CN1905905A - 用于药物制剂和医药产品最终灭菌的高压灭菌 - Google Patents

用于药物制剂和医药产品最终灭菌的高压灭菌 Download PDF

Info

Publication number
CN1905905A
CN1905905A CNA2004800260978A CN200480026097A CN1905905A CN 1905905 A CN1905905 A CN 1905905A CN A2004800260978 A CNA2004800260978 A CN A2004800260978A CN 200480026097 A CN200480026097 A CN 200480026097A CN 1905905 A CN1905905 A CN 1905905A
Authority
CN
China
Prior art keywords
container
particle
droplet
polymer
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800260978A
Other languages
English (en)
Other versions
CN1905905B (zh
Inventor
阿尔弗雷多·罗德里格斯
巴雷特·E·拉比诺
马克·多蒂
杰米·康克尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baxter Healthcare SA
Baxter International Inc
Original Assignee
Baxter Healthcare SA
Baxter International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baxter Healthcare SA, Baxter International Inc filed Critical Baxter Healthcare SA
Publication of CN1905905A publication Critical patent/CN1905905A/zh
Application granted granted Critical
Publication of CN1905905B publication Critical patent/CN1905905B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • B65B55/02Sterilising, e.g. of complete packages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0023Heat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/04Heat

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明提供使用高压最终灭菌技术对***优选药学活性物质如药学活性化合物的微粒或微滴的分散体进行灭菌的方法,以及由该方法得到的产品。

Description

用于药物制剂和医药产品最终灭菌的高压灭菌
发明背景
技术领域
本发明提供使用高压最终灭菌(terminal sterilization)技术对药物制剂如药学活性物质的微粒或微滴的分散体进行灭菌的方法,以及由该方法得到的产品。
发明背景
日益增多的在水溶液中溶解性差或不能溶解的有机化合物由于治疗或诊断效果被配制为制剂。这种药物提出了通过医务人员通常采用的给药途径递送它们的挑战。应对这种挑战的一个潜在的解决方案是通过从不溶性药物候选物制备微米级或纳米级微粒分散体生产其微粒。这种制剂的优点可以包括更高的装载量、降低的毒性、改善的药物饱和溶解度和/或溶出速率、改善的效力力、和增强的药物稳定性。
这样,先前不能配制在水基***中的药物可被生产为适用于不同的给药途径。水不溶性药物的微粒分散体的制备可通过静脉内、口服、经肺、局部、鞘内、眼、鼻、口颊、直肠、***、和透皮的途径递送。这些分散体的最佳粒径范围通常取决于具体的给药途径、微粒特征、和其它因素,如,在静脉内给药时,期望粒径小于约7μm。粒子必须在这个粒径范围内并且不聚集,以安全地通过毛细血管而不引起栓塞(Allen等人,1987;Davis和Taube,1978;Schroeder等人,1978;Yokel等人,1981)。
取决于给药途径和其它因素,这些微粒分散体不得不满足某些无菌的要求。一个有用的灭菌方法为常规的将微粒分散体在121℃下最终高压灭菌。众所周知,通过在制剂中存在表面活性剂保护药用悬浮液,避免在常规的温度下存储过程中的粒子长大和/或聚集。然而,即使在这些稳定用表面活性剂的存在下,微粒悬浮液经常是相当热敏感的,不能禁得住最终高压灭菌。药学活性组分、表面活性剂、和药物/表面活性剂组合需要在121℃的整个灭菌过程中保持物理和化学上的稳定。已知微粒分散体对最终高压灭菌的化学易感性(chemical suspectibility)是灭菌时间和温度的函数。降低化学不稳定性的方法通常涉及高温短时灭菌方法。在这种情况下,热不稳定性制剂的保存和微生物的破坏基于各自的化学降解和失活之间的速率差异。这种方法中重要的问题在于获得足够迅速的传热使得在非常短的接触时间内在整个产品中产生均匀的温度。
还经常难以维持药物/表面活性剂组合的物理稳定性。在热的存在下,微粒经常聚集、生长、和/或降解,使得最终的分散体不可用。另外,表面活性剂组合可以不可逆的方式与药学活性物质分离。例如,固体超微颗粒分散体的聚集或聚结的一个机理可直接地涉及在灭菌方法过程中在超过表面活性剂浊点的温度稳定表面活性剂的沉淀。术语“浊点”是指各向同性的表面活性剂溶液变为一个表面活性剂富集相和一个表面活性剂贫乏相的分离。在这种温度下,表面活性剂经常从粒子分离,引起无保护的粒子聚集和/或生长。因此,多个专利(如,US5,298,262、US5,346,702、US5,470,583、US5,336,507)公开了使用离子的和非离子的浊点改性剂,用于在高压灭菌过程中稳定粒子悬浮液。这些改性剂将表面活性剂的浊点提高到超过121℃,防止表面活性剂从药物粒子的分离,并随后在最终灭菌过程中稳定粒子避免生长。
美国专利6,267,989还公开了最佳粒径范围对于在高压灭菌过程中使生长和不稳定性最小化是最主要的。据6,267,989专利报告,当表被面活性剂稳定的药物粒子的至少50%具有150-350nm的加权平均粒径时表现出最高的稳定性。
因此,继续需要开发新的和改进的方法用于药学领域中微粒分散体的最终灭菌,本发明满足这些需要。
除微粒分散体外的***和溶液经常需要在使用前灭菌。其例子包括溶解的药用溶液、用于肾脏应用(如,腹膜透析)的溶液和其它药物制剂形式如脂质乳剂。其它例子包括一次性医用器具如包含药物的袋(经常由增塑的PVC或其它塑料制成)、包含血液的袋、渗析器、用于自动化装置上的***(如,血液分离装置、输液泵、等等)。这种***可为对常规的灭菌技术如γ灭菌、ETO灭菌或高压灭菌敏感的。例如,包含葡萄糖的溶液在常规的灭菌技术之后容易发生葡萄糖破坏。因此,还需要提供改进的灭菌技术,用于提供充分的灭菌而对经过灭菌的***产生很少的危害到没有危害。
发明内容
本发明提供用于将***灭菌的方法。这种***可为但不限于组合物,如微粒分散体;和器具,如可以包含水溶液如药物制剂的容器。该方法的优点在于提供了灭菌而没有显著地削弱***的效力。本发明进一步提供经过灭菌的药物制剂。适合的容器包括在本发明的方法下稳定的任何容器,包括含医用溶液的药物递送器具。
该方法涉及为***供应热能并将***加压超过0.25MPa,持续足以使该***无菌的时间。优选地,***达到超过70℃的温度。供应热能和加压的步骤同时进行,持续至少足以将***灭菌的一段时间。然后可使***返回到环境温度和压力备用。
该方法可用于空容器或包含以下多种溶液中任一种的容器:用于非肠道给药的溶液;用于急性或慢性血液透析的溶液;用于急性或慢性腹膜透析、可活动式腹膜透析和自动腹膜透析的血液过滤溶液或血液透析过滤溶液。
该方法对于包含葡萄糖的溶液的灭菌特别有用。用于灭菌的较低温度使在较高温度时发生的葡萄糖降解最小化。因此,该方法可用于灭菌包含葡萄糖的溶液,使得葡萄糖保持基本上不降解。优选地,葡萄糖在灭菌之后超过约75%未降解,更优选地,葡萄糖超过约80%未降解,更优选的是经过灭菌的溶液中超过约85%、或超过约90%、乃至更优选超过约95%的葡萄糖未降解。
参考以下附图和说明书讨论本发明的这些和其它方面和性质。
附图说明
图1表示胶束;
图2表示反向胶束;
图3表示层状相;
图4表示六方相;
图5表示立体相(cubic phase);
图6表示压力-时间-温度分布图;
图7表示粒径分布曲线(实施例1);
图8表示对照样品(实施例1)的例子粒径分布;
图9表示高压灭菌循环(实施例1);
图10表示粒径分布曲线;
图11表示用于可流动物质的容器;
图12表示多室的可剥离密封容器;
图13表示单层的薄膜;
图14表示双层的薄膜;
图15表示三层的薄膜;
图16表示三层的薄膜;
图17表示四层的薄膜;
图18表示四层的薄膜;
图19表示五层的薄膜;
图20表示六层的薄膜;
图21表示六层的薄膜;
图22表示七层的薄膜;
图23表示注射器;
图24表示用于药物递送器具的容纳柱体(cartridge);和
图25表示流体进入装置。
发明的详细说明
虽然本发明容许有在附图中表示的和在本文中详细描述的许多不同形式的实施方案,但是认为用于理解本发明的具体实施方案只是本发明原理的示例性说明,而不是打算将本发明限定于说明的具体实施方案。
本发明提供对***灭菌而不显著地削弱制剂的可用性、稳定性、和/或效力的方法。本发明提供对动态***(即,能够从稳定状态到不稳定状态的***)灭菌的方法,其中使***经过高压,持续足够将该***灭菌而不引起***从稳定状态到不稳定状态的时间。
如本文中使用的,术语“灭菌”及其变体是指杀死或控制***中的细菌、病毒、原生动物或其它生物学微生物,使得***在用于哺乳动物优选人类时提供降低的感染危险。本发明优选的方法将***灭菌到所有或几乎所有的生物学微生物都被杀死或不能复制的程度。
优选地,该方法用于对药学***灭菌。药物制剂可以通过本领域中已知的和将要开发的多种技术制备。一般说来,该方法提供使***经过高压灭菌。该方法优选用于微粒分散体的高压灭菌。本发明进一步提供经过灭菌的药物分散体。
本发明的高压灭菌技术允许对微粒分散体灭菌而不引起显著的药学活性物质降解、表面活性剂降解、或引起到药物/表面活性剂组装体(assembly)的转化。此外,由于在加压步骤过程中制剂迅速绝热增温,热量在瞬间传递遍及分散体。可以预期,高压灭菌技术适合用于多种容器结构中的包含不同药物化合物的许多微粒分散体。
一般说来,该方法提供使药物制剂经过高压灭菌。药物制剂可以通过本领域中已知的和将要开发的多种技术制备。高压灭菌技术很好地适合于对许多不同形式的制剂灭菌,不同形式的制剂包括干燥形式或粉末形式、液体形式、气体形式、或作为微粒或微滴分散在水或有机介质中的药学有效的化合物。优选地,要被灭菌的***包含一些水。已经表明,水的存在对于降低活性微生物载量中提供特别的有效性。众所周知,使用表面活性剂稳定药学活性物质,避免聚集和粒径变化。表面活性剂可以本领域中公知的多种方式中的一种与药学活性物质联合(associate)。本发明的高压灭菌技术允许灭菌而不引起药学活性物质的降解或不引起显著的表面活性剂从药学活性物质的分离。本发明的方法和产品不需要使用化学浊点改性剂。术语“浊点”是指当制剂的物理性质改变如温度或者pH或其它物理性质改变引起表面活性剂从药学活性物质分离时药物制剂的混浊度增加。
考虑了高压灭菌技术适用于多种有机化合物。
I.药学活性物质
总的来说,本发明的方法适合于药物制剂的灭菌。在本发明优选的方法中,药学活性组分为使得其与在水溶液中分散的疏水性区域(如,由表面活性剂装配的疏水相、环糊精腔、油滴)结合。药学活性物质可以选自治疗剂、肾脏治疗用产品、诊断剂、美容用品、营养增补剂、和杀虫剂。
药学活性剂可以选自多种已知的种类,例如但不限于:镇痛药、***、兴奋药、肾上腺素能药物、肾上腺素能阻滞剂、抗肾上腺素药、肾上腺类皮质激素、拟肾上腺素药、抗胆碱能药、抗胆碱酯酶药、抗惊厥药、烷化剂、生物碱、变构抑制剂、促蛋白合成类固醇、减食欲药、抗酸药、止泻药、解毒药、抗叶酸药、清热药、抗风湿药、精神治疗剂、神经阻滞剂、消炎药、驱虫药、抗心律不齐药、抗生素、抗凝血剂、抗抑郁药、抗糖尿病药、抗癫痫药、抗真菌药、抗组胺药、抗高血压药、抗毒蕈碱药、抗分支杆菌药、抗疟药、防腐剂、抗肿瘤剂、抗原虫药、免疫抑制剂、免疫刺激剂、抗甲状腺剂、抗病毒药、抗焦虑的镇静剂、收敛药、β-肾上腺素能受体阻滞剂、造影剂、皮质甾类、止咳剂、诊断剂、诊断成像药、利尿药、多巴胺能药、止血药、血液学药物、血色素改性剂、激素、***、免疫药物(immuriologicalagents)、抗高血脂药和其它脂质调节剂、毒蕈碱类药(muscarinics)、肌肉松弛药、拟副交感神经药、甲状旁腺降钙素、***素、放射药物、镇静剂、性激素、抗过敏药、兴奋药、拟交感神经药、甲状腺药、血管扩张剂、疫苗、维生素、和黄嘌呤。抗肿瘤药或抗癌剂包括但不限于紫杉醇及衍生物化合物,和选自由生物碱、抗代谢物、酶抑制剂、烷化剂和抗生素组成的组中的其它抗肿瘤药。治疗剂也可为生物制品,其包括但不限于蛋白质、多肽、糖类、多核苷酸、和核酸。蛋白质可为抗体,其可为多克隆的或单克隆的。
诊断剂包括X射线成像药物和造影剂。X射线成像药物的例子包括WIN-8883(3,5-二乙酰胺基-2,4,6-三碘苯甲酸乙酯)也已知为泛影酸(diatrazoic acid)的乙酯(EEDA);WIN 67722,即,(6-乙氧基-6-氧代己基-3,5-双(乙酰胺基)-2,4,6-三碘苯甲酸酯;乙基-2-(3,5-双(乙酰胺基)-2,4,6-三碘代-苯甲酰基氧基)丁酸酯(WIN 16318);diatriz氧乙酸乙酯(WIN 12901);2-(3,5-双(乙酰胺基)-2,4,6-三碘苯甲酰基氧基)丙酸乙酯(WIN 16923);N-乙基2-(3,5-双(乙酰胺基)-2,4,6-三碘苯甲酰基氧基乙酰胺(WIN 65312);异丙基2-(3,5-双(乙酰胺基)-2,4,6-三碘苯甲酰基氧基)乙酰胺(WIN 12855);2-(3,5-双(乙酰胺基)-2,4,6-三碘苯甲酰基氧基丙二酸二乙酯(WIN 67721);2-(3,5-双(乙酰胺基)-2,4,6-三碘苯甲酰基氧基)苯基乙酸乙酯(WIN 67585);丙二酸,[[3,5-双(乙酰基氨基)-2,4,5-三碘苯甲酰基]氧基]双(1-甲基)酯(WIN 68165);和苯甲酸,3,5-双(乙酰基氨基)-2,4,6-三碘代-4-(乙基-3-乙氧基-2-丁烯酸)酯(WIN 68209)。优选的造影剂包括期望在生理条件下相对迅速崩解从而使与炎性应答有关的任何粒子最少化的那些。崩解可由酶水解、在生理学pH下的羧酸增溶作用、或其它机理所致。因此,可优选溶解性差的碘化羧酸类如胆影酸、泛影酸、和甲泛影酸;以及水解不稳定的碘化物质如WIN 67721、WIN12901、WIN 68165、和WIN 68209或其它。
其它造影剂包括但不限于核磁共振机助剂的微粒制剂如钆螯合物、或其它顺磁性造影剂。这种化合物的例子为钆喷酸二甲葡胺(Magnevist)和钆特醇(Prohance)。
对于这些类别的治疗剂和诊断剂的说明和各自类别内物质的列举可以在Martindale,The Extra Pharmacopoeia,第二十九版,ThePharmaceutical Press,London,1989中找到,其被并入本文作为参考并构成本文的一部分。治疗剂和诊断剂为市售的和/或可以通过本领域中已知的技术制备。
肾脏治疗剂包括用于连续性可活动式腹膜透析、自动腹膜透析和血液透析的溶液。
美容药物为能够具有美容活性的任何活性组分。这些活性组分的例子可为,特别是,润肤剂、湿润剂、自由基抑制剂、抗炎药、维生素、褪色用药、抗粉刺药、抗刺激性泌脂药(antiseborrhoeics)、角质层分离药、减肥药、皮肤用着色药和防晒药,并且具体为亚油酸、维生素A、维生素A酸、抗坏血酸烷基酯、多不饱和的脂肪酸、烟酸酯、维生素E烟酸酯、稻、大豆或牛油树(shea)的非皂化物、神经酰胺、醇酸如羟基乙酸、硒衍生物、抗氧化剂、β-胡萝卜素、γ-阿魏酸脂、和甘油酸十八烷基酯。美容用品为市售的和/或可以通过本领域中已知的技术制备。
考虑用于本发明实践的营养增补剂的例子包括但不限于蛋白质、糖类、水溶性维生素(如,维生素C、复合维生素B等等)、脂溶性维生素(如,维生素A、D、E、K等等)、和药草提取物。营养增补剂为市售的和/或可以通过本领域中已知的技术制备。
术语杀虫剂(pesticide)应该理解为包括除草剂、杀虫剂(insecticide)、杀螨剂、杀线虫剂、杀外寄生虫药和杀真菌剂。属于本发明中的杀虫剂的化合物的例子可包括脲、三嗪、***、氨基甲酸酯、磷酸酯、二硝基苯胺、吗啉、酰基丙氨酸、拟除虫菊酯、二苯乙醇酸酯、二苯基醚和多环的卤代烃。这些类别中各自的杀虫剂的具体例子在Pesticide Manual,第九版,British Crop Protection Council中列举。杀虫剂为市售的和/或可以通过本领域中已知的技术制备。
优选地,药学活性物质为水溶性差的。“水溶性差”的意思是化合物在水中的溶解度小于约10mg/mL,优选小于1mg/mL。这些水溶性差的药物最适合于水悬浮液制剂,因为将这些药物配制在含水介质中的备选方案有限。
在某些情况下,也可通过将水溶性的药学活性物质截留在固体的疏水性分散相(如,聚乙酸酯-聚羟基乙酸酯共聚物或固体脂质纳米粒子)中、或通过将这些化合物封装在药用化合物不能渗透的包裹用表面活性剂组装体中使用这些化合物实践本发明。表面活性剂组装体的例子包括但不限于泡囊(vesicle)和胶束。水溶性的药物的例子包括但不限于简单的有机化合物、蛋白质、肽、核苷酸、寡核苷酸、和糖类。
II.分散体的粒径和给药途径
当本发明的药物为粒子形式(即,未溶于溶剂中)时,根据动态光散射法如photocorrelation spectroscopy、激光衍射、小角激光散射(LALLS)、中角激光散射(MALLS)、不透光方法(例如,Coulter方法)、流变学、或显微学(光或电子)测量的粒子的平均值有效粒径通常小于约100μm。然而,粒子可以制备为宽的粒径范围,如约100μm到约10nm,约10μm到约10nm,约2μm到约10nm、约1μm到约10nm、约400nm到约50nm、约200nm到约50nm、或其中的任何范围或范围的组合。优选的平均有效粒径取决于多种因素,如预定的给药途径;化合物的制剂、溶解度、毒性和生物利用度。
为了适合于非肠道给药,优选粒子的平均有效粒径小于约7μm,更优选小于约2μm,或其中的任何范围或范围的组合。非肠道给药包括静脉内、动脉内、鞘内、腹膜内、眼内、关节内、硬膜内、心室内、心包内、肌内、皮内、或皮下的注射。
用于口服剂型的粒径可超过2μm。粒径可最大为约100μm,条件是粒子具有充分的口服剂型的生物利用度和其它特征。口服剂型包括片剂、胶囊、囊片、软明胶胶囊和硬明胶胶囊、或用于通过口服给药递送药物的其它递送介质形式。
本发明另外适合于提供适合于经肺给药形式的药学活性物质粒子。经肺剂型的粒径可超过500nm,并典型地小于约10μm。悬浮液中的粒子可被雾化并通过用于经肺的喷雾器给药。或者,粒子可以作为从悬浮液除去液相之后的干粉通过干粉吸入器给药,或可以将干粉再悬浮在非水性推进剂中用于通过计量式剂量吸入器给药。适合的推进剂的例子为氟化烃(HFC)如HFC-134a(1,1,1,2-四氟乙烷)和HFC-227ea(1,1,1,2,3,3,3-七氟丙烷)。与氟氯化碳(CFC)不同,HFC表现出很少的或没有臭氧耗尽潜力。
我们将处在上述粒径范围内的有机化合物的粒子和微滴统称为微粒。
也可由本发明生产的粒子配制用于其它递送途径的剂型,如鼻、局部、眼、鼻、口颊、直肠、***、透皮等等。
其它形式的溶液可通过本发明灭菌。这种溶液的例子包括用于非肠道给药的药物制剂和用于肾脏透渗析的溶液,如血液透析和腹膜透析溶液。
III.微粒分散体的制备
有多种技术用于制备药学活性物质微粒的药物制剂。以下讨论的灭菌技术适合于对这种药物制剂灭菌。以下简要地讨论用于提供药学活性物质微粒的代表性的但是非详尽的例子。
A.用于形成微粒分散体的能量引入(energe addition)技术
总的来说,使用能量引入技术制备微粒分散体的方法包括将散装形式的药学活性物质(通常称为药物)加入到包含一种或多种以下所述表面活性剂的适当的介质如水或水系溶液、或药用化合物在其中为不溶性的其它流体中以形成预悬浮液(presuspension)的步骤。向预悬浮液中引入能量以形成粒子分散体。能量通过机械研磨、珠磨研磨、球磨研磨、锤磨、流能研磨、或湿法研磨引入。这种技术在美国专利5,145,684中公开,所述专利被并入本文作为参考并构成本文的一部分。
能量引入技术进一步包括使预悬浮液经过高剪切条件,包括利用微流化剂的气穴、剪切或冲击力。本发明另外考虑了使用活塞间隙式均化器(piston gap homogenizer)或逆流匀流器向预悬浮液引入能量,如在美国专利5,091,188公开的那些,所述专利被并入本文作为参考并构成本文的一部分。适合的活塞间隙式均化器可购自Avestin的产品名称EMULSIFLEX和Spectronic Instruments的French Pressure Cells下。适合的微流化器(microfluidizer)购自Microfluidics Corp.。
也可使用超声技术完成引入能量的步骤。超声处理的步骤可以使用任何适合的超声处理装置进行,如Branson Model S-450A或Cole-Parmer 500/750 Watt Model。这种装置为该领域中公知的。典型地,超声处理装置具有被***到预悬浮液中以将超声能量声能发射到溶液中的超声处理声纳或探针。在本发明优选的形式中,超声处理装置在约1kHz到约90kHz的频率下操作,更优选约20kHz到约40kHz,或其中任何的范围或范围的组合。探针尺寸可以不同,并且优选为如1/2英寸或1/4英寸等的不同尺寸。
无论使用的能量引入技术如何,微粒分散体需要满足使用前的适当的无菌保证。可以使用如下所述的灭菌技术完成灭菌。
B.用于制备亚微细粒化粒子分散体的沉淀法
也可通过公知的沉淀技术制备微粒分散体。以下为用于生产固体亚微细粒分散体的沉淀技术。
微沉淀(microprecipitation)方法
微沉淀方法的一个例子在美国专利5,780,062中公开,所述专利被并入本文作为参考并构成本文的一部分。5,780,062专利公开了有机化合物沉淀过程,其包括:(i)将有机化合物溶解在可与水互溶的第一溶剂中;(ii)在水性的第二溶剂中制备聚合物和两性分子的溶液,并且该有机化合物基本上不溶解在该第二溶剂中,从而形成聚合物/两性分子复合物;和(iii)将步骤(i)和(ii)的溶液混合使得引起有机化合物和聚合物/两性分子复合物的聚集体(aggregate)沉淀。
适合的沉淀方法的另一个例子在待决的和共同转让的美国专利申请号09/874,499、09/874,799、09/874,637、和10/021,692中公开,所述文献被并入本文作为参考并构成本文的一部分。公开的该方法包括以下步骤:(1)将有机化合物溶解在与水互溶的第一有机溶剂中形成第一溶液;(2)将第一溶液与第二溶剂或水混合,使有机化合物沉淀,产生预悬浮液;和(3)向预悬浮液中引入高切剪混合或加热形式的能量以得到微粒的分散体。可将如下所述的一种或多种选择性的表面改性剂加入到第一有机溶剂或第二水性溶液中。
乳化沉淀(emulsion precipitation)方法
一个适合的乳化沉淀技术在待决的和共同转让的美国专利申请号09/964,273中公开,所述文献被并入本文作为参考并构成本文的一部分。在这一方法中,其程序包括以下步骤:(1)提供具有有机相和水相的多相***,在有机相中具有药学活性物质;和(2)将***超声处理以蒸发一部分有机相,引起化合物在水相中沉淀,形成微粒的分散体。提供多相***的步骤包括以下步骤:(1)将不溶于水的溶剂与药学活性物质混合形成有机溶液,(2)用一种或多种表面活性化合物制备水性溶液,和(3)将有机溶液与水性溶液混合以形成多相***。将有机相与水相混合的步骤可包括使用活塞间隙式均化器、胶体磨、高速搅拌设备、挤出设备、手动搅动或振摇设备、微流化器、或用于提供高剪切条件的其它设备或技术。粗的乳剂具有在水中的直径约小于1μm粒径的油滴。将粗的乳剂超声处理以形成精细乳剂并最终得到微粒的分散体。
制备微粒的分散体的另一个方法在待决的和共同转让的美国专利第申请号10/183,035中公开,所述文献被并入本文作为参考并构成本文的一部分。该方法包括以下步骤:(1)提供具有有机相和水相的多相***,在有机相中含有药物化合物;(2)向粗的分散体中提供能量以形成精细分散体;(3)将精细分散体冷冻;和(4)将静细分散体冻干以获得药物化合物的微粒。微粒可以通过以下所述的技术灭菌或可将微粒在水性介质中重新组成并灭菌。
提供多相***的步骤包括以下步骤:(1)将不溶于水的溶剂与药学有效的化合物混合形成有机溶液;(2)用一种或多种表面有效化合物制备水性溶液;和(3)将有机溶液与水性溶液混合以形成多相***。将有机相与水相混合的步骤可包括使用活塞间隙式均化器、胶体磨、高速搅拌设备、挤出设备、手动搅动或振动设备、微流化器、或用于提供高剪切条件的其它设备或技术。
溶剂反溶剂(solvent anti-solvent)沉淀
微粒分散体也可使用在美国专利5,118,528和5,100,591中公开的溶剂反溶剂沉淀技术制备,所述文献被并入本文作为参考并构成本文的一部分。该方法包括以下步骤:(1)制备生物活性物质在溶剂或溶剂混合物中的液相,可向其中加入一种或多种表面活性剂;(2)制备非溶剂或非溶剂混合物的第二液相,非溶剂为可与的溶剂或溶剂混合物互溶的;(3)在搅拌下将溶液(1)和(2)加到一起;和(4)除去不需要的溶剂,产生微粒的分散体。
相反转(phase inversion)沉淀
微粒分散体可以使用美国专利6,235,224、6,143,211和美国专利申请2001/0042932中公开的相反转沉淀形成,所述文献的每个被并入本文作为参考并构成本文的一部分。相反转为用于描述溶于连续相溶剂***中的聚合物转化为其中聚合物为连续相的固体大分子网络的物理现象的术语。诱导相反转的一个方法是通过向连续相中加入非溶剂。聚合物经历从单相到不稳定的二相混合物(聚合物富集的级分和聚合物贫乏的级分)的转换。聚合物富集相中非溶剂的胶束型微滴起到作为成核点的作用并变得被聚合物包覆。6,235,224专利公开了聚合物溶液在一定条件下的相反转可以引起不连续的微粒(包括纳米粒子)的自发形成。6,235,224专利公开了将聚合物溶解或分散在溶剂中。将药物也溶解或分散在溶剂中。聚合物、药物与溶剂一起形成具有连续相的混合物,其中溶剂为连续相。然后将混合物引入到至少十倍过量的可互溶的非溶剂中,以引起平均粒度为10nm到10μm的微囊包封的药物微粒的自发形成。粒度受溶剂:非溶剂的体积比、聚合物浓度、聚合物-溶剂溶液的粘度、聚合物的分子量、和溶剂-非溶剂对的特性的影响。
pH变化(shift)沉淀
可通过pH变化沉淀技术形成微粒分散体。这种技术典型地包括将药物溶解在具有其中药物可溶解的pH的溶液中的步骤,随后的步骤是将pH改变为其中药物不再是可溶解的pH点。pH可为酸性的或碱性的,取决于具体的药物化合物。然后将溶液中和以形成微粒的分散体。一个适合的pH变化沉淀方法在美国专利5,665,331中公开,其被并入本文作为参考并构成本文的一部分。该方法包括将药物与晶体生长改性剂(CGM)一起溶解在碱性溶液中、然后在一种或多种适当的表面改性用表面活性剂的存在下用酸将溶液中和以形成药物的微粒分散体的步骤。沉淀步骤之后为透滤和纯化分散体的步骤,随后是将分散体的浓度调节到所需水平。
pH变化沉方法的其它例子在美国专利5,716,642、5,662,883、5,560,932、和4,608,278中公开,所述专利都被并入本文作为参考并构成本文的一部分。
注入沉淀(infusion precipitation)法
用于形成微粒分散体的适当的注入沉淀技术在美国专利4,997,454和4,826,689中公开,所述专利被并入本文作为参考并构成本文的一部分。首先将适当的固体化合物溶解于适当的有机溶剂中以形成溶剂混合物。然后,在约-10℃到约100℃的温度将与有机溶剂可互溶的沉淀用非溶剂注入到溶剂混合物中,注入速率为每50ml的体积每分钟约0.01ml到每分钟约1000ml,以产生沉淀的非聚集的化合物固体粒子的悬浮液,平均直径基本上均匀并小于10μm。优选将注入沉淀用非溶剂的溶液搅动(如,通过搅拌)。非溶剂可包含表面活性剂以稳定粒子,避免聚集。然后将粒子从溶剂分离。根据本发明,取决于固体化合物和所需粒径,温度的参数、非溶剂与溶剂的比、注入速率、搅拌速率、和体积的不同可以不同。粒径与非溶剂:溶剂体积的比和注入温度成正比,与注入速率和搅拌速率成反比。沉淀用非溶剂可为水性的或非水性的,取决于化合物和所需的悬浮介质的相对溶解度。
温度变化(temperature shift)沉淀
温度变化沉淀技术也可用于形成微粒分散体。这种技术在美国专利5,188,837中公开,所述专利被并入本文作为参考并构成本文的一部分。在本发明的实施方案中,通过以下步骤制备脂质小球:(1)将要在熔融介质中递送的物质如药物熔融或溶解,以形成要递送的物质的流体;(2)在比物质或介质的熔化温度更高的温度下将磷脂与水性介质一起加入到熔融的物质或介质中;(3)将悬浮液在超过介质熔化温度的温度下混合,直到得到同质的精细制剂;和然后(4)将制剂迅速地冷却到室温或低于室温。
溶剂蒸发沉淀
溶剂蒸发沉淀技术在美国专利4,973,465中公开,所述专利被并入本文作为参考并构成本文的一部分。4,973,465专利公开了制备微晶的方法,其包括以下步骤:(1)提供溶解于普通有机溶剂或溶剂组合中的药学组合物和磷脂的溶液,(2)将溶剂蒸发和(3)通过剧烈搅拌将通过蒸发溶剂得到的薄膜悬浮在水溶液中以形成微粒的分散体。可以通过将能量引入到溶液中除去溶剂,蒸发充分量的溶剂以引起化合物沉淀。也可通过本领域中其它公知的技术除去溶剂,如对溶液施加真空或在溶液上方吹氮气。
反应沉淀
反应沉淀包括的步骤为将药物化合物溶解在适当的溶剂中,以形成溶液。化合物应该以等于或低于化合物在溶剂中的饱和点的量加入。通过与化学试剂反应将化合物改性或通过响应引入能量如加热或紫外光等改性,使得改性的化合物在溶剂中具有更低的溶解度并从溶液沉淀以形成微粒。
压缩流体沉淀
适合的压缩流体沉淀技术在Johnston的WO 97/14407中公开,所述专利被并入本文作为参考并构成本文的一部分。该方法包括的步骤为将水不溶性的药物在溶剂中溶解以形成溶液。然后将溶液喷雾到压缩流体中,压缩流体可为气体、流体、或超临界流体。将压缩流体加入到溶解物在溶剂中的溶液中使得溶解物达到或接近过饱和状态,并作为微粒沉淀析出。在这种情况下,压缩流体起到作为降低其中溶解药物的溶剂的内聚能密度的反溶剂的作用。
或者,可以将药物溶解于压缩流体中,然后将其喷雾到水相中。压缩流体的迅速膨胀降低了流体的溶剂溶解力,其随后引起溶解物作为水相中的微粒沉淀析出。在这种情况下,压缩流体起到作为溶剂的作用。
为了稳定粒子避免聚集,在这种技术中包括表面改性剂如表面活性剂。
有许多其它的方法用于制备微粒分散体。本发明提供将这种分散体最终灭菌而不显著地影响制剂效力的方法。
IV.微粒分散体类型
可以从水性体系(如,表面活性剂组装体、环糊精腔、油滴)中的疏水性区域和药学活性物质/或从疏水性区域本身(如果其为药学活性的)建立微粒分散体。在微粒分散体中,疏水性区域可通过多种不同的机理与药学活性物质结合。例如,疏水性区域可通过共价键和离子键、偶极-偶极相互作用、诱导偶极-偶极相互作用、或范德华力与药学活性物质结合。另外,可以将药学活性物质包封在疏水性区域中。
A.疏水性区域
表面活性剂组装体
已知由水溶液中的单一的两性表面活性剂或其组合(如,磷脂)在水溶液中形成疏水性区域。表面活性剂组装体包括胶束(图1)、反向胶束(图2)、混合胶束,反向的混合胶束的层状形式(图3)、六方相的反向层状形式(图4)、立方相的反向的六方相(图5)、反向的立方相、L3海绵相、反向的L3海绵相、和中间相。正常相或反向相的形成取决于表面活性剂类型、表面活性剂浓度、压力、和温度。鳌合物(cochelate)也属于这一类。
图1表示具有许多彼此沿圆周隔开的两性分子12的胶束10,两性分子的非极性的疏水性尾部14轴向地向内延伸形成核心16,极性的亲水性首基18放射状地远离核心延伸,形成表面19。
图2表示反向胶束20,除了极性首基18向内朝向核心延伸和非极性的尾部向外远离核心延伸之外,反向胶束20在其余的各个方面与图1的胶束相同。这对于一般的相及其反向的对应物来说是正确的。因此,省略了各种反向形式的图。
图3表示层状相30。层状相30具有形成层叠的双层状结构32的空间隔开的两性分子12。在双层状结构32之间的区域和疏水尾之间的区域称为栅状层(palisade layer)34和36。
栅状层34为疏水性的,栅状层36为亲水性的。
图4表示六方相40。六方相可以想象为一系列的正常的胶束(图1)层叠在彼此的顶上以形成管状结构42。
图5表示立体相50的一个例子。迄今为止已经鉴定了七种立体相并试验性地描述了其结构。双连续的立体相50具有一系列双层状结构32,其限定了提供了含水孔52的交叉管的互联网络。
L3相在美国专利5,531,925中有所描述,所述专利被并入本文作为参考并构成本文的一部分。L3相非常类似于立方相,但是没有立方相的长距离的秩序。
络合剂
也可通过加入络合剂如环糊精在水溶液中形成疏水性区域。环糊精还通常用于与在水溶液中不溶性的药物化合物相互作用,如美国专利4,764,604中公开的,所述专利被并入本文作为参考并构成本文的一部分。
二相分散体
含水体系中的疏水性区域也可由非均质的二相***形成,包括乳剂、微乳剂、悬浮液、以及其它。
如上所述,可以使用其中药学活性物质与疏水性区域结合形成微粒分散体的任何制剂实践本发明,或者如果疏水性区域是药学活性的,可使用疏水性区域本身实践本发明。药学活性物质可以通过许多上述机理结合到这些制剂类型中任一种的疏水性区域中。这些***的许多在“Surfactants and Polymers in Aqueous Solution”,2003,John Wiley andSons中详细描述,其被并入本文作为参考并构成本文的一部分。
V.表面活性剂
特别重要的和安全的两亲型表面活性剂类型包括磷脂。磷脂典型地为具有甘油酯的两个羟基连接于脂肪酸(形成极性的尾部)和一个末端羟基连接于磷酸的三甘油衍生物。磷酸又连接于另一种化合物(如,胆碱、乙醇胺、乙胺、甘油、或L-丝氨酸)以形成极性的头基。适合的磷脂包括例如卵磷脂、磷脂酰乙醇胺、磷脂酰丝氨酸、磷脂酰肌醇、磷脂酰甘油、磷脂酸、溶血磷脂、鸡蛋磷脂或大豆磷脂或其组合。磷脂可进行盐化的或脱盐化、氢化或部分氢化、或为天然的、半合成的、或合成的。
适合的本发明的表面活性剂包括阴离子表面活性剂、阳离子表面活性剂、非离子型表面活性剂、两性离子表面活性剂、或生物学表面活性分子。适合的阴离子和两性离子表面活性剂包括但不限于月桂酸钾、十二烷基硫酸钠、十二烷基硫酸钠、聚氧乙烯硫酸烷基酯、海藻酸钠、磺基丁二酸二辛酯钠、甘油酯、羧甲基纤维素钠、胆酸和其它胆汁酸类(如,胆酸、脱氧胆酸、甘氨胆酸、牛磺胆酸、甘油脱氧胆酸)及其盐(如,脱氧胆酸钠等)。适合的阳离子表面活性剂包括但不限于季铵类化合物如苯扎氯铵、十六烷基三甲基溴化铵、十二烷基二甲基苄基氯化铵、酯酰肉碱盐酸盐、或烷基吡啶卤化物。
适合的非离子型表面活性剂包括:聚氧乙烯脂肪醇醚(Macrogol和Brij)、聚氧乙烯山梨醇酐脂肪酸酯(聚山梨酯85)、聚氧乙烯脂肪酸酯(Myrj)、山梨醇酐酯(Span)、单硬脂酸甘油酯、聚乙二醇、聚丙二醇、十六烷醇、十六醇十八醇混合物(cetostearyl alcohol)、十八烷醇、芳基烷基聚醚醇、聚氧乙烯-聚氧丙烯共聚物(泊洛沙姆)、polaxamines、甲基纤维素、羟基纤维素、羟丙基纤维素、羟丙甲基纤维素、非结晶性纤维素、聚糖包括淀粉和淀粉衍生物如羟乙基淀粉(HES)、聚乙烯醇、和聚乙烯吡咯烷酮。在本发明的一个优选的形式中,非离子表面活性剂为聚氧乙烯和聚氧丙烯共聚物,并优选为丙二醇和乙二醇的嵌段共聚物。这种聚合物在商品名称POLOXAMER下销售,通常也称为PLURONIC,由包括BASF、Spectrum Chemical、和Ruger的供应商销售。在聚氧乙烯脂肪酸酯中,包括具有短烷基链的那些。这种表面活性剂的一个例子为由BASF Aktiengesellschaft生产的SOLUTOLHS15,聚乙烯-660-羟基硬脂酸酯。
具有表面活性的生物分子包括分子如白蛋白、酪蛋白、肝素、水蛭素或其它适合的蛋白质。
对于口服剂型,可使用一种或多种的以下赋形剂:明胶、酪蛋白、卵磷脂(磷脂)、***树胶、胆固醇、黄蓍胶、硬脂酸、苯扎氯铵、硬脂酸钙、单硬脂酸甘油酯、十六醇十八醇混合物、聚乙二醇缩十六醇(cetomacrogol)乳化蜡、山梨醇酐酯、聚氧乙烯烷基醚如聚乙二醇醚如聚乙二醇缩十六醇1000、聚氧乙烯蓖麻油衍生物、聚氧乙烯山梨醇酐脂肪酸酯如市售的TweensTM、聚乙二醇、聚氧乙烯硬脂酸酯、胶态二氧化硅、磷酸盐、十二烷基硫酸钠、羧甲基纤维素钙、羧甲基纤维素钠、甲基纤维素、羟乙基纤维素、羟丙基纤维素、羟丙甲基纤维素邻苯二甲酸酯、非结晶性纤维素、硅酸镁铝、三乙醇胺、聚乙烯醇(PVA)、和聚乙烯吡咯烷酮(PVP)。这些赋形剂中大多数在由AmericanPharmaceutical Association和The Pharmaceutical Society of Great Britain联合出版的Handbook of Pharmaceutical Excipients,the PharmaceuticalPress,1986中有详细描述。表面改性剂为市售的和/或可以通过本领域中已知的技术制备。两种或多种表面改性剂可以组合使用。
VI.高压对微粒分散体的稳定效果
高压可以通过多种不同的机理稳定微粒***,包括热力学的机理(反应量(volume of reaction))或是动力学的机理(活化量(volume ofactivation))。另外,高压可以在整个灭菌循环过程中化学上和/或物理上稳定药学活性组分、表面活性剂、和/或药物/疏水性区域结合。热力学稳定的例子为高压对聚氧乙烯表面活性剂的浊点的影响。对于这些***,已知由于氢键增强和疏水键破裂而使浊点在压力下上升。因此,由于浊点沉淀而在高压灭菌过程中不稳定的微粒分散体可以在更高压力下进行最终灭菌时使得表面活性剂***的浊点大于121℃而稳定。
实施例1
伊曲康唑纳米悬浮液的高压灭菌
使用组合微沉淀-均化作用过程(US专利申请2002/0127278 A1)生产包含0.1%泊洛沙姆188、0.1%脱氧胆酸盐、和2.2%甘油的1%伊曲康唑纳米悬浮液。通过静态的光散射(Horiba LA-920)测量的初始的粒径分布如图7中所示。
作为阳性对照,首先将5ml的纳米悬浮液样品用常规的高压灭菌循环在121℃下灭菌15分钟。如图8中的光散射数据所示,这产生显著的粒子聚集。这种聚集对于用浊点低于121℃的表面活性剂稳定的纳米悬浮液是典型的(泊洛沙姆188的浊点=~110℃)。
相比之下,当使用图9中所示的高压灭菌循环将相同的纳米悬浮液高压灭菌时,得到的1%伊曲康唑纳米悬浮液的粒径分布保持完全没有变化,如图10中所示。
VII.高压灭菌设备和方法
高压灭菌器械典型地具有控制温度和压力的灭菌室。灭菌室具有在使用时紧闭的盖子。该装置能够达到最高1000Mpa的压力。该装置还具有可以将灭菌室加热到120℃和更高温度的热源
使用该装置的方法包括的步骤为提供所需形式的***。在药物制剂的情况中,制剂会为粉末形式、溶液或为水性粒子分散体。在本发明优选的形式中,药物制剂包含在容量或形状根据作用于容器的压力的变化而变化的容器内。这种容器可以包括挠性的聚合物容器或其它挠性容器如注射器管筒、用于喷射注射器或计量式剂量吸入器的柱体。这些容器在下文中更具体地讨论。本发明另外考虑将药物制剂直接加入到灭菌室中。
将药物制剂***到其中制剂经受压力变化、温度变化或两者同时变化的灭菌室中。与只能达到低于0.25Mpa的压力的现有的用于灭菌I.V.容器等的高压灭菌器不同,本发明的方法使制剂经历超过0.25Mpa的压力。在本发明优选的形式中,制剂经历超过0.25Mpa到约1500Mpa的压力,更优选0.25Mpa到约700,和其中任何的范围或范围组合。
本发明另外包括施加温度和压力使得制剂暴露于超过25℃的温度的时间最小化。优选地,***的温度超过70℃,更优选90℃,更优选100℃,最优选120℃和更高。可使用不同的温度-时间-压力分布图,如图6中所示的那种,以将制剂灭菌而不引起制剂从稳定状态到不稳定状态的变化。
具体地,图6表示温度-时间-压力分布图,其中在第一循环中,药物制剂经历约700Mpa的压力并且引入能量以提高温度到约121℃,随后是降低压力到大气压力和降低温度到室温的一段时间的第二循环。图6表示制剂在各个压力脉冲过程中经历迅速的温度变化。由分别从加压和减压的瞬间的绝热加热和冷却而诱导这些温度的变化。用于实现无菌的典型的时间为分钟数量级的,其中使用2个或多个循环。
当非灭菌单位的概率等于或小于百万分之一时,认为药物制剂被灭菌。这满足美国、欧洲和日本的药典要求。
VIII.灭菌方法的致死率
现在检验上述使用高压灭菌处理的1%伊曲康唑纳米悬浮液是否无菌。在盐水中,已经证明了高压灭菌对嗜热脂肪芽孢杆菌(Bacillusstearothermophilus)的致死率的作用(对于生物负荷量,使用已经证明为高耐湿热的最耐热的菌株,参见参考文献ANSI/AAMI/ISO 11134-1993,Sterilization of health care products-Requirements for validation androutine control-Industrial moist heat sterilization.,由the Association forthe advancement of medical instrumentation形成并由American NationalStandards Institute(美国国家标准协会)审核的美国国家标准AmericanNational Standard,第12页,章节A.6.6.)。将接种至少一百万个嗜热脂肪芽孢杆菌孢子的试验和对照单元经过两种不同的过程,第一种过程使用约600MPa的压力,持续1分钟,第二种过程使用约600MPa的压力,进行六个10秒的循环。两种过程中的最初和最高温度分别是90℃和121℃。两种过程中都没有发现残存者(参见表1)。可以预期当对1%伊曲康唑纳米悬浮液接种并灭菌时,可以得到同样的结果。
表1:两种高压灭菌方法中嗜热脂肪芽孢杆菌的致死率
  溶液   灭菌条件   CFU/ml
  盐水溶液-1-对照   无   1.9E106
  经过灭菌的盐水溶液-1   600MPa,一个1分钟循环,起始温度=90℃,高压温度=121℃   0
  盐水溶液-2-对照   无   3.7E106
  经过灭菌的盐水溶液-2   600MPa,六个10秒钟循环,起始温度=90℃,高压温度=121℃   0
IX.容器
多种容器可以通过本发明的方法灭菌,优选用作医疗器械(如,用于药学给药、肾脏透渗析和血液采集/加工)的那些。这种容器的例子包括但不限于流体给药装置(包括含注射器的那些)、血液采集组装体(如,血液包单元)、用于自动血液加工的一次性组装体、渗析膜组装体、和腹膜透析袋、管子和组装体。典型地,这种***包含流体转移件(如,管)。
图11表示可流动材料的容器150,其具有在其间限定室154的双侧壁152。接入件155提供容器的内容物的无菌口。图12表示具有第一室和第二室162,164的多室容器160,第一室和第二室162,164由可剥离的密封件166连接。这种多室容器特别适合于在一个室中储存液体和在第二个室中储存粉末或在两个室中都储存液体。可剥离的密封件允许在使用前将组分混合。适合的多室容器包括但不限于在美国专利5,577,369、6,017,598中公开的那些,所述专利被并入本文作为参考并构成本文的一部分。权利要求1的方法,其中容器选自由密封的流体容器、注射器和密封管组成的组。
在本发明优选的形式中,侧壁由含非PVC的聚合物制成。侧壁可由单层结构170(图13)或如图14所示的具有第一层和第二层174,176的多层171组成。还考虑了在薄膜中具有超过2个的层。在本发明的另一个形式中,侧壁为未取向的,并且不是具有显著热缩性的薄膜。
用于形成侧壁的适合的含非PVC的聚合物包括聚烯烃、乙烯和丙烯酸低级烷基酯的共聚物、乙烯和低级烷基取代的丙烯酸烷基酯的共聚物、乙烯-乙酸乙烯基酯共聚物、聚丁二烯、聚酯、聚酰胺、和苯乙烯与烃的共聚物。
适合的聚烯烃包括通过将包含2到20个碳原子,更优选2到10个碳的α-烯烃聚合得到的均聚物和共聚物。因此,适合的聚烯烃包括丙烯、乙烯、丁烯-1、戊烯-1、4-甲基-1-戊烯、己烯-1、庚烯-1、辛烯-1、壬烯-1、和癸烯-1的聚合物和共聚物。更优选地,聚烯烃为丙烯的均聚物或共聚物、或为聚乙烯的均聚物或共聚物。
适合的聚丙烯均聚物可具有非晶态的、全同立构的、间规立构的、无规立构的、半同立构的或立构嵌段的立体化学。在本发明的一个优选的形式中,使用单一位点催化剂得到聚丙烯均聚物。
适合的丙烯共聚物通过将丙烯单体与具有2到20个碳的α-烯烃聚合得到。在本发明更优选的形式中,丙烯与占共聚物重量的约1重量%到约20重量%的乙烯共聚,乙烯更优选为约1重量%到约10重量%,最优选2重量%到约5重量%。丙烯和乙烯的共聚物可为无规或嵌段共聚物。在本发明优选的形式中,使用单一位点催化剂得到丙烯共聚物。
还有可能使用聚丙烯和α-烯烃共聚物的共混物,其中丙烯共聚物可通过α-烯烃中碳数的不同而不同。例如,本发明考虑了其中一个共聚物具有2个碳的α-烯烃和另一个共聚物具有4碳的α-烯烃的丙烯与α-烯烃共聚物的共混物。还有可能使用具有2到20个碳,更优选2到8个碳的α-烯烃的任何组合。因此,本发明考虑了其中第一和第二α-烯烃具有以下碳数组合的丙烯与α-烯烃共聚物的共混物:2和6、2和8、4和6、4和8。还考虑了在共混物中使用超过2种的聚丙烯和α-烯烃共聚物。适合的聚合物可使用催化合金(catalloy)方法得到。
还可能期望使用高熔体强度的聚丙烯。高熔体强度的聚丙烯可为熔体流动指数在10克/10分钟到800克/10分钟范围内的聚丙烯的均聚物或共聚物,熔体流动指数更优选为30克/10分钟到200克/10分钟,或其中的任何范围或范围的组合。已知高熔体强度的聚丙烯具有丙烯单元的游离端长链支链。制备表现出高熔体强度特点的聚丙烯的方法在美国专利4,916,198、5,047,485、和5,605,936中描述,所述专利被并入本文作为参考并构成本文的一部分。这种方法之一包括在其中活性氧浓度为约15体积%的环境中用高能量的电离能辐射以每分钟1到104兆拉德的剂量辐射直链的丙烯聚合物,持续足以产生显著量的直链丙烯聚合物的断链但是不足以使材料变为凝胶状的时间段。辐射引起断链。随后的链片段的重组引起新链的形成,以及将链片段结合于链上形成支链。这进一步产生所需的游离端长链支链的、高分子量的、非线性的丙烯聚合物材料。维持辐射直到形成相当量的长链支链。然后处理材料使被辐射的材料中存在的基本上所有的自由基失活。
高熔体强度的聚丙烯也可如美国专利5,416,169中所述得到,所述专利被全文并入本文作为参考并构成本文的一部分,其中将具体的有机过氧化物(二-2-乙基己基过氧化二碳酸酯)与聚丙烯在特定条件下反应,随后熔融捏合。这种聚丙烯为支化系数基本上为1的直链的、结晶性聚丙烯,因此,没有游离端长链支链,并且可具有约2.5dl/g到10dl/g的特性粘度。
适合的乙烯均聚物包括密度大于0.915g/cc的那些并且包括低密度聚乙烯(LDPE)、中密度聚乙烯(MDPE)和高密度聚乙烯(HDPE)。
适合的乙烯共聚物通过将乙烯单体与具有3到20个碳的α-烯烃聚合得到,更优选具有4到8个碳的α-烯烃。还期望乙烯共聚物具有通过ASTM D-792测量的小于约0.915g/cc的密度,更优选为小于约0.910g/cc的密度,更优选为小于约0.900g/cc的密度。这种聚合物通常称为VLDPE(极低密度聚乙烯)或ULDPE(超低密度聚乙烯)。优选地,乙烯α-烯烃共聚物使用单一位点催化剂生产,更优选使用茂金属催化剂体系。与已知具有多个催化剂位点的齐格勒-纳塔型催化剂不同,认为单一位点催化剂具有单一的、空间和电子相等的催化位点。这种单一位点催化的乙烯α-烯烃由Dow在商品名AFFINITY下、DuPont Dow在商标ENGAGE下和Exxon在商品名EXACT下销售。在本文中,这些共聚物通常称为m-ULDPE。
适合的乙烯共聚物还包括乙烯和丙烯酸低级烷基酯的共聚物、乙烯和低级烷基取代的丙烯酸烷基酯的共聚物、和乙酸乙烯基酯含量为共聚物的约8重量%到约40重量%的乙烯-乙酸乙烯基酯共聚物。术语“丙烯酸低级烷基酯”是指具有以下图示1中所述结构的共聚用单体:
Figure A20048002609700331
图示1
R基团是指具有1到17个碳的烷基。因此,术语“丙烯酸低级烷基酯”包括但不限于丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯等。
术语“烷基取代的丙烯酸烷基酯”是指以下图示2中所述的共聚用单体:
Figure A20048002609700332
图示2
R1和R2为具有1-17个碳的烷基,并且可具有相同的碳数或不同的碳数。因此,术语“烷基取代的丙烯酸烷基酯”包括但不限于甲基丙烯酸甲酯、甲基丙烯酸乙酯、乙基丙烯酸甲酯、乙基丙烯酸乙酯、甲基丙烯酸丁酯、乙基丙烯酸丁酯等。
适合的聚丁二烯包括1,3-丁二烯的1,2-和1,4-加成物(这些统称为聚丁二烯)。在本发明更优选的形式中,聚合物为1,3-丁二烯的1,2-加成物(这些被称为“1,2-聚丁二烯”)。在本发明更优选的形式中,感兴趣的聚合物为间规立构的1,2-聚丁二烯,更优选为低结晶度的间规立构的1,2-聚丁二烯。在本发明优选的形式中,低结晶度的、间规立构的1,2-聚丁二烯具有小于50%的结晶度,结晶度更优选小于约45%,更优选小于约40%,更优选结晶度为约13%到约40%,最优选地约15%到约30%。在本发明优选的形式中,低结晶度的、间规立构的1,2-聚丁二烯具有根据ASTM D 3418测量为约70℃到约120℃的熔点温度。适合的树脂包括由JSR(Japan Synthetic Rubber)在分类名称:JSR RB 810、JSR RB 820、和JSR RB 830下销售的那些。
适合的聚酯包括二或多羧酸和二或多羟基醇或烯化氧的缩聚产物。在本发明优选的形式中,聚酯为聚醚酯。适合的聚醚酯得自1,4-环己烷二甲醇、1,4-环己烷二羧酸和聚丁二醇醚的反应,并且通常称为PCCE。适合的PCCE由Eastman在商品名ECDEL下销售。适合的聚酯另外包括为聚对苯二甲酸丁二酯硬质结晶性部分和作为第二部分的软质(非晶态的)聚醚多元醇的嵌段共聚物的聚酯弹性体。这种聚酯弹性体由Du Pont Chemical Company在商品名HYTREL下销售。
适合的聚酰胺包括衍生自具有4-12个碳的内酰胺的开环反应的那些。因此这类聚酰胺包括尼龙6、尼龙10、和尼龙12。可接受的聚酰胺还包括衍生自碳数为2-13的二胺的缩合反应的脂肪族聚酰胺、衍生自碳数为2-13的二酸的缩合反应的脂肪族聚酰胺、衍生自二聚脂肪酸的缩合反应的聚酰胺、和含酰胺的共聚物。因此,适合的脂肪族的聚酰胺包括例如尼龙6,6、尼龙6,10、和二聚脂肪酸聚酰胺。
苯乙烯和烃的共聚物的苯乙烯包括苯乙烯和多种取代的苯乙烯,包括烷基取代的苯乙烯和卤素取代的苯乙烯。烷基可包含1到约6个碳原子。取代苯乙烯的具体例子包括α甲基苯乙烯、β-甲基苯乙烯、乙烯基甲苯、3-甲基苯乙烯、4-甲基苯乙烯、4-异丙基苯乙烯、2,4-二甲基苯乙烯、邻氯苯乙烯、间氯苯乙烯、邻溴苯乙烯、2-氯-4-甲基苯乙烯等等。最优选苯乙烯。
苯乙烯和烃共聚物的烃部分包括共轭二烯。可使用的共轭二烯为包含4到约10个碳原子的那些,更通常地为包含4到6个碳原子的那些。其例子包括1,3-丁二烯、2-甲基-1,3-丁二烯(异戊二烯)、2,3-二甲基-1,3-丁二烯、氯丁二烯、1,3-戊二烯、1,3-己二烯等等。也可使用这些共轭二烯的混合物,如丁二烯和异戊二烯的混合物。优选的共轭二烯为异戊二烯和1,3-丁二烯。
苯乙烯和烃的共聚物可为包括两嵌段、三嵌段、多嵌段、星形嵌段的嵌段共聚物,及其混合物。二嵌段共聚物的具体例子包括苯乙烯-丁二烯、苯乙烯-异戊二烯、及其氢化的衍生物。三嵌段共聚物的例子包括苯乙烯-丁二烯-苯乙烯、苯乙烯-异戊二烯-苯乙烯、α-甲基苯乙烯-丁二烯-α-甲基苯乙烯、和α-甲基苯乙烯-异戊二烯-α-甲基苯乙烯、及其氢化的衍生物。
上述嵌段共聚物的选择加氢可通过多种公知的工艺进行,包括在催化剂如拉内镍;贵金属如铂、钯等;和可溶性过渡金属催化剂的存在下氢化。可使用的适合的加氢过程为其中将含二烯的聚合物或共聚物溶解于惰性的烃稀释剂如环己烷中并在可溶性氢化催化剂的存在下与氢反应的那些。这种方法在美国专利3,113,986和4,226,952中有所描述,所述专利的公开被并入本文作为参考并构成本文的一部分。
特别有用的氢化嵌段共聚物为苯乙烯-异戊二烯-苯乙烯的氢化嵌段共聚物,如苯乙烯-(乙烯/丙烯)-苯乙烯的氢化嵌段共聚物。当聚苯乙烯-聚丁二烯-聚苯乙烯嵌段共聚物被氢化时,得到的产物具有整齐的乙烯和1-丁烯的共聚物嵌段(EB)。如上所述,当使用的共轭二烯为异戊二烯时,得到的氢化产物具有整齐的乙烯和丙烯共聚物嵌段(EP)。市售的选择性氢化产品的一个例子为KRATON G-1652,为包括30%苯乙烯末端嵌段并且其余的中间嵌段为乙烯和1-丁烯的共聚物的氢化SBS三嵌段。这种氢化嵌段共聚物通常称为SEBS。作为SEBS三嵌段和SBS二嵌段的共混物的Kraton G-1657也是适合的。其它适合的SEBS或SIS共聚物由Kurary在商品名称SEPTONX和HYBRARt下销售。
还可能期望使用接枝改性的苯乙烯和烃嵌段共聚物,通过将α,β-不饱和的单羧酸或二羧酸试剂接枝到上述的选择性氢化的嵌段共聚物上。
共轭二烯与乙烯基芳族化合物的嵌段共聚物用α,β-不饱和的单羧酸或二羧酸试剂接枝。羧酸试剂包括能够接枝到选择性氢化的嵌段共聚物上的羧酸本身及其官能化衍生物如酸酐、酰亚胺、金属盐、酯等等。接枝聚合物通常包含基于嵌段共聚物和羧酸试剂的总重量为约0.1到约20%,更优选为约0.1到约10%的接枝的羧酸。有用的一元羧酸的具体例子包括丙烯酸、甲基丙烯酸、肉桂酸、巴豆酸、丙烯酸酐、丙烯酸钠、丙烯酸钙和丙烯酸镁等等。二羧酸及其有用的衍生物的例子包括马来酸、马来酸酐、富马酸、中康酸、衣康酸、柠康酸、衣康酸酐、柠康酸酐、马来酸单甲酯、马来酸单钠等等。
可以用油将苯乙烯和烃的嵌段共聚物进行改性,如由ShellChemical Company在产品名称KRATON G2705下销售的油改性的SEBS。
还考虑了可由上述组分的聚合物共混物形成的薄膜。特别适合的聚合物共混物在美国专利5,849,843中公开,所述专利被并入本文作为参考并构成本文的一部分。在本发明优选的形式中,从具有2个组分、更优选具有三个或更多个组分的共混物制造层。这些聚合物共混物可以形成单层薄膜或可以结合到如美国专利5,998,019中所述的多层薄膜中,所述专利被并入本文作为参考并构成本文的一部分。
三组分的组合物
在三组分***的第一实施方案中,第一组分赋予组合物耐热性和挠性。这种组分可选自由非晶态的聚α-烯烃组成的组,并优选为挠性的聚烯烃。这些聚烯烃可经受最高为121℃的高温而不变形,具有大于130℃的峰熔点并且是高挠性的,其具有不超过40,000psi的模量,更优选不超过20,000psi。另外,某些具有高间同规正度的聚丙烯也具有高熔点和低模量的性质。以重量计,第一组分占组合物的40-90重量%。
三组分组合物的第二组分为易受RF影响的聚合物,其赋予组合物RF密封能力,并且可选自两组极性聚合物中的任一组。第一组由具有50-85%乙烯含量的乙烯和共聚用单体的共聚物组成,共聚用单体选自由丙烯酸、甲基丙烯酸、丙烯酸与具有1-10个碳的醇的酯衍生物、甲基丙烯酸与具有1-10个碳的醇的酯衍生物、乙酸乙烯基酯、和乙烯醇组成的组。易受RF影响的聚合物也可选自由含聚氨酯、聚酯、聚脲、聚酰亚胺、聚砜、和聚酰胺片段的聚合物组成的第二组。这些官能度可构成易受RF影响的聚合物的5-100%。易受RF影响的聚合物占组合物的5-50重量%。
优选地,RF组分为乙烯-丙烯酸甲酯的共聚物,丙烯酸甲酯占聚合物的15-25重量%。三组分化合物的最后的组分保证前两个组分之间的相容性,其选自苯乙烯类嵌段共聚物,并且优选为马来酸酐官能化的。以重量计,第三个组分构成组合物的5-30重量%。
在三组分薄膜的第二实施方案中,第一组分赋予在所需温度范围内的RF密封能力和挠性。第一组分赋予耐高温性(“热稳定性聚合物”)并且选自由聚酰胺、聚酰亚胺、聚氨酯、聚丙烯、和聚甲基戊烯组成的组。优选地,第一组分构成组合物的30-60重量%,并且优选为聚丙烯。第二组分赋予在所需温度范围内的RF密封能力和挠性。RF聚合物选自除了乙烯-乙烯醇之外的上述确定的第一和第二组。第二组分构成组合物的30-60重量%。第三组分保证前两个组分之间的相容性,并且选自SEBS嵌段共聚物和,优选为马来酸酐官能化的。以重量计,第三个组分构成组合物的5-30重量%。
四组分组合物
四组分薄膜的第一组分赋予耐热性。这种组分可选自聚烯烃,最优选为聚丙烯,更具体地为丙烯α-烯烃无规共聚物(PPE)。优选地,PPE具有窄的分子量范围。PPE具有期望的刚性和对约121℃的高压灭菌温度的耐受性。然而,PPE本身过于刚性,难以符合挠性要求。但通过与某些低模量的聚合物合铸(alloying)合并时,可以实现良好的挠性。可接受的PPE的例子包括在产品名称Soltex 4208、和Exxon EscorenePD9272下销售的那些。这些低模量的共聚物可以包括乙烯系共聚物如乙烯-共聚-乙酸乙烯基酯(“EVA”)、乙烯-共聚-α-烯烃、或所谓的超低密度的(典型地小于0.90Kg/L)聚乙烯(“ULDPE”)。这些ULDPE包括在商标TAFMER(Mitsui Petrochemical Co.)下、在产品名称A485Exact(Exxon Chemical Company)下、在产品名称4023-4024、和Insitetechnology polymers(Dow Chemical Co.)下销售的那些市售的产品。另外,还发现聚丁烯-1(“PB”),如由Shell Chemical Company在产品名称PB-8010、PB-8310下销售的那些;基于SEBS嵌段共聚物的热塑性弹性体(Shell Chemical Company)、在产品名称Vistanex L-80、L-100、L-120、L-140(Exxon Chemical Company)下的聚异丁烯(“PIB”)、乙烯烷基丙烯酸酯-丙烯酸甲酯共聚物(“EMA”)如在产品名称EMAC 2707、和DS-1130(Chevron)下的那些、和丙烯酸正丁酯(“ENBA”)(QuantumChemical)是可接受的共聚物。乙烯共聚物如丙烯酸和甲基丙烯酸共聚物以及它们的部分中和的盐和离聚物如PRIMACOR(Dow ChemicalCompany)和SURYLN(E.I.DuPont de Nemours & Company)也是令人满意的。
典型地,熔点低于约110℃的乙烯系共聚物不适于高压灭菌应用。此外,只是有限范围的各自组分的比例允许同时满足挠性和高压灭菌应用的要求。优选地,第一组分选自聚丙烯均聚物和与α-烯烃的无规共聚物的组,其中,α-烯烃构成组合物的约30-60重量%,更优选为35-45重量%,最优选为45重量%。例如,优选其中乙烯含量为聚合物重量的1-6重量%、更优选为2-4重量%的丙烯与乙烯的无规共聚物作为第一组分。
四组分组合物的第二组分赋予挠性和低温延展性并且为不同于第一组分的第二聚烯烃,其中其不含丙烯重复单元(“非丙烯系聚烯烃”)。优选地,其为包括以下的乙烯共聚物:ULDPE、聚丁烯、丁烯-乙烯共聚物、乙酸乙烯酯的含量为约18-50%的乙烯-乙酸乙烯酯、丙烯酸甲酯含量为约20-40%的乙烯-丙烯酸甲酯共聚物、丙烯酸正丁酯含量为20-40%的乙烯-丙烯酸正丁酯共聚物、丙烯酸含量大于约15%的乙烯-丙烯酸酯共聚物。这些产品的例子为在产品名称如TannerA-4085(Mitsui);EMAC DS-1130(Chevron);Exact 4023、4024和4028(Exxon)下销售,并且构成组合物的约25-50重量%,更优选35-45重量%,最优选为45重量%。为了赋予四组分组合物以RF介电损耗,将某些已知的高介电损耗组分(“易受RF影响的聚合物”)包括在组合物中。这些聚合物可选自上述第一和第二组中RF聚合物的组。
其它RF活性物质包括PVC、1,1-二氯乙烯和1,1-二氟乙烯、称为PHENOXYS(Union Carbide)的双苯酚A和表氯醇的共聚物。然而,这些含氯和含氟聚合物的显著含量会使得组合物变得不合需要,因为这种物质焚烧时生成无机酸类。
易受RF影响的聚合物的聚酰胺优选选自衍生自碳数为2-13的二胺的缩合反应的脂肪族聚酰胺、衍生自碳数为2-13的二酸的缩合反应的脂肪族聚酰胺、衍生自二聚脂肪酸的缩合反应的聚酰胺、和含酰胺的共聚物(无规的、嵌段的、和接枝的)。聚酰胺如尼龙广泛用于薄膜材料,因为它们为薄膜提供抗磨性。然而,在接触药物溶液的层中很少使用尼龙,因为它们典型地通过浸出到溶液中而污染溶液。最优选的易受RF影响的聚合物为Henkel Corporation在产品名称MACROMELT和VERSAMID下销售的多种二聚脂肪酸聚酰胺,其不引起这种污染。优选易受RF影响的聚合物构成组合物的约5-30重量%,更优选为7-13重量%,最优选10重量%。
组合物的第四组分赋予组合物的极性和非极性组分之间的相容性(有时称为“兼容聚合物compatibilizing polymer”)并优选为具有烃柔性链段的苯乙烯类嵌段共聚物。更优选地,第四组分选自由马来酸酐、环氧、或羧酸酯官能度改性的SEBS嵌段共聚物,并且优选为包含马来酸酐官能团(“官能化的”)SEBS嵌段共聚物。这种产品由Shell ChemicalCompany在名称KRATON RP-6509下销售。兼容聚合物构成组合物的约5-40重量%,更优选7-13重量%,最优选为10重量%。还可期望加入未官能化的SEBS嵌段共聚物作为第五组分,如由Shell ChemicalCompany在产品名称KRATON G-1652和G-1657下销售的那些。第五组分构成组合物的约5-40%重量,更优选7-13重量%,大部分。
对于上述的每种组合物,根据需要和如本领域中公知的,可期望加入痕量的其它添加剂,如滑爽剂、润滑剂、蜡、和抗粘连剂,只要最终的组合物满足上述的物理要求。
可使用该行业公知的技术构成薄膜。例如,可将上述组分在高强度搅器Welex搅拌器中干法混合并进料到挤出机中。也可将组分按照重量计量进料到具有双螺杆设计的高强度混合挤出机如WernerPfleiderer中,产品可以多股的形式在水浴中淬火,制粒并干燥备用。在第三方法中可通过将连续混炼机的产品直接进料到薄膜挤出机中而避开制粒步骤。还有可能为薄膜挤出机结合高强度混合段,使得可以使用一个挤出机生产熔融薄膜(alloy film)。
多层薄膜171可以利用上述共混物作为一个层172和另一个层如174。在本发明的一个优选的形式中,层174为表层。表层174赋予耐热变形性和抗磨性,并且优选为聚丙烯,更优选为与苯乙烯和烃嵌段共聚物共混的聚丙烯共聚物。更优选地,表层174为与0-20重量%的SEBS嵌段共聚物共混的聚丙烯共聚物。表层174的厚度为0.2-3.0密耳厚。
图15表示本发明的另一个实施方案,其具有***在表层172和RF层174之间的芯层176。芯层176赋予薄膜结构10以耐热变形性和挠性,并且赋予薄膜结构170中各个组分之间的相容性。优选地,芯层的厚度为0.5-10密耳,更优选为1-4密耳。芯层176包括三种组分。第一组分为聚烯烃,并且优选聚丙烯,其量占夹芯层176重量的20-60重量%,更优选35-50重量%,最优选占芯层176的45重量%。
芯层176的第二组分选自由赋予芯层16挠性的化合物组成的组,包括ULDPE、聚丁烯共聚物。优选地,芯层的第二组分为为40重量%-60重量%,更优选为40-50重量%,最优选地为40重量%的量的ULDPE或聚丁烯-1。
芯层176的第三组分选自赋予芯层176组分之间相容性的化合物,并且包括苯乙烯-烃嵌段共聚物,最优选地为SEBS嵌段共聚物。第三组分的量优选占芯层176的5-40重量%,更优选为7-15%,最优选为15%。
还有可能加入重新研磨的在生产容器过程中回收的裁屑料,作为芯层176的第四组分。裁屑料分散在整个芯层16中。优选可以加入的裁屑料的量占芯层16的约0-50重量%,更优选为10-30重量%,最优选为3-12重量%。
图16表示薄膜180,其具有附着于RF层174的一侧与表层174相反的的溶液接触层182。溶液接触层182可为上述材中的一种,更优选包含聚烯烃,更优选为与表层174相同的材料或与芯层176相同的材料。优选地,溶液接触层182的厚度为0.2-1.0密耳,最优选为1.0密耳。
图17表示多层薄膜结构的另一个实施方案,其具有如上所述的表层174、芯层176、和RF层172,并在表层174和芯层176之间为不连续的裁屑料层190。图18表示在芯层176和RF层172之间的不连续的裁屑料层190。图19表示将芯层176分为第一和第二芯层176a和176b的裁屑料层190。优选地,废料层190的厚度为0.5-5.0密耳,最优选为1.0密耳。
图20表示本发明的另一个实施方案,其具有六个层,包括上述的表层174、芯层176、和RF层172,并有***在核心176和RF层172之间的屏障层200,并有结合层(tie layer)202附着于屏障层200的相对的两侧。图21表示在芯层176和表层174之间的屏障层200。图22表示屏障层200将芯层176分为两个芯层176a和176b。屏障层200增加薄膜结构的气体屏障性能。屏障层200选自如在名称Evalca(Evalca Co.)下销售的乙烯-乙烯醇、高度玻璃质的或结晶性的聚酰胺如SclarPA(Dupont Chemical Co.)、高腈含量的丙烯腈共聚物如由BritishPetroleum销售的Barex。优选地,屏障层200为乙烯-乙烯醇,并且厚度为0.3-1.5密耳,最优选为1.0密耳。
结合层202可选自改性的乙烯和丙烯共聚物,如在产品名称Prexar(Quantum Chemical Co.)和Bynel(Dupont)下销售的那些,并且应具有0.2-1.0密耳的厚度,最优选地为0.5密耳。
本发明的高压灭菌技术还适合于灭菌用于肾脏CAPD应用的空外排袋(empty drain bag),如在美国专利6,004,636中公开的容器,所述专利被并入本文作为参考并构成本文的一部分。适合于使用本发明的高压灭菌技术进行最终灭菌的其它容器包括挠性的细胞培养用容器,如在美国专利5,935,847、4,417,753、4,210,686中公开的那些,所述专利被并入本文作为参考并构成本文的一部分。蛋白质相容性薄膜和容器,如在美国专利6,309,723中公开的那些,也可使用本文中公开的高压灭菌技术灭菌,所述专利被并入本文作为参考并构成本文的一部分。另外,该灭菌技术还适合于灭菌用于包含对氧敏感的化合物如去氧血色素的容器,如在美国专利6,271,351中公开的,所述专利被并入本文作为参考并构成本文的一部分。因为该灭菌技术只需要使这种容器短时间暴露于超过100℃的温度下,这些不适合使用标准的将容器暴露于121℃下1小时的技术进行最终灭菌的许多容器都能够使用本发明的高压技术进行最终灭菌。
图23表示本领域中公知的具有管筒222和活塞224的注射器220。可以从上述材料制造注射器220。注射器管筒可以填充有药用化合物的分散体或干粉的一种,然后进行如上所述的高压灭菌。注射器管筒,优选管筒和活塞必须都能够根据增加的压力改变体积,并且部件222和224必需具有足够的耐热变形性,以能够经得起本发明的最终灭菌过程。
图24表示具有限定室234的主体232的柱体230或插件。室234用端盖236密封,或如有必要用一对端盖密封。柱筒可以***到递送装置如在美国专利6,132,395中所述的喷射注射器中或***到能够触及室234的内容物并递送内容物的其它递送装置中。
图25表示具有药物导管252和接入装置254的流体接入装置250。接入装置可为用于刺穿接入件154的物体,或者可以适合于对接(dock)或连接于注射器管筒222以从用于灭菌的容器输送流体用于递送到患者或递送到用于将组合物递送到患者的另一个装置中。
有许多容器不能禁得住将容器暴露于121℃的蒸汽下1小时的最终灭菌过程,如某些聚合物型药用容器。
X.产品
本发明提供经过灭菌的产品并优选包含药物制剂的那些,其包括但不限于包含无菌药物制剂的容器,其中制剂已经通过为产品供应热量并且将产品加压到大于0.25Mpa的压力下而进行灭菌。本发明还提供不含化学浊点改性剂的无菌药物制剂。
应该理解,本文中所述的目前优选的实施方案多种变化和改进对于本领域技术人员来说是显而易见的。可进行这种变化和改进而不脱离本发明的精神实质和范围,并且不削弱本发明的预定的优点。因此,这种变化和改进也在权利要求的范围内。

Claims (45)

1.对具有稳定状态和不稳定状态的动态***进行灭菌的方法,其包括下列步骤:
将***加压超过0.25MPa以增加***的温度持续足以实现无菌***的时间段;和
在***达到不稳定状态之前从***撤除压力。
2.权利要求1的方法,其中加压步骤将***的温度增加到超过70℃的温度。
3.权利要求1的方法,其中加压步骤将***的温度增加到超过120℃的温度。
4.权利要求1的方法,其中将***加压的步骤为脉冲式的。
5.权利要求1的方法,其中动态***包括治疗活性化合物。
6.权利要求1的方法,其中动态***包括治疗活性化合物和介质。
7.权利要求1的方法,其中当非灭菌***的概率等于或小于百万分之一时确定为无菌。
8.权利要求6的方法,其中介质为水性溶液、有机溶剂或油。
9.权利要求8的方法,其中***进一步包括与治疗活性化合物结合的赋形剂。
10.权利要求9的方法,其中治疗用化合物为固体、液体或气体。
11.权利要求10的方法,其中治疗用化合物为粒子或液滴的形式。
12.权利要求11的方法,其中粒子或小滴的平均有效粒径小于100微米。
13.权利要求11的方法,其中粒子或小滴的平均有效粒径小于10微米。
14.权利要求11的方法,其中粒子或小滴的平均有效粒径小于7微米。
15.权利要求11的方法,其中粒子或小滴的平均有效粒径小于3微米。
16.权利要求11的方法,其中粒子或小滴的平均有效粒径小于1微米。
17.权利要求11的方法,其中粒子或小滴的平均有效粒径小于500nm。
18.权利要求11的方法,其中赋形剂以选自下组中的方式与粒子或小滴结合:与粒子或小滴共价结合、与粒子或小滴离子结合、与粒子或小滴电子吸引、吸附在粒子或小滴表面上和悬浮在粒子或小滴中。
19.权利要求11的方法,其中赋形剂为选自阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂和两性离子表面活性剂及生物学表面活性分子中一种或多种的表面活性剂。
20.权利要求11的方法,其中粒子或小滴在撤除压力之后从一个热力学相转化为另一个热力学相。
21.权利要求19的方法,其中热力学相选自结晶性液体、半结晶性液体、非晶态液体和过冷液体。
22.权利要求21的方法,其中热力学相的差异来自于第一晶体结构向不同于第一晶体结构的第二晶体结构的转化。
23.权利要求1的方法,其包括另外的通过加压步骤或另外的加热对***供应热的步骤。
24.权利要求23的方法,其中***的温度增加超过100℃持续超过1分钟的时间段。
25.权利要求24的方法,其中压力以不同压力的脉冲形式施加于***。
26.灭菌方法,其包括下列步骤:
提供在非灭菌介质中包含治疗活性化合物的聚合物容器;
对容器添加热;
将容器加压超过0.25MPa,其中容器的温度超过70℃;
供应能量的步骤和加压步骤进行的时间为将介质灭菌的有效时间;和
从容器撤除热和压力。
27.权利要求26的方法,其中聚合物容器从含非PVC的材料制造而成。
28.权利要求26的方法,其中容器从具有单层结构或多层结构的薄膜制造而成。
29.权利要求26的方法,其中容器从聚合物制造而成。
30.权利要求26的方法,其中聚合物容器适合于与流体转移件连接。
31.权利要求30的方法,其中流体转移件为管子。
32.权利要求30的方法,其中流体转移件为流体递送给药装置。
33.权利要求1的方法,其中容器选自密封的流体容器、注射器和密封管。
34.医药产品,其包括:
包含分散在水性溶液中的无菌治疗用化合物的挠性的流体密封聚合物容器,平均粒径小于1微米的粒子形式的化合物和结合于粒子的赋形剂,其中所述溶液基本上不含浊点改性剂。
35.权利要求34的产品,其中容器从含非PVC的材料制造而成。
36.权利要求35的产品,其中容器从具有单层结构或多层结构的薄膜制造而成。
37.权利要求35的产品,其中薄膜具有超过50重量%的聚烯烃。
38.权利要求35的产品,其中使用射频密封技术,薄膜能够密封成为容器。
39.权利要求35的产品,其中当根据ASTM D-882测量时,薄膜的弹性模数小于40,000psi。
40.权利要求34的产品,其中产品已经通过对容器供应能量并将容器加压到超过0.25MPa的压力而被灭菌。
41.用于对挠性医药容器进行灭菌的方法,其包括下列步骤:
提供具有相对侧壁的聚合物容器,所述侧壁的弹性模数小于约40,000psi;
对容器供应热;
将容器加压超过0.25MPa;和
在得到无菌容器的有效时间段之后终止供热步骤和加压步骤。
42.权利要求41的方法,其中容器处于未填充状态。
43.权利要求41的方法,其中容器在其中含有流体。
44.权利要求43的方法,其中流体为水基溶液。
45.权利要求41的方法,其中容器所属类型选自I.V.容器、外排袋、多室容器、蛋白质相容性容器、细胞培养容器、血液代用品容器、递送装置的柱体、注射器管筒和流体给药装置。
CN2004800260978A 2003-09-22 2004-09-22 用于药物制剂和医药产品最终灭菌的高压灭菌 Expired - Fee Related CN1905905B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US50523503P 2003-09-22 2003-09-22
US60/505,235 2003-09-22
PCT/US2004/031107 WO2005030273A2 (en) 2003-09-22 2004-09-22 High-pressure sterilization to terminally sterilize pharmaceutical preparations and medical products

Publications (2)

Publication Number Publication Date
CN1905905A true CN1905905A (zh) 2007-01-31
CN1905905B CN1905905B (zh) 2011-06-08

Family

ID=34392995

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800260978A Expired - Fee Related CN1905905B (zh) 2003-09-22 2004-09-22 用于药物制剂和医药产品最终灭菌的高压灭菌

Country Status (20)

Country Link
US (1) US8617467B2 (zh)
EP (1) EP1663321B1 (zh)
JP (1) JP4740856B2 (zh)
KR (1) KR101133502B1 (zh)
CN (1) CN1905905B (zh)
AU (1) AU2004275764B2 (zh)
BR (1) BRPI0414321B8 (zh)
CA (1) CA2539494C (zh)
DK (1) DK1663321T3 (zh)
ES (1) ES2394208T3 (zh)
IL (1) IL173852A (zh)
MX (1) MXPA06002766A (zh)
NO (1) NO20061674L (zh)
NZ (1) NZ545744A (zh)
PL (1) PL1663321T3 (zh)
PT (1) PT1663321E (zh)
RU (1) RU2392004C2 (zh)
SG (1) SG135189A1 (zh)
WO (1) WO2005030273A2 (zh)
ZA (1) ZA200601796B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011069347A1 (zh) * 2009-12-09 2011-06-16 南京生命能科技开发有限公司 一种测定铁-碳水化合物络合物浊点和游离糖缓冲系数的方法
CN105658784A (zh) * 2013-12-18 2016-06-08 东洋制罐集团控股株式会社 培养容器、淋巴细胞的培养方法、培养容器的制造方法和固相化装置
CN109529065A (zh) * 2018-12-27 2019-03-29 湖北远大天天明制药有限公司 一种卡波姆分散灭菌方法及其应用

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1663321B1 (en) 2003-09-22 2012-08-29 Baxter International Inc. High-pressure sterilization to terminally sterilize pharmaceutical preparations and medical products
US20070293441A1 (en) * 2003-09-22 2007-12-20 Baxter International Inc. High-pressure sterilization to terminally sterilize pharmaceutical preparations and medical products
US8012413B2 (en) 2006-12-21 2011-09-06 Depuy Spine, Inc. Gaseous sterilization of impermeable containers through use of porous material
US20110005958A1 (en) * 2009-07-09 2011-01-13 Onpharma, Inc. METHODS AND SYSTEMS FOR ADJUSTING THE pH OF MEDICAL BUFFERING SOLUTIONS
JP5472109B2 (ja) * 2008-08-26 2014-04-16 三菱瓦斯化学株式会社 脱酸素性多層体
US8394892B2 (en) * 2009-09-14 2013-03-12 Sumitomo Chemical Company, Ltd. High performance thermoplastic elastomer composition
JP5727272B2 (ja) * 2011-03-25 2015-06-03 テルモ株式会社 滅菌済み輸液製剤の製造方法
FR2977801B1 (fr) * 2011-07-11 2013-08-16 Fabre Pierre Dermo Cosmetique Dispositif et procede pour la sterilisation a ultra-haute temperature d'une emulsion, notamment dermo-cosmetique, instable a la temperature de sterilisation
FR3023718B1 (fr) * 2014-07-16 2018-10-12 Pierre Fabre Medicament Compositions pharmaceutique et/ou cosmetique decontaminees par haute pression
SE538635C2 (en) * 2014-09-15 2016-10-04 Observe Medical Aps Method for sterilizing a body fluid drainage system
JP6612763B2 (ja) * 2014-10-02 2019-11-27 テルモ株式会社 タンパク質溶液製剤を収容するための医療用容器
CN108479158B (zh) * 2018-03-28 2021-06-04 南京溧水高新产业股权投资有限公司 一种自动更换滤网的超高压设备
US20190336443A1 (en) * 2018-05-03 2019-11-07 Navinta Iii Inc Ready-To-Use Liquid Parenteral Formulations Of Ribavirin
US11383870B2 (en) 2018-07-12 2022-07-12 Elena Valentinovna ARSHINTSEVA Thermal method for sterilizing poloxamer comprising liquid drugs
EP3995124A4 (en) * 2019-07-05 2023-08-02 TERUMO Kabushiki Kaisha MEDICATION CONTAINER FOR STORING A PROTEIN PREPARATION
WO2023170680A1 (en) 2022-03-08 2023-09-14 Equashield Medical Ltd Fluid transfer station in a robotic pharmaceutical preparation system

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3113986A (en) 1962-01-08 1963-12-10 Hercules Powder Co Ltd Hydrogenation of unsaturated hydrocarbons
US4210686A (en) 1978-06-19 1980-07-01 Baxter Travenol Laboratories Inc. Multi-layered plastic sheeting having high clarity, strength, and resistance to water vapor transmission
US4226952A (en) 1979-08-20 1980-10-07 The Firestone Tire & Rubber Company Thermoplastic elastomer blends of alpha-olefin polymers and hydrogenated medium and high vinyl butadiene polymers
US4417753A (en) 1981-05-21 1983-11-29 Baxter Travenol Laboratories, Inc. Method and apparatus for joining materials
US4608278A (en) 1983-06-22 1986-08-26 The Ohio State University Research Foundation Small particule formation and encapsulation
ZA86528B (en) 1985-01-31 1986-09-24 Himont Inc Polypropylene with free-end long chain branching,process for making it,and use thereof
GB8506792D0 (en) 1985-03-15 1985-04-17 Janssen Pharmaceutica Nv Derivatives of y-cyclodextrin
FR2608988B1 (fr) 1986-12-31 1991-01-11 Centre Nat Rech Scient Procede de preparation de systemes colloidaux dispersibles d'une substance, sous forme de nanoparticules
JPS63169947A (ja) 1987-01-06 1988-07-13 San Ei Chem Ind Ltd 加圧加熱殺菌食品
DE3726064A1 (de) * 1987-08-06 1989-02-16 Fresenius Ag Verpackungseinheit fuer medizinische zwecke
US5047485A (en) 1989-02-21 1991-09-10 Himont Incorporated Process for making a propylene polymer with free-end long chain branching and use thereof
DE3919391A1 (de) * 1989-06-14 1990-12-20 Boehringer Ingelheim Kg Steriles material
FR2651680B1 (fr) 1989-09-14 1991-12-27 Medgenix Group Sa Nouveau procede de preparation de microparticules lipidiques.
US5091188A (en) 1990-04-26 1992-02-25 Haynes Duncan H Phospholipid-coated microcrystals: injectable formulations of water-insoluble drugs
US5145684A (en) 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
EP0643620B1 (en) 1991-10-04 1999-07-21 Gs Development Ab Particles, method of preparing said particles and uses thereof
EP0605705B1 (en) 1992-07-29 1997-05-21 Baxter International Inc. Pharmaceutical containers and medical devices with hydrophilic protein-compatible surfaces
US5416169A (en) 1992-11-26 1995-05-16 Chisso Corporation Polypropylene having a high melt-tensile strength, a process for producing the same and a molded product from the same
US5298262A (en) 1992-12-04 1994-03-29 Sterling Winthrop Inc. Use of ionic cloud point modifiers to prevent particle aggregation during sterilization
US5346702A (en) 1992-12-04 1994-09-13 Sterling Winthrop Inc. Use of non-ionic cloud point modifiers to minimize nanoparticle aggregation during sterilization
US5336507A (en) 1992-12-11 1994-08-09 Sterling Winthrop Inc. Use of charged phospholipids to reduce nanoparticle aggregation
AU5637094A (en) 1993-03-16 1994-09-22 Clintec Nutrition Company Peelable seal and container having same
CN1094313A (zh) * 1993-04-30 1994-11-02 芜湖市消毒服务站 食品包装纸的消毒方法
US5414027A (en) 1993-07-15 1995-05-09 Himont Incorporated High melt strength, propylene polymer, process for making it, and use thereof
SK38296A3 (en) 1993-09-24 1996-09-04 Unilever Nv Manufacturing process for shelf stable products and shelf stable products
US5998019A (en) 1993-11-16 1999-12-07 Baxter International Inc. Multi-layered polymer structure for medical products
US5849843A (en) 1993-11-16 1998-12-15 Baxter International Inc. Polymeric compositions for medical packaging and devices
DE4447626C5 (de) 1994-03-29 2007-01-25 Fresenius Ag Medizinischer Mehrkammerbeutel
DE19536546A1 (de) 1994-03-29 1997-04-03 Fresenius Ag Medizinischer Beutel
US5935847A (en) 1994-10-28 1999-08-10 Baxter International Inc. Multilayer gas-permeable container for the culture of adherent and non-adherent cells
SE9403846D0 (sv) 1994-11-09 1994-11-09 Univ Ohio State Res Found Small particle formation
US5662883A (en) 1995-01-10 1997-09-02 Nanosystems L.L.C. Microprecipitation of micro-nanoparticulate pharmaceutical agents
US5560932A (en) 1995-01-10 1996-10-01 Nano Systems L.L.C. Microprecipitation of nanoparticulate pharmaceutical agents
US5716642A (en) 1995-01-10 1998-02-10 Nano Systems L.L.C. Microprecipitation of nanoparticulate pharmaceutical agents using surface active material derived from similar pharmaceutical agents
US5665331A (en) 1995-01-10 1997-09-09 Nanosystems L.L.C. Co-microprecipitation of nanoparticulate pharmaceutical agents with crystal growth modifiers
US6271351B1 (en) 1995-03-23 2001-08-07 Biopure Corporation Method for preserving a hemoglobin blood substitute
US6143211A (en) 1995-07-21 2000-11-07 Brown University Foundation Process for preparing microparticles through phase inversion phenomena
CA2234957C (en) 1995-10-17 2006-12-19 Inge B. Henriksen Insoluble drug delivery
US6086936A (en) 1995-12-14 2000-07-11 Kal Kan Foods, Inc. High temperature/ultra-high pressure sterilization of foods
FR2750011B1 (fr) 1996-06-21 1998-09-04 Ardiaa Procede de conservation de produits alimentaires
KR19990001564A (ko) * 1997-06-16 1999-01-15 유충식 용해도를 개선한 아졸계 항진균제 및 이를 함유하는 제제
US6120732A (en) * 1997-06-23 2000-09-19 University Of Georgia Research Foundation, Inc. Microbial inactivation by high-pressure throttling
US6004508A (en) * 1997-08-01 1999-12-21 The Coca-Cola Company Method and apparatus for super critical treatment of liquids
CA2308706C (en) * 1997-10-23 2008-05-13 Morinaga Milk Industry Co., Ltd. Method and apparatus for continuous heat sterilization of liquid
US6024994A (en) * 1997-11-06 2000-02-15 Nestec S.A. Calcium complexes for fortification of foods and process of making
WO1999029187A1 (en) 1997-12-05 1999-06-17 Meyer Richard S Ultra high pressure, low temperature food preservation process
NL1009267C2 (nl) 1998-05-27 1999-11-30 Inst Voor Agrotech Onderzoek Hogedrukinrichting.
US6696019B2 (en) 1998-06-15 2004-02-24 Bbi Bioseq, Inc. Rapid cryobaric sterilization and vaccine preparation
US6270723B1 (en) 1998-06-15 2001-08-07 Bbi Bioseq, Inc. Rapid cryobaric sterilization and vaccine preparation
US6017572A (en) 1998-09-17 2000-01-25 Meyer; Richard S. Ultra high pressure, high temperature food preservation process
US20010051197A1 (en) * 1998-09-29 2001-12-13 The Procter & Gamble Company Low acid beverages supplemented with nutritional calcium sources
US6132395A (en) 1998-12-08 2000-10-17 Bioject, Inc. Needleless syringe with prefilled cartridge
DE19905159A1 (de) 1999-02-08 2000-08-10 Gerrit Hoehn Verfahren zur Sterilisation und Zerstörung unerwünschter Substanzen auf Operationsbestecken, Nahtmaterial, Zubehör für die Analytik, Implantaten mit Medikamentenzugabe und Medikamenten
US6267989B1 (en) * 1999-03-08 2001-07-31 Klan Pharma International Ltd. Methods for preventing crystal growth and particle aggregation in nanoparticulate compositions
JP4556067B2 (ja) * 1999-06-15 2010-10-06 プレッシャー バイオサイエンシズ インコーポレイテッド ワクチンの滅菌方法およびワクチンの製造方法
FR2804326B1 (fr) 2000-01-27 2002-10-18 Ellipse Pharmaceuticals Procede de sterilisation par traitement sous hautes pressions de principes actifs sensibles
US7338657B2 (en) 2001-03-15 2008-03-04 Biosphere Medical, Inc. Injectable microspheres for tissue construction
AU2002246493A1 (en) 2000-08-10 2002-07-30 Boston Biomedica, Inc. Pressure cycling inactivation of pathogens in biological materials used for therapeutics or vaccines
FR2813796A1 (fr) * 2000-09-11 2002-03-15 Bruno Jean Marie Aubert Procede de desinfection ou de sterilisation d'un materiau par chauffage confine sous pression de vapeur de l'eau et des radicaux naturellement absorbes sur le dit materiau et dispositif associe
US6635223B2 (en) * 2000-10-25 2003-10-21 Andreas Maerz Method for inactivating micro-organisms using high pressure processing
DE60009713T2 (de) 2000-10-25 2005-04-07 Andreas März Methode zur Inaktivierung von Mikroorganismen mittels Hochdruckverfahren
WO2002045528A1 (en) 2000-12-04 2002-06-13 Ato B.V. Method for high-pressure preservation
US6884436B2 (en) 2000-12-22 2005-04-26 Baxter International Inc. Method for preparing submicron particle suspensions
US7037528B2 (en) 2000-12-22 2006-05-02 Baxter International Inc. Microprecipitation method for preparing submicron suspensions
US20060003012A9 (en) 2001-09-26 2006-01-05 Sean Brynjelsen Preparation of submicron solid particle suspensions by sonication of multiphase systems
US7125453B2 (en) 2002-01-31 2006-10-24 General Electric Company High temperature high pressure capsule for processing materials in supercritical fluids
JP2003250866A (ja) * 2002-02-28 2003-09-09 Miura Co Ltd エンドトキシン活性の低減方法
FR2838969B1 (fr) 2002-04-30 2006-05-19 Ellipse Pharmaceuticals Procede de sterilisation par haute pression de compositions pharmaceutiques sous forme micro ou nanodispersee et compositions ainsi obtenues
US20030228239A1 (en) * 2002-06-10 2003-12-11 Prion Inactivation Partners Method of inactivating prions
FR2841474B1 (fr) 2002-06-26 2006-03-03 Ellipse Pharmaceuticals Procede d'inactivation de microorganismes par application de hautes pressions
SE0203862L (sv) 2002-12-20 2004-04-27 Tetra Laval Holdings & Finance Förfarande för värmebehandling av en förpackning.
AU2004229303B2 (en) 2003-04-17 2010-04-22 New Zealand Dairy Board Enhancing clarity and/or stability properties of protein-containing liquids and gels
US20040229771A1 (en) 2003-05-15 2004-11-18 Reinhold Deppisch Method of reducing decline of or preserving residual renal function
EP1663321B1 (en) 2003-09-22 2012-08-29 Baxter International Inc. High-pressure sterilization to terminally sterilize pharmaceutical preparations and medical products
WO2005041694A1 (en) 2003-11-03 2005-05-12 Commonwealth Scientific And Industrial Research Organisation Spore inactivation process
WO2006110051A1 (en) 2005-04-12 2006-10-19 Auckland Uniservices Ltd Pressure assisted thermal sterilisation or pasteurisation method and apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011069347A1 (zh) * 2009-12-09 2011-06-16 南京生命能科技开发有限公司 一种测定铁-碳水化合物络合物浊点和游离糖缓冲系数的方法
CN101710113B (zh) * 2009-12-09 2013-04-03 南京生命能科技开发有限公司 一种测定铁-碳水化合物络合物浊点和游离糖缓冲系数的方法
US8679851B2 (en) 2009-12-09 2014-03-25 Nanjing Lifenergy R&D Co., Ltd Method for determining turbidity point and free carbohydrate buffer coefficient of iron-carbohydrate complex
CN105658784A (zh) * 2013-12-18 2016-06-08 东洋制罐集团控股株式会社 培养容器、淋巴细胞的培养方法、培养容器的制造方法和固相化装置
US11884907B2 (en) 2013-12-18 2024-01-30 Toyo Seikan Group Holdings, Ltd. Culture container, method for culturing lymphocytes, culture-container production method, and solid-phasing apparatus
CN109529065A (zh) * 2018-12-27 2019-03-29 湖北远大天天明制药有限公司 一种卡波姆分散灭菌方法及其应用

Also Published As

Publication number Publication date
IL173852A0 (en) 2006-07-05
RU2392004C2 (ru) 2010-06-20
KR20070006664A (ko) 2007-01-11
AU2004275764B2 (en) 2010-01-14
EP1663321B1 (en) 2012-08-29
WO2005030273A3 (en) 2005-06-09
ZA200601796B (en) 2007-05-30
IL173852A (en) 2013-04-30
NO20061674L (no) 2006-04-12
BRPI0414321B1 (pt) 2015-05-26
RU2006113698A (ru) 2007-10-27
CN1905905B (zh) 2011-06-08
US20050135963A1 (en) 2005-06-23
DK1663321T3 (da) 2012-11-19
CA2539494A1 (en) 2005-04-07
AU2004275764A1 (en) 2005-04-07
ES2394208T3 (es) 2013-01-23
EP1663321A2 (en) 2006-06-07
NZ545744A (en) 2009-12-24
JP2007505712A (ja) 2007-03-15
US8617467B2 (en) 2013-12-31
BRPI0414321B8 (pt) 2021-06-22
KR101133502B1 (ko) 2012-04-24
SG135189A1 (en) 2007-09-28
CA2539494C (en) 2011-12-06
PT1663321E (pt) 2012-11-15
BRPI0414321A (pt) 2006-11-07
MXPA06002766A (es) 2006-12-14
JP4740856B2 (ja) 2011-08-03
PL1663321T3 (pl) 2013-07-31
WO2005030273A2 (en) 2005-04-07

Similar Documents

Publication Publication Date Title
CN1905905A (zh) 用于药物制剂和医药产品最终灭菌的高压灭菌
US6066292A (en) Sterilization process for pharmaceutical suspensions
CN1761454A (zh) 小颗粒的制备方法
US20080166411A1 (en) Injectable Depot Formulations And Methods For Providing Sustained Release Of Poorly Soluble Drugs Comprising Nanoparticles
CN1791386A (zh) 抗癫痫和抗痴呆药物以及免疫抑制剂的小-颗粒药物制剂
WO2006109177A1 (en) Injectable depot formulations and methods for providing sustained release of poorly soluble drugs comprising nanoparticles
EP1067914A2 (en) Composition and method of preparing microparticles of water-insoluble substances
CN101426477A (zh) 纳米颗粒卡维地洛制剂
CN101484169A (zh) 包含纳米颗粒美洛昔康和控释氢可酮的组合物
MX2007012103A (es) Formulaciones deposito inyectables y metodos para proporcionar una liberacion sostenida de composiciones de nanoparticulas.
EP3253372B1 (en) Preparation of an oil-in-water emulsion for polymer stabilized pharmaceutical formulations
JP5296954B2 (ja) 不溶性微粒子の安定なサスペンションを製造する方法
CN101132768A (zh) 纳米颗粒他克莫司制剂
CN101035511A (zh) 形成非层状分散体的组合物
CN101242813A (zh) 包含芳基-杂环化合物的毫微粒和控制释放组合物
JP2004035441A (ja) 無菌水性懸濁製剤
CN1764438A (zh) 用于粉碎和稳定小颗粒的方法和设备
JP2011195556A (ja) 経口用組成物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1095770

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1095770

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110608