 2004-04-28 2005-04-21 内燃机的控制装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNA2008101658145A Pending CN101408138A (zh) 2004-04-28 2005-04-21 内燃机的控制装置

Country Status (10)

Country Link
US (2) US7451754B2 (zh)
EP (1) EP1741909A4 (zh)
JP (1) JP4376119B2 (zh)
KR (1) KR20070007858A (zh)
CN (2) CN101408138A (zh)
CA (1) CA2564880A1 (zh)
MX (1) MXPA06012498A (zh)
RU (1) RU2360139C2 (zh)
TW (1) TW200607917A (zh)
WO (1) WO2005106226A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102137994A (zh) * 2009-04-28 2011-07-27 丰田自动车株式会社 火花点火式内燃机
CN102777269A (zh) * 2011-05-10 2012-11-14 通用汽车环球科技运作有限责任公司 压缩比确定和控制***及方法
US8554451B2 (en) 2008-11-13 2013-10-08 Honda Motor Co., Ltd. Stop control system for internal combustion engine
CN103547780A (zh) * 2011-05-23 2014-01-29 丰田自动车株式会社 具备可变压缩比机构的内燃机
CN103940554A (zh) * 2013-01-22 2014-07-23 上海汽车集团股份有限公司 发动机故障诊断方法和设备
CN105221272A (zh) * 2014-06-25 2016-01-06 福特环球技术公司 自适应凸轮角误差估计
CN105649789A (zh) * 2014-12-02 2016-06-08 现代自动车株式会社 用于控制发动机的排放气体再循环***的方法

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4275143B2 (ja) * 2006-04-11 2009-06-10 本田技研工業株式会社 内燃機関の点火時期制御装置
JP4544215B2 (ja) * 2006-08-22 2010-09-15 株式会社デンソー 内燃機関の制御装置
JP4340676B2 (ja) * 2006-10-11 2009-10-07 本田技研工業株式会社 制御装置
JP4209435B2 (ja) 2006-10-19 2009-01-14 本田技研工業株式会社 制御装置
US7676319B2 (en) * 2006-12-28 2010-03-09 Hitachi, Ltd. Intake air amount control apparatus for engine and control method thereof
JP4462283B2 (ja) * 2007-03-14 2010-05-12 日産自動車株式会社 エンジン負荷推定装置及びエンジン負荷推定方法
FR2923536A3 (fr) * 2007-11-12 2009-05-15 Renault Sas Optimisation de la modelisation d'un groupe moteur de vehicule automobile
JP5013097B2 (ja) * 2007-12-05 2012-08-29 トヨタ自動車株式会社 エンジンの制御装置、エンジンの燃料供給系の異常診断方法、コンピュータプログラム、及び記録媒体
JP4932747B2 (ja) 2008-01-15 2012-05-16 ヤマハ発動機株式会社 可変動弁装置
JP4468462B2 (ja) 2008-03-21 2010-05-26 本田技研工業株式会社 内燃機関の内部egr制御装置
JP2009250055A (ja) 2008-04-02 2009-10-29 Honda Motor Co Ltd 内燃機関の内部egr制御装置
EP2136057B1 (en) * 2008-06-19 2021-12-08 Vitesco Technologies GmbH Fuel quality dependent injection timing control for an internal combustion engine
JP5056636B2 (ja) * 2008-07-15 2012-10-24 トヨタ自動車株式会社 可変圧縮比内燃機関及び、可変圧縮比機構の異常判定方法
JP5185056B2 (ja) 2008-10-16 2013-04-17 ヤンマー株式会社 エンジン回転数制御装置
US8746189B2 (en) * 2008-11-25 2014-06-10 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
US20110005497A1 (en) * 2009-01-07 2011-01-13 Toyota Jidosha Kabushiki Kaisha Engine control system
BRPI0924378B1 (pt) * 2009-02-20 2020-10-13 Toyota Jidosha Kabushiki Kaisha sistema de controle de um motor de combustão interna
JP5362595B2 (ja) * 2010-01-06 2013-12-11 本田技研工業株式会社 内燃機関の吸入空気量パラメータ算出装置および制御装置
CN101988440B (zh) * 2010-11-02 2013-01-30 奇瑞汽车股份有限公司 柴油发动机的喷油控制方法
JP5472195B2 (ja) * 2011-04-22 2014-04-16 トヨタ自動車株式会社 可変圧縮比機構を備える内燃機関
JP5115643B2 (ja) * 2011-09-21 2013-01-09 日産自動車株式会社 可変圧縮比内燃機関
JP5115644B2 (ja) * 2011-09-21 2013-01-09 日産自動車株式会社 可変圧縮比内燃機関
JP5146582B2 (ja) * 2011-09-21 2013-02-20 日産自動車株式会社 可変圧縮比内燃機関
JP5478657B2 (ja) * 2012-04-13 2014-04-23 三菱電機株式会社 内燃機関の制御装置および内燃機関の制御方法
US8762022B1 (en) * 2012-08-17 2014-06-24 Brunswick Corporation Marine propulsion system with efficient engine speed delta
JP6015853B2 (ja) * 2013-04-23 2016-10-26 日産自動車株式会社 内燃機関の制御装置及び制御方法
JP5874694B2 (ja) 2013-07-30 2016-03-02 トヨタ自動車株式会社 内燃機関の診断装置
JP6259332B2 (ja) * 2014-03-20 2018-01-10 日立オートモティブシステムズ株式会社 内燃機関の制御装置
WO2016027367A1 (ja) * 2014-08-22 2016-02-25 三菱電機株式会社 車載電子制御装置
BR112017003304B1 (pt) * 2014-09-02 2021-08-03 Nissan Motor Co., Ltd. Motor de combustão interna com taxa de compressão variável
WO2016194511A1 (ja) * 2015-06-02 2016-12-08 日産自動車株式会社 内燃機関の可変圧縮比機構
JP6590077B2 (ja) * 2016-09-14 2019-10-16 日産自動車株式会社 表示装置
DE102017209525A1 (de) * 2017-06-07 2018-12-13 Robert Bosch Gmbh Verfahren zur Berechnung einer Füllung einer Brennkraftmaschine
KR102406127B1 (ko) * 2017-10-16 2022-06-07 현대자동차 주식회사 가변 압축비 엔진
EP3748144A1 (de) * 2019-06-03 2020-12-09 Winterthur Gas & Diesel AG Verfahren zum betreiben eines grossmotors sowie grossmotor
JP7268533B2 (ja) * 2019-08-23 2023-05-08 トヨタ自動車株式会社 エンジン制御装置
JP7222363B2 (ja) * 2020-01-07 2023-02-15 トヨタ自動車株式会社 エアフロメータの異常診断装置
JP7284351B2 (ja) * 2020-06-16 2023-05-30 本田技研工業株式会社 エンジン始動装置および鞍乗型車両
US11339759B2 (en) * 2020-10-09 2022-05-24 GM Global Technology Operations LLC Engine torque estimation and control systems and methods

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546033A (en) * 1978-09-27 1980-03-31 Nissan Motor Co Ltd Electronic control fuel injection system
US4275964A (en) * 1979-05-18 1981-06-30 Rodenstock Instruments Corporation Apparatus and method for determining the refractive characteristics of a test lens
JP2550962B2 (ja) * 1986-12-12 1996-11-06 日本電装株式会社 エンジンのスロツトル弁制御装置
JP3185438B2 (ja) * 1993-01-21 2001-07-09 トヨタ自動車株式会社 内燃機関のバルブタイミング制御装置
KR200151883Y1 (ko) * 1995-04-28 1999-07-15 전주범 테이프 레코더의 접지 구조 장치
JP3050794B2 (ja) * 1996-03-01 2000-06-12 富士重工業株式会社 エンジンの制御装置
JPH1047138A (ja) 1996-08-01 1998-02-17 Hitachi Ltd 電磁アクチュエータの可動子の位置検出装置とその検出方法,内燃機関の吸入空気量制御装置とその制御方法及び自動車用アクチュエータの診断方法
JP3572442B2 (ja) * 1998-09-07 2004-10-06 日産自動車株式会社 可変動弁エンジンの吸入空気量推定装置
DE19857183A1 (de) * 1998-12-11 2000-06-15 Bosch Gmbh Robert Diagnose einer variablen Ventilsteuerung bei Verbrennungsmotoren
JP2000274302A (ja) * 1999-03-19 2000-10-03 Toyota Motor Corp 内燃機関の吸気量検出装置
DE19927674B4 (de) * 1999-06-17 2010-09-02 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
US6470869B1 (en) * 1999-10-18 2002-10-29 Ford Global Technologies, Inc. Direct injection variable valve timing engine control system and method
US6739177B2 (en) * 2001-03-05 2004-05-25 Toyota Jidosha Kabushiki Kaisha Combustible-gas sensor, diagnostic device for intake-oxygen concentration sensor, and air-fuel ratio control device for internal combustion engines
DE10151748B4 (de) * 2001-10-19 2004-08-05 Siemens Ag Verfahren zum Überwachen eines Hubsensors eines Einlassventils einer Brennkraftmaschine
JP2004019450A (ja) * 2002-06-12 2004-01-22 Toyota Motor Corp 内燃機関の吸入空気量検出装置
JP3900064B2 (ja) * 2002-10-30 2007-04-04 トヨタ自動車株式会社 内燃機関の吸入空気量推定装置
JP2005155339A (ja) * 2003-11-20 2005-06-16 Toyota Motor Corp 内燃機関の制御装置
JP5149481B2 (ja) * 2004-09-22 2013-02-20 トヨタ自動車株式会社 エンジンの制御装置
US7305977B1 (en) * 2006-09-05 2007-12-11 Gm Global Technology Operations, Inc. System for controlling regeneration of lean NOx traps

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8554451B2 (en) 2008-11-13 2013-10-08 Honda Motor Co., Ltd. Stop control system for internal combustion engine
CN102209844B (zh) * 2008-11-13 2014-04-16 本田技研工业株式会社 内燃机的停止控制装置
CN102137994A (zh) * 2009-04-28 2011-07-27 丰田自动车株式会社 火花点火式内燃机
CN102777269A (zh) * 2011-05-10 2012-11-14 通用汽车环球科技运作有限责任公司 压缩比确定和控制***及方法
CN102777269B (zh) * 2011-05-10 2016-06-29 通用汽车环球科技运作有限责任公司 压缩比确定和控制***及方法
CN103547780B (zh) * 2011-05-23 2016-03-30 丰田自动车株式会社 具备可变压缩比机构的内燃机
CN103547780A (zh) * 2011-05-23 2014-01-29 丰田自动车株式会社 具备可变压缩比机构的内燃机
CN103940554B (zh) * 2013-01-22 2016-06-22 上海汽车集团股份有限公司 发动机故障诊断方法和设备
CN103940554A (zh) * 2013-01-22 2014-07-23 上海汽车集团股份有限公司 发动机故障诊断方法和设备
CN105221272A (zh) * 2014-06-25 2016-01-06 福特环球技术公司 自适应凸轮角误差估计
CN105221272B (zh) * 2014-06-25 2020-07-24 福特环球技术公司 自适应凸轮角误差估计
CN105649789A (zh) * 2014-12-02 2016-06-08 现代自动车株式会社 用于控制发动机的排放气体再循环***的方法
CN105649789B (zh) * 2014-12-02 2020-09-04 现代自动车株式会社 用于控制发动机的排放气体再循环***的方法

Also Published As

Publication number Publication date
US7451754B2 (en) 2008-11-18
RU2360139C2 (ru) 2009-06-27
US20090055081A1 (en) 2009-02-26
WO2005106226A1 (ja) 2005-11-10
US7661407B2 (en) 2010-02-16
TW200607917A (en) 2006-03-01
CN101408138A (zh) 2009-04-15
MXPA06012498A (es) 2007-01-31
EP1741909A4 (en) 2009-07-01
KR20070007858A (ko) 2007-01-16
JP4376119B2 (ja) 2009-12-02
US20070225892A1 (en) 2007-09-27
EP1741909A1 (en) 2007-01-10
JP2005315161A (ja) 2005-11-10
CA2564880A1 (en) 2005-11-10
CN100476179C (zh) 2009-04-08
RU2006140408A (ru) 2008-05-27

Similar Documents

Publication Publication Date Title
CN1946923A (zh) 内燃机的控制装置
CN1969118A (zh) 内燃机的控制装置
CN1298984C (zh) 通过估算动能和停止位置来控制发动机旋转停止的装置
CN1880743A (zh) 内燃机的控制装置
CN1878951A (zh) 控制点火正时的装置和方法
CN1779226A (zh) 内燃机点火正时控制装置
CN1816689A (zh) 内燃机的进气量控制***以及控制***
CN1740539A (zh) 控制装置
CN1287078C (zh) 柴油发动机的燃烧控制装置和燃烧控制方法
CN1796755A (zh) 设备的温度控制装置
CN101036091A (zh) 设备的控制装置
CN100343499C (zh) 内燃机的进气量估算装置
CN100339576C (zh) 柴油发动机的过量空气系数控制装置及方法
CN1082617C (zh) 内燃机的燃料喷射控制装置
CN1271329C (zh) 发动机控制装置
CN1871418A (zh) 内燃机的吸入空气量控制装置
CN1796749A (zh) 发动机的控制装置
CN1894494A (zh) 控制具有可变气门驱动***和可变压缩机构的内燃机的装置及方法
CN1124407C (zh) 发动机用的控制装置和控制方法
CN101033706A (zh) 车辆控制方法和车辆控制装置
CN1550652A (zh) 内燃机的控制装置
CN1657767A (zh) 内燃发动机的点火定时控制
CN101075125A (zh) 控制装置及控制方法
CN1490503A (zh) 内燃机控制***
CN1657766A (zh) 内燃发动机的点火定时控制

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090408

Termination date: 20110421