CN1913923A - 通过源自细菌的完整小细胞将靶基因递送至非吞噬哺乳动物细胞 - Google Patents

通过源自细菌的完整小细胞将靶基因递送至非吞噬哺乳动物细胞 Download PDF

Info

Publication number
CN1913923A
CN1913923A CNA2004800413704A CN200480041370A CN1913923A CN 1913923 A CN1913923 A CN 1913923A CN A2004800413704 A CNA2004800413704 A CN A2004800413704A CN 200480041370 A CN200480041370 A CN 200480041370A CN 1913923 A CN1913923 A CN 1913923A
Authority
CN
China
Prior art keywords
minicell
cell
gene
compositions
targeting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800413704A
Other languages
English (en)
Other versions
CN1913923B (zh
Inventor
H·布拉姆巴特
J·麦迪亚米德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EnGeneIC Molecular Delivery Pty Ltd
Original Assignee
EnGeneIC Molecular Delivery Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EnGeneIC Molecular Delivery Pty Ltd filed Critical EnGeneIC Molecular Delivery Pty Ltd
Publication of CN1913923A publication Critical patent/CN1913923A/zh
Application granted granted Critical
Publication of CN1913923B publication Critical patent/CN1913923B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0025Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6901Conjugates being cells, cell fragments, viruses, ghosts, red blood cells or viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0025Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
    • A61K48/0041Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid the non-active part being polymeric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • A61K2039/523Bacterial cells; Fungal cells; Protozoal cells expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2318/00Antibody mimetics or scaffolds
    • C07K2318/10Immunoglobulin or domain(s) thereof as scaffolds for inserted non-Ig peptide sequences, e.g. for vaccination purposes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/035Fusion polypeptide containing a localisation/targetting motif containing a signal for targeting to the external surface of a cell, e.g. to the outer membrane of Gram negative bacteria, GPI- anchored eukaryote proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/50Vectors comprising as targeting moiety peptide derived from defined protein
    • C12N2810/80Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates
    • C12N2810/85Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates mammalian
    • C12N2810/851Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates mammalian from growth factors; from growth regulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/50Vectors comprising as targeting moiety peptide derived from defined protein
    • C12N2810/80Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates
    • C12N2810/85Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates mammalian
    • C12N2810/859Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates mammalian from immunoglobulins

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Endocrinology (AREA)
  • Mycology (AREA)
  • Diabetes (AREA)
  • Oncology (AREA)
  • Obesity (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pulmonology (AREA)
  • Communicable Diseases (AREA)

Abstract

一种将源自细菌的完整小细胞靶向至特异性非吞噬哺乳动物细胞的方法,其使用双特异性配体将核酸有效递送至哺乳动物细胞。该双特异性配体包含(i)携带对细菌的小细胞表面结构具特异性的第一臂及(ii)携带对非吞噬哺乳动物细胞表面结构具特异性的第二臂,其可用于将小细胞靶向至特异性非吞噬哺乳动物细胞并引起非吞噬细胞内吞小细胞。

Description

通过源自细菌的完整小细胞将靶基因递送至非吞噬哺乳动物细胞
相关申请的交叉引用
本申请要求2003年12月9日提交的美国专利临时申请案60/527,764的优先权利益,该临时申请案的整体内容由此引入本文中。
发明背景
本发明涉及将细菌小细胞载体靶向非吞噬宿主细胞的方法及组合物,尤其(但并非专门)是在基因治疗范围内。本发明使用既特异性结合至小细胞表面结构又特异性结合至宿主细胞表面结构(例如受体)的双特异分子。通过介导小细胞载体与非吞噬体宿主细胞之间的交互作用,双特异性配体能够将低聚核苷酸及多核苷酸靶向递送至宿主细胞。
基因治疗的目标是将一个或多个外源基因***到机体细胞内以关闭一基因、取代一缺损基因或表达一可提供预防或治疗作用的基因产物。近来基因治疗的进展着重于各种将外源基因引入至受体哺乳动物基因组中的方法。参见Romano等人,1998,1999;Balicki及Beutler,2002;Wadhwa等人,2002;及Thomas等人,2003。这些进展涉及使用病毒载体(既有人类又有非人类)及非病毒载体(例如DNA-脂质体复合物)。
尽管各载体***具有其优点,但每种同样具有限制一些临床应用的显著缺点。具体而言,病毒载体引起严重的安全问题,其包括与野生型病毒重组,嵌入及致瘤的可能,动物病毒载体对哺乳动物细胞的内在毒性,病毒诱导的免疫抑制,减毒病毒毒力的回复,及例如由现有免疫性引起的炎症反应等不利反应。病毒载体同样存在实用问题,例如重组病毒制造及分布困难,低稳定性,及载体容量有限不能携带大量外源DNA。非病毒载体具有基因递送通常效率较低的缺点。
为致力于解决这些缺点,PCT/IB02/04632阐述了含有治疗性核酸分子的重组完整的小细胞。这类小细胞是体外及体内将低聚核苷酸及多核苷酸递送至宿主细胞的有效载体。举例而言,PCT/IB02/04632证明可将携带哺乳动物基因表达质粒的重组小细胞递送至吞噬细胞(例如巨噬细胞)及非吞噬细胞(可举人类乳腺癌细胞的例子来说明)。该申请案同样显示腹膜内给予重组小细胞导致重组质粒递送至免疫***吞噬细胞,且可引起对所编码的蛋白质的血清抗体反应。
尽管通过小细胞将基因递送至吞噬细胞的效率很高(40-60%),但迄今将基因递送至非吞噬细胞的效率一直相当低(3%至5%)。预计这将严重限制临床应用,因为基因治疗的很多潜在适应症涉及内皮及其它非吞噬细胞。例如大部分癌症不是吞噬细胞癌症,而人们认为缺乏细胞或器官特异性的载体不能用于有效治疗这类癌症。
类似的特异性缺乏同样已阻碍非小细胞载体的应用,而开发中的各种方法致力于解决该问题。参见Wickham,2003。一种方法利用存在于很多细胞类型中的受体介导的胞吞作用(RME)***,且需要开发不同套靶配体。在该方法中,通过将载体连接至特异性靶向细胞表面受体或标记物的配体而赋予该载体细胞特异性。特异性结合后,激活靶细胞RME***,使载体/受体复合物内在化并消化,某些DNA有效载荷被输送至细胞核进行基因表达。某些细胞受体能够促进载体直接通过质膜吸收入细胞质内(Fernandez及Bailey,1998;Phelan等人,1998;Rojas等人,1998),但受体介导的大分子部分吸收的最常见途径为胞吞运输(endocytic-trafficking)途径(Conner及Schmid,2003)。
关于将基因靶向递送至非吞噬哺乳动物细胞存在若干挑战:(i)突破哺乳动物细胞质膜;(ii)开发使递送载体内在化的机理;(iii)选择且掌握用于靶向特异性哺乳动物细胞表面受体的靶配体的种类;(iv)不完全降解有效载荷DNA而达到细胞内分解递送载体;及(v)有效载荷DNA得到释放且将其运输至哺乳动物细胞细胞质或细胞核。这些挑战随各种基因递送载体稍有变化。尽管在本领域开展了透彻的研究,但所涉及的生物过程的详细知识仍不很清楚。
还没有报道过基于配体的将细菌细胞或细菌来源的任何粒子靶向非吞噬细胞,可能是因为(a)尽管可通过主动入侵过程进入至非吞噬细胞,但仅活细菌的细胞内病原体能进入至非吞噬细胞(即,认为进入非吞噬细胞是通过活细菌病原体实施的需要多成分能量驱使过程的主动入侵过程)及(b)主动细胞入侵将拒绝例如基于配体的受体介导的胞吞作用等被动过程。因此,已杀死的细菌细胞不参与主动细胞入侵,而与其天然向性相反,活细菌细胞不会被引向所需的非吞噬细胞。即使使用靶向配体使已杀死的细菌细胞或细菌来源的非活性粒子能够胞吞,不能预期该方法可有效递送基因。相反地,可预期内体将降解非活性细胞或粒子,使得其作为基因递送载体无效。就此而言目前认为仅活的兼性细胞内致病菌可表达使其逃脱该内体膜的蛋白质。
迄今为止,不存在已证实可有效将细菌小细胞载体靶向非吞噬哺乳动物宿主细胞由此递送基因有效载荷的方法。尽管已知道多种载体靶向技术,但简单地采取其中任何一种并不会可预料地引起成功的小细胞靶向基因递送。这是由于对各种基因递送载体为独一无二的该范围的生物因子能影响目的基因递送。
因此,需要将细菌小细胞载体特异性地靶向非吞噬哺乳动物细胞的方法。
发明概述
为达到这些及其它要求,本发明一方面提供靶向基因递送方法,其包括使双特异性配体与下列细胞接触:(i)源自细菌的小细胞,其含有治疗性核酸序列及(ii)非吞噬哺乳动物细胞。配体对小细胞表面成分及非吞噬哺乳动物细胞表面成分二者皆具有特异性。结果哺乳动物细胞吞没小细胞,然后产生治疗性核酸序列的表达产物。小细胞与哺乳动物细胞之间的接触可在体外或体内。
本发明同样提供用于将小细胞载体靶向非吞噬哺乳动物宿主细胞的双特异性配体。该双特异性配体可为多肽或糖类,且可包含抗体或抗体片段。在优选的实施方案中,该双特异性配体拥有携带对细菌的小细胞表面结构具特异性的第一臂及携带对非吞噬哺乳动物细胞表面结构具特异性的第二臂。配体结合所需的小细胞的表面结构是脂多糖的O-多糖成分。配体结合所需的哺乳动物细胞表面结构为受体,优选那些能激活受体介导的胞吞作用的受体。
本发明另一方面提供一种组合物,其包括(i)含有治疗性核酸的源自细菌的小细胞及(ii)能够与小细胞表面成分及非吞噬哺乳动物细胞表面成分结合的双特异性配体。
本发明又一方面提供含有治疗性核酸的源自细菌的小细胞及双特异性配体在制备药物中的用途,该药物用于通过将其给予细胞、组织或器官来治疗疾病或改变特性的方法中。这类药物用于通过增加所需的蛋白质的表达或功能或通过抑制目的蛋白质的表达或功能来治疗各种病症及疾病。举例而言,本文中拟治疗的疾病可为癌症,或获得性疾病,例如AIDS、肺炎、肺气肿或由先天性代谢错误造成的病症,例如囊性纤维性变病。作为选择,治疗可影响特性,例如生育力或与变应原或感染因子有关的免疫应答。
附图简述
图1所示为与非靶向小细胞对比将人类雄性激素受体-靶向重组小细胞引入人类***癌LNCaP细胞的有效内在化。如实施例1所述来实施该过程,通过共焦显微镜来观察结果。所有显示的图像的免疫荧光染色皆用抗鼠伤寒沙门氏菌(S.typhimurium)LPS特异性单克隆抗体然后用Alexa Fluor 594-结合羊抗鼠IgG(H+L)抗体来实施。所示各图为微分干涉相差(DIC)与红色荧光图像的重叠。(A)未用小细胞转染的对照LNCaP细胞。在进行鼠伤寒沙门氏菌LPS染色后观察不到红色荧光。(B)用非-靶向小细胞转染LNCaP细胞且在16小时共温育后染色。可观察到极少的背景红色荧光点。(C)用靶向小细胞转染LNCaP细胞且在16小时后染色。在大部分细胞的细胞质中显示红色荧光,在黑白图像中以淡灰色表示。(D)用非-靶向小细胞转染LNCaP细胞且在24小时共温育后染色。可观察到极少的背景红色荧光点。(E)用靶向小细胞转染LNCaP细胞且在24小时后染色。结果显示在大部分细胞的细胞质中有强红色荧光(图像中的淡灰色)。(F)与(E)相同但以较高的放大倍率来显示单个转染细胞。几乎全部细胞质发红色荧光(淡灰色)。列出了各图像的比例尺。
图2所示为与非-靶向小细胞对比将EGF受体-靶向重组小细胞引入人类乳腺癌MDA-MB-468细胞内的有效内在化。如实施例2所述来实施该过程,通过共焦显微镜来观察结果。所有显示的图像的免疫荧光染色皆用抗鼠伤寒LPS特异性单克隆抗体然后用AlexaFluor 594-结合羊抗鼠IgG(H+L)抗体来实施。所示各图为DIC与红色荧光图像的重叠。(A)未用小细胞转染的对照MDA-MB-468细胞。在进行鼠伤寒沙门氏菌LPS染色后观察不到红色荧光。(B)用非-靶向小细胞转染MDA-MB-468细胞且在24小时共温育后染色。可观察到极少的背景红色荧光点。(C)用靶向小细胞转染MDA-MB-468细胞且在24小时后染色。大部分细胞表面和若干细胞的细胞质中显示红色荧光(黑白图像中的淡灰色区域)。(D)与(C)相同但以较高的放大倍率来显示单个转染细胞。结果与(C)相同。(E)除细胞在36小时后染色外与(D)相同。结果显示在大部分细胞的细胞质中有强红色荧光(图像中的淡灰色)。列出了各图像的比例尺。
图3所示为与非-靶向小细胞相比将Her2/neu受体-靶向重组小细胞引入人类卵巢癌SKOV-3细胞内的有效内在化。如实施例3所述来实施该过程,通过共焦显微镜来观察结果。所有显示的图像的免疫荧光染色皆用抗鼠伤寒LPS特异性单克隆抗体然后用AlexaFluor 594-结合羊抗鼠IgG(H+L)抗体来实施。所示各图为DIC与红色荧光图像的重叠。(A)未用小细胞转染的对照SKOV-3细胞。在进行鼠伤寒沙门氏菌LPS染色后观察不到红色荧光。(B)用非-靶向小细胞转染SKOV-3细胞且在36小时共温育后染色。可观察到极少的背景红色荧光点。(C)用靶向小细胞转染SKOV-3细胞且在36小时后染色。大部分细胞的细胞质中显示红色荧光(黑白图像中的淡灰色区域)。(D)与(C)相同但以较高的放大倍率。结果与(C)相同。(E)除以较高的放大倍率来显示几个细胞外与(C)相同。结果显示在大部分细胞的细胞质中有强红色荧光(图像中的淡灰色)。列出了各图像的比例尺。
图4所示为用携带编码病毒性肝炎B型表面抗原质粒的EGFR-靶向小细胞将基因递送至人类乳腺癌(MDA-MB-468)细胞的效率。(A)显示进行下列处理时细胞的荧光强度的流式细胞计结果:(i)用抗HBsAg MAb接着用藻红蛋白(PE)-结合二级抗体(抗小鼠IgG)MAb;(ii)用非-靶向小细胞接着用抗HBsAg MAb及PE-结合抗小鼠IgGMAb;(iii)用非特异性靶向小细胞接着用抗HBsAg MAb及PE-结合抗小鼠IgG MAb;及(iv)EGFR-靶向小细胞接着用抗HBsAg MAb及PE-结合抗小鼠IgG MAb。(B)显示用EGFR-靶向小细胞HBsAg转染后MDA-MB-468细胞中基因有效递送及重组HBsAg表达的共聚焦显微镜结果(ii及iii)。细胞内强红色荧光(在黑白图像中以淡灰色显示)为用抗HBsAg MAb接着用Alexa Fluor 594-结合抗小鼠IgG MAb显示的重组HBsAg蛋白质。用非特异性靶向小细胞HBsAg转染的对照细胞(i)仅显示若干背景红色荧光点。
图5所示为通过靶向重组小细胞对裸鼠中人类乳腺癌异种移植物的治疗。在裸鼠中建立乳腺癌异种移植物(参见实施例5),且用携带质粒pORF5-HSV1tk∷Sh ble的靶向重组小细胞进行肿瘤内治疗。如下进行肿瘤异种移植物治疗:(第1组,对照组)肿瘤不接受任何治疗;(第2组,对照组)用非-靶向重组小细胞[M-HSVtk]接着用2剂量GCV***;(第3组,对照组)用靶向重组小细胞[TM-HSVtk]***;(第4组,对照组)用双特异性抗体(BsAb;抗鼠伤寒LPS/抗人类EGF受体特异性)接着用2剂量GCV***;(第5组,实验组)用靶向重组小细胞[TM-HSVtk]接着用1剂量GCV***;(第6组,实验组)用靶向重组小细胞[TM-HSVtk]接着用2剂量GCV***。X轴下所示为在第几天给予具体小组各种治疗。
图6所示为通过将重组小细胞靶向过表达的EGF受体对裸鼠中人类乳腺癌异种移植物的治疗。在裸鼠中建立乳腺癌异种移植物(参见实施例6),且用携带质粒pORF5-HSV1tk∷Sh ble的靶向重组小细胞进行肿瘤内治疗。如下进行肿瘤异种移植物治疗:(第1组,对照组)不治疗;(第2组,对照组)非-靶向重组小细胞[非-T-MHSVtk]接着用2剂量GCV;(第3组,对照组)非-靶向重组小细胞[非-T-MHSVtk];(第4组,对照组)双特异性抗体(BsAb;抗鼠伤寒LPS/抗人类EGF受体特异性)接着用2剂量GCV;(第5组,实验组)靶向重组小细胞[T-MHSVtk];(第6组,实验组)用108个靶向重组小细胞[T-MHSVtk]接着用2剂量GCV;及(第7组,实验组)用109个靶向重组小细胞[T-MHSVtk]接着用2剂量GCV。X轴下所示为在第几天给予具体小组各种治疗。实心三角代表小细胞或抗体治疗,而空心三角代表GCV治疗。
图7所示为通过将重组小细胞靶向低表达的HER2/neu受体对裸鼠中人类乳腺癌异种移植物的治疗。在裸鼠中建立乳腺癌异种移植物(参见实施例5),且用携带质粒pORF5-HSV1tk∷Sh ble的靶向重组小细胞进行肿瘤内治疗。用重组小细胞肿瘤内注射给8组小鼠。如下进行肿瘤异种移植物治疗:(第1组,对照组)不治疗;(第2组,对照组)非-靶向重组小细胞[非-T-MHSVtk]接着用2剂量GCV;(第3组,对照组)用非-靶向重组小细胞[非-T-MHSVtk];(第4组,对照组)双特异性抗体(BsAb;抗鼠伤寒LPS/抗人类HER2/neu受体特异性)接着用2剂量GCV;(第5组,实验组)靶向重组小细胞[T-MHSVtk];(第6组,实验组)用108个靶向重组小细胞[T-MHSVtk]接着用2剂量GCV;(第7组,实验组)用109个靶向重组小细胞[T-MHSVtk]接着用2剂量GCV;及(第8组,实验组)用109个靶向重组小细胞[T-MHSVtk]接着用2剂量GCV瘤内注射。X轴下所示为在第几天给予具体小组各种治疗。实心三角代表小细胞或抗体治疗,而空心三角代表GCV治疗。
优选实施方案详述
本发明人已发现可使用双特异性配体将细菌小细胞载体靶向非吞噬哺乳动物宿主细胞。体内这类宿主细胞通常抵抗小细胞附着及胞吞作用,但借助双特异性配体其能易于接受小细胞递送载体结合及内在化。
本发明人又发现充分降解内在化小细胞可释放重组质粒DNA。这点令人惊讶,因为非吞噬哺乳动物细胞天性并不携带象吞噬溶酶体一样的侵蚀性细胞内区室,吞噬溶酶体主要存在于免疫***细胞,例如吞噬巨噬细胞。
另一令人惊奇的是本发明人同样发现细菌的小细胞可招致重组质粒从非吞噬细胞的晚期内体逃脱。此出人意料之外是因为小细胞无生命且缺乏编码晚期内体及溶解吞噬小体膜蛋白质的亲代细菌的染色体。事实上,通常一直公认只有经设计用于溶解溶酶体膜且在细胞内释放DNA的活兼性细胞内细菌病原体才能将基因递送至非专职噬菌细胞(最近由Grillot-Courvalin等人综述,2002)。举例而言,单核细胞增生性李斯特氏菌(Listeria monocytogenes)表达一种成孔溶细胞素—李氏菌溶血素O(由hly基因染色体编码),其被认为在溶解内体及吞噬小体膜中起着重要作用,藉此使得重组DNA进入感染细胞细胞质。类似地,弗氏志贺杆菌(Shigella flexneri)同样被认为通过溶解吞噬小体膜逃脱吞噬泡。
本发明人已进一步证实将小细胞介导的重组基因有效递送至非吞噬细胞细胞核涉及由小细胞携带的质粒拷贝数。如此,携带高拷贝数质粒(每小细胞超过60个质粒拷贝)的小细胞可使基因有效递送至非吞噬细胞,然而,携带中等拷贝(每小细胞11至60个)或低拷贝(每小细胞1至10个)数质粒的小细胞效率较低。
另外,本发明人已证实基因递送效率与胞饮入内体内的小细胞数目有关。因此,在细胞表面携带高表达受体(例如某些人类乳腺癌细胞表面的EGF受体)且双特异性配体靶向的非吞噬靶细胞显示出在各内体内吞没更多小细胞,通常超过10个,导致重组基因高效递送至该细胞的细胞核。这些结果提示当内体内负荷的重组DNA多至足够补偿内体通过降解损耗时从晚期内体逃脱重组DNA的机会增加了。这类结果同样显示通过使用在细胞表面过表达的哺乳动物细胞表面受体藉此使各内体胞吞大量小细胞可达到基因的有效递送。
根据前述发现,本发明通过增强通常对小细胞附着、胞吞作用及基因递送无反应的靶细胞或组织中小细胞转染效率扩大了可使用小细胞载体进行基因治疗的疾病范围。小细胞靶向能力同样提供更为安全及更为灵活的基因治疗***。
本发明一方面提供靶向基因递送方法,其包括让双特异性配体与下列细胞接触:(a)源自细菌的小细胞,其含有治疗性核酸序列,及(b)非吞噬哺乳动物细胞。对小细胞及哺乳动物细胞成分二者皆具有特异性的双特异性配体促成小细胞与哺乳动物细胞结合,如此使哺乳动物细胞吞没小细胞,然后产生治疗性核酸序列的表达产物。
本发明人发现该方法可广泛应用于多种通常很难特异性吸附及胞吞小细胞的非吞噬哺乳动物细胞。举例而言,在一条臂上具抗O多糖特异性而在另一条臂上具抗HER2受体、抗EGF受体或抗雄性激素受体特异性的双特异性抗体配体可将小细胞有效结合至各种非吞噬细胞的各自受体。这些细胞包括肺癌细胞、卵巢癌细胞、脑癌细胞、乳腺癌细胞、***癌细胞及皮肤癌细胞。此外,有效结合先于各非吞噬细胞快速胞吞小细胞。
本发明人的发现令人惊讶,因为先前认为只有“专职”吞噬细胞(例如巨噬细胞及中性白细胞)能胞饮象细菌细胞这样的较大的大分子粒子(600纳米及更大)。相反,认为非吞噬哺乳动物细胞仅可胞饮小的无生命的大分子粒子,例如脂质体(其为150-400纳米)及病毒(其为大约65-80纳米大小)。参见Bondoc及Fitzpatrick,1998。用于本发明人研究的源自细菌的完整小细胞为直径大约400纳米。
本发明人同样发现小细胞携带的重组DNA可通过非吞噬哺乳动物宿主细胞表达。这类小细胞一旦被胞饮随即在晚期内体内降解。然而,某些由小细胞携带的重组DNA逃脱内体膜被转运至哺乳动物细胞细胞核使其基因表达。该发现令人惊奇因为先前认为只有活兼性细胞内病原体携带能够逃脱内体膜的毒性蛋白质并递送基因。参见Grillot-Courvalin等人,2002。人们认为非活体细菌或源自细菌的小细胞体内不能表达这些诱导的毒性蛋白质,由此预期其在内体内完全降解,不可能有任何重组DNA从内体逃脱。
本发明因此提供新的方法,其扩大可接受通过源自细菌的小细胞基因治疗的哺乳动物细胞的范围。这些方法在体外及体内皆可实施。
用于本发明的配体包括任何可结合至靶细胞表面成分及小细胞表面成分的作用剂。优选靶细胞表面成分为受体,尤其是能够介导胞吞作用的受体。这类配体可包含多肽及/或糖类成分。抗体为优选的配体。举例而言,携带源自细菌的完整小细胞表面成分及靶哺乳动物细胞表面成分双重特异性的双特异性抗体可在体外及体内用于将小细胞有效靶向靶哺乳动物细胞。有用配体同样包括受体、酶、结合肽、融合/嵌合蛋白质及小分子。
在两个主要基础上来实施特定配体的选择:(i)特异性结合至完整小细胞表面的一个或多个结构域及(ii)特异性结合至靶细胞表面的一个或多个结构域。因此,优选的配体具有携带对源自细菌的完整小细胞表面结构具特异性的第一臂及携带对非吞噬哺乳动物细胞表面结构具特异性的第二臂。第一及第二臂各自皆可为多价。即使为多价,优选各臂为单特异性。
对于结合至源自细菌的小细胞,期望配体的一臂对发现于亲代细菌细胞上的脂多糖的O-多糖成分具特异性。可用于配体结合的其它小细胞表面结构包括外膜上的暴露于细胞表面的多肽及糖类、菌毛(pilli)、纤毛(fimbrae)及鞭毛(flagella)。
对于结合至靶细胞,配体的一臂对非吞噬哺乳动物表面成分具特异性。这类成分包括细胞表面蛋白质、肽及糖类,而不管其是否代表该细胞的特性。细胞表面受体尤其是那些能激活受体介导的胞吞作用者为靶向所需的细胞表面成分。
举例而言,其可通过选择特异性结合所需细胞上的细胞表面受体基序的配体靶向肿瘤细胞、转移性细胞、血管细胞(例如内皮细胞及平滑肌细胞)、肺细胞、肾细胞、血液细胞、骨髓细胞、脑细胞、肝细胞等等,或任一所选择的细胞的前身。细胞表面受体实例包括癌胚抗原(CEA),其在大部分结肠癌、直肠癌、乳腺癌、肺癌、胰腺癌及胃肠道癌中过表达(Marshall,2003);调蛋白受体(HER-2、neu或c-erbB-2),其在乳腺癌、卵巢癌、结肠癌、肺癌、***癌及子***症中频繁过表达(Hung等人,2000);表皮生长因子受体(EGFR),其在包括乳腺癌、头颈癌、非小细胞肺癌及***在内的各种实体瘤中高度过表达(Salomon等人,1995);去唾液酸糖蛋白受体(Stockert,1995);转铁蛋白受体(Singh,1999);丝抑蛋白(serpin)酶复合物受体,其在肝细胞表达(Ziady等人,1997);成纤维细胞生长因子受体(FGFR),其在胰腺管道腺癌细胞中过表达(Kleeff等人,2002);血管内皮细胞生长因子受体(VEGFR),其用于抗血管生成基因治疗(Becker等人,2002及Hoshida等人,2002);叶酸受体,其在90%卵巢癌中选择性过表达(Gosselin及Lee,2002);细胞表面多糖包被(Batra等人,1994);糖类受体(Thurnher等人,1994);及聚合免疫球蛋白受体,其用于将基因递送至呼吸道上皮细胞,且在治疗肺疾病(例如囊性纤维性变病)方面令人感兴趣(Kaetzel等人,1997)。
优选的配体包含抗体及/或抗体衍生物。本文所用术语“抗体”包括通过体外或体内产生免疫原应答得到的免疫球蛋白分子。术语“抗体”包括多克隆、单特异性及单克隆抗体以及抗体衍生物,例如单链抗体片段(scFv)。用于本发明的抗体及抗体衍生物同样可通过重组DNA技术得到。
野生型抗体拥有四条多肽链,两条相同的重链及两条相同的轻链。两种类型多肽链皆具有恒定区(其在同一类抗体中不变化或最低限度地变化)及可变区。可变区对一特定抗体是独一无二的,且包含识别特异性抗原决定簇的抗原结合域。大部分直接参与抗体结合的抗原结合域区是“互补决定区”(CDRs)。
术语“抗体”同样包括抗体衍生物,例如保留特异性结合至抗原能力的抗体片段。这类抗体片段包括Fab片段(一含有抗原-结合域且包含通过二硫键桥连的轻链及部分重链片段)、Fab′(一种含有单个抗原-结合域的抗体片段,其包括Fab及穿过铰链区的部分重链)、F(ab′)2(通过重链铰链区的链内二硫键连接的两个Fab′分子)、双特异性Fab(一具有两个抗原结合结构域的Fab分子,每一个可直接与不同抗原决定簇结合)及scFv(通过氨基酸链连接到一起的抗体的单个轻链及重链的可变抗原-结合决定区)。
当抗体(包括抗体片段)构成配体部分或全部时,优选其为人源或经改进适合用于人类。所谓“人源化抗体”已为本领域所熟知。例如,参见Osbourn等人,2003。其通过基因操作及/或体外处理来改进以降低其在人类中的抗原性。人源化抗体的方法阐述(例如)于美国专利第6,639,055号、第5,585,089号及第5,530,101号中。在最简单的情况下,人源化抗体通过将称为互补决定区(CDRs)的抗原-结合环从小鼠mAb移接到人类IgG来形成。参见Jones等人,1986;Riechmann等人,1988;及Verhoeyen等人,1988。然而,产生高亲合力人源化抗体通常需要从小鼠母体mAb的所谓框架区(FRs)转移一个或多个额外的残基。同样已开发几种不同人源化技术。参见Vaughan等人,1998。
不同于“人源化抗体”的人类抗体同样可用于本发明中。其对各自抗原具有高亲合力,通常从极大容量的单链可变片段(scFvs)或Fab噬菌体展示文库得到。参见Griffiths等人,1994;Vaughan等人,1996;Sheets等人,1998;de Haard等人,1999;及Knappik等人,2000。
有用的配体同样包括双特异性单链抗体,其通常为由通过接头分子将可变轻链部分共价连接至相应的可变重链部分组成的重组多肽。参见美国专利第5,455,030号、第5,260,203号及第4,496,778号。双特异性抗体同样可用其它方法制成。举例而言,可通过化学连接不同特异性的完整抗体或抗体片段来创造复共轭对配合物。参见Karpovsky等人,1984。然而,这类复共轭对配合物很难重复制备,且至少为正常单克隆抗体的两倍大。双特异性抗体同样可通过二硫化物交换来创造,其涉及酶裂解及抗体片段重新连接。参见Glennie等人,1987。
因为Fab及scFv片段为单价,其通常对靶结构具低亲合力。因此,为增加功能性亲合力,优选的从这些成分中制成的的配体设计为二聚体、三聚体或四聚体共轭物。参见Tomlinson及Holliger,2000;Carter,2001;Hudson及Souriau,2001;及Todorovska等人,2001。这类共轭物结构可通过化学及/或遗传工程交联来创造。
优选的本发明的双特异性配体为各端单特异性,即在一端对小细胞单个成分具特异性而在另一端对靶细胞单个成分具特异性。配体可在一端或两端皆多价,举例而言,以所谓二元体、三元体及四元体形式。参见Hudson及Souriau,2003。二元体为由两个scFv非共价连接形成的双价二聚体,其产生两个Fv结合位点。同样地,三元体由三个scFv形成三价三聚物产生,得到三个结合位点,而四元体由四个scFv形成四价四聚物产生,得到四个结合位点。
几种对哺乳动物细胞上的受体具特异性的人源化、人类及小鼠单克隆抗体及其片段已被批准其人类治疗用途,该名单正在迅速增加。参见Hudson及Souriau,2003。此种可用于形成双特异性配体一条臂的抗体实例对HER2具特异性:赫赛汀(HerceptinTM);曲妥珠单抗(Trastuzumab)。
抗体可变区同样可与广泛范围的蛋白质结构域融合。与人类免疫球蛋白结构域(例如IgG1 CH3)融合既增加质量又促进二聚化。参见Hu等人,1996。与人类Ig铰链-Fc区域融合可增加效应器功能。与多聚体蛋白质的蛋白质结构域融合同样可促进多聚体化。举例而言,已使用将短scFv与短两性螺旋片融合来产生微型抗体。参见Pack及Pluckthun,1992。形成杂二聚体的蛋白质的结构域(例如fos/jun)可用于产生双特异分子(Kostelny等人,1992),或者,均二聚结构域可通过工程学策略(例如“knobs into holes”)设计形成杂二聚体(Ridgway等人,1996)。最后,可选择既提供多聚体化又提供另外功能的融合蛋白伴侣,例如抗生物素蛋白链菌素。参见Dubel等人,1995。
本发明小细胞为大肠杆菌或其它细菌细胞的无核形式,其通过在细胞***二分体期间破坏DNA分离的协调性来造成。原核染色体复制与正常二分体相连,其参与中期细胞隔膜形成。举例而言,在大肠杆菌中min基因(例如minCD)突变可消除在细胞***期间对细胞顶点隔膜形成的抑制,导致正常子细胞及无核小细胞产生。参见deBoer 1992;Raskin及de Boer,1999;Hu及Lutkenhaus,1999;Harry,2001。小细胞不同于其它在某些环境下自发产生并释放的小囊泡,后者与小细胞相比,并非由于特异性遗传重排或附加体基因表达。为实行本发明,期望小细胞具完整的细胞壁(“完整小细胞”)。
除了min操纵子突变外,无核小细胞同样可在各种影响隔膜形成的其它遗传重排或突变(举例而言枯草杆菌(B.subtilis)divIVB1)后产生。参见Reeve及Cornet,1975;Levin等人,1992。小细胞同样可在干扰参与细胞***/染色体分离的蛋白质的基因表达水平后形成。举例而言,过表达minE导致极性***及小细胞形成。同样地,染色体较少的小细胞可由染色体分离缺陷产生,举例而言,枯草杆菌中smc突变(Britton等人,1998),枯草杆菌中spoOJ缺失(Ireton等人,1994),大肠杆菌中mukB突变(Hiraga等人,1989)及大肠杆菌中parC突变(Stewart及D′Ari,1992)。基因产物可以反式提供。举例而言,当高拷贝数质粒过表达时,CafA可提高细胞***率及/或抑制复制后染色体分配(Okada等人,1994),导致链式细胞及无核小细胞的形成(Wachi等人,1989;Okada等人,1993)。小细胞可从任何革兰氏阳性或革兰氏阴性细菌细胞来源制备。
本发明小细胞含有可转录及/或翻译以产生所需产物的核酸分子。对于本说明书来说,这类核酸分子分类为“治疗性核酸分子”。在某些实施方案中,该转录及/或翻译产物在细胞、组织或器官中起着改善或另外治疗疾病或改变特性的作用。通常治疗性核酸存在于小细胞内的质粒上。
治疗性核酸分子编码希望产生的产物,例如功能RNA(例如反义RNA、核糖酶RNA、siRNA或shRNA)或肽、多肽或蛋白质。举例而言,感兴趣的遗传物质可编码具治疗价值的激素、受体、酶或(多)肽。这类方法可引起未整合的转移DNA的瞬时表达、转移复制子(例如附加体)的染色体外复制及表达或转移遗传物质整合于宿主细胞基因组DNA中。
特定治疗性核酸分子的转录或翻译可用于治疗癌症或获得性疾病,例如AIDS、肺炎、肺气肿或与先天性代谢错误有关的疾病,例如囊性纤维性变病。治疗性核酸的转录或翻译同样可实现避孕绝育,包括野生动物的避孕绝育。变应原介导的及感染因子介导的炎性病症同样可通过给予本发明治疗性核酸分子来抵消,该治疗性核酸分子在患者中表达后,影响与各自变应原及感染因子有关的免疫应答。治疗性核酸分子同样可有表达产物,或可存在表达产物翻译后修饰的下游产物,其降低与移植有关的免疫后遗症,或有助于促进组织生长及再生。
治疗性核酸分子可为基因的正常配对物,该基因表达在疾病状态中起异常作用或以异常水平存在的蛋白质,举例而言,下列就是这种情况:在囊性纤维性变病中的囊性纤维化跨膜传导调节物(Kerem等人,1989;Riordan等人,1989;Rommens等人,1989);镰刀形红细胞贫血病中的β-球蛋白及地中海贫血症中的α-球蛋白、β-球蛋白及γ-球蛋白。治疗性核酸分子可如上所述具有反义RNA转录物或小干扰RNA。因此,特征为α-球蛋白超过β-球蛋白过量形成的β-地中海贫血症可通过基因治疗来缓解,其根据本发明使用经设计含有整合了与靶序列α-球蛋白mRNA相对的反义RNA转录物的质粒的完整小细胞。
在癌症治疗中,适用于本发明的治疗性核酸分子可具有相应于或源自与抑制肿瘤有关的基因(例如p53基因、成视网膜细胞瘤基因及编码肿瘤坏死因子的基因)的序列。按照本发明通过该方法可治疗广泛的各种实体瘤—癌症、***瘤及疣。这方面代表性癌症包括结肠癌、***癌、乳腺癌、肺癌、皮肤癌、肝癌、骨癌、卵巢癌、胰腺癌、脑癌、头颈癌及淋巴瘤。例证性的***瘤为鳞状细胞***状瘤、脉络丛***状瘤及喉部***状瘤。疣病实例为生殖疣、足底疣、表皮发育不良及恶性疣。
本发明治疗性核酸分子同样可包含编码将无活性前药转化为一个或多个细胞毒性代谢物的酶的DNA片段,这样一旦体内引入该前药,将强制效应中的靶细胞(或许也连同邻近细胞)***。此“***基因”(其可为非人源或人源)的临床前及临床应用综述于Spencer(2000)、Shangara等人(2000)及Yazawa等人(2002)中。示例性非人源***基因为那些分别编码HSV-胸苷激酶(tk)、胞嘧啶脱氨酶(CDA)+尿嘧啶磷酸核糖转移酶、黄嘌呤-鸟嘌呤磷酸核糖-转移酶、硝基还原酶(NTR)、嘌呤核苷磷酸化酶(PNP,DeoD)、细胞色素P450(CYP4B1)、羧肽酶G2(CPG2)及D-氨基酸氧化酶(DAAO)的基因。人源***基因举例有分别编码羧肽酶Al(CPA)、脱氧胞苷激酶(dCK)、细胞色素P450 6)、LNGFR/FKBP/Fas、FKBP/胱天蛋白酶类及ER/p53的基因。
***-基因治疗可应用于治疗AIDS。该策略已试验过,只要治疗的哺乳动物细胞一被HIV感染就马上使用表达有毒基因产物的***载体。这些载体使用HIV-1调节元件(Tat及/或Rev)以在HIV-1感染后诱导诸如α-白喉毒素、胞嘧啶脱氨酶或干扰素-α2等有毒基因表达。参见Curiel等人,1993;Dinges等人,1995;Harrison等人,1992a;Harrison等人,1992b;Ragheb等人,1999。
本发明治疗性核酸通常含于小细胞中的质粒上。该质粒同样可含有作为调节元件起作用的额外的核酸片段,例如启动子、终止子、增强子或信号序列,且其可操作地与治疗性核酸片段连在一起。合适的启动子可如治疗范围所示为组织特异性的或甚至为肿瘤特异性的。
当一启动子优先在一特定组织中激活时其为“组织特异性的”,由此其在靶组织中有效驱动可操作连接的结构序列的表达。举例而言,组织特异性启动子的种类包括:分别针对白蛋白及α1-抗胰蛋白酶的肝细胞-特异性启动子;弹性蛋白酶I基因控制区,其在胰腺腺泡细胞中激活;胰岛素基因控制区,其在胰腺β细胞中激活;小鼠***肿瘤病毒控制区,其在睾丸、乳腺、淋巴及肥大细胞中激活;髓磷脂碱性蛋白质基因控制区,其在脑少突神经胶质细胞中激活;及促性腺释放激素基因控制区,其在下丘脑细胞中激活。参见Frain等人(1990)、Ciliberto等人(1985)、Pinkert等人(1987)、Kelsey等人(1987)、Swift等人(1984)、MacDonald(1987)、Hanahan(1985)、Leder等人(1986)、Readhead等人(1987)及Mason等人(1986)。
同样有在某些肿瘤细胞中或在肿瘤细胞本身优先表达的启动子,按照本发明其可用于治疗不同癌症。对癌症细胞特异性的启动子种类举例:酪氨酸酶启动子,其靶向黑色素瘤;MUC1/Df3启动子,其靶向乳腺癌;杂合myoD增强子/SV40启动子,其靶向表达横纹肌肉瘤(RMS);癌胚抗原(CEA)启动子,其对CEA表达细胞(例如结肠癌细胞)具特异性;及己糖激酶II型基因启动子,其靶向非小细胞肺癌。参见Hart(1996)、Morton及Potter(1998)、Kurane等人及Katabi等人(1999)。
按照本发明可使用信号序列来影响表达产物的分泌或将表达产物定位于特定的细胞区室。因此,通过完整小细胞递送的治疗性多核苷酸序列分子可包括处于适当阅读框架中的信号序列,以便目的表达产物在吞食细胞或其后代中分泌,藉此影响与所选择的治疗范例一致的周围细胞。例示性信号序列包括溶血素C-末端分泌序列(阐述于美国专利第5,143,830号中)、BAR1分泌序列(公开于美国专利第5,037,743号中)及zsig32多肽的信号序列部分(阐述于美国专利第6,025,197号中)。
本发明小细胞中的质粒同样可含有报告元件。报告元件通常通过编码不能由宿主产生的多肽来赋予其重组宿主便于检测的表型或特性,其一旦表达即可通过组织学或原位分析(例如体内成像技术)来检测。举例而言,根据本发明,由完整小细胞递送的报告元件可编码在吞食宿主细胞内产生具色度或荧光变化的蛋白质,其可由原位分析检测,且有定量或半定量转录活性的功能。例示性的这类蛋白质为脂酶、磷酸酶、蛋白酶及其它酶,其活性形式产生可检测的发色团或荧光团。
优选的实例为大肠杆菌β-半乳糖苷酶(其通过裂解靛原底物吲哚-β-D-半乳糖苷来影响颜色变化)及荧光素酶(其氧化长链醛(细菌的荧光素酶)或杂环羧酸(荧光素)同时发光)。在本文中同样有用的是编码水母(Aequorea victoria)的绿色荧光蛋白(GFP)的报告元件,其如Prasher等人(1995)所阐述。与GFP领域相关的技术由两个公布的PCT申请WO 095/21191(公开了编码238个氨基酸的GFP脱辅基蛋白的多核苷酸序列,其含有从65位氨基酸到67位氨基酸形成的发色团)及WO 095/21191(公开了修饰A.victoria GFp脱辅基肽的cDNA,其提供具改变荧光性质的肽)及Heim等人(1994)(报告一突变GFP,其特征为激发光振幅提高4-至-6-倍)阐明。
另一类型报告元件与使得重组小细胞能抵抗毒素的表达产物有关。例如neo基因保护宿主抵抗抗生素G418的毒性水平,而编码二氢叶酸还原酶的基因提供抗氨甲蝶呤的抵抗力,氯霉素乙酰转移酶(CAT)基因提供抗氯霉素抗性。
其它用作报告元件的基因包括那些可转化宿主小细胞以表达有区别的细胞表面抗原的基因,例如,病毒囊膜蛋白,例如HIV或疱疹gD,其易于通过免疫测定来检测。
本发明靶细胞包括将外源核酸分子引入其内的任何细胞。(当对外源核酸分子使用“引入”时意即该于小细胞中携带的核酸分子被递送至靶细胞。)所需的靶细胞特征为表达细胞表面受体,一旦该受体与配体结合马上促进胞吞作用。优选的靶细胞为非吞噬细胞(意即该细胞正常情况下不能消化细菌粒子)且为哺乳动物细胞。
本发明方法及组合物可用于递送多种核酸分子,其可为cDNA或RNA,也可为基因组DNA或RNA,且可处于正义或反义定向。根据本发明,存在于小细胞的核酸分子可呈现为质粒、表达载体或其它遗传构建形式,但不能是来源于产生小细胞的细菌细胞的基因组DNA。适用于本发明者为来自真核、原核或合成来源的任何期需的DNA或RNA序列,其可在真核基因表达启动子控制下翻译及转录,或使用来自宿主细胞的转激活因子在哺乳动物细胞中表达。
本发明方法可在体内或先体外后体内(ex vivo)实施。举例而言,在先体外后体内方法中,可从一受试者(例如)通过活组织检查移走靶细胞。可基于对由该靶细胞表达的细胞表面受体的知识来选择合适的配体。将拟递送至靶细胞的基因克隆入合适附加体载体DNA(举例而言质粒)中,且转入完整小细胞起源的母体细菌细胞。获得小细胞的过程在本领域中为大家所熟知,如PCT/IB02/04632中所阐述。然后通过本领域中已知方法纯化携带重组DNA的小细胞,其阐述于PCT/IB02/04632中。举例而言,然后通过在合适培养基中体外温育将双特异性配体结合至该重组的纯化小细胞,将多余的配体从荷有配体的小细胞中洗掉。然后让包括纯化的完整小细胞及双特异性配体(其通过对小细胞表面成分具特异性的一臂附着至小细胞)的组合物与靶细胞或在体外(举例而言,在组织培养物中,如实施例1、2及3所述)或在体内(如实施例4所述)接触。
因此,本发明包括在所需的非吞噬哺乳动物细胞(其正常情况下对小细胞介导的基因治疗不应答)中实施先体外后体内基因治疗的方法。本发明可视靶细胞及治疗性核酸而用于治疗各种病症及疾病,以增加所需蛋白质的表达,以抑制基因产物的表达或功能等等。例如,转录或翻译特定治疗性核酸分子可用于治疗癌症或获得性疾病,例如AIDS、肺炎、肺气肿或与校正先天代谢错误有关的疾病,例如囊性纤维性变病。转录或翻译治疗性核酸同样可导致避孕绝育,包括野生动物避孕绝育。变应原介导的及感染因子介导的炎性病症同样可通过给予本发明治疗性核酸分子来抵消,该治疗性核酸分子在患者中表达后,影响与各自变应原及感染因子有关的免疫应答。治疗性核酸分子同样可有表达产物,或可存在表达产物翻译后修饰的下游产物,其降低与移植有关的免疫后遗症,或有助于促进组织生长及再生。
本发明同样涉及体外将核酸转移入所选择的细胞类型。这类转移用于多种目的,例如创造可产生大量所选择的蛋白质(可随后收获该蛋白质)的细胞。
本发明在有关方面提供用于将外源核酸分子高效引入目标非吞噬哺乳动物细胞的组合物。该组合物包含(i)源自细菌的小细胞及(ii)双特异性配体。这类小细胞及配体可为阐述于本文中的任何一种。因此,小细胞含有治疗性核酸分子,而双特异性配体优选能够结合小细胞表面成分与目标哺乳动物细胞表面成分。
基本上由本发明重组小细胞及双特异性配体组成的组合物(亦即包括此小细胞与配体及并不过度干扰该组合物的DNA-递送质量的其它成分的组合物)可使用一种或多种生理上可接受载体或赋形剂以常规方式来调配。注射用制剂可于安瓿或管制瓶或多剂量容器中呈单位剂量形式,含或不含额外的防腐剂。这类制剂可为于油性或水性赋形剂中的溶液、混悬液、乳状液,且可含有配方剂,例如助悬剂、稳定剂及/或分散剂。合适的溶液与受者血液等渗,且通过盐水、Ringer氏溶液及葡萄糖溶液来举例说明。作为选择,组合物可呈冻干粉形式用合适的媒介来复溶,例如用无菌、无热原水或生理盐水。组合物同样可配制为储库制剂。这类长效制剂可通过植入(举例而言,皮下或肌肉内)或通过肌肉内注射来给予。
本发明组合物可通过各种途径施予至哺乳动物体的各种位点以达到所需的治疗作用,其或为局部或为***递送。举例而言,可通过经口给予、通过将制剂施用至体腔内、通过吸入或吹入,或通过胃肠外、肌肉内、静脉内、门脉内、肝内、腹膜、皮下、瘤内或皮内给予来实施递送。给予方式及位点视靶细胞位置而定。举例而言,囊性纤维变性细胞可通过吸入来有效靶向递送靶向重组小细胞。同样地,肿瘤转移可通过静脉内递送靶向重组小细胞来更有效地治疗。原发性卵巢癌症可通过腹膜内递送靶向重组小细胞来治疗。
下列实施例意欲阐明及提供对本发明更全面的理解而非将本发明限制于所提供的实施例。
实施例1.双特异性抗体靶向小细胞高效结合并经受体介导内在化进入非吞噬人类***癌细胞内
本实验证明含携带抗鼠伤寒LPS及抗雄性激素受体结合特异性的Fab片段的双特异性抗体能够结合且经受体介导内在化源自鼠伤寒的小细胞进入已知在细胞表面过表达雄性激素受体的***癌细胞内。
用重组质粒pORF5-HSV1tk∷Sh ble(Invivogen,San Diego,CA,USA)转化先前产生的鼠伤寒沙门氏菌minCDE-突变株(专利申请案PCT/IB02/04632)。该质粒为在EF-1α/eIF4g杂合启动子控制下表达HSV1tk∷Sh ble融合基因的哺乳动物基因表达载体。HSV1tk为来自单纯疱疹1型病毒(HSV1)的***基因,且编码胸苷激酶这种酶,该酶可将前药鸟苷类似物更昔洛韦(GCV)转换为更昔洛韦-单磷酸盐(GCV-MP)。然后通过内生激酶将后者转换为二磷酸及三磷酸形式。GCV-三磷酸缺乏脱氧核糖的3′OH以及对DNA链延伸必不可少的2′与3′碳之间的键。结果GCV-三磷酸整合引起DNA链过早终止并导致细胞凋亡。因此HSV1tk表达使转染的哺乳动物细胞对更昔洛韦敏感,且为癌症基因治疗最广泛使用的单***策略之一(Singhal及Kaiser,1998)。构建其中通过用限制性酶NcoI及NheI裂解pORF5-HSV1tk∷Sh ble质粒用T4DNA聚合酶平整末端位点且重新连接该质粒来删除HSV1tk∷Sh ble融合基因的对照质粒。NcoI及NheI位点在pORF5-HSV1tk∷Sh ble质粒中为唯一位点且在HSV1tk∷Sh ble融合基因侧翼。将得到的称为pORF5-HSV1tk的质粒同样转化入鼠伤寒沙门氏菌minCDE-突变株中。
使用如国际专利申请案PCT/IB02/04632所述的梯度离心/丝状成形/过滤/除去内毒素的程序纯化携带这类质粒的重组小细胞。
通过将抗鼠伤寒脂多糖(Biodesign,Saco,Maine,USA)及抗雄性激素受体小鼠单克隆抗体(IgG;Abcam,Cambridge,UK)连接至用各单克隆抗体的Fc片段纯化的重组蛋白质A/G来构建双特异性抗体,简言之该程序如下。
将纯化的重组蛋白质A/G(Pierce Biotechnology,Rockford,IL,USA)在免疫纯结合缓冲液(Pierce Biotechnology)中稀释至终浓度为100微克/毫升,且于4℃让0.5毫升溶液与含有抗鼠伤寒沙门氏菌LPS(Research Diagnostics Inc.,Flanders,NJ,USA)及抗人类雄性激素受体(Abacam,Cambridge,UK)单克隆抗体各20微克/毫升的预混合溶液温育过夜。然后将未结合至蛋白质A/G的多余的抗体如下移走。温和混合Dynabeads蛋白质G溶液(用共价偶联到磁性粒子表面的重组蛋白质G包被Dynabeads[2.8微米];Dynal Biotech,Oslo,Norway),将100微升溶液转移至eppendorf离心管。将该管置于DynalMPC-S(磁粒子浓缩器,S型)以固定该珠粒,弃掉上清液。将这类珠粒重新悬浮于0.5毫升含有Na-磷酸盐缓冲液(pH 5.0)的洗液中。重复三遍珠粒固定及洗涤步骤。将含有蛋白质A/G-双特异性抗体复合物的溶液加入至珠粒并于室温温和混合温育40分钟。将eppendorf离心管置于MPC-S台上以固定珠粒,用吸液管移走蛋白质A/G-双特异性抗体复合物。该步骤从溶液中移走了未结合的多余的单克隆抗体,且提供携带通过其Fc片段连接到蛋白质A/G的双特异性抗体的溶液。
1010个重组小细胞与蛋白质A/G-双特异性抗体于室温温育1小时以用抗体通过其抗LPS Fab区域包被这类小细胞。
***癌细胞LNCaP(ATCC,Rockville,MD,USA)在T-75瓶中于补充有10%FCS及抗生素的RPMI 1640培养基中生长为完全融合。在T-25瓶中以50%融合传代该细胞。在过夜附着后,更新培养基,向一瓶中加入107个携带质粒pORF5-HSV1tk∷Sh ble的重组小细胞(非-靶向重组小细胞),而向另一瓶中加入107个同样但携带附着于细胞表面的双特异性抗体的小细胞(靶向重组小细胞)。小细胞对***癌细胞的比率为100∶1。转染细胞在5%CO2及37℃培养箱中温育16、24及36小时后用新鲜1×Dulbecco氏培养基轻度振摇洗涤4次(每次5毫升)。用胰蛋白酶作用所有细胞,然后在24孔板中13毫米厚的盖玻片上传代(每一时间点做三个重复),细胞数量为亚融合。
用4%多聚甲醛将盖玻片上的细胞固定30分钟,且用5%正常羊血清过夜封闭,然后用抗鼠伤寒沙门氏菌LPS(1∶200;Biodesign,Saco,Maine,USA)单克隆抗体染色。用结合Alexa Fluor 594(1∶1000,红色荧光;激发光590纳米而发射光617纳米;Molecular Probes,Eugene,OR,USA)的羊抗小鼠IgG显示抗体结合,通过荧光共焦显微镜(Fluoview,Olympus America,Melville,NY,USA)观察。收集荧光及微分影像对比度(DIC)图像,其重叠如图1所示。
结果表明在任何分析时间点非-靶向重组小细胞不能特异性附着至LNCaP***癌细胞或在LNCaP***癌细胞内实现内在化(图1B及1D),且细胞表现得与对照非转染细胞一样。所分析的所有视野皆显示微弱的背景红色荧光。与此相反,发现靶向重组小细胞强烈附着至LNCaP细胞,推断是通过双特异性抗体靶向结合至细胞表面雄性激素受体。另外,在16小时及24小时温育时间点,大部分LNCaP细胞在这类细胞的细胞质中显示出强红色荧光(图1C、1E及1F),其标志着小细胞已通过受体介导的胞吞作用内在化。
该结果提示携带附着于表面的双特异性抗体的小细胞介导小细胞高效结合至存在于哺乳动物细胞的细胞表面受体(在上述实例中为雄性激素受体),且附着的小细胞通过非吞噬哺乳动物细胞(在上述实例中为***癌细胞)迅速内在化。
实施例2.双特异性抗体靶向小细胞高效结合并经受体介导内在化进入非吞噬人类乳腺癌细胞内
实施例1证明具抗LPS(小细胞特异性)及抗雄性激素受体结合特异性的双特异性抗体能有效强结合至非吞噬哺乳动物细胞(***癌细胞)上的雄性激素受体。另外,其结果证明受体结合高效率引发受体介导的重组小细胞的胞吞作用。本实施例证明上面观察的现象具普遍性,且本发明及发现适用于不同非吞噬哺乳动物细胞上的各种不同胞吞作用活性受体。
更准确地说,本实验表明人类乳腺癌细胞(MDA-MB-468,ATCC;人类***上皮细胞;非吞噬)可通过携带抗鼠伤寒LPS(小细胞表面结合特异性)及抗表皮生长因子受体(EGFR)结合特异性的Fab片段的双特异性抗体来靶向。细胞系MDA-MB-468细胞在实施例1所述用于***癌细胞的组织培养中生长。除了用抗EGFR单克隆抗体(Oncogene Research Products,Cambridge,MA,USA)取代抗雄性激素受体单克隆抗体外,该双特异性抗体如实施例1所述构建。生成靶向及非靶向重组小细胞且用于转染MDA-MB-468细胞,如同上述***癌细胞一样在16小时、24小时及36小时时节对细胞进行鼠伤寒沙门氏菌LPS(小细胞)染色。
结果显示(图2)对照细胞及用非靶向小细胞处理的细胞在所有时间点仅显示微红色背景荧光(图2A及2B),提示小细胞不能附着及转染非吞噬哺乳动物细胞。与此相反,用靶向小细胞处理的细胞24小时温育后显示细胞质中有强红色荧光,在36小时后该荧光增加到覆盖更多细胞质(图2C-E)。此指出双特异性抗体能够使小细胞与MDA-MB-468细胞表面EGF受体强烈结合,且该结合引发受体介导的小细胞胞吞作用。
实施例3.双特异性抗体靶向小细胞高效结合并经受体介导内在化进入非吞噬人类卵巢癌细胞内
实施例1及2证明含抗LPS(小细胞特异性)及或抗雄性激素受体结合特异性或抗EGFR特异性的双特异性抗体可分别使其有效强结合至非吞噬***癌细胞及乳腺癌细胞的雄性激素受体或EGFR。另外,结果证明受体结合引发受体介导的重组小细胞的高效胞吞作用。本实施例进一步证明本发明及发现的通用适应性。
同样,本实验证明人类卵巢癌细胞(SKOV-3,ATCC;上皮细胞;非吞噬)可通过携带抗鼠伤寒LPS(小细胞表面结合特异性)及鼠抗人类Her2/neu受体(Serotec Inc.,Raleigh,NC,USA)结合特异性的Fab片段的双特异性抗体来靶向。已知SKOV-3细胞过表达Her2受体(Salomon等人,1995)。本实验如实施例1及2所述来实施,且样品如前进行抗LPS(红色荧光)染色。
结果(图3)与实施例1及2所得到的结果相似。对照SKOV-3细胞及用非-靶向小细胞处理的细胞仅表现出微弱背景红色荧光。
实施例4.通过双特异性抗体介导重组小细胞高效靶向递送基因至非吞噬哺乳动物细胞
上述实验证明小细胞高效附着至非吞噬哺乳动物细胞,例如人类上皮癌细胞。本实施例证明非吞噬哺乳动物细胞具有效降解如小细胞(400纳米直径)一样大的胞饮粒子的细胞内机制。本实施例同样表明包裹于小细胞内的质粒DNA可逃脱细胞内降解过程,可逃脱内体膜,进入细胞质,进入细胞核并重组表达。实际上,小细胞可有效递送基因至非吞噬细胞,其表明本发明应用为有用的体外转染工具。
让人类乳腺癌细胞(MDA-MB-468)与携带编码病毒性B型肝炎表面抗原(HbsAg;Aldevron,USA)质粒的对照非靶向、非特异性靶向及实验EGFR-靶向小细胞温育。用抗细胞巨化病毒(CMV)单克隆抗体及抗鼠伤寒沙门氏菌LPS Mab构建非特异性靶向BsAb。在4小时、8小时、16小时、24小时及36小时时节洗涤这类细胞,用4%多聚甲醛固定,用5%正常羊血清/2%BSA封闭。用PBS中的1%TritonX-100增加膜的渗透性,且用抗HbsAg MAb(Aldevron,以1∶100稀释)处理细胞,然后用Alexa Fluor 594-结合羊抗小鼠IgG(Molecularprobes,以1∶1000稀释)处理。用共聚焦显微镜分析表达HbSAg蛋白质的细胞。为测定基因递送效率,用流式细胞计分析细胞。为进行FACS分析,用抗HBsAg Mab处理细胞,然后用藻红蛋白(PE)-结合羊抗小鼠IgG代替Alexa Fluor 594处理细胞,因为PE比AlexaFluor 594对FACS分析更加敏感。
结果显示只有EGFR-靶向小细胞产生的基因递送效率大于95%(图4Aiv)。转染后16小时(图4Aiv)及随后时间点观察到重组蛋白质表达(细胞发亮红荧光;图4Bii-iii),提示各细胞中重组蛋白质的显著性水平。所有对照细胞仅显示背景红色荧光点(图4Bi)。
这些结果令人惊讶,因为人们并不知道非吞噬细胞具有有效降解如小细胞(400纳米直径)一样大的胞饮粒子的细胞内机制且具有刚性生物膜。另外,观察到出人意料之外的将基因递送至非吞噬哺乳动物细胞的高效率水平(大于95%)。这些结果指出本发明应用为有用的体外转染工具。目前还没有有用工具可达到如此高的程度将特异性基因递送至非吞噬哺乳动物细胞。
实施例5.双特异性抗体介导将小细胞靶向雌性无胸腺裸鼠中的人类乳腺癌异种移植物
本实施例证明携带编码HSVtk基因的质粒的靶向重组小细胞可使得在6周龄雌性无胸腺裸鼠中建立的人类乳腺癌细胞肿瘤异种移植物消退。
除了用抗表皮生长因子受体(抗EGFR)单克隆抗体(OncogeneResearch Products,Cambridge,MA,USA)代替抗雄性激素受体单克隆抗体外,如实施例1所述构建双特异性抗体。这是由于该异种移植细胞为已知在细胞表面过表达EGF受体的人类乳腺癌细胞MDA-MB-468。小鼠购自Perth,WA的动物资源中心,所有动物实验按照实验动物管理及使用指南及在动物伦理委员会批准下进行。实验在EnGeneIC Pty Ltd(Sydney,NSW,Australia)公司的NSW农业认可的小动物场中进行。如实施例2所述培养MDA-MB-468人类乳腺癌细胞,使用23号针将50微升无血清培养基中的1.5×106个细胞连同50微升生长因子还原性基质胶(BD Biosciences,Franklin Lakes,NJ,USA)皮下注射于各小鼠的肩胛骨之间。用数字式电子测径器(Mitutoyo,Japan,精确到0.001)一周测量肿瘤2次,用公式长度(厘米)×宽度2(厘米)×0.5=体积(立方厘米)计算肿瘤体积。植入后21天肿瘤体积达到50立方厘米与80立方厘米之间,将小鼠随机分为六个不同组,每组12只。
实验设计如下。第一组(对照组)不接受治疗。第2组(对照组)在第21、28及35天接受携带质粒pORF5-HSV1tk∷Sh ble(称为M-HSVtk)的非靶向重组小细胞。小鼠在第25、26、32、33、39及40天同样接受GCV,即连续2天接受2剂量GCV。该组设计为测定非-靶向小细胞能否将***基因递送至肿瘤细胞且在GCV治疗后影响肿瘤消退。第3组(对照组)设计为测定在缺乏GCV时用携带质粒pORF5-HSV1tk∷Sh ble的靶向重组小细胞治疗是否对肿瘤消退有影响。因此,第3组小鼠在与第2组同样的天数接受携带质粒pORF5-HSV1tk∷Sh ble(称为TM-HSVtk)的靶向重组小细胞但不接受GCV治疗。第4组(对照组)设计为测定在缺乏重组小细胞时双特异性抗体是否对肿瘤消退有影响。因此,这些小鼠在给予重组靶向或非靶向小细胞的同一天(即第21、28及35天)接受双特异性抗体。抗体治疗后与第2组同样天数接着进行GCV治疗。第5组(实验组)设计为测定携带质粒pORF5-HSV1tk∷Sh ble的靶向重组小细胞是否能有效将质粒递送至异种移植肿瘤细胞,且在每一小细胞剂量后用单剂量GCV治疗小鼠后是否能观察到肿瘤消退。因此,第5组在与第3组同样天数接受靶向重组小细胞,然后在第25、33及39天接受GCV治疗。第6组(实验组)与第5组相同但如第2及4组一样接受连续天2剂量的GCV。
将各种悬浮于30微升无菌生理盐水中的108个小细胞肿瘤内注射给接受各种小细胞的小鼠。体外在MDA-MB-468细胞中的基因靶向实验显示递送质粒的小细胞在用靶向重组小细胞转染至少48小时后表达HSVtk酶。因此,第2、4、5及6组在小细胞接种后3至4天给予GCV使得转染的肿瘤异种移植细胞能有效表达HSVtk酶以对GCV起反应。GCV以100毫克/公斤鼠重的浓度腹膜内给予。
图5表明实验进程中肿瘤体积的进展。结果显示仅靶向重组小细胞(第5及6组)能成功将HSV1tk基因编码质粒递送至异种移植肿瘤细胞。在这两组中肿瘤体积大小未增加,且在整个实验过程中保持稳定。与此相反,在四个对照组(第1-4组)中肿瘤体积迅速增加。有趣的是第2组小鼠同样不显示肿瘤消退迹象,提示非-靶向重组小细胞不能转染人类乳腺癌细胞且不能获得临床上有意义的结果。使用单向方差分析(One-way ANOVA)的统计分析数据表明实验组(5及6)与对照组1至4比较高度显著(p=0.001)。本结果为体内通过源自细菌的完整重组小细胞介导将基因靶向递送至非吞噬哺乳动物细胞的最早的实证。其同样证明受体介导的小细胞的胞吞作用在实现高度有效将基因递送至这些非吞噬哺乳动物细胞方面的作用(将第2组与第5及6组比较)。
本实验结果表明本发明的组合物及方法在体内用于将小细胞靶向所需的哺乳动物细胞的有效性。这类结果同样证明靶向小细胞潜在的临床应用,尤其是在开发癌症疗法方面。
实施例6.携带***质粒的小细胞靶向人类乳腺癌异种移植物上过表达的EGF受体有效消退裸鼠中的肿瘤
上述异种移植研究通过瘤内(i.t.)注射小细胞来实施。为了评估在体内通过***递送将小细胞靶向非-吞噬(人类癌细胞)细胞表面受体且达到肿瘤稳定/消退的目的的潜能,设计了另一个异种移植研究,其中小细胞通过静脉内注射。
同样,构建并纯化携带质粒pORF5-HSV1tk∷Sh ble(HSV1tk)的重组小细胞。将这类小细胞靶向经证明在人类乳腺癌细胞MDA-MB-468中过表达的人类EGFR。其可如实施例1所述通过构建含具抗人类EGFR及抗鼠伤寒LPS特异性的双特异性抗体且将该BsAb附着至小细胞表面来完成。在裸鼠的肩胛骨之间皮下(s.c.)建立异种移植物(每组n=11),实验及对照小细胞皆在所示天数(图6)于尾静脉中静脉内给予。第2、4、6及7组在所示天数同样接受GCV(i.p.)。
结果显示仅在用EGFR-靶向小细胞HSV1tk治疗的小鼠中对已建立的肿瘤有显著的稳定/消退。每剂量108或109这两种小细胞剂量具相同效果,表明靶向方法很高效,且提高治疗指数,使得载体浓度不是限制因子。使用单向方差分析的统计分析数据表明实验组(6及7)的结果与对照组1至5比较为高度显著(p=0.0001)。该数据表明即使是在远离肿瘤的位点注射时小细胞靶向技术在将小细胞导向肿瘤块方面仍很高效。该数据同样表明***递送靶向小细胞不会对小鼠引起任何明显症状的毒性。在整个研究期间,没有诸如发热、嗜睡、纳差、重量减轻或死亡等明显症状的毒性。
实施例7.携带***质粒的小细胞靶向人类乳腺癌异种移植物上低表达的HER2/neu受体有效消退裸鼠肿瘤
上述体内结果指出可将小细胞有效靶向疾病细胞(例如癌症细胞)上的过表达受体。本实施例显示当将小细胞载体靶向一表达很低的癌症细胞表面受体时的功效。在传统方法中,靶向低表达受体是开发基于抗体的疗法的严重的障碍,尤其是对癌症治疗,因为很多癌症细胞不能过表达靶受体。举例而言,HER2/neu受体在低于20%的乳腺癌患者中为过表达。
同样,异种移植研究设计为其中小细胞HSV1tk载体靶向已知在MDA-MB-468乳腺癌细胞上低表达的HER2/neu受体。除了包括另一其中瘤内注射HER2/neu-靶向小细胞HSV1tk实验组(第8组)外,实验组及对照组(图7)与实施例6相同。结果(图7)表明尽管该HER2/neu受体低表达,但在达到肿瘤稳定/消退目的方面实验治疗正象实施例6中小细胞HSV1tk载体靶向过表达的EGF受体情况一样有效。为达到该结果需要相同的靶向小细胞HSV1tk剂量次数(3x)。在本实验中,一旦残留的肿瘤在第53天与81天间开始生长,给予第四剂量的HER2/neu靶向小细胞HSV1tk,在第6组及第7组中引起肿瘤体积快速缩小。使用单向方差分析的统计分析数据表明实验组(6、7及8)与对照组1至5比较高度显著(p=0.0001)。
参考文献
本说明书引入下列每一出版物作为参考:
Balicki及Beutler,人类疾病的基因治疗(Gene therapy of humandisease)。Medicine(Baltimore),2002 Jan;81(1):69-86。
Batra RK,Wang-Johanning F,Wagner E,Garver RI Jr,Curiel DT,利用植物血凝素-结合特异性受体介导基因递送(Receptor-mediated genedelivery employing lectin-binding specificity)。Gene Ther,1994 Jul;1(4):255-60。
Becker CM,Farnebo FA,Iordanescu I,Behonick DJ,Shih MC,DunningP,Christofferson R,Mulligan RC,Taylor GA,Kuo CJ,Zetter BR,用可溶性血管内皮细胞生长因子受体F1k1进行***癌基因治疗(Genetherapy of prostate cancer with the soluble vascular endothelial growthfactor receptor F1k1)。Cancer Biol Ther.2002Sep-Oct;1(5):548-53。
Bondoc,LL及Fitzpatrick S,用盘状离心进行重组腺病毒粒径分布分析(Size distribution analysis of recombinant adenovirus using disccentrifugation)。J Indust Micro Biotechnol,20:317-322(1998)。
Britton等人,“参与染色体分配的原核SMC蛋白质的鉴定(Characterization of a prokaryotic SMC protein involved in chromosomepartitioning)”。Genes Dev,12:1254(1998)。
Carter,P,改进基于抗体的癌症治疗的效率(Improving the efficacy ofantibody-based cancer therapies)。Nat Rev Cancer,Nov;1(2):118-29。
Ciliberto等人,“转染人类α1-抗胰蛋白酶基因的细胞特异性表达(Cell-specific expression of a transfected human alpha 1-antitrypsingene)”。Cell,41:531(1985)。
Conner SD,Schmid SL,调整细菌侵入细胞的门户(Regulated portals ofentry into the cell)。Nature,2003 Mar 6;422(6927):37-44。
Curiel等人,“临床上及试验室长期抑制含有HIV-调节的白喉毒素A链基因的人类T细胞系中的人类免疫缺陷病毒株”(Long-terminhibition of clinical and laboratory human immunodeficiency virusstrains in human T-cell lines containing an HIV-re gulated diphtheriatoxin A chain gene)。Hum.Gene Ther.4:741(1993)。
de Boer等人,“通过大肠杆菌MinCDE***介导的MinC及MinD在位点特异性分隔块中的作用(Roles of MinC and MinD in the site-specific septation block mediated by the Min CDE system of Escherichiacoli)”。J.Bacteriol.174:63(1992)。
de Haard,H.J.等人,能快速分离的大容量非免疫人类Fab片段噬菌体库及高亲合力抗体的动力学分析(A large non-immunized human Fabfragment phage library that permits rapid isolation and kinetic analysis ofhigh affinity antibodies)。J.Biol.Chem.274,18218-18230(1999)。
Dinges等人,“HIV调节的白喉毒素A链基因对人类前单核细胞系U937提供长期抗1型HIV感染保护”(HIV-regulated diphtheria toxin Achain gene confers long-term protection against HIV type 1 infection inthe human promonocytic cell line U937)。Hum.Gene Ther.6:1437(1995)。
Dubel S,Breitling F,R,Schmidt T,Skerra A,Little M,抗生物素蛋白链菌素与单链抗体(scFv)融合形成的具两种不同功能的多聚体复合物(Little M.Bifunctional and multimeric complexes of streptavidin fused tosingle chain antibodies)。J.Immunol.Methods(1995)178,201-209。
Fernandez T,Bayley H.1998,朝向另一面的运载蛋白(Ferrying proteinsto the other side)。Nat Biotechnol 16:418-430。
Frain等人,“肝特异性因子与人类白蛋白基因启动子及增强子的结合”(Binding of a liver-specific factor to the human albumin genepromoter and enhancer)。Mol.Cell Biol.10:991(1990)。
Glennie MJ,McBrie HM,Worth AT,Stevenson GT,含有硫醚连接的Fab′γ片段的双特异性F(ab′γ)2抗体的制备及表现(Preparationand performance of bispecific F(ab′gamma)2 antibody containingthioether-linked Fab′gamma fragments)。J Immunol.1987 Oct 1;139(7):2367-75。
Gosselin MA,Lee RJ,叶酸受体靶向的脂质体作为治疗剂的载体(Folate receptor-targeted liposomes as vectors for therapeutic agents)。Biotechnol Annu Rev.2002;8:103-31。
Griffiths,A.D.等人,直接从大量合成物质中分离高亲合力人类抗体(Isolation of high affinity human antibodies directly from large syntheticrepertoires)。EMBO J.13,3245-3260(1994)。
Grillot-Courvalin C,Goussard S,Courvalin P,野生型胞内菌递送DNA至哺乳动物细胞内(Wild-type intracellular bacteria deliver DNA intomammalian cells)。Cell Microbiol.2002 Mar;4(3):177-86。
Hanahan,表达重组胰岛素/猿病毒40致癌基因的转基因小鼠中可遗传的胰腺β细胞肿瘤的形成(Heritable formation of pancreatic beta-celltumours in transgenic mice expressing recombinant insulin/simian virus40 oncogenes)。Nature 1985 May 9-15;315(6015):115-122。
Harrison等人,“用含HIV调节的白喉毒素A链基因的逆转录病毒转导引起人类免疫缺陷病毒-1生产的抑制(Inhibition of humanimmunodeficiency virus-1 production resulting from transduction with aretrovirus containing an HIV-regulated diphtheria toxin A chainGene)”。Hum.Gene Ther.3:461(1992a)。
Harrison等人,“在含有整合了HIV调节的白喉毒素A链基因的细胞中抑制HIV生成(Inhibition of HIV production in cells containing anintegrated,HIV-regulated diphtheria toxin A chain gene)”。AIDS Res.Hum.Retrovirus 8:39(1992b)。
Harry,“细菌细胞***:调节Z-环形成(Bacterial cell division:Regulating Z-ring formation,)”。Mol.Microbiol.40:795(2001)。
Hart,“靶向***递送基因治疗中的组织特异性启动子(Tissue specificpromoters in targeting systematically delivered gene therapy)”。Semin.Oncol.23:154(1996)。
Heim等人,“绿色荧光蛋白的波长突变及翻译后自动氧化(mutationsand posttranslational autoxidation of green fluorescent protein)”。Proc.Nat′l.Acad.Sci.USA 91:12501(1994)。
Hiraga等人,“大肠杆菌中染色体分配:产生无核细胞的新型突变体(Chromosome partitioning in Escherichia coli:novel mutantsproducing anucleate)”。J.Bacteriol.171:1496(1989)。
Hoshida T,Sunamura M,Duda DG,Egawa S,Miyazaki S,Shineha R,Hamada H,Ohtani H,Satomi S,Matsuno S,用编码可溶性flt-1血管内皮细胞生长因子受体的腺病毒载体基因治疗胰腺癌症(Genetherapy for pancreatic cancer using an adenovirus vector encoding solubleflt-1 vascular endothelial growth factor receptor)。Pancreas.2002 Aug;25(2):111-21。
Hu,S,L Shively,A Raubitschek,M Sherman,LE Williams,JY Wong,JE Shively,及AM Wu,微型抗体:一种表现为快速高水平靶向异种移植物的新型基因工程抗癌胚抗原抗体片段(单链Fv-CH3)(A novelengineered anti-carcinoembryonic antigen antibody fragment(single-chain Fv-CH3)which exhibits rapid,high-level targeting ofxenografts)。Cancer Res.1996 56:3055-3061。
Hu及Lutkenhaus,“大肠杆菌中细胞***的拓扑调节涉及***抑制剂MinC在MinD及MinE控制下快速极对极摆动(Topologicalregulation of cell division in Escherichia coli involves rapid pole to poleoscillation of the division inhibitor MinC under the control of MinD andMinE)”。Mol.Microbiol.34:82(1999)。
Hudson,P.J.及Souriau,C,用于癌症诊断及治疗的重组抗体(Recombinant antibodies for cancer diagnosis and therapy)。Expert Opin.Biol.Ther.1,845-855(2001)。
Hudson PJ,Souriau C.工程抗体(Engineered antibodies)。Nat Med.2003 Jan;9(1):129-34。
Hung MC,Hortobagyi GN,Ueno NT,靶向过表达HER-2/neu的乳腺及卵巢癌症的E1A基因治疗临床试验的进展(Development of clinicaltrial of E1A gene therapy targeting HER-2/neu-overexpressing breast andovarian cancer)。Adv Exp Med Biol.2000;465:171-80。
Ireton等人,“枯草杆菌中正常染色体分离以及启动芽孢形成需要spoOJ(spoOJ is required for normal chromosome segregation as well asthe initiation of sporulation)。J.Bacteriol.176:5320(1994)。
Jones,P.T.,Dear,P.H.,Foote,J.,Neuberger,M.S.及Winter,G,用来自小鼠的互补决定区取代人类抗体中的互补决定区(Replacing thecomplementarity-determining regions in a human antibody with thosefrom a mouse)。Nature 321,522-525(1986)。
Katabi等人“己糖激酶II型:一种新型的基因靶向治疗人类癌细胞中差别表达及调节的肿瘤特异性启动子(Hexokinase Type II:A NovelTumor Specific Promoter for Gene-Targeted Therapy DifferentiallyExpressed and Regulated in Human Cancer Cells)”。Human GeneTherapy 10:155(1999)。
Kaetzel CS,Blanch VJ,Hempen PM,Phillips KM,Piskurich JF,Youngman KR(1997):聚合免疫球蛋白受体:结构及合成(Thepolymeric immunoglobulin receptor:structure and synthesis)。BiochemSoc Trans 25:475-480。
Karpovsky B,Titus JA,Stephany DA,Segal DM,用含有抗靶细胞及抗Fcγ受体抗体的杂合交联聚集来产生靶特异性效应细胞(Production of target-specific effector cells using hetero-cross-linkedaggregates containing anti-target cell and anti-Fc gamma receptorantibodies)。J Exp Med.1984 Dec 1;160(6):1686-701。
Kelsey等人,“在转基因小鼠中人类α1-抗胰蛋白酶的种属及组织特异性表达(Species-and tissue-specific expression of human alpha 1-antitrypsin in transgenic)”。Genes and Devel.1:161(1987)。
Kerem等人,“囊性纤维性变病基因鉴定:遗传学分析(Identificationof the cystic fibrosis gene:genetic analysis)”。Science 245:1073(1989)。
Khare,P.D.等人,通过表现针对CEA的scFv抗体且携带iNOS基因的逆转录病毒载体抑制肿瘤生长(Tumor growth suppression by aretroviral vector displaying scFv antibody to CEA and carrying the iNOSgene)。Anticancer Res.22,2443-2446(2002)。
Fukahi K,Lopez ME,Friess H,Buchler MW,Sosnowski BA,Korc M,在胰腺癌细胞中通过FGF受体靶向递送***基因(Targeting of suicidegene delivery in pancreatic cancer cells via FGF receptors)。Cancer GeneTher.2002 Jun;9(6):522-32。
Knappik,A.等人,基于模量一致框架的全合成人类组合抗体库(HuCAL)及用三核苷酸随机形成的CDRs(Fully synthetic humancombinatorial antibody libraries(HuCAL)based on modular consensusframeworks and CDRs randomized with trinucleotides)。J.Mol.Biol.296,57-86(2000)。
Kostelny SA,Cole MS,Tso JY.通过使用亮氨酸拉链形成双特异性抗体(Formation of a bispecific antibody by the use of leucine zippers)。JImmunol.1992 Mar 1;148(5):1547-53。
Kurane等人,“使用肿瘤特异性抗体及组织特异性启动子组合进行腺癌靶向基因转移(Targeted Gene Trahsfer for Adenocarcinoma Usinga Combination of Tumor specific Antibody and Tissue-specificPromoter)”。Jpn.J.Cancer Res.89:1212(1998)。
Levin等人,“枯草杆菌隔膜位置及决定形状基因的鉴定(of Bacillussubtilis genes for septum placement and shape determination)”。J.Bacteriol.174:6717(1992)。
Leder等人,“转基因小鼠中c-myc基因普遍反常的推断:多倍体新生物及正常进展(Consequences of widespread deregulation of the c-mycgene in transgenic mice:multiple neoplasms and normal)”。Cell 45:485(1986)。
MacDonald等人,“转基因小鼠中胰腺弹性蛋白酶I基因表达(Expression of the pancreatic elastase I gene in transgenic mice)”。Hepatology 7:425(1987)。
Marshall,基于癌胚抗原的疫苗(Carcinoembryonic antigen-basedvaccines)。Semin.Oncol.2003 Jun.;30(3 Suppl.8):30-36。
Mason等人,“性腺机能减退的小鼠:通过基因治疗恢复生殖功能(hypogonadal mouse:reproductive functions restored by genetherapy)”。Science 234:1372(1986)。
Morton及Potter,“单纯疱疹病毒胸苷激酶基因的横纹肌肉瘤特异性表达提供对更昔洛韦的敏感性(Rhabdomyosarcoma-specific expressionof the herpes simplex virus thymidine kinase gene confers sensitivity toganciclovir)”。J.Pharmacology and Exper.Therapeutics 286:1066(1998)。
Okada等人,“大肠杆菌染色体分离及细胞***时细胞质轴丝的可能的功能(Possible function of the cytoplasmic axial filaments inchromosomal segregation and cellular division of Escherichia coli)”。Sci.Prog.77:253(1993-94)。
Okada等人,“大肠杆菌细胞中的细胞质轴丝:染色体分离及细胞***机制中可能的功能(Cytoplasmic axial filaments in Escherichia colicells:possible function in the mechanism of chromosome segregation andcell)”。J.Bacteriol.176:917(1994)。
Osbourn,J.,Jermutus,L.,Duncan,A,当前产生治疗自体免疫疾病人类抗体的方法(Current methods for the generation of human antibodiesfor the treatment of autoimmune diseases)。Drug Delivery Tech 8:845-851(2003)。
Pack P,Pluckthun A,微型抗体:在大肠杆菌中使用两性螺旋片产生具高亲合力的功能性柔软连接的二聚体Fv片段(Miniantibodies:use ofamphipathic helices to produce functional,flexibly linked dimeric Fvfragments with high avidity in Escherichia coli)。Biochemistry.1992 Feb18;31(6):1579-84。
PCT IB02/04632
Phelan A,Elliott G,O′Hare P.1998,通过疱疹病毒蛋白质VP22在细胞间递送功能p53(Intercellular delivery of functional p53 by theherpesvirus protein VP22)。Nat Biotechnol 16:440-443。
Pinkert等人,“转基因小鼠中一种位于其启动子上游10kb处的指导有效肝特异性表达的白蛋白加强子(An albumin enhancer located 10kb upstream functiohs along with its promoter to direct efficient,liver-specific expression in transgenic mice)”。Genes and Devel.1:268(1987)。
Prasher等人,“使用GFP发光(Using GFP to see the light)”。Trends inGenetics 11:320(1995)。
Ragheb等人,“通过调节胞嘧啶脱氨酶、干扰素α2或白喉毒素表达与通过反式显性Rev来抑制人类免疫缺陷病毒1型的比较(Inhibition of human immunodeficiency virus type 1 by regulatedexpression of cytosine deaminase,interferon alpha2,or diphtheria toxincompared with inhibition by transdominant Rev)”。Hum.Gene Ther.10:103(1999)。
Raskin及de Boer,“大肠杆菌中***抑制子MinC的MinDE依赖性极对极摆动(MinDE-dependent pole-to-pole oscillation of divisioninhibitor MinC in Escherichia coli)”。J.Bacteriol.181:6419(1999)。
Readhead等人,”髓磷脂缺乏小鼠:具变化的髓磷脂水平的小鼠的髓磷脂碱性蛋白质的表达及生成(Myelin deficient mice:expression ofmyelin basic protein and generation of mice with varying levels ofmyelin)”。Cell 48:703(1987)。
Reeve,“小细胞在噬菌体引导的多肽合成中的用途(Use of minicellsfor bacteriophage-directed polypeptide synthesis)”。Methods Enzymol.68:493(1979)。
Reeve及Cornet,枯草杆菌小细胞中噬菌体大分子的合成(Bacteriophage macromolecular synthesis in minicells of Bacillussubtilis.)。J.Virol.1975 Jun;15(6):1308-16。
Ridgway JB,Presta LG,Carter P,抗体重链杂二聚体CH3结构域的′Knobs-into-holes′设计(‘Knobs-into-holes’engineering of antibody CH3domains for heavy chain heterodimerization)。Protein Eng.1996 Jul;9(7):617-21。
Riechmann,L.,Clark,M.,Waldmann,H.及Winter,G,用于治疗的人类抗体改形(Reshaping human antibodies for therapy.)。Nature332,323-327(1988)。
Riordan等人,“囊性纤维性变病基因鉴定:互补DNA的克隆及鉴别”(Identification of the cystic fibrosis gene:cloning andcharacterization of complementary DNA)。Science 245:1066(1989)。
Rojas M,Donahue JP,Tan Z,Lin YZ.1998,关于细胞膜渗透性的蛋白质遗传工程(Genetic engineering of proteins with cell membranepermeability)。Nat Biotechnol 16(4):370-375。
Romano等人,治疗的基因转移技术:当前应用及未来目标(Genetransfer technology in therapy:current applications and future goals)。Stem Cell.1999;17(4):191-202。
Romano等人,设计用于治疗中的寡核苷酸及基因递送的新策略的进展、前景及问题(Recent advances,prospects and problems in designingnew strategies for oligonucleotide and gene delivery in therapy)。In Vivo.1998 Jan-Feb;12:59-67。
Rommens等人,囊性纤维性变病基因的鉴定:染色体巡查及跳跃(Identification of the cystic fibrosis gene:Chromosome walking andjumping)”。Science 245:1059(1989)。
Salomon DS,Brandt R,Ciardiello F,N,人类恶性肿瘤中表皮生长因子相关肽及其受体(Epidermal growth factor-related peptides and theirreceptors in human maiignancies)。Crit Rev Oncol Hematol 1995,19,183-232。
Shangara等人,“***基因:过去、现在及未来展望(Suicide genes:past,present and future perspectives)”。Immunology Today 21:48(2000)。
Sheets,M.D.等人,大容量非免疫噬菌体抗体库的有效构建:针对蛋白质抗原的高亲合力人类单链抗体的产生(Efficient construction of alarge nonimmune phage antibody library:the production of high-affinityhuman single-chain antibodies to protein antigens)。Proc.Acad.Sci.USA95,6157-6162(1998)。
Singh,转铁蛋白作为脂质体及抗癌药物的靶配体(Transferrin as atargeting ligand for liposomes and anticancer drugs)。Curr Pharm Des.1999Jun;5(6):443-51。
Singhal及Kaiser,用***基因进行癌症化疗(Cancer chemotherapyusing suicide genes)。Surg Oncol Clin N Am.1998 Jul;7(3):505-36。
Spencer,“***基因的临床前及临床应用进展(Developments in suicidegenes for preclinical and clinical applications)”。Molecular Therapeutics2:433(2000)。
Stewart及D′Ari,“大肠杆菌染色体分离突变体的遗传及形态学鉴定(Genetic and morphololcal characterization of an Escherichia colichromosome segregation mutant)”。J.Bacteriol.174:4513(1992)。
Stockert,去唾液酸糖蛋白受体:结构、功能及表达之间的相互关系(The asialoglycoprotein receptor:relatiohships between structure,function,and expression)。Physiol Rev.1995 Jul;75(3):591-609。
Swift等人,“转基因小鼠中大鼠胰腺弹性蛋白酶I基因的组织特异性表达(Tissue-specific expression of the rat pancreatic elastase I gene intransgenic)”。Cell 38:639(1984)。
Thomas,C.E.,Edwards,P.,Wickham,T.J.,Castro,M.G.及Lowenstein,P.R,腺病毒引发脑炎不需要结合至克萨奇病毒及腺病毒受体或整联蛋白但转换特异性能神经细胞类型其必不可少(Adenovirus binding to the coxsackievirus and adenovirus receptor orintegrins is not required to elicit brain inflammation but is necessary totransduce specific neural cell types)。J.Virol.76,3452-3460(2002)。
Thomas CE,Ehrhardt A,Kay MA,使用病毒载体进行基因治疗的进展与问题(Progress and problems with the use of viral vectors for genetherapy)。Nat Rev Genet.2003 May;4(5):346-58。
Thurnher M,Wagner E,Clausen H,Mechtler K,Rusconi S,Dinter A,ML,Berger EG,Cotten M,糖类受体介导基因转移至人类T白血病细胞(Carbohydrate receptor-mediated gene transfer to human Tleukaemic cells)。Glycobiology.1994 Aug;4(4):429-35。
Todorovska,A.等人,用于癌症靶向的二元体、三元体及四元体的设计与应用(Design and application of diabodies,triabodies and tetrabodiesfor cancer targeting)。J.Immunol.Methods 248,47-66(2001)。
Tomlinson,及Holliger,P,产生多价及双特异性抗体片段的方法(Methods for generating multivalent and bispecific antibodyfragments)。Methods Enzymol.326,461-479(2000)。
Vaughan,T.J.等人,从大容量非免疫噬菌体展示库中分离具毫摩尔以下亲合力的人类抗体(Human antibodies with subnanomolar affinitiesisolated from a large non-immunized phage display library)。NatureBiotechnol.14,309-314(1996)。
Vaughan,T.J.,J.K.及Tempest,P.R.,设计人类抗体(Human antibodiesby design)。Nature Biotechnol.16,535-539(1998)。
Verhoeyen,M.,Milstein,C.及Winter,G.,人类抗体改形:移植抗溶菌酶活性(Reshaping human antibodies:graftng an antilysozymeactivity)。Science 239,1534-1536(1988)。
Wachi等人,“负责大肠杆菌细胞杆形形成的新型mre基因,mreC及mreD(New mre genes mreC and responsible for formation of the rodshape of)”。J.Bacteriol.171:6511(1989)。
Wadhwa,癌症基因治疗:科学基础(Cancer gene therapy:scientificbasi)。Annu.Rev.Med.2002;53:437-52。
Wickham,配体引导基因靶向疾病位点(Ligand-directed targeting ofgenes to the site of disease)。Nat Med.2003 Jan;9:135-9。
Yazawa等人,“***基因治疗癌症的目前进展(Current progress insuicide gene therapy for canoer)”。World J.Surg.26:783(2002)。Ziady AG,Perales JC,Ferkol T,Gerken T,Beegen H,DH,Davis PB,通过丝氨酸蛋白酶抑制剂酶复合物受体将基因转入肝癌细胞系中(Gene transfer into hepatoma cell lines via the serpin enzyme complexreceptor)。Am J Physiol.1997 Aug;273(2 Pt 1):G545-52。

Claims (35)

1.一种靶向基因递送方法,所述方法包括使双特异性配体与下列细胞接触:(a)源自细菌的含有治疗性核酸序列的小细胞及(b)非吞噬哺乳动物细胞,以致(i)所述双特异性配体引起所述小细胞结合至所述哺乳动物细胞,及(ii)所述哺乳动物细胞吞没所述小细胞,从而产生所述治疗性核酸序列的表达产物。
2.权利要求1的方法,其中所述双特异性配体包含多肽或糖类。
3.权利要求1的方法,其中所述双特异性配体包含携带对源自细菌的小细胞表面结构具特异性的第一臂及携带对非吞噬哺乳动物细胞表面受体具特异性的第二臂。
4.权利要求3的方法,其中所述第一臂及所述第二臂为单特异性。
5.权利要求3的方法,其中所述第一臂及所述第二臂为多价。
6.权利要求3的方法,其中所述小细胞表面结构为所述小细胞表面脂多糖的O-多糖成分。
7.权利要求3的方法,其中所述小细胞表面结构选自外膜蛋白、菌毛、纤毛、鞭毛及暴露于细胞表面的糖类。
8.权利要求3的方法,其中所述哺乳动物细胞表面受体能够激活受体介导的所述小细胞的胞吞。
9.权利要求1的方法,其中所述双特异性配体包含抗体或抗体片段。
10.权利要求1的方法,其中所述双特异性配体包含人源化抗体。
11.权利要求1的方法,其中所述小细胞包含完整细胞壁。
12.权利要求1的方法,其中所述治疗性核酸序列编码***基因。
13.权利要求1的方法,其中所述治疗性核酸编码基因的正常配对物,该基因表达的蛋白质在所述哺乳动物细胞中起异常作用或以异常水平存在。
14.权利要求1的方法,其中所述哺乳动物细胞在体外。
15.权利要求1的方法,其中所述哺乳动物细胞在体内。
16.权利要求1的方法,其中所述治疗性核酸被包含在由多核酸序列组成的质粒上。
17.权利要求16的方法,其中所述质粒包含调节元件。
18.权利要求16的方法,其中所述质粒包含报告元件。
19.一种组合物,其包括(i)源自细菌的小细胞,其含有治疗性核酸分子,及(ii)双特异性配体,其能够与所述小细胞表面成分及非吞噬哺乳动物细胞表面成分结合。
20.权利要求19的组合物,其中所述双特异性配体包含多肽或糖类。
21.权利要求19的组合物,其中所述双特异性配体包含携带对源自细菌的小细胞表面结构具特异性的第一臂及携带对非吞噬哺乳动物细胞表面受体具特异性的第二臂。
22.权利要求21的组合物,其中所述第一臂及所述第二臂为单特异性。
23.权利要求21的组合物,其中所述第一臂及所述第二臂为多价。
24.权利要求21的组合物,其中所述小细胞表面结构为小细胞表面脂多糖的O-多糖成分。
25.权利要求21的组合物,其中所述小细胞表面结构选自外膜蛋白、菌毛、纤毛、鞭毛及暴露于细胞表面的糖类。
26.权利要求21的组合物,其中所述哺乳动物细胞表面受体能够激活受体介导的所述小细胞的胞吞。
27.权利要求19的组合物,其中所述双特异性配体包含抗体或抗体片段。
28.权利要求19的组合物,其中所述双特异性配体包含人源化抗体。
29.权利要求19的组合物,其中所述小细胞包含完整细胞壁。
30.权利要求19的组合物,其中所述治疗性核酸序列编码***基因。
31.权利要求19的组合物,其中所述治疗性核酸编码基因的正常配对物,该基因表达的蛋白质在所述哺乳动物细胞中起异常作用或以异常水平存在。
32.权利要求19的组合物,其中所述治疗性核酸被包含在由多核酸序列组成的质粒上。
33.权利要求32的组合物,其中所述质粒包含调节元件。
34.权利要求32的组合物,其中所述质粒包含报告元件。
35.源自细菌的完整小细胞及双特异性配体在制备药物中的用途,所述小细胞含有治疗性核酸分子,而所述双特异性配体能够与所述小细胞及靶非吞噬哺乳动物细胞结合,通过将所述药物其给予细胞、组织或器官而用在治疗疾病或改变特性的方法中。
CN2004800413704A 2003-12-09 2004-12-08 通过源自细菌的完整小细胞将靶基因递送至非吞噬哺乳动物细胞 Active CN1913923B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US52776403P 2003-12-09 2003-12-09
US60/527,764 2003-12-09
PCT/IB2004/004406 WO2005056749A2 (en) 2003-12-09 2004-12-08 Targeted gene delivery to non-phagocytic mammalian cells via bacterially derived intact minicells

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2010105034256A Division CN101954095B (zh) 2003-12-09 2004-12-08 通过源自细菌的完整小细胞将靶基因递送至非吞噬哺乳动物细胞

Publications (2)

Publication Number Publication Date
CN1913923A true CN1913923A (zh) 2007-02-14
CN1913923B CN1913923B (zh) 2010-12-08

Family

ID=34676775

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2010105034256A Active CN101954095B (zh) 2003-12-09 2004-12-08 通过源自细菌的完整小细胞将靶基因递送至非吞噬哺乳动物细胞
CN2004800413704A Active CN1913923B (zh) 2003-12-09 2004-12-08 通过源自细菌的完整小细胞将靶基因递送至非吞噬哺乳动物细胞

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2010105034256A Active CN101954095B (zh) 2003-12-09 2004-12-08 通过源自细菌的完整小细胞将靶基因递送至非吞噬哺乳动物细胞

Country Status (15)

Country Link
US (3) US9169495B2 (zh)
EP (2) EP2295084A1 (zh)
JP (1) JP4332558B2 (zh)
CN (2) CN101954095B (zh)
AT (1) ATE501735T1 (zh)
AU (1) AU2004297414C1 (zh)
CA (1) CA2549840C (zh)
DE (1) DE602004031870D1 (zh)
DK (1) DK1694361T3 (zh)
ES (1) ES2362881T3 (zh)
HK (1) HK1095090A1 (zh)
NZ (1) NZ547983A (zh)
PL (1) PL1694361T3 (zh)
PT (1) PT1694361E (zh)
WO (1) WO2005056749A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105658233A (zh) * 2013-10-04 2016-06-08 安吉尼科分子传输公司 使用携带药物的、双特异性配体靶向的微细胞和干扰素-γ的联合肿瘤治疗

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1446489T3 (da) * 2001-10-15 2012-05-14 Engeneic Molecular Delivery Pty Ltd Intakte miniceller som vektorer for DNA-overførsel og genterapi in vitro og in vivo
US7611885B2 (en) * 2003-06-24 2009-11-03 Engeneic Molecular Delivery Pty, Ltd. Pharmaceutically compatible method for purifying intact bacterial minicells
US9169495B2 (en) 2003-12-09 2015-10-27 Engeneic Molecular Delivery Pty Ltd. Targeted gene delivery to non-phagocytic mammalian cells via bacterially derived intact minicells
US8772013B2 (en) 2004-02-02 2014-07-08 Engeneic Molecular Delivery Pty Ltd Methods for targeted in vitro and in vivo drug delivery to mammalian cells via bacterially derived intact minicells
SG135174A1 (en) 2004-02-02 2007-09-28 Engeneic Molecular Delivery Pty Ltd Compositions and methods for targeted in vitro and in vivo drug delivery to mammalian cells via bacterially derived intact minicells
AU2005276145C1 (en) 2004-08-26 2011-01-06 Engeneic Molecular Delivery Pty Ltd Delivering functional nucleic acids to mammalian cells via bacterially derived, intact minicells
WO2008012695A2 (en) * 2006-06-23 2008-01-31 Engeneic Molecular Delivery Pty Ltd. Targeted delivery of drugs, therapeutic nucleic acids and functional nucleic acids to mammalian cells via intact killed bacterial cells
DK2145002T3 (en) 2007-03-30 2015-04-20 Engeneic Molecular Delivery Pty Ltd Bacterially-derived, intact minicells comprising the plasmid-free functional nucleic acid for in vivo delivery to mammalian cells
KR101623999B1 (ko) 2008-06-25 2016-05-24 벡션 테라퓨틱스 엘엘씨 조절된 유전자 자살 메커니즘 조성물 및 방법
ES2720659T3 (es) 2011-02-15 2019-07-23 Vaxiion Therapeutics Llc Composiciones terapéuticas y métodos para la administración dirigida, mediante minicélulas bacterianas, de moléculas bioactivas basadas en moléculas dirigidas que contienen Fc y anticuerpos
CN109125286A (zh) 2011-12-13 2019-01-04 安吉尼科分子传输公司 用于将治疗剂递送至脑瘤的细菌衍生的、完整的微细胞
CN113577260A (zh) 2012-10-02 2021-11-02 瓦克星治疗有限责任公司 免疫调节性小细胞及使用方法
US20150086592A1 (en) * 2013-09-25 2015-03-26 Sequoia Sciences, Inc Compositions of vaccines and adjuvants and methods for the treatment of urinary tract infections
EP3200765A4 (en) 2014-10-03 2018-05-30 EnGeneIC Molecular Delivery Pty Ltd Enhanced loading of intact, bacterially derived vesicles with small molecule compounds
EP3331575A4 (en) 2015-08-04 2019-03-27 Vaxiion Therapeutics, LLC STERILIZATION USING IONIZING RADIATION OF BIOPHARMAZEUTIKA BASED ON BACTERIAL MINIMIZES AND METHODS OF USE
EP3429633B1 (en) 2016-04-15 2021-02-24 Cellectis A method of engineering drug-specific hypersensitive t-cells for immunotherapy by gene inactivation
US20190328783A1 (en) * 2016-04-15 2019-10-31 Cellectis A method of engineering prodrug-specific hypersensitive t-cells for immunotherapy by gene expression
EA201990689A1 (ru) 2016-10-06 2019-10-31 Бактериальные мини-клетки для доставки адъювантов на основе нуклеиновых кислот и способы их применения
US11167008B2 (en) 2016-11-23 2021-11-09 Vaxiion Therapeutics, Llc Immunomodulatory and oncolytic minicells and methods of use
SG11202100507PA (en) 2018-07-23 2021-02-25 Engeneic Molecular Delivery Pty Ltd Compositions comprising bacterially derived minicells and methods of using the same
WO2020222161A1 (en) * 2019-05-01 2020-11-05 Engeneic Molecular Delivery Pty Ltd Compositions comprising bacterially derived intact minicells for theranostic applications

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496778A (en) 1983-10-03 1985-01-29 Exxon Research & Engineering Co. Process for the hydroxylation of olefins using molecular oxygen, an osmium containing catalyst, a copper Co-catalyst, and an aromatic amine based promoter
GB8611832D0 (en) 1986-05-15 1986-06-25 Holland I B Polypeptide
US5260203A (en) 1986-09-02 1993-11-09 Enzon, Inc. Single polypeptide chain binding molecules
US5037743A (en) 1988-08-05 1991-08-06 Zymogenetics, Inc. BAR1 secretion signal
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5221479A (en) * 1991-02-15 1993-06-22 Fuji Photo Film Co., Ltd. Filtration system
JP4124480B2 (ja) 1991-06-14 2008-07-23 ジェネンテック・インコーポレーテッド 免疫グロブリン変異体
WO1995021191A1 (en) 1994-02-04 1995-08-10 William Ward Bioluminescent indicator based upon the expression of a gene for a modified green-fluorescent protein
ES2153483T3 (es) 1994-07-11 2001-03-01 Univ Texas Metodos y composiciones para la coagulacion especifica en los vasos tumorales.
WO1998041628A1 (en) 1997-03-19 1998-09-24 Zymogenetics, Inc. Secreted salivary zsig32 polypeptides
US20030004123A1 (en) 1997-06-26 2003-01-02 Boucher Richard C. Targeted gene transfer using G protein coupled receptors
ATE347911T1 (de) * 1997-09-15 2007-01-15 Genetic Immunity Llc Zusammensetzungen für die zufuhr von genen an antigen-präsentierende zellen der haut
US6225113B1 (en) 1998-12-04 2001-05-01 Genvec, Inc. Use of trans-activation and cis-activation to modulate the persistence of expression of a transgene in an at least E4-deficient adenovirus
CN1375004A (zh) 1999-04-21 2002-10-16 惠氏公司 抑制多核苷酸序列的功能的方法和组合物
US6635448B2 (en) 2000-08-21 2003-10-21 Clonexdevelopment, Inc. Methods and compositions for increasing protein yield from a cell culture
WO2002072759A2 (en) * 2001-03-07 2002-09-19 Children's Medical Center Corporation Method to screen peptide display libraries using minicell display
US7011946B2 (en) 2001-05-22 2006-03-14 Trustees Of Tufts College In vivo assay for identification of antimicrobial agents
US20030194798A1 (en) 2001-05-24 2003-10-16 Surber Mark W. Minicell compositions and methods
US20030194714A1 (en) 2001-06-05 2003-10-16 Sabbadini Roger A. Minicell-based transformation
DK1399484T3 (da) 2001-06-28 2010-11-08 Domantis Ltd Dobbelt-specifik ligand og anvendelse af denne
DK1446489T3 (da) * 2001-10-15 2012-05-14 Engeneic Molecular Delivery Pty Ltd Intakte miniceller som vektorer for DNA-overførsel og genterapi in vitro og in vivo
WO2003072014A2 (en) 2002-02-25 2003-09-04 Mpex Bioscience, Inc. Minicell compositions and methods
US20030203481A1 (en) * 2002-02-25 2003-10-30 Surber Mark W. Conjugated minicells
US7611885B2 (en) 2003-06-24 2009-11-03 Engeneic Molecular Delivery Pty, Ltd. Pharmaceutically compatible method for purifying intact bacterial minicells
US9169495B2 (en) 2003-12-09 2015-10-27 Engeneic Molecular Delivery Pty Ltd. Targeted gene delivery to non-phagocytic mammalian cells via bacterially derived intact minicells
US8772013B2 (en) 2004-02-02 2014-07-08 Engeneic Molecular Delivery Pty Ltd Methods for targeted in vitro and in vivo drug delivery to mammalian cells via bacterially derived intact minicells
AU2005276145C1 (en) 2004-08-26 2011-01-06 Engeneic Molecular Delivery Pty Ltd Delivering functional nucleic acids to mammalian cells via bacterially derived, intact minicells
EP2270136A1 (en) 2004-12-17 2011-01-05 Beth Israel Deaconess Medical Center Compositions for bacterial mediated gene silencing and methods of using same
WO2008012695A2 (en) 2006-06-23 2008-01-31 Engeneic Molecular Delivery Pty Ltd. Targeted delivery of drugs, therapeutic nucleic acids and functional nucleic acids to mammalian cells via intact killed bacterial cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105658233A (zh) * 2013-10-04 2016-06-08 安吉尼科分子传输公司 使用携带药物的、双特异性配体靶向的微细胞和干扰素-γ的联合肿瘤治疗
CN105658233B (zh) * 2013-10-04 2020-09-04 安吉尼科分子传输公司 使用携带药物的、双特异性配体靶向的微细胞和干扰素-γ的联合肿瘤治疗

Also Published As

Publication number Publication date
JP4332558B2 (ja) 2009-09-16
WO2005056749A3 (en) 2005-10-13
CA2549840C (en) 2012-03-20
PT1694361E (pt) 2011-06-27
PL1694361T3 (pl) 2011-08-31
AU2004297414B2 (en) 2008-10-30
ES2362881T3 (es) 2011-07-14
US20150343092A1 (en) 2015-12-03
US9987377B2 (en) 2018-06-05
CN101954095A (zh) 2011-01-26
EP2295084A1 (en) 2011-03-16
EP1694361A4 (en) 2006-12-13
US10583200B2 (en) 2020-03-10
DK1694361T3 (da) 2011-06-06
EP1694361B1 (en) 2011-03-16
JP2007534310A (ja) 2007-11-29
NZ547983A (en) 2009-05-31
US20070237744A1 (en) 2007-10-11
US9169495B2 (en) 2015-10-27
ATE501735T1 (de) 2011-04-15
AU2004297414A1 (en) 2005-06-23
CA2549840A1 (en) 2005-06-23
WO2005056749A2 (en) 2005-06-23
US20180369416A1 (en) 2018-12-27
DE602004031870D1 (de) 2011-04-28
CN101954095B (zh) 2013-03-13
CN1913923B (zh) 2010-12-08
HK1095090A1 (en) 2007-04-27
AU2004297414C1 (en) 2009-06-25
EP1694361A2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
US10583200B2 (en) Targeted gene delivery to non-phagocytic mammalian cells via bacterially derived intact minicells
AU2018290885B2 (en) Tropism-modified recombinant viral particles and uses thereof for the targeted introduction of genetic material into human cells
RU2209088C2 (ru) Опосредованная рецепторами доставка генов с использованием векторов на основе бактериофагов
Korn et al. Recombinant bispecific antibodies for the targeting of adenoviruses to CEA‐expressing tumour cells: a comparative analysis of bacterially expressed single‐chain diabody and tandem scFv
CN1925873A (zh) 经细菌来源的完整微细胞在体外和体内将药物靶向递送至哺乳动物细胞的组合物和方法
CN101505768A (zh) 通过完整的死亡细菌细胞将药物、治疗性核酸和功能性核酸靶向递送至哺乳动物细胞
Michels et al. Precision medicine: In vivo CAR therapy as a showcase for receptor-targeted vector platforms
Zhang et al. Development of next generation adeno-associated viral vectors capable of selective tropism and efficient gene delivery
Mohr et al. Antibody-directed therapy for human hepatocellular carcinoma
CN105854029A (zh) 用于体内递送至哺乳动物细胞的、包含无质粒的功能性核酸的、源自细菌的完整小细胞
Zdechlik et al. Programmable Assembly of Adeno-Associated Virus–Antibody Composites for Receptor-Mediated Gene Delivery
Kao et al. Improvement of gene delivery by minimal bacteriophage particles
Piekarowicz et al. A new vaccination method based on phage NgoΦ6 and its phagemid derivatives
US10744207B2 (en) Biological complexes and methods for using same
Qudsia et al. A novel lentiviral scFv display library for rapid optimization and selection of high affinity antibodies
MXPA06006592A (en) Targeted gene delivery to non-phagocytic mammalian cells via bacterially derived intact minicells
CN114729031B (zh) 抗溶瘤病毒抗原抗体及其使用方法
Geng A Novel mRNA Delivery Strategy Employing Adenovirus Piggyback mRNA Binders via Catcher/Tag Molecular Glue
US20180179516A1 (en) Methods to accelerate antibody diversification
MXPA00002076A (en) Receptor-mediated gene delivery using bacteriophage vectors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant