CN1890508B - 空气调节装置 - Google Patents

空气调节装置 Download PDF

Info

Publication number
CN1890508B
CN1890508B CN2004800357564A CN200480035756A CN1890508B CN 1890508 B CN1890508 B CN 1890508B CN 2004800357564 A CN2004800357564 A CN 2004800357564A CN 200480035756 A CN200480035756 A CN 200480035756A CN 1890508 B CN1890508 B CN 1890508B
Authority
CN
China
Prior art keywords
heat exchanger
air
adsorption heat
adsorption
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2004800357564A
Other languages
English (en)
Other versions
CN1890508A (zh
Inventor
松井伸树
池上周司
籔知宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of CN1890508A publication Critical patent/CN1890508A/zh
Application granted granted Critical
Publication of CN1890508B publication Critical patent/CN1890508B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • F25B2313/02341Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0254Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements
    • F25B2313/02543Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements during heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

在制冷剂回路(40)设置有室外热交换器(54)、室内热交换器(55)和吸附热交换器(56,57)。室内热交换器(55)被安装在室内机组(11),室外热交换器(54)和2个吸附热交换器(56,57)被安装在室外机组(12)。室外机组(12)所吸入的室外空气水分,被作为蒸发器的吸附热交换器(56,57)的吸附剂所吸附,而使这个空气被除湿。被除湿的空气在作为蒸发器的室内热交换器(55)受到冷却,而使这个空气被供给到室内空间。

Description

空气调节装置
技术领域
本发明是涉及处理室内空间的显热负荷和潜热负荷的空气调节装置。
背景技术
如专利文献1(国际公开第03/029728号公报)中所公开地,进行室内空间的取冷和除湿的空气调节装置向来为人所知。这个空气调节装置,具备了制冷剂回路,该制冷剂回路设置有作为利用侧热交换器的室内热交换器和作为热源侧热交换器的室外热交换器,而在制冷剂回路使制冷剂进行冷冻循环。并且,上述空气调节装置将室内热交换器的制冷剂蒸发温度设定成低于室内空气的露点温度,而通过凝结室内空气中的水分来进行室内空间的除湿。
另一方面,如专利文献2(特开平7-265649号公报)中所公开地,具备了在表面设有吸附剂的热交换器的除湿装置也一向为人所知。这个除湿装置,具备了2个设置有进行水分吸脱的吸附剂的热交换器(吸附热交换器),其中一个进行空气的除湿,另一个则进行空气再生的动作。这时,将在冷却塔冷却了的水供给到吸附水分的吸附热交换器,将温水供给到再生的热交换器。并且,上述除湿装置,通过上述动作将被除湿的空气供给到室内空间。
发明内容
解决课题
如上所述,在专利文献1所记载的空气调节装置,由于将在室内热交换器的制冷剂蒸发温度设定地低于室内空气的露点温度,通过使空气中的水分凝结来处理室内空间的潜热负荷。换句话说,在室内热交换器的制冷剂蒸发温度高于室内空气的露点温度也能够处理显热负荷,不过,为了处理潜热负荷将在室内热交换器的制冷剂蒸发温度设定在低值。因此,有着如下问题:冷冻循环的高低压差变大,而对压缩机的输入增大只能获得低的COP(性能系数)。
并且,专利文献2所记载的除湿装置中,将在冷却塔被冷却的冷却水、即比起室内温度温度并不低的冷却水供给到热交换器。因此,在这个除湿装置,也有着即使能够处理室内空间的潜热负荷也不能处理显热负荷的问题。
本发明,是有鉴于上述问题而思考出来,其目的在于:能够处理室内空间的显热负荷和潜热负荷的双方,并且提供能够获得高COP的空气调节装置。
解决方法
本发明是在制冷剂回路设置调节空气温度的热交换器和进行水分吸脱的吸附热交换器,以上述热交换器和上述吸附热交换器两者来处理空气而供给到室内空间。
第1发明,以如下的空气调节装置为前提,该空气调节装置具备设有热源侧热交换器54和利用侧热交换器55的制冷剂回路40,并且在上述制冷剂回路40进行冷冻循环,将通过上述利用侧交换器55的空气供给到室内空间来处理室内的显热负荷及潜热负荷.并且,这个空气调节装置,其构成为,在上述制冷剂回路40设有吸附热交换器56,57,在该吸附热交换器56,57表面附着有进行水分吸脱的吸附剂,使空气并行流通到上述利用侧热交换器55和上述吸附热交换器56,57来供给到室内空间.
上述第1发明中,和第1发明同样地,对流通过利用侧热交换器55的空气进行冷却或是加温。并且,根据吸附热交换器56,57所附着的吸附剂的吸脱附作用来调节流通吸附热交换器56,57的空气的湿度。
并且,在这个空气调节装置,空气并行流入利用侧热交换器55和吸附热交换器56,57,其中一方的空气流经利用侧热交换器55后被供给到室内空间,另一方的空气流经过吸附热交换器56,57后被供给到室内空间。
第2发明,以如下空气调节装置为前提,该空气调节装置具备了设有热源侧热交换器54和利用侧热交换器55的制冷剂回路40,在上述制冷剂回路40进行冷冻循环,把通过上述利用侧交换器55的空气供给到室内空间来处理室内的显热负荷及潜热负荷。并且,这个空气调节装置,其构成为,在上述制冷剂回路40,设有吸附热交换器56,57,在该吸附热交换器56,57表面附着有进行水分吸脱的吸附剂,让空气并行流通到上述热源侧热交换器54和上述吸附热交换器56,57排出到室外空间。
在上述第2发明,空气并行流经热源侧热交换器54和吸附热交换器56,57,其中一方的空气流通过热源侧热交换器54后被排出到室外空间,另一方的空气流通过吸附热交换器56,57后被排出到室外空间。
第3发明的特征在于:在第1或第2发明的空气调节装置中,其构成为,交替重复第1动作和第2动作;第1动作是,把通过了第1吸附热交换器56的空气供给到室内空间,同时,把通过第2吸附热交换器57的空气排出到室外空间;第2动作是,把上述第2吸附热交换器57的空气供给到室内空间,同时,把上述第1吸附热交换器56的空气排出到室外空间。
上述第3发明中,在空气调节装置的制冷剂回路40设有第1吸附热交换器56和第2吸附热交换器57。并且,在这个空气调节装置中,第1吸附热交换器56和第2吸附热交换器57的其中一方进行吸附空气中水分的吸附动作,同时,第1吸附热交换器56和第2吸附热交换器57的另一方进行吸附剂的水分脱附的脱附动作(再生动作)。
发明效果
本发明中,在制冷剂回路40设有吸附热交换器56,57,根据使空气通过吸附热交换器56,57来调节空气的湿度。换句话说,并非如同现有技术一样地使空气中的水分凝结来对空气除湿,而是让吸附剂吸附空气中的水分对空气除湿。因此,没有必要如同现有技术一样地,将冷冻循环的制冷剂蒸发温度设定的低于空气的露点温度,即使将制冷剂蒸发温度设定为空气的露点温度以上也能够对空气进行除湿。因此,根据本发明,即使对空气进行除湿的情况,也能够将冷冻循环的制冷剂蒸发温度设定成高于专利文献1,而能够缩小冷冻循环的高低压差。因此,将能够削减制冷剂压缩时所需的动力,而能够提高冷冻循环的COP(性能系数)。
若根据上述第1发明,使空气并行流通到利用侧热交换器55和吸附热交换器56,57,而供给到室内空间.这样一来,譬如比起使空气以直流流经利用侧热交换器55及吸附热交换器56,57的情况,随着空气的流动所产生的压力损失变小.因此,能够削减用来对这个空气换气的送风装置的动力,而使送风装置小型化.
进一步地,由于能够在利用侧热交换器55和吸附热交换器56,57并行处理空气,譬如分别调整流经利用侧热交换器55的空气的风量,以及流经吸附热交换器56,57的空气的风量,而能够个别地进行空气的温度调节和湿度调节。因此,提高了这个空气调节装置的空调的自由度而,能够提高室内空间的舒适性。
若根据上述第2发明,使空气并行流通到热源侧热交换器54和吸附热交换器56,57,而将其排出到室外空间。这样一来,譬如以直流使空气流经热源侧热交换器54和吸附热交换器56,57,则随着空气的流动产生的压力损失变小。因此能够削减用来对这个空气换气的送风装置的动力,因此,能够使送风装置小型化。
若根据上述第3发明,将在第1和第2吸附热交换器56,57的其中一方处理的空气供给到室内空间、同时将在第1和第2吸附热交换器56,57的另一方处理的空气排出到室外空间,能够同时进行第1和第2吸附热交换器56,57的吸附动作和再生动作。因此,能够连续地进行室内空间的冷气除湿和暖气加湿。
附图说明
图1示出实施例1的空气调节装置的第1动作时的空气流动的概念图。
图2示出实施例1的空气调节装置的第2动作时的空气流动的概念图。
图3示出实施例的制冷剂回路的结构和除湿冷却运转时的动作概略构成图。
图4示出实施例的制冷剂回路的结构和加湿暖气运转时的动作概略构成图。
图5示出实施例1变形例的空气调节装置的第1动作时的空气流动的概念图。
图6示出实施例1变形例的空气调节装置的第2动作时的空气流动的概念图。
图7示出实施例2的空气调节装置的第1动作时的空气流动的概念图。
图8示出实施例2的空气调节装置的第2动作时的空气流动的概念图。
图9示出实施例2变形例的空气调节装置的第1动作时的空气流动的概念图。
图10示出实施例2变形例的空气调节装置的第2动作时的空气流动的概念图。
图11示出实施例3的空气调节装置的第1动作时的空气流动的概念图。
图12示出实施例3的空气调节装置的第2动作时的空气流动的概念图。
图13示出实施例3的空气调节装置结构的概略结构图。
图14示出实施例3的空气调节装置的第1动作时的空气流动的概念图。
图15示出实施例3的空气调节装置的第2动作时的空气流动的概念图。
图16示出实施例3的空气调节装置的空气流动的概念图。
具体实施方式
以下,按照附图详细地说明本发明的实施例。
《实施例1》
以下说明有关本发明的实施例1.本实施例的空气调节装置10,在制冷剂回路40使制冷剂循环来进行蒸气压缩冷冻循环,以处理室内空间的显热负荷和潜热负荷两者.在这个空气调节装置10的制冷剂回路40,设置有作为热源侧热交换器的室外热交换器54、作为利用侧热交换器的室内热交换器55,以及两个吸附热交换器(第1、第2吸附热交换器)56,57.
如图1和图2所示,上述空气调节装置10的构成为所谓分离型,具备了室内机组11和室外机组12。室内机组11具有室内热交换器55,被安置在室内空间。另一方面,室外机组12具备有室外热交换器54、第1吸附热交换器56和第2吸附热交换器57,被安置在室外空间。室内机组11在构成上是所谓壁挂型,被安装在室内墙面。并且,上述室内机组11和上述室外机组12,通过制冷剂回路40的联络管路互相连接,该联络管路未示图。并且,在上述室内机组11和上述室外机组12之间,安装有空气通路,该通路详细如后述其未示图。
在这个空气调节装置10的制冷剂回路40中,如图3及图4所示,分别设置有1个压缩机50和电动膨胀阀53,并设置有2个四路转换阀51,52。并且,在制冷剂回路40分别设置有1个室外热交换器54和1个室内热交换器55,进一步地还设置有2个吸附热交换器56,57。
压缩机50的喷出侧连接到第1四路转换阀51的第1端口,压缩机的吸入侧连接到第1四路转换阀51的第2端口。室外热交换器54的一端连接到第1四路转换阀51的第3端口,另一端连接到第2四路转换阀52的第1端口。室内热交换器55的一端连接到第1四路转换阀51的第4端口,另一端连接到第2四路转换阀52的第2端口。在制冷剂回路40,从第2四路转换阀52的第3端口向着第4端口,按顺序设置有第1吸附热交换器56、电动膨胀阀53和第2吸附热交换器57。
室外热交换器54、室内热交换器55、以及吸附热交换器56,57都是以传热管和多个散热片(fin)所构成的翅片式(fin-and-tube)热交换器。其中,吸附热交换器56,57,在散热片表面附着有吸附剂。作为这个吸附剂,使用了沸石和硅胶等。另一方面,室外热交换器54及室内热交换器55,在各自散热片表面并未附着有附剂担,只进行空气和制冷剂的热交换。
上述第1四路转换阀51切换第1状态和第2状态,第1状态是第1端口和第3端口互相连通而第2端口和第4端口互相连通(如图3所示状态),第2状态是第1端口和第4端口互相连通而第2端口和第3端口互相连通(如图4所示状态)。另一方面,上述第2四路转换阀52切换第1状态和第2状态,第1状态是第1端口和第3端口互相连通而第2端口和第4端口互相连通(如图3(A)及图4(B)所示状态),第2状态是第1端口和第4端口互相连通而第2端口和第3端口互相连通的第2状态(图3(B)和图4(A)所示状态)。
在上述构成中,实施例1的空气调节装置10,其构成为,如图1及图2所示,将通过了室外机组12所具备的吸附热交换器56,57的空气经室内热交换器55来供给到室内空间。同时,空气调节装置10构成为,将通过了室外热交换器54的空气经吸附热交换器56,57排出到室外空间。进一步地,这个空气调节装置10,交替地重复第1动作和第2动作,第1动作是,将通过了第1吸附热交换器56的空气供给到室内空间同时将通过了第2吸附热交换器57的空气动作排出到室外空间,第2动作是,将通过了第2吸附热交换器57的空气供给到室内空间同时将通过了第1吸附热交换器56的空气排出到室外空间,所谓批式(batch)的连续除湿及加湿。
-运转动作-
接着,参照图1到图4说明关于实施例1的空气调节装置10的运转动作.本实施例的空气调节装置10中,进行除湿冷气运转和加湿暖气运转.并且,这个空气调节装置10,处理室外空气而供给到室内空间,同时,通过处理一部分的室内空气使其在室内空间循环,来进行室内空间的空调及换气.在这个空气调节装置10中,一旦运转未示图的室内风扇及排气风扇,则室内空气将被吸入室内机组11,另一方面,室外空气将吸入室外机组12.
<除湿冷气运转>
除湿冷气运转时,如图3所示,在制冷剂回路40中,第1四路转换阀51被设定成第1状态,同时电动膨胀阀53的开度受到适宜地调节,室外热交换器54成为凝结器,室内热交换器55成为蒸发器。并且,在这个空气调节装置10,交替重复第1动作和第2动作,第1动作(图3(B)状态)是,第1吸附热交换器56成为蒸发器而第2吸附热交换器57成为凝结器,第2动作(图3(A)状态)是,第2吸附热交换器57成为蒸发器而第1吸附热交换器56成为凝结器。
在第1动作中,如图1所示,被室外机组12所吸入的空气,分别流入第1吸附热交换器56和室外热交换器54。流入第1吸附热交换器56的空气,被流经第1吸附热交换器56的制冷剂夺取蒸发热而受到冷却,第1吸附热交换器56作为蒸发器发挥作用。进一步地,这个空气中的水分被第1吸附热交换器56所附着的吸附剂吸附,使得这个空气除受到除湿。根据第1吸附热交换器56被冷却及除湿的空气,流经室外机组12和室内机组11之间所设的未示图的空气通路,而流入室内机组11。这个空气,和被吸入到室内机组11的上述室内空气混合,流到室内热交换器55。这个混合空气,被流过室内热交换器55的制冷剂夺取蒸发热进一步地受到冷却,上述室内热交换器55作为蒸发器发挥作用。这样地受到冷却及除湿的空气,从室内机组11被供给到室内空间。
另一方面,被室外机组12所吸入的空气中,流入室外热交换器54的空气,被流经室外热交换器54的制冷剂给予凝结热而被加温,上述室外热交换器54作为凝结器发挥作用。在室外热交换器54被加温的空气,流到第2吸附热交换器57。这个空气,将第2吸附热交换器57的吸附剂的水分脱附,这个被脱附的水分被供给到空气。这样地,再生了第2吸附热交换器57的空气,从室外机组12被排出到室外空间。
在第2动作中,如图2所示,被室外机组12吸入的空气,分别流入第2吸附热交换器57和室外热交换器54。流入第2吸附热交换器57的空气,被流经第2吸附热交换器57的制冷剂夺取蒸发热而受到冷却,第2吸附热交换器57作为蒸发器发挥作用。进一步地,这个空气中的水分被第2吸附热交换器57附着的吸附剂所吸附,使得这个空气被除湿。根据第2吸附热交换器57被冷却及除湿的空气,流经室外机组12和室内机组11之间的未示图的空气通路,而流入到室内机组11。这个空气,和被吸入到室内机组11的上述室内空气混合,而流向室内热交换器55。这个混合空气,被流经室内热交换器55的制冷剂夺取蒸发热进一步地受到冷却,上述室内热交换器55作为蒸发器发挥作用。这样地被冷却及除湿的空气,从室内机组11被供给到室内空间。
另一方面,被室外机组12吸入的空气中,流入室外热交换器54的空气,被流经室外热交换器54的制冷剂给予凝结热而受到加温,上述室外热交换器54作为凝结器发挥作用。在室外热交换器54被加温的空气,流向第1吸附热交换器56。这个空气,将第1吸附热交换器56的吸附剂的水分脱附,使这个被脱附水分供给到空气。这样地,再生了第1吸附热交换器56的空气,被排出到室外空间。
<加湿暖气运转>
在加湿暖气运转时,如图4所示,在制冷剂回路40,第1四路转换阀51被设定成第2状态、同时电动膨胀阀53的开度受到适宜地调节,室内热交换器55成为凝结器,而室外热交换器54成为蒸发器。同时,这个空气调节装置10交替重复第1动作和第2动作,第1动作(图4(A)状态)是,第1吸附热交换器56成为凝结器而第2吸附热交换器57成为蒸发器,第2动作(图4(B)状态)是,第2吸附热交换器57成为凝结器而第1吸附热交换器56成为蒸发器。
在第1动作中,如图1所示,被室外机组12吸入的空气,分别流入第1吸附热交换器56和室外热交换器54。流入第1吸附热交换器56的空气,被流经第1吸附热交换器56的制冷剂供给凝结热而被加温,第1吸附热交换器56作为凝结器发挥作用。进一步地,这个空气,被赋予了从第1吸附热交换器56的吸附剂所脱附的水分而被加湿。根据第1吸附热交换器56加温及加湿的空气,流经室外机组12和室内机组11之间的未示图的空气通路,而流入室内机组11。这个空气,和被室内机组11吸入的上述室内空气混合,流向室内热交换器55。这个混合空气,被流经室内热交换器55的制冷剂赋予凝结热而进一步地受到加温,上述室内热交换器55作为凝结器发挥作用。这样地,被加温及加湿的空气,从室内机组11被供给到室内空间。
另一方面,被吸入到室外机组12的空气中,流入室外热交换器54的空气,被流经室外热交换器54的制冷剂夺取蒸发热而受到冷却,室外热交换器54作为蒸发器发挥作用。被室外热交换器54冷却的空气,流向第2吸附热交换器57。这个空气中的水分,被第2吸附热交换器57的吸附剂所吸附。这样地,被供给了第2吸附热交换器57水分的空气,从室外机组12被排出到室外空间。
在第2动作中,如图2所示,被室外机组12吸入的空气,分别流入第2吸附热交换器57和室外热交换器54。流入第2吸附热交换器57的空气,被流经第2吸附热交换器57的制冷剂给予凝结热而受到加温,上述第2吸附热交换器57作为凝结器发挥作用。进一步地,这个空气,被给予从第2吸附热交换器57的吸附剂所脱附的水分而受到加湿。根据第2吸附热交换器56受到加温及加湿的空气,流经室外机组12和室内机组11之间的未示图的空气通路,而流入室内机组11。这个空气,和被吸入到室内机组11的上述室内空气混合,流向室内热交换器55。这个混合空气,被流经室内热交换器55流的制冷剂给予凝结热进一步地受到加温,上述室内热交换器55作为凝结器发挥作用。这样地,受到加温及加湿的空气,自室内机组11被供给到室内空间。
另一方面,被吸入到室外机组12的空气中,流入室外热交换器54的空气,被流经室外热交换器54的制冷剂夺取蒸发热而受到冷却,上述室外热交换器54作为蒸发器发挥作用。在室外热交换器54受到冷却的空气,流向第1吸附热交换器56。这个空气中的水分,被第1吸附热交换器56的吸附剂所吸附。这样地,被给予了第1吸附热交换器56水分的空气,自室外机组12被排出到室外空间。
-实施例1的效果-
实施例1中,在制冷剂回路40设置了吸附热交换器56,57,根据使空气通过吸附热交换器56,57来调节空气的湿度.换句话说,并非如同现有技术一样地,使空气中的水分凝结来将空气除湿,而是让吸附剂吸附空气中的水分来将空气除湿.因此,没有必要如向来技术一样地,将冷冻循环的制冷剂蒸发温度设定地低于空气的露点温度,而即使将制冷剂蒸发温度设定成大于等于空气的露点温度,也能够将空气除湿.
因此,根据本实施例,将空气除湿时,能够将冷冻循环的制冷剂蒸发温度设定地比向来还高,而能够缩小冷冻循环的高低压差。结果,将能够削减压缩机50的消耗功率,提高冷冻循环的COP(性能系数)。
同时,实施例1中,使得通过了第1、第2吸附热交换器56,57的空气流向室内热交换器55,将这个空气自室内机组11供给到室内空间。因此,在除湿冷气运转时,能够通过第1、第2吸附热交换器56,57的吸附作用降低在室内热交换器55受到冷却的空气湿度。因此,能够降低室内热交换器55冷却空气时所产生的凝结水量。结果,能够使得设在室内热交换器55附近的、譬如排水回收装置等小型化。
并且,实施例1中,将通过了第1、第2吸附热交换器56,57的空气和室内空气混合后,使其流经室内热交换器55,不过,流经室内热交换器55的这个空气,也可以只是通过了第1、第2吸附热交换器56,57的室外空气,在这个情况时,根据上述理由,也能够降低室内热交换器55冷却空气时所产生的凝结水量。
并且,实施例1中,使通过了室外热交换器54的空气流经第1、第2吸附热交换器56,57,而将这个空气自室外机组12排出到室外。因此,在除湿冷气运转时,比起流经第1、第2吸附热交换器56,57的空气未在室外热交换器54受到加温的情况,流经第1、第2吸附热交换器56,57的空气温度成为高的温度。因此,提高了在第1、第2吸附热交换器56,57的吸附剂的水分脱附能力,也提高了这个吸附剂的再生效率。这样一来,除湿时以第1,第2吸附热交换器56,57的吸附剂吸附被供给到室内空间的空气中的水分时,也提高了这个吸附剂的吸附能力。结果,提高了这个空气调节装置10的除湿能力。
另一方面,在加湿暖气运转时,比起流经第1、第2吸附热交换器56,57的空气在室外热交换器54未被冷却的情况,流经第1、第2吸附热交换器56,57的空气温度为低。因此,提高了在第1、第2吸附热交换器56,57的吸附剂的水分吸附能力,也增加了这个吸附剂被给予的水分量。这样一来,加湿时被供给到室内空间的空气从吸附剂所被给予的水分量也增加。结果,提高了这个空气调节装置10的加湿能力。
同时,本实施例中,第1吸附热交换器56和第2吸附热交换器57构成了吸附热交换器。因此,能够交替重复第1动作和第2动作,连续进行除湿冷气运转及加湿暖气运转。
-实施例1的变形例-
如上述般,实施例1中,使通过了室外热交换器54的空气流向第1、第2吸附热交换器56,57,而自室外机组12排出到室外空间。
相对地,变形例的空气调节装置10,构成为,作为将空气自室外机组12排出到室外空间空气的动作,让空气并行流经室外热交换器54和吸附热交换器56,57,而将通过了室外热交换器54的空气和通过了吸附热交换器56,57的空气并行处理、排出到室外空间(参照图5及图6。并且,在这个变形例,空气调节装置10的其他构成和实施例1是相同。
-运转动作-
关于这个变形例的空气调节装置10的运转动作,将参照图3到图6进行说明.本实施例的空气调节装置10中,进行除湿冷气运转和加湿暖气运转.并且,这个空气调节装置10,通过处理室外空气而将其供给到室内空间、同时处理一部分的室内空气使其在室内空间循环,来进行室内空间的空调及换气.在这个空气调节装置10中,若运转室内风扇及排气风扇,除了室内空气被吸入到室内机组11,室外空气也被吸入到室外机组12,室内风扇和排气风扇未示图.
<除湿冷气运转>
在除湿冷气运转时,制冷剂回路40,成为如图3所示状态。并且,在这个空气调节装置10,交替重复制冷剂回路40成为图3(B)状态的第1动作、和制冷剂回路40成为图3(A)状态的第2动作。
在第1动作中,如图5所示,被吸入室外机组12的空气分别流入第1吸附热交换器56、室外热交换器54和第2吸附热交换器57。
流入第1吸附热交换器56的空气,被流经第1吸附热交换器56的制冷剂夺取蒸发热而受到冷却,第1吸附热交换器56作为蒸发器发挥作用。进一步地,这个空气中的水分被第1吸附热交换器56所附着的吸附剂吸附,将这个空气除湿。根据第1吸附热交换器56受到冷却及除湿的空气,流经室外机组12和室内机组11之间所设的未示图的空气通路,而流入室内机组11。这个空气,和被吸入室内机组11的上述室内空气混合,流向室内热交换器55。这个混合的空气,被流经室内热交换器55的制冷剂夺取蒸发热进一步地受到冷却,上述室内热交换器55作为蒸发器发挥作用。这样地,受到冷却及除湿的空气,自室内机组11被供给到室内空间。
另一方面,被室外机组12吸入的空气中,流向室外热交换器54的空气,被流经室外热交换器54的制冷剂给予凝结热而受到加温,室外热交换器54作为凝结器发挥作用。在室外热交换器54被加温的空气,自室内机组12被排出到室外空间。同时,被室外机组12吸入的空气中,流入第2吸附热交换器57的空气,被第2吸附热交换器57的吸附剂的水分脱附,这个被脱附的水分被供给到空气。这样地,再生了第2吸附热交换器57的空气,自室外机组12被排出到室外空间。
另一方面,在第2动作中,如图6所示,和第1动作相反地,以第2吸附热交换器57进行空气的除湿,第1吸附热交换器56的吸附剂通过空气被再生。除此以外的动作,和上述的第1动作相同。
<加湿暖气运转>
加湿暖气运转时,制冷剂回路40成为如图4所示状态。并且,在这个空气调节装置10,交替重复制冷剂回路40成为图4(A)状态的第1动作、和制冷剂回路40成为图4(B)状态的第2动作。
在第1动作中,如图5所示,被室外机组12吸入的空气,分别流入第1吸附热交换器56、室外热交换器54和第2吸附热交换器57。
流入第1吸附热交换器56的空气,被第1吸附热交换器56的制冷剂给予的凝结热受到加温,第1吸附热交换器56作为凝结器发挥作用。进一步地,这个空气,被给予了自第1吸附热交换器56脱附的水分而被加湿。根据第1吸附热交换器56被加温及加湿的空气,流经室外机组12和室内机组11之间所设的未示图的空气通路,而流入室内机组11。这个空气,和被吸入到室内机组11的上述室内空气混合,流向室内热交换器55。这个混合空气,被流经室内热交换器55的制冷剂给予凝结热而进一步地被加温,室内热交换器55作为凝结器发挥作用。这样地被加温及加湿的空气,自室内机组11被供给到室内空间。
另一方面,被室外机组12吸入的空气中,流入室外热交换器54的空气,被流经室外热交换器54的制冷剂夺取蒸发热而受到冷却,室外热交换器54作为蒸发器发挥作用。在室外热交换器54被冷却的空气,自室内机组12被排出到室外空间。并且,被室外机组12吸入的空气中,流入第2吸附热交换器57的空气中的水分,被第2吸附热交换器57的吸附剂所吸附。这样地,被第2吸附热交换器57的吸附剂给予水分的空气,自室外机组12被排出到室外空间。
在第2动作中,如图6所示,和第1动作相反地,以第2吸附热交换器57进行空气的加湿,空气中的水分被给予到第1吸附热交换器56的吸附剂。除此以外的动作,和上述的第1动作相同。
这个变形例的空气调节装置10中,在室外机组12,使得通过室外热交换器54的空气和通过吸附热交换器56,57的空气并行流通,而使其排出到室外空间。因此,比起譬如用直流使空气流通到吸附热交换器及室外热交换器,随着空气的流动所产生的压力损失变小。因此,能降低室外风扇的动力,而削减运转经费。并且,能够使室外风扇小型化。
《发明的实施例2》
接着,说明本发明的实施例2。如图7及图8所示,实施例2的空气调节装置10中,和实施例1相同地,其构成为所谓分离型,具有室内机组11和室外机组12。在这个空气调节装置10的制冷剂回路40,设置有室外热交换器54、室内热交换器55和第1、第2吸附热交换器56,57。
室内机组11,具备了室内热交换器55、第1吸附热交换器56和第2吸附热交换器57,被安装在室内空间。另一方面,室外机组12,具有室外热交换器54,被安装在室外空间。
实施例2的空气调节装置10中,如图7及图8所示,其构成为,使空气并行流经室内机组12所具备的室内热交换器55和吸附热交换器56,57,而将通过了上述室内热交换器55的空气和通过了上述吸附热交换器56,57的空气供给到室内空间。并且,这个空气调节装置10,其构成为,将通过吸附热交换器56,57的空气经室外热交换器54排出到室外空间。实施例2中除此以外的构成,和实施例1相同。
-运转动作-
关于实施例2中空气调节装置10的运转动作,将参照图3、图4、图7、图8来进行说明。本实施例的空气调节装置10中,进行除湿冷气运转和加湿暖气运转。并且,这个空气调节装置10,通过处理室内空气而送回到室内空间、同时将一部分的室内空气排出到室外空间,来进行室内空间的空调及换气。在这个空气调节装置10中,若运转未示图的室内风扇及排气风扇,除了室内空气被室内机组11吸入之外,室外空气被室外机组12吸入。
<除湿冷气运转>
除湿冷气运转时,制冷剂回路40成为如图3所示状态。并且,这个空气调节装置10中,交替重复制冷剂回路40成为图3(B)状态的第1动作、和制冷剂回路40成为图3(A)状态的第2动作。
在第1动作中,如图7所示,被室内机组11吸入的空气,分别流入第1吸附热交换器56、室内热交换器55和第2吸附热交换器57。
流入第1吸附热交换器56的空气,被流经第1吸附热交换器56的制冷剂夺取蒸发热而被冷却,第1吸附热交换器56作为蒸发器发挥作用.进一步地,这个空气中的水分被第1吸附热交换器56的吸附剂吸附,将这个空气除湿.根据第1吸附热交换器56受到冷却及除湿的空气,自室内机组11被供给到室内空间.
流入室内热交换器55的空气,被流经室内热交换器55的制冷剂夺走蒸发热被冷却,室内热交换器55作为蒸发器发挥作用。根据室内热交换器55被冷却的空气,自室内机组11被供给到室内空间。
另一方面,被室内机组11吸入的空气中,流入第2吸附热交换器57的空气,使第2吸附热交换器57的吸附剂的水分脱附,这个被脱附的水分将被供给到空气。这样地,再生了第2吸附热交换器57的空气,流经室内机组11和室外机组12之间所设未示图的空气通路,而流入室外机组12。这个空气,和被吸入室外机组12的上述室外空气混合,流向室外热交换器54。这个混合空气,被流经室外热交换器54的制冷剂给予了凝结热而被加温,自室外机组12被排出到室外空间。
另一方面,在第2动作中,如图8所示,和第1动作相反地,以第2吸附热交换器57进行空气的除湿,通过第1吸附热交换器56的吸附剂来使空气再生。除此以外的动作,和上述的第1动作相同。
<加湿暖气运转>
加湿暖气运转时,制冷剂回路40成为如图4所示状态。并且,这个空气调节装置10中,交替重复制冷剂回路40成为图4(A)状态的第1动作、和制冷剂回路40成为图4(B)状态的第2动作。
在第1动作中,如图7所示,被室内机组11吸入的空气,分别流入第1吸附热交换器56、室内热交换器55和第2吸附热交换器57。
流入第1吸附热交换器56的空气,被流经第1吸附热交换器56的制冷剂给予凝结热而受到加温,第1吸附热交换器56作为凝结器发挥作用。进一步地,这个空气,被给予了从第1吸附热交换器56脱附的水分而被加湿。根据第1吸附热交换器56被加温及加湿的空气,自室内机组11被供给到室内空间。
流入室内热交换器55的空气,被流经室内热交换器55的制冷剂给予凝结热而受到加温,室内热交换器55作为凝结器发挥作用。根据室内热交换器55被加温的空气,自室内机组11被供给到室内空间。
另一方面,被室内机组11吸入的空气中,流入第2吸附热交换器57的空气,对第2吸附热交换器57的吸附剂供给水分。并且,这个空气,流经室内机组11和室外机组12之间所设未示图的空气通路,而流入室外机组12。这个空气,和被吸入到室外机组12的上述室外空气混合,流向室外热交换器54。这个混合空气,被流经室外热交换器54的制冷剂夺取蒸发热受到冷却,自室外机组12被排出到室外空间,室外热交换器54作为蒸发器发挥作用。
另一方面,在第2动作中,如图8所示,和第1动作相反地,以第2吸附热交换器57进行空气的加湿,对第1吸附热交换器56的吸附剂供给空气中的水分。除此以外的动作,和上述的第1动作相同。
-实施例2的效果-
实施例2中,和实施例1相同的,根据在制冷剂回路40设置吸附热交换器56,57、使空气通过吸附热交换器56,57,来调节这个空气的湿度.因此,对空气除湿时能够将冷冻循环的制冷剂蒸发温度设定地高于现有技术,因此能够缩小冷冻循环的高低压差.结果,将能够削减压缩机50的消耗功率,能够提高冷冻循环的COP(性能系数).
并且,实施例2中,让空气并行流通到室内热交换器55和吸附热交换器56,57,让在室内热交换器55及吸附热交换器56,57受到个别处理的空气供给到室内空间。因此,比起譬如用直流使空气流向吸附热交换器及室内热交换器,随着空气的流动产生的压力损失变小。因此,能够削减室外风扇的动力,也能够使的这个室外风扇小型化。进一步地,由于能够在室内热交换器55和吸附热交换器56,57进行个别处理,譬如个别调整流经室内热交换器55的空气的风量、和流经吸附热交换器56,57的空气的风量,而能够个别进行室内空间的温度调节和湿度调节。因此,提高了在这个空气调节装置11的空调的自由度,而提高了室内空间的舒适性。
进一步地,实施例2中,使得通过第1、第2吸附热交换器56,57的空气流向室外热交换器54,将这个空气自室外机组12排出到室外空间。因此,在加湿暖气运转时,能够根据第1、第2吸附热交换器56,57的吸附作用来降低在室外热交换器54被冷却的空气湿度。因此,能够降低室外热交换器54冷却空气时所产生的凝结水量。结果,能够使得设置在室外热交换器54附近的、譬如排水回收装置等小型化。并且,能够抑制这个凝结水的冻结,使得防止这个冻结的装置不需要或是小型化。因此,能够将这个空气调节装置设置更不占空间。
并且,实施例2中,使得通过了第1、第2吸附热交换器56,57之后的空气和室外空气混合后,使其流经室外热交换器54,不过,这个流经室外热交换器54的空气,也可以只是通过第1、第2吸附热交换器56,57后的室内空气,在这个情况时根据上述理由也能够降低室外热交换器54冷却空气时所产生的凝结水量。
-实施例2的变形例-
这个变形例,和在实施例2空气调节装置10中,所处理的空气的流动不同。这个变形例的空气调节装置10,如图9及图10所示,其构成为,以第1、第2吸附热交换器56,57将通过室内热交换器55的空气供给到室内空间,来作为自室内机组11供给到室内空间空气的动作。并且,在这个空气调节装置10,并没有实施例2中室内机组11和室外机组12之间所设的上述的空气通路,而在室内机组11设有未示图的排气通路,用来将被处理的空气排出到室外空间。除此之外,这个变形例的空气调节装置10的其他构成,和实施例2相同。
-运转动作-
关于这个变形例的空气调节装置10的运转动作,将参照图3、图4,图9、图10进行说明。本实施例的空气调节装置10中,进行除湿冷气运转和加湿暖气运转。并且,这个空气调节装置10,通过处理室内空气送回到室内空间同时将室内空气的一部分排出到室外空间,来进行室内空间的空调及换气。在这个空气调节装置10中,若运转未示图的室内风扇及排气风扇,除了室内空气被室内机组11吸入之外,室外空气被室外机组12吸入。
<除湿冷气运转>
除湿冷气运转时,制冷剂回路40成为如图3所示状态。并且,这个空气调节装置10中,交替重复制冷剂回路40成为图3(B)状态的第1动作、和制冷剂回路40成为图3(A)状态的第2动作。
在第1动作中,如图9所示,被室内机组11吸入的空气,分别流入室内热交换器55和第2吸附热交换器57。
流入室内热交换器55的空气,在作为蒸发器的室内热交换器55受到冷却。这个空气的一部分流经第1吸附热交换器56,并且,剩余的空气自室内机组11被供给到室内空间。流经第1吸附热交换器56的空气,在作为蒸发器的第1吸附热交换器56受到冷却,进一步地通过第1吸附热交换器56的吸附剂,来吸附空气中的水分进行除湿。这样地被冷却及除湿的空气,自室内机组11被供给到室内空间。
并且,被室内机组10吸入的室内空气中,流入第2吸附热交换器57的空气,将第2吸附热交换器57的吸附剂的水分脱附,这个被脱附的水分将被供给到空气。这样一来,再生了第2吸附热交换器57的空气,而通过上述的排气通路被排出到室外空间。
另一方面,在第2动作中,如图10所示,和第1动作相反地,以第2吸附热交换器57进行空气的除湿,通过空气来再生第1吸附热交换器56的吸附剂。除此以外的动作,和上述的第1动作相同。
<加湿暖气运转>
在加湿暖气运转时,制冷剂回路40成为如图4所示状态。并且,这个空气调节装置10中,交替重复制冷剂回路40成为图4(A)状态的第1动作、和制冷剂回路40成为图4(B)状态的第2动作。
在第1动作中,如图9所示,被室内机组11吸入的空气,分别流入室内热交换器55和第2吸附热交换器57。
流入室内热交换器55的空气,在作为凝结器的室内热交换器55受到加温。这个空气的一部分流经第1吸附热交换器56,剩余的空气自室内机组11被供给到室内空间。流经第1吸附热交换器56的空气,被供给自第1吸附热交换器56的吸附剂所脱附的水分而被加湿。这样地,被加温及加湿的空气,自室内机组11被供给到室内空间。
并且,被室内机组10吸入的室内空气中,流入第2吸附热交换器57的空气,向第2吸附热交换器57的吸附剂供给水分。并且,这个空气,通过上述的排气通路被排出到室外空间。
另一方面,在第2动作中,如图10所示,和第1动作相反地,以第2吸附热交换器57进行空气的加湿,向第1吸附热交换器56的吸附剂供给空气中的水分。除此以外的动作,和上述的第1动作相同的。
这个变形例中,使通过室内热交换器55的空气流向第1、第2吸附热交换器56,57,将这个空气自室内机组11供给到室内空间。因此,在除湿冷气运转时,比起不以室内热交换器55来冷却流经第1、第2吸附热交换器56,57的空气,流经第1、第2吸附热交换器56,57的空气温度成为低的温度。因此,提高了在第1、第2吸附热交换器56,57的吸附剂的水分的吸附能力。结果,也提高了这个空气调节装置10的除湿能力。
另一方面,在加湿暖气运转时,比起在室内热交换器55不将流经第1,第2吸附热交换器56,57的空气加温的情况,流经第1、第2吸附热交换器56,57的空气温度成为高的温度。因此,提高了在第1、第2吸附热交换器56,57的吸附剂的水分的脱附能力。这个结果,提高了这个空气调节装置10的加湿能力。
并且,这个变形例中,使得通过了室内热交换器55的一部分的空气流向第1,第2吸附热交换器56,57,但是也可以使通过室内热交换器55的所有空气流向第1,第2吸附热交换器56,57,而在这个情况下根据上述理由也能够提高除湿及加湿能力.
《实施例3》
接着,将参照附图详细说明关于本发明实施例3的空气调节装置10。在这个空气调节装置10的制冷剂回路40,设置有室外热交换器54和室内热交换器55、以及第1,第2吸附热交换器56,57。这个制冷剂回路40的构成,如图3及图4所示,和上述实施例1、2相同。
如图11及图12所示,上述空气调节装置10,其构成为,所谓分离型,具备了室内机组11和室外机组12。室内机组11,具有室内热交换器55,被安装在室内空间。这个室内机组11构成为所谓壁挂型,被安装在室内的墙面。另一方面,室外机组12,具备了室外热交换器54、第1吸附热交换器56和第2吸附热交换器57,被安装在室外空间。并且,如图13所示,室内机组11和室外机组12,通过制冷剂回路40的气体侧联络管路43及液侧联络管路44互相连接。并且,室外机组12的室外护箱13,收纳有室外热交换器54的其他压缩机50和室外风扇14。
室内机组11,具有横宽的箱子所形成的室内护箱(casing)20。室内护箱20中,在其前面安装有室内热交换器55、第1吸附热交换器56和第2吸附热交换器57。更具体地来说,在室内护箱20的前面上部,左右安装了第1吸附热交换器56和第2吸附热交换器57。以从前面侧看室内护箱20的状态,第1吸附热交换器56偏左面,第2吸附热交换器57偏右被分别设置。在室内护箱20前面中,第1吸附热交换器56及第2吸附热交换器57的下方,安装有室内热交换器55,在室内热交换器55的下方喷出口26开启。
在室内护箱20的内部空间,被隔开成前面侧和背面侧。室内护箱20中的背面侧空间,构成了排气通路24。在室内护箱20中前面侧的空间,被上下隔开。这个前面侧的空间中的下方空间,位于室内热交换器55背面侧,构成着供气通路23。另一方面,前面侧的空间中的上侧空间,进一步地被左右隔开。并且,各自构成位于左侧的第1吸附热交换器56背面侧的第1吸附空间21,和位于右侧的第2吸附热交换器57背面侧的第2吸附空间22。
在室内护箱20中的排气通路24,收纳有排气风扇32。并且,在排气通路24,连接有开口于室外的排气导管25。另一方面,供气通路23,收纳有室内风扇31。这个供气通路23,连通到喷出口26。
在室内护箱20,设置有四个开关式的挡板(damper)33~36。具体地,分别在第1吸附空间21和供气通路23之间隔设有第1供气挡板33、在第1吸附空间21和排气通路24之间隔设有第1排气挡板34。并且,分别在第2吸附空间22和供气通路23之间隔设有第2供气挡板35,在第2吸附空间22和排气通路24之间隔设有第2排气挡板36。
在上述构成中,这个空气调节装置10,如图11及图12所示,使空气并行流经室内机组11所具备的室内热交换器55和吸附热交换器56,57,进行供给通过上述室内热交换器55的空气和通过上述吸附热交换器56,57的空气的动作,来对室内空间进行除湿或加湿。
-运转动作-
本实施例的空气调节装置10中,进行除湿冷气运转和加湿暖气运转,这里,将只说明关于这个空气调节装置10的除湿冷气运转。
在这个空气调节装置10中,若运转室内风扇31及排气风扇32,室内空气将分别流入室内热交换器55、第1吸附热交换器56、和第2吸附热交换器57.并且,若运转室外风扇14,室外空气将流入室外热交换器54.
在除湿冷气运转中,如图3所示,在制冷剂回路40,第1四路转换阀51被设定成第1状态、同时电动膨胀阀53的开度受到适宜地调节,室外热交换器54成为凝结器、而室内热交换器55成为蒸发器。并且,这个空气调节装置10中,交替重复第1吸附热交换器56成为蒸发器而第2吸附热交换器57成为凝结器的第1动作(图3(B)状态),和第2吸附热交换器57成为蒸发器而第1吸附热交换器56成为凝结器的第2动作(图3(A)状态)。
第1动作,如图14所示,第1供气挡板33及第2排气挡板36成为开启状态,第1排气挡板34及第2供气挡板35成为关闭状态。并且,空气的流动成为如图11所示状态。
流入第1吸附热交换器56的空气,在作为蒸发器的第1吸附热交换器56被冷却,进一步地通过第1吸附热交换器56的吸附剂,吸收了空气中的水分而加以除湿。在第1吸附热交换器56被除湿的空气,从第1吸附空间21通过第1供气挡板33流入供气通路23。另一方面,流入室内热交换器55的空气,在作为蒸发器的室内热交换器55受到冷却。并且,在室内热交换器55被冷却的空气,在供气通路23,和在上述第1吸附热交换器56被除湿及被冷却的空气混合。并且,这个混合空气,自喷出口26被供给到室内空间。
同时,流入第2吸附热交换器57的空气,脱附了第2吸附热交换器57的吸附剂的水分,将这个水分供给到空气。这样地,再生的第2吸附热交换器57的空气,从第2吸附空间22通过第2排气挡板36流入到排气通路24,而通过排气导管25被排出到室外空间。
第2动作,如图15所示,第1排气挡板34及第2供气挡板35成为开启状态,第1供气挡板33及第2排气挡板36成为关闭状态。并且,空气的流动成为如图12所示状态。
流入第2吸附热交换器57的空气,在作为蒸发器的第2吸附热交换器57受到冷却,进一步地通过第2吸附热交换器57的吸附剂,将空气中的水分吸附而加以除湿。在第2吸附热交换器57被除湿的空气,从第2吸附空间22通过第2供气挡板35流入供气通路23。另一方面,流入室内热交换器55的空气,在作为蒸发器的室内热交换器55受到冷却。并且,在室内热交换器55受到冷却的空气,在供气通路23,和在上述第2吸附热交换器57被除湿及冷却的空气混合。并且,这个混合空气,自喷出口26被供给到室内空间。
并且,流入第1吸附热交换器56的空气,脱附第1吸附热交换器56的吸附剂的水分,将这个水分供给到空气。这样地再生的第1吸附热交换器56的空气,从第1吸附空间21通过第1排气挡板34流入到排气通路24,而通过排气导管25被排出到室外空间。
-实施例3的效果-
在实施例3,和实施例1,2相同地,通过在制冷剂回路40设置吸附热交换器56,57使空气通过吸附热交换器56,57来调节这个空气的湿度。因此,对空气除湿时能够比将冷冻循环的制冷剂蒸发温度设定地高于现有技术中所设定的,而能够缩小冷冻循环的高低压差。结果,能够削减压缩机50的消耗功率,而提高冷冻循环的COP(性能系数)。
并且,在实施例3,使空气并行流通到室内热交换器55和吸附热交换器56,57而供给到室内空间,在室内热交换器55及吸附热交换器56,57被个别处理的空气供给到室内空间。因此,比起譬如用直流使空气流通到吸附热交换器及室内热交换器,随着空气的流动产生的压力损失变小。因此,能够削减室内风扇31的动力,使得室内风扇31小型化。同时,能够使得这个空气调节装置10设计更为不占空间。
-实施例3的变形例-
这个变形例是,在实施例3的空气调节装置10,将空气的流动一部分变更。在这个空气调节装置10,如图16所示,除了从室内向室外的排气之外,将从室外所吸入的室外空气导入其中一个吸附热交换器56,57,而将通过了该吸附热交换器56,57的空气向室外排出。这时,若是除湿冷气运转时,向成为凝结器的吸附热交换器56,57两者供给室内空气和室外空气,而将通过这个吸附热交换器56,57的空气排出室外空间。
根据这个变形例,能够将通过吸附热交换器56,57的设定成多于来自室内的排气量。因此,若是除湿冷气运转中,则能够提高通过成为凝结器的吸附热交换器56,57的风量,使得该吸附热交换器56,57的再生充分进行。并且,如果是加湿暖气运转中,能够提高通过成为蒸发器的吸附热交换器56,57的风量,而提高被该吸附热交换器56,57所吸附的水分量。
《其他实施例》
在上述实施例,也可以是如下构成。
如上述实施例中所述,空气调节装置10,其构成为,进行使得通过吸附热交换器56,57的空气流经室内热交换器55的第1供气形态、使通过室内热交换器55的空气流经吸附热交换器的第2供气形态、或并行流经室内热交换器55和吸附热交换器56,57的第3供气形态,来作为向室内空间供给空气的动作。并且,上述实施例中所述,空气调节装置10,其构成为,进行使通过吸附热交换器56,57的空气流经室外热交换器54的第1排气形态、使通过室外热交换器54的空气流经吸附热交换器56,57的第2排气形态、或并行流通室外热交换器54和吸附热交换器56,57的第3排气形态、作为将空气排出室外空间。这样的供气形态和排气图形的组合,可以是成为第1、第2、第3供气形态任何一个和第1、第2、第3排气形态的任何一个的组合。
并且,这个空气调节装置10,一方面以第1、第2、第3供气形态的其中一种形态向室内空间供给空气,另一方面,在将空气排出到室外空间的动作中,可以是第1、第2、第3排气形态以外。进一步地,这个空气调节装置10,一方面可以是以第1、第2、第3排气形态的任何一种形态1将空气排出到室外空间,另一方面,在将空气供给室内空间的动作中,也可以是1、第2、第3供气形态以外。
并且,本实施例中,制冷剂回路40设有2个吸附热交换器56,57,不过,这个吸附热交换器也可以是一个。这个情况时,能够以吸附热交换器,交替进行吸附动作和再生动作,来进行间歇运转的除湿或加湿。
进一步地,本实施例中,在制冷剂回路40设有作为利用侧热交换器的室内热交换器55、和作为热源侧热交换器的室外热交换器54。这里,上述利用侧热交换器,不一定需要设置在室内空间,也可以设置在室外空间。并且,上述热源侧热交换器,也不一定需要设置在室外空间,也可以设置在室内空间。进一步地,也可以在制冷剂回路设置多个上述的利用侧热交换器和热源侧热交换器。
产业上的利用可能性
如上述说明,本发明对于进行冷冻循环处理室内的显热负荷及潜热负荷的空气调节装置非常有用。

Claims (3)

1.一种空气调节装置,具备了设有热源侧热交换器和利用侧热交换器的制冷剂回路,在所述制冷剂回路进行冷冻循环,而将通过所述利用侧热交换器的空气供给到室内空间来处理室内的显热负荷及潜热负荷,其特征在于:
在所述制冷剂回路设有吸附热交换器,在所述吸附热交换器表面附着有进行水分吸脱的吸附剂;
构成为,让空气并行流通到所述利用侧热交换器和所述吸附热交换器而供给到室内空间。
2.一种空气调节装置,具备了设有热源侧热交换器和利用侧热交换器的制冷剂回路,在所述制冷剂回路进行冷冻循环,而将通过所述利用侧热交换器的空气供给到室内空间来处理室内的显热负荷及潜热负荷,其特征在于:
在所述制冷剂回路设有吸附热交换器,在所述吸附热交换器表面附着有进行水分吸脱的吸附剂;
构成为,让空气并行流通到所述热源侧热交换器和所述吸附热交换器而将空气排出到室外空间。
3.根据权利要求1或2所述的空气调节装置,其特征在于:
吸附热交换器由第1吸附热交换器和第2吸附热交换器构成,
构成为交替重复第1动作和第2动作,该第1动作是将通过所述第1吸附热交换器的空气供给到室内空间、同时将通过所述第2吸附热交换器的空气排出到室外空间,该第2动作是将通过所述第2吸附热交换器的空气供给到室内空间、同时将通过上述第1吸附热交换器的空气排出到室外空间。
CN2004800357564A 2003-12-04 2004-10-20 空气调节装置 Expired - Fee Related CN1890508B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP405600/2003 2003-12-04
JP2003405600A JP3668786B2 (ja) 2003-12-04 2003-12-04 空気調和装置
PCT/JP2004/015491 WO2005054752A1 (ja) 2003-12-04 2004-10-20 空気調和装置

Publications (2)

Publication Number Publication Date
CN1890508A CN1890508A (zh) 2007-01-03
CN1890508B true CN1890508B (zh) 2010-05-12

Family

ID=34650226

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800357564A Expired - Fee Related CN1890508B (zh) 2003-12-04 2004-10-20 空气调节装置

Country Status (7)

Country Link
US (1) US7930896B2 (zh)
EP (1) EP1804005A4 (zh)
JP (1) JP3668786B2 (zh)
KR (1) KR100711625B1 (zh)
CN (1) CN1890508B (zh)
AU (1) AU2004295536B2 (zh)
WO (1) WO2005054752A1 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3649236B2 (ja) * 2003-10-09 2005-05-18 ダイキン工業株式会社 空気調和装置
AU2005227460B2 (en) * 2004-03-31 2008-10-30 Daikin Industries, Ltd. Humidity control system
JP4683548B2 (ja) * 2005-07-26 2011-05-18 新日本空調株式会社 デシカント式換気装置
US8141374B2 (en) * 2008-12-22 2012-03-27 Amazon Technologies, Inc. Multi-mode cooling system and method with evaporative cooling
JP4502065B1 (ja) * 2009-01-30 2010-07-14 ダイキン工業株式会社 ドレンレス空気調和装置
US9377207B2 (en) 2010-05-25 2016-06-28 7Ac Technologies, Inc. Water recovery methods and systems
US8584479B2 (en) * 2010-08-05 2013-11-19 Sanyo Electric Co., Ltd. Air conditioner having a desiccant rotor with moisture adsorbing area
JP5234205B2 (ja) * 2011-06-01 2013-07-10 ダイキン工業株式会社 空気調和装置の室外機
JP5772479B2 (ja) * 2011-10-13 2015-09-02 ダイキン工業株式会社 空気調和装置
ES2755800T3 (es) 2012-06-11 2020-04-23 7Ac Tech Inc Métodos y sistemas para intercambiadores de calor turbulentos y resistentes a la corrosión
ES2643753T3 (es) * 2012-09-04 2017-11-24 Daikin Industries, Ltd. Dispositivo de control de humedad
KR20150122167A (ko) 2013-03-01 2015-10-30 7에이씨 테크놀로지스, 아이엔씨. 흡습제 공기 조화 방법 및 시스템
KR102099693B1 (ko) 2013-03-14 2020-05-15 7에이씨 테크놀로지스, 아이엔씨. 소형-분할형 액체 흡수제 공조 방법 및 시스템
KR102223241B1 (ko) 2013-06-12 2021-03-05 7에이씨 테크놀로지스, 아이엔씨. 천장형 액체 흡습제 공조 시스템
KR102391093B1 (ko) 2014-03-20 2022-04-27 에머슨 클리메이트 테크놀로지즈 인코퍼레이티드 옥상 액체 데시컨트 시스템 및 방법
EP3667190A1 (en) * 2014-11-21 2020-06-17 7AC Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
US20180283744A1 (en) * 2015-01-08 2018-10-04 Bry Air [Asia] Pvt. Ltd. Split level sorption refrigeration system
JP6555710B2 (ja) * 2015-04-23 2019-08-07 一般財団法人電力中央研究所 冷凍・冷蔵システム
KR101667979B1 (ko) * 2015-06-19 2016-10-21 한국생산기술연구원 제습 및 가습 기능을 갖는 공기조화기와 이를 이용한 제습냉방 및 가습난방 방법
CN105928098A (zh) * 2016-06-16 2016-09-07 珠海格力电器股份有限公司 空调器
EP3704416B1 (en) 2017-11-01 2023-04-12 Emerson Climate Technologies, Inc. Methods and apparatus for uniform distribution of liquid desiccant in membrane modules in liquid desiccant air-conditioning systems
EP3704415A4 (en) 2017-11-01 2021-11-03 7AC Technologies, Inc. TANK SYSTEM FOR AN AIR CONDITIONING SYSTEM WITH LIQUID DRYING AGENTS
US11022330B2 (en) 2018-05-18 2021-06-01 Emerson Climate Technologies, Inc. Three-way heat exchangers for liquid desiccant air-conditioning systems and methods of manufacture
US11892192B1 (en) 2019-08-22 2024-02-06 Transaera, Inc. Air conditioning system with multiple energy storage sub-systems
CN111288571B (zh) * 2020-05-12 2020-08-04 湖南翰坤实业有限公司 一种空气除湿净化一体机
US11874018B1 (en) 2020-11-04 2024-01-16 Transaera, Inc. Cooling and dehumidifcation system
WO2023085166A1 (ja) * 2021-11-09 2023-05-19 ダイキン工業株式会社 空気調和装置
WO2023192651A1 (en) * 2022-03-31 2023-10-05 Transaera, Inc. Systems and methods for controlling and treating gas streams

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1265731A (zh) * 1997-10-24 2000-09-06 株式会社荏原制作所 除湿空调***及其运转方法
CN1349603A (zh) * 1999-03-05 2002-05-15 大金工业株式会社 空气调和装置
CN1446301A (zh) * 2000-09-12 2003-10-01 大金工业株式会社 空调机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265649A (ja) * 1994-03-31 1995-10-17 Kobe Steel Ltd 乾式除湿装置
JP3505786B2 (ja) * 1994-06-17 2004-03-15 ダイキン工業株式会社 空気調和機
JP3157994B2 (ja) * 1994-10-28 2001-04-23 シャープ株式会社 加湿機能付き空気調和機
JPH08189667A (ja) * 1995-01-06 1996-07-23 Hitachi Ltd 除加湿装置
JP2989513B2 (ja) * 1995-04-03 1999-12-13 シャープ株式会社 除加湿機能付き空気調和機
JP2001201106A (ja) * 2000-01-18 2001-07-27 Matsushita Electric Ind Co Ltd 空気調和機
ES2366535T3 (es) 2001-09-28 2011-10-21 Daikin Industries, Ltd. Acondicionador de aire.
JP3668763B2 (ja) * 2003-10-09 2005-07-06 ダイキン工業株式会社 空気調和装置
JP3649236B2 (ja) * 2003-10-09 2005-05-18 ダイキン工業株式会社 空気調和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1265731A (zh) * 1997-10-24 2000-09-06 株式会社荏原制作所 除湿空调***及其运转方法
CN1349603A (zh) * 1999-03-05 2002-05-15 大金工业株式会社 空气调和装置
CN1446301A (zh) * 2000-09-12 2003-10-01 大金工业株式会社 空调机

Also Published As

Publication number Publication date
KR100711625B1 (ko) 2007-04-27
JP3668786B2 (ja) 2005-07-06
AU2004295536A1 (en) 2005-06-16
US7930896B2 (en) 2011-04-26
EP1804005A1 (en) 2007-07-04
AU2004295536B2 (en) 2008-01-10
EP1804005A4 (en) 2010-04-28
JP2005164165A (ja) 2005-06-23
CN1890508A (zh) 2007-01-03
WO2005054752A1 (ja) 2005-06-16
KR20060117969A (ko) 2006-11-17
US20080307814A1 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
CN1890508B (zh) 空气调节装置
KR101228748B1 (ko) 드레인리스 공기 조화 장치
CN100507378C (zh) 调湿装置
US4941324A (en) Hybrid vapor-compression/liquid desiccant air conditioner
CN100432554C (zh) 空气调节装置
CN100432553C (zh) 空气调节装置
CN100578102C (zh) 调湿装置
KR100904592B1 (ko) 조습장치
CN103727615A (zh) 蒸发式冷凝热泵式全热回收新风机组
CN105737302A (zh) 基于干空气能的中央空调
CN112944477B (zh) 新风***以及包含该新风***的空调器
CN112923459B (zh) 新风***
KR100430278B1 (ko) 히트파이프를 적용한 에너지 절약형 폐열회수 공기조화기
CN217654015U (zh) 湿度调节装置
KR100728590B1 (ko) 절전형 고효율 히트펌프 환기장치
KR20090008542A (ko) 소음 저감 구조를 갖는 공기 조화기
JP4179052B2 (ja) 調湿装置
JPH0894202A (ja) 空気調和装置
CN220817954U (zh) 空气处理***
CN219913283U (zh) 新风调湿机
CN115183441B (zh) 空调器
JP3484693B2 (ja) 空冷ヒートポンプ式蓄熱空調機
CN117006546A (zh) 新风除湿一体机自清洁方法
JP2013044495A (ja) 調湿装置
JP2002323233A (ja) 床置形ヒートポンプ式空調機

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100512

Termination date: 20161020

CF01 Termination of patent right due to non-payment of annual fee