CN1842356A - 生物电刺激、加速愈合、减轻疼痛或病原体失活的装置和方法 - Google Patents

生物电刺激、加速愈合、减轻疼痛或病原体失活的装置和方法 Download PDF

Info

Publication number
CN1842356A
CN1842356A CNA2004800243258A CN200480024325A CN1842356A CN 1842356 A CN1842356 A CN 1842356A CN A2004800243258 A CNA2004800243258 A CN A2004800243258A CN 200480024325 A CN200480024325 A CN 200480024325A CN 1842356 A CN1842356 A CN 1842356A
Authority
CN
China
Prior art keywords
interval
level
timing
signal
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800243258A
Other languages
English (en)
Other versions
CN1842356B (zh
Inventor
J·W·科隆博格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Healthonics Inc
Original Assignee
Healthonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Healthonics Inc filed Critical Healthonics Inc
Publication of CN1842356A publication Critical patent/CN1842356A/zh
Application granted granted Critical
Publication of CN1842356B publication Critical patent/CN1842356B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36021External stimulators, e.g. with patch electrodes for treatment of pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/025Digital circuitry features of electrotherapy devices, e.g. memory, clocks, processors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/326Applying electric currents by contact electrodes alternating or intermittent currents for promoting growth of cells, e.g. bone cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36071Pain

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pain & Pain Management (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cell Biology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Electrotherapy Devices (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Finger-Pressure Massage (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

一种产生用于生物医学应用的电信号的装置和方法,包括两个计时间隔发生器,每个任选地驱动多阶定序机;用于将合成的计时信号合并成复杂的电信号的模拟、数字或混合装置;用于阻断直流电、从而除去合成信号中的所选频率分量和/或使电压上升(如果需要的话)的任选滤波装置;以及用于将合成信号耦合到人或动物体、食品、饮料或其它液体、细胞或组织培养物或药物材料中以便减轻疼痛、刺激愈合或生长、增强特定生化制品的产生或使所选类型的有机体失活的导电装置。

Description

生物电刺激、加速愈合、减轻疼痛或 病原体失活的装置和方法
相关申请的交叉参考
本发明申请要求2003年6月24日提交的序列号为60/480,890的美国临时申请的优先权。
发明的技术领域
本发明涉及一种用于生物医学应用的脉冲信号发生器。尤其是,本发明涉及一种轻型、紧凑的脉冲信号发生器,这种发生器产生基于以下特征的独特输出波形:多个相对长的一级计时间隔T1、T2等,从而接连形成一级重复循环;多个较短的二级计时间隔t1、t2等,所述至少一个一级间隔被分成所述多个二级计时间隔,并且所述二级间隔接连形成在整个一级间隔的长度中持续的二级重复循环,而至少另一个所述一级间隔没有被如此细分;多个恒压或恒电流电平L1、L2等,其中之一是在每个一级或二级计时间隔中被选择的。
在一个任选的实施方案中,输出波形包括紧紧跟随脉冲群的均衡脉冲。在又一个实施方案中,输出波形包括任选地与均衡脉冲组合的逐渐步入和步出周期。
此外,本发明包括用于将这些所选择的电平组合成具有阶式波形的电信号的电路,和用于进一步处理此信号以改变其幅度或去除不需要的D.C.或频率分量的电路。
本发明还包括电导***,该***用于将这样的信号施加给人体、动物体、离体组织或细胞培养物、食品、饮料或其它材料,以便减轻疼痛、刺激愈合或者使可能存在的选择性病原有机体失活。
背景技术
创伤、感染和变性疾病是疼痛、丧失机能的不便利、花费、失去工作(和闲暇)时间以及递减的生产力的主要根源。有关这些疾病的问题随着年龄的增长而日益恶化,因为对于年轻、健康人来说很快治愈的创伤,对于年老、体质差或二者皆有的人来说就需要花费更长的时间才能治愈。在人口老化社会,诸如在大部分工业化国家中目前所看到的那些现象,这些社会和经济冲击在未来的几十年中将愈演愈烈。
虽然难以估计这些疾病的总花费,但是撇开它们对生活质量的影响不说,单单在美国每年的总花费肯定在上十亿美元。例如,每年有5百万至1千万的美国居民遭受骨折,并且其中许多情况涉及到多个骨折。对于年轻、健康的病人,许多骨折需要用石膏固定6周、甚至更长时间。即使在拆除石膏之后,病人的行动也常常受到限制,直到愈合的骨重新获得其充分强度为止。对于年老者来说,体质差或营养不良的病人、有多个骨折的病人或具有影响愈合过程的疾病的病人,其骨折愈合得要更漫长。在一些情形中,骨折根本不能愈合,从而导致有时持续一生的被称作“骨不连合”、“骨不连合的骨折”或“延迟连合”的状况的发生。
因此,据估计,每年在美国单单由于骨折而丧失25万人年的劳动力。类似的统计不仅针对其它类外伤性伤害,而且还针对慢性疾病例如骨关节炎、骨质疏松、溃疡(糖尿病的、静脉淤滞、小动脉灌注不足)、损坏的韧带、腱炎和重复应力损伤(包括统称为“网球员肘”和腕管综合征的疾病)。
1960年以来,已经日益认识到,人体受到伤害、应力和其它因素的结果是产生一批低电平电信号;这些信号在愈合和疾病恢复过程中起到必要作用;通过提供在频率、波形和强度上模拟人体自己的人工产生的信号,能够加速这样的过程。这样的“模拟”信号已经显示,对人体具有许多作用,包括有助于引导移动细胞例如成纤维细胞和巨噬细胞到达需要它们的部位(趋电性),并使细胞生长因子例如转变生长因子β(TGF-β)和***(IGF)释放。这些结果可包括皮肤和肌肉创伤(包括慢性溃疡例如由于糖尿病所导致的溃疡)的更快愈合,而且伤疤最小;骨折(包括大部分骨不连合的骨折)的修复;损伤或严重损伤神经的再生;由于反复运动而损坏的组织的修复,如在腱炎和骨关节炎中;以及肿胀、感染和疼痛(包括通常的基于药物的治疗都不能令人满意地减轻的慢性疼痛)的减轻。
一些人体信号,例如在创伤中测量的“损伤电位”或“损伤电流”,仅仅是DC(直流电),从而随时间改变缓慢。已经发现,骨折修复和神经再生在负电极附近一般比平常更快些,但在正电极附近要更慢些,因为在此处在一些情况下可发生组织萎缩或坏死。由于此原因,大部分最近的研究都集中于经常具有非净DC分量的更高频率、更复杂的信号。
虽然大部分针对数据的复杂信号研究是在骨折愈合的基础上实施的,但是所有组织中的基本生理过程的共性都暗示,合适的信号对加速许多其它愈合和疾病恢复过程是有效的,尽管并不是所有这样的信号都必需相同。的确,特定的频率和波形组合已经显示可攻击骨关节炎和失眠、刺激头发的生长、减轻肿胀和炎症、抗击局部感染、加速受伤软组织(包括皮肤、神经、韧带和肌腱)的愈合、以及减轻疼痛,而不会有TENS(经皮电神经刺激)的替代性不舒服的感觉。
图1是已经发现对刺激骨折愈合有效的波形20的示意图,在这里,线22代表短时间量程的波形,线24代表更长时间量程的相同波形,电平26和28代表两个不同的电压或电流特征值,间隔30,32,34和36代表特定跃迁之间的计时。电平26和28的选择经常是为了在波形的整个循环中平均时,没有净直流(D.C.)分量。在实际应用中,诸如20之类的波形一般要进行修正,即所有的电压或电流都向电平26和28之间的一些中间电平指数衰减,并且衰减时间常数优选地大于间隔34。结果用线38代表。
在用于治疗骨折不连合的一般商业上购得的设备中,间隔30大约为200微秒,间隔32大约为30微秒,间隔34大约为5毫秒,间隔36大约为60毫秒。间隔30和32的交替重复产生脉冲群40,间隔34的每个长度由间隔36的长度分离开,在间隔36,信号大约保留在电平28。每个波形38由此包括频率约为4400Hz、工作循环约为85%、在电平26和28之间交替的矩形波形。脉冲群以约15Hz的频率和约7.5%的工作循环重复,以基本上没有信号的周期交替。
然而,组织对明显不同的频率和波形可具有不同的反应。例如,图1的波形对加速骨折的愈合有效,但对减慢骨关节炎的发展却没有多少效果。另一方面,包括每个持续约350-400微秒的极性26的单脉冲52的波形50(图2),以约60-75Hz的频率、极性28的间隔54进行交替,能够减缓、甚至逆转骨关节炎,但对骨折的修复几乎无效。再者,每次应用的精确波形和频率是可以改变的。
信号强度也是可变的;的确,更强的信号经常比更弱的信号没有更多的益处,有时甚至更差。这种反常关系示意性表示在图3,在这里,线60代表不同信号强度的愈合效果的大小。对于一般信号(例如图1的信号),峰效果62一般落在1-10微安培/厘米2(μA/cm2)之间的某个地方,交叉点64在大约100倍此值的位置。在点64之外,信号可以减缓愈合或者本身可以导致进一步的损伤。类似的反应在对电刺激有响应的其它生物过程(包括细胞***、蛋白质及DNA的合成、基因表达和胞内第二信使浓度)中也可以观察到。例如,虽然常规TENS能够用相对强的信号阻断疼痛感觉,就象干涉信号阻断无线通讯一样,但是它也能够导致损伤逐渐恶化,因为疼痛的预警机能也被击败了。
利用频率在约50KHz以上或波形通常类似于图1中的波形但工作循环约50%或具有过快或过慢的上升时间的正弦波或方波的实验,已经显示在比较功率电平方面的效果要小得多。
许多不同类型的电刺激设备对消费者和医务人员来说是有用的,其能够产生从通过低频的恒电流或恒电压(DC)到高频波形的许多不同波形。通常,低频波形和低频率范围内的高频脉冲倾向有助于组织愈合应用,而高频波形用于减轻疼痛。
电子波形的另一应用领域是病原体失活领域。已经表明,一些病毒和细菌有机体能够通过在体外应用所选择的电信号而被破坏或失活(不能感染或再生)。然而,由于此应用的信号电平一般比愈合刺激中的高得多,因此体内应用仍然是有争论的事情。
电刺激广泛用于组织愈合应用中。在这里,Petrofsky(U.S.5,974,342)提出了一种通过施加治疗电流来治疗受伤组织、肌腱或肌肉的微处理器控制的装置。这种装置具有提供双相恒压或恒电流的几个通道,包括每12.5-25毫秒就出现一次的100-300微秒正相、200-750微秒中间相、和100-300微秒负相。
Pilla等人(U.S.5,723,001)公开了一种利用脉冲无线频率电磁辐射治疗人体组织的装置。这种装置产生具有1-100MHz频率、每群100-100,000个脉冲、0.01-1000Hz的群重复速率的脉冲群。脉冲包迹可以是规则的、不规则的或随机的。
Bartelt等人(U.S.5,117,826)公开了一种用于组合神经纤维和身体组织刺激的装置和方法。这种装置产生用于神经纤维刺激的双相脉冲对,和用于身体组织治疗的净DC刺激(由负脉冲比正脉冲多得多的双相脉冲串提供)。在U.S.4,895,154中,Bartelt等人描述了一种用于刺激软组织创伤愈合增强的设备,其包括多个用于产生输出脉冲的信号发生器。输出脉冲的强度、极性和速率可经由设备前面板上的一组控制按钮或开关来改变。
Gu等人(U.S.5,018,524)提出了一种产生由具有相同宽度的脉冲群构成的脉冲串的装置,其中每个脉冲群是由多个特定频率的脉冲构成的。脉冲的数目随着脉冲群的不同而不同;每个群中的脉冲频率随着对应于每个群中的脉冲数目差异的脉冲群的不同而不同。脉冲具有230-280KHz的频率;脉冲群的工作循环在0.33%-5.0%之间。
Liss等人(U.S.5,109,847)涉及一种便携式、非侵入的电子装置,该装置产生包括具有至少两个低频调制的载频的特定形状的恒流和电流限制的波形。载频在1-100,000KHz之间;方波或矩形波调制频率为0.01-199KHz和0.1-100KHz。工作循环可改变,但是对于三个波形一般为50%、50%和75%。
Borkan的组织刺激器(U.S.4,612,934)包括可植入的皮下接收器和可植入电极。接收器在植入之后能够非侵入地编程序,从而刺激不同的电极或改变刺激参数(极性和脉冲参数),以便获得所需的反应;编程数据以载波上的调制信号形式进行传输。编程刺激响应被测生理参数和电极阻抗进行修正。
Hondeghem(U.S.4,255,790)描述了一种可编程的脉冲发生***,其中输出脉冲的时间段和子间隔由来自基础时钟频率发生电路的信号加上与该电路相连的一对平行组频率除法电路来定义。时间段、子间隔和输出波形是可变的。
Hsiang-Hai等人(U.S.3,946,745)提供了一种产生用于治疗目的的正负电脉冲的装置。这种装置产生由连续脉冲对构成的信号,其中每对的脉冲都是相反极性的。每对脉冲之间的幅度、时间、间隔和连续脉冲对之间的间隔都是独立可变的。
Brehm(U.S.5,067,495)公开了一种用于减轻慢性疼痛的特定波形。施加电信号,直到病人在慢性疼痛区域具有恒定的感觉为止。
McDonald(U.S.3,589,370)提出一种电子肌肉刺激器,该装置通过将单向脉冲施加给合适的变压器而产生双向脉冲群。
Landauer(U.S.3,294,092)公开了一种产生电流的装置,所述电流用于抵抗由于营养不良造成的肌肉萎缩、缺陷、消除渗出物以及使粘附的形成最小。输出信号的幅度是可变的。
本发明申请中公开的所有参考文献和专利再次都作为参考全部引入本文。
为了用于减轻疼痛而设计的经皮电神经刺激(“TENS”)单元可广泛获得。例如,Bastyr等人(U.S.5,487,759)公开了一种能够与不同类型的保持电极垫就位的支撑装置一起使用的电池供电设备。键控连接器提供用来确定哪种类型的支撑装置用于阻抗匹配和载频调节的二进制编码。载频为约2.5-3.0KHz;治疗频率一般在2-100Hz的量级上。
Kolen(U.S.5,350,414)提供了一种载波脉冲频率、调制脉冲频率、强度和频率/幅度调制由微处理器来控制的装置。这种装置包括脉冲调制方案,其中载频与治疗部位的电极-组织负荷匹配,以便提供更有效的能量传递。
Liss等人(U.S.4,784,142)公开了一种电子牙科止痛装置和方法。这种装置产生具有相对高频率(12-20KHz)脉冲的输出,所述脉冲具有不对称的低频(8-20Hz)幅度调制。
Bartelt等人(U.S.5,063,929)描述一种微处理器控制的、产生双相恒流输出脉冲的设备。刺激强度可由使用者来改变。
Charters等人(U.S.4,938,223)提供了一种具有由刺激群组成的输出信号的装置,所述刺激具有上弦和下弦幅度,其中每个刺激的幅度都是刺激群幅度的固定百分比。信号是幅度调制的,从而有助于抑制病人的适应性反应。
Molina-Negro等人(U.S.4,541,432)公开了一种用于减轻疼痛的电神经刺激装置。这种装置产生在第一时间段具有预选重复速率和宽度的双极矩形信号。其次,在第二时间段以伪随机速率产生矩形信号,并且信号的传递在第三伪随机时间段得以抑制。此方案据说基本上消除了神经细胞对刺激的适应性。
Butler等人(U.S.4,431,000)提出一种用于治疗失语症和其它基于神经的语言损害的经皮神经刺激器。这种设备利用伪随机脉冲发生器产生不规则的脉冲串,该脉冲串是由模拟一般的生理波形(例如脑α节律)的梯形单相脉冲组成的。一组这样的脉冲具有零DC电平;设备中的电流源减小了变量例如皮肤电阻的作用。
Maurer(U.S.4,340,063)公开了一种能够植入或施加到身体表面的刺激装置。脉冲幅度随着沿由双曲线强度-时间曲线定义的曲线的脉冲宽度的下降而减小。据说由于脉冲宽度与阈值之间的非线性关系,这导致神经纤维的成比例增大的补充。
Kosugi等人的***(U.S.4,338,945)产生按照l/f规则波动的脉冲。也就是说,波动的光谱密度随频率成反比地改变:兴奋刺激经常具有由此规则支配的随机波动。***产生据说在刺激过程中促进病人的舒服感的不规则脉冲串。
信号发生器也用于听觉假体。例如,McDermott的接收器/刺激器(U.S.4,947,844)产生一组短间距的电流脉冲,零电流的脉冲间隔之间具有比每个分开脉冲长的时间。刺激电流的波形包括一组由相等数目的相反极性的分隔脉冲追随的一个极性的这些分隔脉冲,从而通过电极传递的电荷总数大约为零。
Alloca(U.S.4,754,7590)描述了一种用于产生“阶梯形”脉冲串的神经传导加速器,脉冲的峰负幅度是峰正幅度的三分之二。加速器设计是基于神经动作电位的Fourier分析;输出频率可以在1-1000Hz之间变化。
Galbraith(U.S.4,592,359)描述了一种多通道、可植入的神经刺激器,其中每个数据通道适合携带单极性、双极性或模拟形式的信息。这种装置包括电荷平衡开关,此开关被设计成在电流源关闭时(电极损坏和骨生长据说是由于不通过DC电流或电荷而得以抑制)能够恢复残留电荷。
尽管传统的Western医学具有较高的愈合电位,但是其仅仅具有微小的可接受电疗治疗,并且迄今为止很少使用。这似乎是早期信念的结果,该信念认为,信号需要具有较高的局部强度才有效。现在获得的大多数电疗装置既依赖于电极或整个电子包装的直接植入,也依赖于使用线圈的通过皮肤的电感耦合,线圈产生随时间变化的磁场,借此在身体组织内诱导弱涡流的产生。在一种情况下需要外科手术和生物相容材料,而在另一种情况下需要过度的电路复杂性和输入功率,这些都使得大部分这样装置(除了TENS设备)的价格保持相对高,并且还将其应用局限于受过高度训练的人员。因此仍然需要一种可用来在广泛的应用领域(包括加速愈合及减轻疼痛)中提供生物电刺激、多用途的成本低的装置。
发明概述
按照本发明的主要方面和概括说明,本发明包括一种产生用于生物医学应用的电信号的装置和方法。本发明提供了用于缓解人和动物的各种健康问题的设备和方法。与一般采用非常高强度信号的现有设备相反,本发明能够传递这样的生物电刺激:其***号紧密地反映出天生的身体信号。因此,接收组织承受极小的应力,并且不仅愈合得以加速,而且疼痛的减轻也比其它设备要持久。
按照本发明的装置可用来为人和动物病者提供电疗治疗,包括(但不限于)加速愈合(骨和软组织)、急性和慢性疼痛的减轻、以及肿胀和炎症的缓解。然而,这样的装置无需限于和完整的器官一起使用,因为分离的细胞或组织培养物也受电疗波形的影响(已经观察到,合适的电刺激能够修正细胞代谢、分泌和复制的速率)。诸如,离体皮肤细胞在适当的介质中可以用所选择的波形进行处理,从而在组织培养的自生皮肤移植材料的制备中可增加细胞的增殖和分化。作为另一个实施例,通过用适当的波形处理,被基因工程制备成所需产物例如人胰岛素的细菌生长,得以加速,或者所需产物的分泌得以增加。
本发明的装置可用来为人和动物病者在体内提供可定制的电疗治疗,包括(但不限于)加速愈合、急性和慢性疼痛的减轻、以及肿胀和/或炎症的缓解。由于离体细胞或组织培养物也受电疗波形的影响(已经观察到,合适的电刺激能够修正细胞代谢、分泌和复制的速率),因此该装置也可用于体外应用。与有助于阻断神经***的疼痛冲动的TENS型设备相反,这种装置在感觉和疼痛的正常人阈值电平之下的信号电平进行操作:大多数使用者在治疗过程中没有经历任何感觉,只是以前存在的疼痛在稳定减小。
按照本发明用于产生电信号的装置包括用于产生一级计时间隔和二级计时间隔的元件,其中至少一个一级计时间隔被分成二级计时间隔。这方面的实施方案可包括:一级计时间隔形成电荷平衡的一级循环。
据此,本发明的一个目的是,提供一种通过将新的脉冲电信号施用给身体来治疗各种生理症状的装置和方法。
本发明的另一个目的是,提供一种用于加速创伤的愈合的装置和方法。
本发明的另一个目的是,提供一种用于减小组织肿胀的装置和方法。
本发明的另一个目的是,提供一种用于增加血管生成的装置和方法。
本发明的再一个目的是,提供一种用于改善皮肤移殖物的存活率的装置和方法。
本发明的另一个目的是,提供一种用于减轻疼痛的装置和方法。
本发明的另一个目的是,提供一种用于减轻急性和慢性疼痛的装置和方法。
本发明的再一个目的是,提供一种用于治疗腱炎的装置和方法。
本发明的另一个目的是,提供一种用于减少炎症的装置和方法。
在阅读所公开实施方案的以下详细描述和所附的权利要求书之后,本发明的这些和其它目的、特征及优点将变得清晰易懂。
附图简述
图1是用于刺激骨折愈合的波形的示意图。(现有技术)
图2示出了用于治疗骨质疏松的波形。(现有技术)
图3是愈合效果-信号强度(幅度)的示意图。(现有技术)
图4表示出按照本发明的波形,具有包含在脉冲包迹内的载频。
图5表示出按照本发明的通用波形,具有一组一级计时间隔和包含在近似于任意曲线函数的阶式包迹内的信号幅度。
图6表示出按照本发明的波形,具有包含在近似正弦曲线包迹内的载频。
图7-9表示出按照本发明的波形,也具有包含在近似正弦曲线包迹内的载频,但显示了替换型调制方案。
图10表示出按照本发明的波形,具有包含在不规则的脉冲包迹内的载频。
图11表示出按照本发明的波形,具有包含在近似指数衰减的包迹内的载频。
图12表示出按照本发明的波形,具有包含在脉冲包迹的交替脉冲内的两个不同载频。
图13表示出图4中的波形的简化版本。
图14表示出相同波形的进一步简化的版本。
图15表示出用类似于图13、但具有交替极性的连续脉冲构建的波形。
图16表示出在低通滤波和D.C.阻断的一般组合之后代表图6的波形。
图17表示出利用导电电极将波形(例如前面图中所示的那些)施加给人体或其一部分的方法。
图18表示出利用导电电极,结合用于骨延长的外部固定器,将波形(例如前面图中所示的那些)施加给人体或其一部分的方法。
图19表示出利用导电液池将波形(例如前面图中所示的那些)施加给人体或其一部分或另一种材料的方法。
图20表示出为了创伤愈合,利用导电电极和导电敷料将波形(例如前面图中所示的那些)施加给人体或其一部分的方法。
图21表示出本发明的通用电子构造,采用分离的集成电路计时器和定序机。
图22表示出本发明的通用电子构造,采用微控制器或微处理器。
图23表示出为了图示目的产生类似于图4的波形的简化电路。
图24表示出本发明的第二具体实施方案,被构造成产生类似于图6或图16的波形。
图25表示出与图24中的电路相关的波形。
图26表示出本发明的第三具体实施方案,被构造成能够提供大致类似于图4、图6或图10的类型的波形的选择。
图27表示出与图26中的电路相关的波形。
图28表示出本发明的第四具体实施方案,被构造成能够产生类似于图12、但也合并极性颠倒的波形。
图29表示出与图28中的电路相关的波形。
图30表示出具有近似指数地衰减的包迹的指数衰减曲线和多种信号种类。
图31表示出本发明的第五具体实施方案,被构造成能够产生类似于图30中的底部一个的波形。
图32表示出与图31中的电路相关的波形。
图33表示出本发明的第六实施方案,也被构造成能够产生类似于图30中的底部一个、但具有更大精度和再现性的波形。
图34表示出与图33中的电路相关的波形。
发明详述
以下描述包括完成本发明的目前最佳的预期方式。该描述是为了阐述本发明的一般原理而进行的,不应该视为具有限定意义。本文提到的参考文献的全部内容在此作为参考全部引入本文,包括序列号为60/480,890的美国临时申请。
本发明通过传递为了对应于天生身体信号而优化的生物电信号、从而导致愈合的加速和更持久,而克服了现有设备的缺陷。本文所述的信号独特地顺应天生信号,并因此相比于来自现有设备的电刺激,使承受按照本发明的电刺激的组织接受更低的生理应力。此外,本发明是非侵入式的和低成本的,从而使其对于个人和个体使用可用于多个应用领域。
按照本发明的主要方面和概括说明,本发明是一种产生用于生物医学应用的电信号的装置和方法。这种信号基于以下特征因素包括由准矩形波(通常为矩形形状、但一般有些扭曲的波)的间歇群构成的波形:多个相对长的一级计时间隔T1、T2等,从而接连形成一级重复循环;多个较短的二级计时间隔t1、t2等,所述一级间隔中的至少一个被分成二级计时间隔,并且所述二级间隔接连形成在整个一级间隔的长度中持续的二级重复循环,而至少另一个所述一级间隔没有被如此细分;以及多个恒压或恒电流电平L1、L2等,其中之一是在每个一级计时间隔或者如果该间隔被细分的话,则在其内的每个二级计时间隔中选择的。在连续的计时间隔中选择的这组恒电流或恒压电平包括波形;在给定的一级间隔中选择的这些电平的平均大小决定此间隔内的信号幅度;以及连续采集的所有一级间隔内的信号幅度,包括波形包迹。
这种装置包括用于产生一级计时间隔T1、T2等的第一计时块;用于产生二级计时间隔t1、t2等的第二计时块;用于将这些间隔组成在间隔中具有预定关系的输出信号的互连块;用于将输出信号传递给负荷(例如用该装置处理的组织)的输出块;电池包;以及任选地,用于从输出信号中去除无用频率分量的滤波器;以及用于从具有预定特征的多个输出信号中选择的调节块。第一和第二计时块可异步或同步运行,并且在后一种情形中,第一计时块可以由第二计时块驱动,从而产生一级计时间隔T1、T2、T3、T4、以及T5和T6等(如果由于分频而存在的话),或者两个计时块都可以用共享计时源例如晶体控制振荡器以类似的方式来驱动。
为了在以下实施例中一致,但无意限定本发明,T1将被认为是没有分成多个较短的二级计时间隔的“至少一个”一级计时间隔;L1是在T1中保持在恒定电平的电压或电流;以及T2是被如此细分的“至少一个”一级计时间隔。随后的一级计时间隔T3、T4以及其它(如果存在的话)等等,可以如此细分(如每个单独实施例中所示)。
在每个一级循环中,信号在整个一级间隔T1中具有第一幅度电平L1,然后在由T2细分成的间隔t1、t2等形成的二级循环中,然后呈现接连的多个电平L2、L3等(也可任选地包括L1)。下面的一级间隔T3、T4以及其它(如果存在的话)等等(如果存在的话),每个然后可包含T2方式,或如果不存在的话,T1方式的二级循环。
如本文所用的,除非上下文另有暗示,否则术语“挑选(select)”及其变型,是指电路控制下的选择范围。此外,如本文所用,除非上下文另有暗示,否则术语“选择(chose)”及其变型是指直接人控制下的选择范围。
为了便利起见,并且与无线电传输的早期幅度调制方案类似,这种复合波形中的二级循环可被认为是载波,一级循环可被认为是用具体的重复包迹调制载波的信号。通过扩展,当两个一级间隔包含以不同速率运行的二级循环时,这些可被认为是两个不同的载频。
本发明的一个重要特征是,其输出是作为一对(或者任选地,作为几个这样的对之间的电压或电流)输出钉或其它连接件之间的空载电压、差动电压或有限电流出现的。输出信号由此可通过简单的皮肤接触电极、通过导电创伤敷料、通过为了其它目的已经植入的导电装置(例如金属骨固定钉或导电导管)、通过与皮肤或其它组织接触的导电液主体、或者通过类似的导电装置,从而提供广泛的适合个体情况的灵活性,而与身体耦合。(术语“导电”广义上在本文中包括欧姆和电容分量,正如后面所解释的)。
按照本发明的装置重量轻、紧凑、整装的、制造和维修成本低,并且便于长期携带和穿着。在无需特殊训练的前提下,对于无人监管的家庭使用是安全的,并且能够产生如上所述的信号并将其有效地传递给身体。由于仅使用低电压和电流,因此装置甚至在出现故障时也不具有电击危险,动力可以由紧凑、廉价电池,一般使用几个星期仅需要更换一次。
输出信号是本发明的一个重要特征。输出信号是基于以下特征的波形:至少两个、但任选更多个相对长的一级计时间隔T1、T2、T3、T4以及T5和T6等等,从而接连形成一级重复循环;至少两个、但任选更多个较短的二级计时间隔t1、t2等等,所述一级间隔中的至少一个被分成二级计时间隔,并且所述二级间隔接连形成在整个一级间隔的长度中持续的二级重复循环;以及多个恒压或恒电流电平L1、L2等,其中之一是在每个一级计时间隔或者如果该间隔包含二级循环的话,则在其内的每个二级计时间隔中呈现给输出的。所合成的阶式波形然后可通过多种类型的有源或无源滤波器的任一种,以便强调或削弱所选择的频率范围。
一级循环可以是周期性的(以固定间隔自动重复)或不定期的(仅响应一些外部事件而重复)。在前一种情形中,一级间隔T1、T2等的相对长度可以不同,但是每个间隔在长度上从一个一级循环到下一个一级循环是固定的。在后一种情形中,所有的一级间隔在长度上是固定的,除了可任意长的T1之外。
计时间隔T1、T2等和t1、t2等具有以下关系:
(a)50微秒(T1,T2,...)30秒
(b)200微秒(T1+T2+...)120秒
(c)50微秒(t1,t2,...)50毫秒
(d)10微秒(ta+tb+...)0.5TA
(e)(tx,ty,...)≤2(ta+tb+...)
在此处,如果一级循环是周期性的,则(T1,T2,...)表示一级间隔T1、T2等的任一个;(T1+T2+...)表示这些间隔的和,等于一级循环的长度;(t1,t2,...)表示二级间隔t1、t2等的任一个;(ta,tb,...)表示这些的亚组,从而形成特定一级间隔TA内的二级循环;(ta+tb+...)表示这些间隔亚组的和,等于TA内的二级循环的长度;以及tx和ty表示“离群的”二级间隔,其不是整个二级循环的有意部分,但可以诸如在包含该部分的一级循环的开始或终止处。
换言之,每个一级间隔T1、T2等可具有从50微秒到30秒的任意长度,而它们的和(一个完整的一级循环)可具有从200微秒到120秒的任意长度;每个二级间隔t1、t2等可具有从2.5微秒到50毫秒的任意长度,而(ta+tb+...)(一个完整的二级循环)可具有从5微秒到出现二级循环的二分之一一级间隔的任意长度;以及一级间隔开始或终止处的“离群”二级间隔可以存在,只要它们的总数不超过两个二级循环长度即可。
当一级循环是不定期的时,条件(a)和(b)被修正为
(a)50微秒(T2,T3,...)30秒
(b)200微秒(T2+T3+...)120秒
在此处,(T2,T3,...)表示一级间隔T2、T3等的任一个;(T2+T3+...)表示这些间隔的和,等于排除T1(如上所述,T1可以任意长)的一级循环的长度。所有的其它关系与上面相同。
当两个或更多个一级间隔在恒定的输出电平消耗时,这些电平勿需是相同的;以及当两个或更多个一级间隔包含二级循环时,这些间隔以及它们内的相应输出电平是不一样的。
虽然(d)的作用是确保至少两个完整的二级循环将在包含它们的任何一级间隔中出现,但是实际上此数目可上至几百、甚至几千。
(e)的作用是,一个或多个二级间隔在给定的一级间隔内的第一或最后一个二级循环或二者皆有的过程中可以罕见地较长、较短、甚至丢失。然而,除了第一和最后一个之外的所有二级循环都包含所有的特定间隔,每个基本上具有其特定的长度。
最经常的是,丢失的或极大缩短的间隔出现在一级和二级循环异步运行的时候,从而一级跃迁可出现在二级循环内的任何时刻,并且由此任何一级间隔TA可以包括或可以不包括整数目的二级循环。例如,关于二级循环“ta,tb,tc,td”,一级间隔TA也许包含
“ta,tb,tc,td,ta,tb,tc,td,ta,tb,tc,td”
(三个完整的二级循环),或者包含
“ta,tb,tc,td,ta,tb,tc,td,ta,tb,ty”
(两个完整的循环,加上中途被切掉一部分的第三方,其中ty代表缩短的tc)。
当二级频率发生器在其已经丧失能力的一级间隔之后重新开始时,一级间隔内的第一二级间隔也可反常地出现较长或较短。对于如图23、24和28所示构造的频率发生器,这样的畸变间隔一般比正常间隔长四分之一,而对于如图31所示构造的发生器,其将比正常间隔短三分之一。例如,二阶二级循环也许开始
“tx,tb,ta,tb,ta,tb....”
其中tx代表由于起动瞬时而延长或缩短的ta。
任何这样的畸变间隔或部分不完整的循环为了(e)的目的都被认为是“杂散的”,并且在给定的一级循环内合计不到二级循环长度的两倍。
构成任何给定一级循环的间隔可以在名义上都相等,或不相等。然而,优选地,当仅有两个这样的间隔TA和TB存在时,
(f)2TA≤TB≤20TA
在这里,TA=T1,TB=T2,或者反之亦然。这样产生不对称的一级循环,并且工作循环在66%与95%之间。
同样,构成任何给定二级循环的间隔可以都相等,或者不相等。然而,优选地,当仅有两个这样的间隔t1和t2存在时,
(g)2t1≤t2≤20t1
这样产生不对称的二级循环,从而导致类似的不对称输出波形的产生,再者,工作循环在66%与95%之间。
在一些情形中,更便利的是,就波形的重复频率而不是就每个循环中消耗的时间而言来描述波形的一些方面。据此,我们可以定义
(h)Fp=1/(T1+T2+...)
(i)FA=1(ta+tb+...)
(j)Fmax=最高的FA,FB,...
这里,Fp代表一级循环频率,FA代表给定间隔TA内的二级循环频率,Fmax代表一级循环的任何部分中存在的最高二级循环频率,借此构成载频。
恒压或恒电流电平L1、L2等一般首先是作为差动电压电平产生的,其随后可转换成电流电平。优选地,为了保存电池电力,向电流的这种转换仅仅发生在为每个计时间隔选择电压电平之后,以便每个这样计时期中的未选择电平不消耗电流。更优选的是,装置内的所有电压,包括输出波形,都位于-42.4伏与+42.4伏之间的范围内,借此满足“安全超低电压”的IEC 950定义。同样,任何输出电流优选地位于-10.0毫安培与+10.0毫安培之间的范围内,如为了安全应用于人体而用ANSI/AAMI NS4-1985所规定的。
为了在描述本发明范围内的不同波形的重复次数时一致,下面的惯例随后用于标记电流或电压电平L1,L2等。
L1是整个T1中存在的恒压或恒电流电平。L1可以是出现在一级循环中的任何时刻的最正电压、最负的这样电压、或介于这两个极限之间的任何电压。在后面的情形中,L1优选位于这两个极限之间的中点,并且代表零电压或电流。
L2、L3等(与能够应用的一样多)是出现在T2内的二级循环中的电平。注意,L1也可以存在于此循环中。最先出现在任何以下一级或二级间隔中的电平将以相同的方式连续编号。在大多数情形中,仅需要三个电平L1、L2和L3。
基本波形通常在U.S.6,535,767中有所描述,并且在图4中示出,该文献作为参考并入本文。在此处,波形包括分别用特征80,82和84表示的三个一级间隔T1、T2和T3,以及分别用特征90,92和94表示的三个输出电平L1、L2和L3。二级循环出现在T2内。二级间隔没有单独标记,并且为了图示目的,表示出非典型的小数目的二级循环。
时间流从左到右,垂直条96a和96b代表两个连续循环的每一个中的T1起点,从而这二者之间的间隔代表一个完整循环。实线98表示输出,该输出在T1过程中在电平L1保持恒定;在T2过程中产生二级循环,在该循环中其在t1中的L2与t2中的L3之间交替;以及在T3过程中再次保持恒定,但是保持在L3,而不是保持在L1。在T3的终点,循环再次以T1开始,并且输出再次变为恒定的L1。此波形的进一步细节、产生此波形的装置以及它的一些潜在用途,可以在U.S.6,535,767中找到。
概括地讲,本发明将此三阶波形延伸到包括以下因素的一级循环:四个或更多个一级计时间隔T1、T2、T3、T4及其它(如果存在的话),这正如用图5中的箭头100总体表示的,从而接连形成重复的一级循环;至少两个相对短的二级计时间隔t1、t2等,至少一个这样的一级间隔被分成所述二级计时间隔,并且在其整个长度连续形成重复的二级循环,而至少一个其它一级计时间隔没有如此细分;多个基本上恒定的电压或电流电平L1、L2等,其中之一是在被如此细分的一级间隔内的每个二级间隔中,或者在整个一级间隔中(如果其没有被如此细分的话)选择的;所获得的可能的信号幅度电平范围,通常用102表示;以及包括矩形阶梯的包迹104,每个一级计时间隔一个阶梯。
每个信号幅度包括A.C.(时间-变量)和D.C.(时间-不变量)分量,在包迹104的每个阶梯中分别用两个水平线之间的距离和这两个水平线之间的中点表示。D.C.幅度被最方便地表达为各个一级计时间隔内的电压或电流的时间平均值,A.C.幅度被表达为由此平均值得到的电压或电流的瞬时差的均方根值(RMS):
D=1/TA*Int(TA)Q(t)dt
A=Sqr(1/TA*Int(TA)(Q(t)-D)2dt)
在这里,D是D.C.分量,TA是给定的一级计时间隔,Q(t)是在此间隔中作为时间函数的电压或电流,A是A.C.(RMS)分量,“Int(TA)...dt”代表整个TA长度中采集的时间整数,“Sqr”表示方根函数。
任何一级计时间隔中的非零A.C.幅度是由于二级循环的存在而产生的。包迹104的阶梯内的垂直阴影并不意味着表示这样二级循环内的任何特定计时,但仅仅是,这样的循环存在于那些阶梯内,从而导致非零A.C.幅度的产生。
对于没有被细分成二级循环的一级间隔,电压或电流在整个过程中保持均一值,因此,A.C.幅度为零。同样,当正负电压或电流的和相等时,它们就彼此抵消,并且D.C.分量为零。这样的波形被称作“电荷平衡”。
通过适当选择一级计时间隔的长度和每个间隔内的信号幅度,可产生包迹104,以便仿效任何周期性或不定期重复的实用数学函数,这正如任意曲线包迹106所暗示的。其仿效在本发明范围内的实用包迹的实施例是正弦“干涉”包迹108、衰减指数包迹110、对称重复脉冲串包迹112、具有交替极性颠倒的不对称重复脉冲串包迹114、和具有电荷平衡间隔118的不对称重复脉冲串包迹116。这个最后实施例相对于已经在图4中示出并且在随附的文本中讨论的波形。
本发明的另一个特征是滤波器,此滤波器任选地阻断所选电平之上的频率,以便产生所需的跃迁轮廓或者避免外部高频信号源的干扰。优选地,此电平约为10Fmax。例如,滤波器包括并联电容、电阻网络、电压控制的电流源、或其它同时减慢和控制跃迁速率、衰减约10Fmax(或其它所选频率)之上的输出频率分量、以及避免外部无线频率信号对电路运行的干扰的合适器件。同时,滤波器可阻断来自输出的D.C.分量,使通过变压器的电压上升,或者二者兼有。
本发明的又一个特征是采用双计时块,每个计时块任选地合并有多步定序机,用于产生能够组合以生成具有所选特征的输出波形的若干波形。在本发明的一个优选实施方案中,计时块之一由定序机控制,定序机由另一个计时块驱动:即,产生二级计时间隔t1、t2等的计时块输出可以是“开”、“关”,或具有不同的计时特征,这取决于定序机的输出状态。诸如通过将多个交替分量值合并成第二计时块,可产生这些不同的计时特征,每一个根据定序机的输出切换到电路内或从电路中断开。这导致产生输出信号的电路的形成,通过具体选择器件以及它们互连的方式,能够在较宽的范围确定输出信号的特征(频率、工作循环、幅度),并且整个电路结构令人惊奇地简单。
本发明的另一个特征是利用常规、容易获得的低压电池作为装置的安全、便利电源。虽然本发明可以与AC(交流电)电源(加入任何适当的适配器)一起使用,但是电池动力是优选的,因为它不仅减小了装置的尺寸和重量,而且为接受治疗的病人提供了安全性和使用的容易性。一般,电池需要更换的间隔稀少(通常每几个星期不超过一次,这取决于输出信号和具体的应用),因此简化了病人的顺从性,减少了操作成本。仅仅将低功率电平,诸如产生治疗效果所要求的电平,施加到身体上。由此,本发明即使在故障事件中也不能产生电击危险,因此适合无人监管的家庭使用。
本发明的再一个特征是其多功能性。这种装置可以容易地构建,以便产生具有能够选择的计时间隔、输出电压或电流电平和整个包迹的输出波形,或者允许在多个任一这些间隔中选择,以满足多种不同的生理需要。如上所述,组织可以不同方式响应不同的信号频率、纯AC信号或具有叠加的正或负DC分量的AC信号。同样,如图3所示,不同的效果可以出现在不同的电流密度处。
具有可调节输出信号的装置比具有一个固定输出的装置可具有更多的各种用途。另一方面,医务人员可以优选具有固定输出或仅在大小上可调的输出的发生器,以方便他们的病人在门诊使用。在所描述的本发明实施方案中,使用者通过转动旋转开关或其它装置来选择上述多个有用信号中的一个,能够调节信号频率,而其它所描述的实施方案则不能如此调节。
本发明的又一个特征是其在应用意义上的多功能性。由本发明的电路产生的信号利用各种不同的侵入式或非侵入式导电装置,容易施加给人或动物的身体、活组织或细胞培养物、或者食品或药物材料。
在完成本发明的最佳方式的以下描述中,附图标记用来标识附图中的结构部件、部件部分、表面或区域,如此,部件、部分、表面或区域可以通过整个撰写的说明书作进一步的描述和解释。为了一致起见,无论何时相同的标记用于不同的附图,它都表示与第一次使用时相同的部件、部分、表面或区域。除非另外指出,否则附图意在与说明书一起来阅读,并且被认为是本发明的整个撰写描述的一部分,这正如U.S.C.§112所要求的。如本文所用,术语“水平”、“垂直”、“左”、“右”、“上”、“下”、以及它们的形容词和副词,是指特定的附图面向读者时的图示结构的相对取向。
本发明是一种用于在各种应用中提供生物电刺激的装置,以及一种将其应用于人体或其它活的或非活材料的方法。
如前所述,本发明的目的是,产生用于生物医学应用的一大类波形中的任一个或任何组合形式,每一个波形都基于以下特征:多个相对长的一级计时间隔T1、T2等,从而接连形成一级重复循环;多个较短的二级计时间隔t1、t2等,所述一级间隔中的至少一个被分成二级计时间隔,所述二级间隔接连形成在整个一级间隔的长度持续的二级重复循环,而所述一级间隔的至少另一个没有如此细分;以及多个恒压或恒电流电平L1、L2等,其中之一在每个一级计时间隔或者如果该间隔包含二级循环的话,则在其内的每个二级计时间隔中被呈现给输出。至少两个、一般是几百个二级循环出现在每个这样的一级间隔中。所合成的阶式波形然后可以通过多种类型的有源或无源滤波器中的任一种,以便强调或削弱所选择的频率范围。
如前面图5中所示,通过遵循本发明的原理,具有由足够数目的矩形阶梯构成的包迹的波形,可以适应近似的实质上任何曲线函数。许多这些函数是实际应用的特征。这些实用函数的一般实施例是:在两个类似频率和幅度的正弦波干扰、从而交替地彼此加强和彼此抵消时产生的正弦包迹;以及在振荡***例如拔动的竖琴琴弦(pluckedharp string)递增地辐射掉能量、以便其振荡幅度随时间平滑地减小时产生的指数包迹。其它实施例对于信号产生、处理或传输领域中精通的任何人来说都是显而易见的。
近似正弦曲线形包迹的波形,按照本发明的原理,在电疗中是感兴趣的,因为其随时间近似于正弦曲线形的能量分布,这是传统干扰电疗的一个首要特征。在这样的治疗中,两个频率稍微不同的正弦信号施加到身体上,并且允许在其内发生“干扰”,从而产生较低的“拍频”,根据此拍频调制更高的“载”频。载频简单地是两个原始频率的平均值,而拍频是这两个原始频率的差。载频一般在约1000-约10,000Hz的范围内,并且4000-4500Hz的频率是最普遍的,尽管对于一些应用来说,更高的频率(高达接近200KHz)是优选的。拍频对于多种不同的条件是大大不同的,但是一般在1Hz-500Hz的范围内。
第一近似正弦曲线形的波形,遵循本发明的原理,包括5个一级计时间隔T1-T5,其中T1和T5分别在恒定的输出电平L1和L3消耗,T5借此用作平均脉冲,而T2、T3和T4都包含二级循环。当电荷平衡用其它方式建立时,可不需要均衡脉冲,并且在这样的情形中,可省略T5。
T2和T4内的二级循环在计时和A.C.幅度上是一样的,而在T3中比在T2中有更高的A.C.幅度。优选地,T3内的A.C.幅度大约为T2或T4内的两倍。更优选的是,T2和T4每个都比T3短。最优选的是,T2和T4每个都大约为T1和T5组合长度的两倍,而T3大约为T1和T5组合长度的三倍。计时间隔的这个具体组合的优点是,其近似于具有最小数目的一级间隔和离散电压或电流电平的正弦包迹,由此具有较大的潜在电路简易性和有效性。
此五阶(或四阶,如果T5省略的话)、准正弦或“干扰式”波形的代表性实施例,仅采用三个电压或电流电平L1、L2和L3,在图6中示出。一级循环的重复速率代表拍频,而二级循环的重复速率代表载频。通过保持相同的计时但在更接近间隔的电压或电流电平之间切换,而实现相对于T3,在T2和T4过程中的幅度减小。为了图示波形的许多可能变型中的一个,所示出的T4内的二级循环具有偏离T2内的不同D.C.。
图6和其后描绘波形的所有其它附图(图7至16,25,27,29,30,32和34)遵循图4中所用的相同惯例,但具有以下的简单性:
(1)每个图中示出一个一级循环,在图的左边缘开始于T1,终止于右边缘。
(2)表示L1、L2等的虚线被省略掉,除了在正文中提到之外,这是因为这些电平用每个图中的脉冲平顶和底部清楚地示出。
(3)识别特征被省略掉,除了它们在正文中具体提到之外。
由于在一些情形中,连续一级间隔T1、T2等中的波形之间的差别是微小的并且可以不立即显现,因此表示这些间隔之间界限的垂直阴影线在所有图中出现。二级循环内的界限没有示出,这是因为在每个情形中它们应该从波形本身的形状中明显易见。
一般,当电压或波形踪迹代表以前在示意图中示出的线上或逻辑门输出处的信号时,将给予电压或波形踪迹与线或门相同的识别特征。多个踪迹,对应于影响相同部位信号的不同电路条件,将用由“a”、“b”等遵循的相同特征来识别。在正文中,“电压X”、“信号X”等的提及是指对应于波形图上的踪迹“X”的电压或信号,或者对应于示意图中的信号线或逻辑门输出“X”,此时“X”代表由所有踪迹共享的公共识别特征。
另一个代表性、准正弦波形在图7中示出。这不同于图6中的实施例,其中对应于图6中的间隔82a和82c的更低幅度或“渐进”和“渐出”周期,现在每个在长度上都超过对应于间隔80的“准”或“非信号”周期。优选地,“准”、“渐进”、“全信号”和“渐出”周期具有1∶2∶3∶2比例的持续时间。结果是,接近于数学上纯正弦曲线(1.57)的峰与平均电压或电流的比例(1.60),以及与纯正弦曲线一样的峰与R.M.S.电压或电流的比例(1.414)。由于波形的对称,无需均衡脉冲。
又一个代表性四阶、准正弦波形在图8中示出。这不同于以前的实施例,其中通过在额外的更高电压或电流电平(而不是T2和T4中所用的那些)之间切换,而获得T3中的更高平均幅度。
按照本发明的额外波形可包含任何整数目的一级间隔,以及在每个间隔(第一个间隔除外)内的、含有整数目的二级间隔的二级循环。例如,利用更大数目的一级计时间隔也许实现随时间的正弦能量分布的更准确仿效:通过从多于三个的恒定电压或电流电平中选择、通过利用二级循环内的不同工作循环、或者通过合并这些方法,如图9所示。
总之,这样的波形包括偶数目P的一级计时间隔T1、T2、T3等、偶数目S的二级计时间隔t1、t2、t3等和奇数目Q的电压或电流电平L1、L2、L3等。
电压或电流电平L1近似于零电压或电流,而剩余电平L2、L3等成对,每对具有大致相等的大小但相反的极性。这些对的成员分别用LX和LY代表。可以有一个这样的对(如图6和7所示),或者有多于一个的对(如图8和9所示)。更宽间隔的对的使用产生更大的信号幅度。
S可以是任何偶数整数,但优选是四,其产生二级计时间隔t1、t2、t3和t4。间隔t1和t3优选地相等,t2和t4也一样,但是t1和t3值无需与t2和t4一样。非零电平LX在t1中选择,它的配偶LY在t3中选择,而L1在t2和t4中选择。这使得四个间隔形成工作循环,
DC=(t1+t3)/(t1+t2+t3+t4)
DC可具有从0至100%的任何值。工作循环的增大产生更大的信号幅度。在DC=0时,t1和t3消失,信号变成恒定的L1,而在DC=100%时,t2和t4消失,信号变成在LX与LY之间交替的方波。
或者是,为了赢得更高的信号强度,发现,具有在t1和t3中选择的一个对称电平对LX和LY的成员以及在t2和t4中选择的另一个这样对LX’和LY’的成员是优选的。这再次使四个间隔形成从0至100%的工作循环,尽管现在零工作循环代表在LX与LY之间交替的方波,如前所述,100%工作循环代表在Lx和Ly之间交替的方波。再者,并且在此处假设,LX和LY的大小大于LX’和LY’,工作循环的增加产生更大的信号幅度。
对于一级计时间隔T1、T2、T3等,将有一个独特电平TN,其中N=(P/2)+1,在该电平信号幅度处于最大。该幅度然后对于TN+1和TN-1更小,对于TN+2和TN-2等也更小,直到对于T2和TP相对小,对于T1为零(因为选择恒定的L1)为止。通过改变信号电平L1、L2等的组合,可选择信号幅度,这些信号电平通过改变它们交替的工作循环或者通过这些方式的组合,而在二级循环中交替,同时选择计时间隔和信号幅度,以便近似于正弦包迹,如图9所示。
以上给出的实施例不应该解释为将本发明的范围限定到准正弦形式的信号,因为本发明的目的是提供最大范围的可能的输出信号,这可通过类似的方式和利用类似电路来实现,但并不是所有的都必需具有相似的包迹。
非正弦包迹的一个实施例在图4中示出。
另一类这样的非正弦信号也许发现用于肌肉刺激或再训练,其中短的高强度脉冲串必须与其余周期交替,从而导致肌肉纤维的交替收缩和松弛。众所周知,不同的肌肉纤维以及供应这些纤维的神经,具有不同的响应阈值并由此最佳响应具有不同能量的脉冲或脉冲群。其一级循环包括几个不同脉冲群长度并且在长度之间具有类似不同间隔的波形,由此比仅具有一个脉冲群长度和间隔的波形更有效。图10表示出这样波形的一个实施例,其采用10个一级间隔,其中5个含有相同的二级循环,但长度不同。
非正弦信号的另一个实施例,如前面所提到的,是迅速上升到最大强度、然后以线性、指数或其它方式随时间衰减的脉冲信号。利用二级循环内的可变计时间隔以获得强度差异的近似于这种指数衰减特征的六阶波形,在图11中示出。信号可以是周期性的(自动重复)或不定期的(仅出现在由一些外部事件例如按钮的按压触发时)。例如,在处理应用的材料中,一级循环也许在电极与待处理的食物、饮料或药物材料主体适当接触的时刻起动。当信号是不定期的时候,T1可以任意长。这将在随图29的正文中进一步解释。非正弦信号的又一个实施例是,图12中所示的一个。这简单地是图4中所示波形的双倍版本,只是T2和T5现在包含代表不同载频的不同二级循环。这种波形通过交替刺激两个已知的减轻疼痛的在不同频率最佳响应的生化通道,可用于减轻疼痛。具体地说,2-4Hz左右的刺激已经显示能产生持久的疼觉缺失,但具有慢发作;100-200Hz左右的刺激产生具有快发作的短作用时间的疼觉缺失;而每个持续几秒钟的这两种刺激的交替,激活了这两个机制,从而疼觉缺失具有发作快但持续时间长的优点。
上述、按照本发明原理的通用种类的波形将固有地是电荷平衡的,即,输出将显示净零的直流电容量,如果该输出处的正负电压或电流的时间平均值在一个一级循环的长度上是零的话。这可以几个方式的任一种来实现。例如,输出可通过阻断直流电流的输出网络。或者是,正负信号间隔可以平衡,以便近似相等的时间量在每个状态消耗,从而使直流容量最小。也可以将这些方法合并。例如,在用于产生图4的波形的U.S.6,535,767所述的设备中,呈现给T3中的输出的恒定电平L3,部分补偿由于T2中的二级循环的不对称而导致的净非零输出,而任何剩余不平衡由输出滤波器中的直流阻断串联电容器来操纵。
在其它应用中,例如在离子电渗疗法(通过皮肤或其它组织运送生物活性离子例如银离子或质子化生物碱)或者在通过细胞趋电性加速创伤愈合的过程中,期望引入叠加在主要的交流电波形上的受控直流容量。通过使消耗在正负间隔中的时间失衡、以便一个极性占主流而取消阻断所需直流电信号容量的任何下游元件例如串联电容,可简单地做到这一点。
这种有意失衡的波形在图13中示出,其中120代表零电压或电流的电平L1,122代表正电平L2,124代表相等和相反的负电平L3。T2中的t1与t2之间的差引入所需的电荷失衡。注意,这简单地是以前在图4中示出的波形,但是此处去除了它的电荷平衡间隔T3。
或者是,通过围绕零使极性不对称,可使波形有意失衡:最简单的是,通过消除如图14所示的给定极性(正或负)的所有电平,此处,与前面一样,120代表零电压或电流的电平L1,122代表正电平L2,但是没有负电平L3。
在另外的其它应用中,例如在加速神经再生的过程中,可发现,在相对长的一级循环的所选部分上施加电荷失衡的信号是有益的,但是此循环中整体上是电荷平衡的。图15表示出这样的一级循环,其中T1和T3代表零电压或电流的间隔,而T2和T4是电荷失衡信号的间隔。T2和T4在长度上是相等的,且具有相等、相反的极性,从而在整个一级循环上电荷保持平衡。对于最佳的神经再生,例如,T2和T4在长度上每个都优选10到60分钟之间,而T1和T3每个都可以实质上较短些。
遵循本发明的原理,许多附加波形对于电路设计或波形分析领域的任何专业技术人员来说应该是显而易见的。
任何这样的波形,一旦如所述的那样以阶式电压或电流的形式产生,那么就可任选地通过有源或无源部件网络,例如电阻-电容网络或用于衰减所选频率分量的运算放大器带通滤波器、用于使输出电压上升或提供对抗可能的泄漏电流的分离的变压器(具有适当的驱动电路)、或用于阻断来自输出的直流电流的串联电容。图16诸如表示出,通过被设计成阻断高于几倍Fmax的直流电流和频率分量的滤波器之后的图7的波形。
对于诸如上述任何波形,可发现需要改变治疗过程中或连续治疗之间的一个或多个参数,例如一级间隔T1、T2等、二级间隔t1、t2等或电压/电流电平L1、L2等。例如,在干扰刺激中,可调节t1、t2等,优选是一起调节,以便保持它们之间的比例,从而产生用于补偿可变的使用者皮肤阻抗的不同载频,同时可调节T1、T2等,优选是再次一起调节,以改变有效的拍频,由此激活不同组织的修复过程。同样,外加电压或电流L1、L2等之间的跨度可改变,以补偿治疗下的可变组织截面,或多种组织的不同最佳电流密度。
据信可用诸如以上所述的波形进行治疗的状况包括(但不是必需限定于)如下因素:骨折、骨质疏松、急性疼痛、慢性疼痛、肿胀、单纯性炎症和发炎病症例如腱炎(包括腕管综合症和其它反复的应力损伤)和骨关节炎。包括各种组织种类并且由于外伤或变性疾病例如糖尿病所导致的创伤的加速愈合,也可以在治疗过程中看到。然而,应该懂得,没有一组计时间隔和电压或电流电平可用于治疗所有(甚至大部分)这些疾病。
虽然不希望用理论来界定,但是据信,合适的电压/电流电平和计时间隔可用来治疗各种疾病,这些疾病的病因涉及到细胞代谢、分泌或复制中的不适当速率或失衡,或者通过适当修正这些因素能够得到缓解。由此,应该理解,每种特定应用的最佳波形特征最好用观察和实验的适度组合来找出。
本发明的首要用意如本文所述,是提供对人和动物病者的电疗治疗,所述治疗包括(但不限于)加速愈合、急性或慢性疼痛的减轻、以及肿胀和/或炎症的缓解。然而,该装置无需限于和完整的器官一起使用,因为离体细胞或组织培养物也受电疗波形的影响;已经观察到,合适的电刺激能够修正细胞代谢、分泌和复制的速率。例如,分离的皮肤细胞在适当的介质中可以用所选择的波形进行处理,从而在组织培养的自生皮肤移植材料的制备中可增加细胞的增殖和分化。作为另一个实施例,通过用适当的波形处理,被基因工程制备成所需产物例如人胰岛素的细菌生长得以加速,或者所需产物的分泌得以增加。作为又一个实施例,通过再次用为此目的选择的波形进行类似处理,可减小食品、饮料、饮用水或药品内的所选有机体的发育能力。
应用装置是本发明的另一个重要特征。大范围的可达到的治疗信号波形、频率和强度使本发明适合大范围的这些应用装置,所述装置包括(但不必需限于):皮肤接触的导电电极;导电敷料,例如水凝胶或盐水浸泡的纱布;导电液体例如身体或其任何部分可以浸渍在其内的盐水浴;导电材料,例如为了其它目的已经***或植入体内的骨固定钉或导管;以及与细胞或组织培养物、食品、饮用水和其它饮料或药物材料接触放置的类似天然的导电材料。
“导电的”如前面段落中所用,可以指以下现象中的任何一个或组合:金属导电;通过正或负电荷载体的半导体型导电:诸如发生在一些碳填充的塑料中的初步隧道导电;诸如通过盐水或其它溶液(一般为水溶液)中的离子运动的离子导电;电解质导电,其中离子在界面例如金属导体与离子溶液之间的界面被氧化或还原;以及电容导电,其中根据外加电压的变化,电荷被位移电流运送诸如通过绝缘材料薄片。
图17表示出本发明的使用方式,其中借助于常规的皮肤接触电极132a和132b例如用于TENS(经皮电神经刺激)的那些,施加给并通过一定容积的身体组织130。TENS电极是廉价的,以各种形状和款式广泛获得,并且经常是自粘的。为了与本发明一起使用,将电极放到皮肤134上,并以使在电极之间流动的电流包括待处理的组织容积的方式,利用信号源136进行驱动。
作为通用规则,电流本身将主要分布在位于组织容积130(其一端在每个电极处)内的大致为足球形的容积138之内。容积138内的组织因此将接受最有效的治疗。例如,在骨折治疗中,电极应该位于皮肤上,以便使折断位于此容积中心附近(如图所示)。
图18表示出本发明具体应用于一种治疗方式,其中为了骨延长的目的需要刺激骨的生长。在诸如目前利用Ilizarov和类似固定装置实践的治疗中,骨150被切开或破开,然后利用刚性钉152a或152b将每个部分150a或150b分别固定到通常为环形的垫圈154a或154b上。为了强调起见,所示出的部分150a与150b之间的缝隙比实际宽得多。垫圈154a和154b通过可扩张的装置160(例如通过可旋转的螺套筒接合的螺杆)连接在一起。钉、垫圈和连接装置同样主要用诸如不锈钢之类的金属共同制成。通过将逐渐延伸的装置160作为在缝隙162内的新骨形式,骨150的整个长度缓慢增长。
然而,所有太经常发生的是,这种方法失败或明显减慢,因为骨没有如所需的那样快速填充缝隙,或者因为新骨没有适当钙化。结果是形成永久性的骨不连合,或具有再次骨折的严重危险的多孔骨。
为了这种常规的治疗,本发明加入用于骨再生的电刺激。用按照本发明原理制成的信号源166连接的皮肤接触的导电电极164a和164b,以这样的方式放置:即,在电极之间流动的电流将包括围绕并包括骨内缝隙的组织容积166,但显然位于钉152a和152b处,因为一部分外加电流然后流过这些钉、垫圈和连接装置,而不是流过组织,并由此被浪费。
诸如图4中的波形(已知刺激骨的生长),然后从电源166通过电极进行施加,通过包括骨缝隙的组织容积,加速再生,并激励钙化。在最近进行的一个实验中,其中已经获得完全预定的骨延伸,但是新骨几个月来仍然钙化较差,并且附近的旧骨变得骨质疏松,从而阻止固定器去除,利用这种装置的刺激重新起动生长,从而在六个多星期之后,愈合基本完成,并且可去除钉和其它扩张装置。
最近,在该治疗领域已经有一种新的开发:以前较重的和X线不透的金属垫圈154a和154b已经被用更轻的射线可透的(对于医用X射线是透明的)、不导电的复合材料(例如纤维加固的塑料树脂)制成的垫圈所替代。例如,来自Orthofix(R)的新覆银铜环固定器(Sheffied Ring Fixator)包括用这样的材料制成的垫圈,将所述垫圈打上单独几组孔,这些孔对于固定钉是在径向取向的,对于可扩张的连接装置是在轴向取向的。
当使用这样的不导电垫圈时,不存在供电流流动的从一组钉通过固定器到另一组钉的路径。这可使皮肤接触电极的定位具有更大的自由度,或者可以使固定钉本身同时用作电极。
图19表示出本发明的另一种使用方式,其中电极170a和170b放置在容纳水或其它液体174的浴盆或其它容器172的两个对置内表面上,水或液体中溶解了一种或多种导电离子盐例如氯化钠(佐餐盐)或硫酸镁(泻盐)。容器172本身优选是不导电的,但如果其某些部分(例如管道附件)导电,那么便利的是,使它们用作一个或两个电极,或者用作电极的某些部分。
待治疗的身体部分176浸渍在导电溶液中。身体部分176通常是受待治疗的疾病影响最大的部分。对于足底筋膜炎或阿基里斯腱炎,例如,可如图所示治疗脚和小腿。对于全身疾病,例如骨质疏松或类风湿性关节炎,更有效的是,例如使用适当修改的涡流浴盆,一次治疗全身。
按照本发明原理的合适信号利用源178产生,并通过溶液和浸渍的身体部分,从一个电极到另一个电极(如前面部分和附图中所述)。包括溶解盐的液体174的电阻,优选在与活组织相同的范围内,在约50-300欧姆-厘米。通过适当设计和放置电极,基本上可使液体174的整个体积传输有用强度电平的电流。
这种相同的应用方法或其简单变型,也能够用于处理细胞或组织培养物、饮用水和其它饮料、药物制剂或其它液体或半液体材料。
图20表示出为了治愈慢性创伤例如糖尿病或褥疮溃疡的本发明的又一种使用方式。一个电极180放置在与受伤表面184直接接触的导电消毒敷料182上或之内。电极180优选直接放在受伤表面上(如图所示),但是如果由于任何原因这不实际,那么就可以将一个或多个电极180a、180b等放在创伤附近。
电极180(或电极180a、180b等)和敷料182然后优选用外部不导电的敷料186覆盖。另一个电极190放在附近的健康皮肤上,并且优选的是,如果可行,就放在其上有创伤的肢体或其它身体部分192的相反侧上,从而治疗电流194的分布基本上是均匀的横贯表面184。再者,如果一个电极的使用是不实际的或者不能给出所需的电流分布,那么就可以使用多个电极190a、190b等。
电流由按照本发明原理制造的紧凑电源196提供。电源196可任选地固定在外部敷料部分186上或者制成其一部分(如图所示)。
用于产生信号的装置是本发明的另一个重要特征。本发明可以简单地利用由廉价、广泛购得的CMOS集成电路元件构成的实质上相同的相对简单的电路,产生刚刚描述的信号中的任何一个或任一组合。利用这种方法,例如,通过将干扰电疗和动力肌肉刺激、也许还有其它所选波形组合起来,可容易地构建组合刺激器,还不会有“过高”的成本、笨重、动力需求(具有较短的电池寿命)以及如果利用微处理器技术实施则为实现相同功能而需要的高制造装配费用。
按照本发明的波形,包括图4或图6-15中所示的那些中的任一个,能够用诸如图21中的方框图所示的200之类的装置产生。装置200包括以下功能块:提供一级间隔T1、T2等的计时的第一频率发生器202和任选的时序开关(“定序机”);提供二级间隔t1、t2等的计时的第二频率发生器206和任选的定序机208;任选地,一个或多个电控开关例如数据多路转换器或固态模拟开关,由定序机204和208的输出控制并且通常用210表示;通常用212表示的无源器件阵列,用开关210(如果存在的话)从该阵列中选择具体组合;由一个逻辑电平驱动器214或者优选地由两个这样的驱动器214a和214b(每个驱动一条输出线,如图所示)构成的输出装置;输出滤波器216,其任选地包括直流阻断电容218a和218b、变压器220、可变衰减器222、高频抑制装置224或者这些器件的组合,从而在终端226产生修正的输出;一任选的计时装置228,其能够或禁止在所选时间对其它功能块进行某些组合,从而产生没有输出存在的时期。
存在许多不同类型的电控开关和许多用于在示意图上表示这些开关的惯例。用于本发明的开关优选是CMOS模拟开关:用于CD4016B或CD4066B集成电路(单极,单投)的那种类型的开关,或者用于CD4053B(单极,双投)的那种类型的开关。这些类型的开关可用来携带模拟信号或数字信号,只要它们不超出正电源与地线之间的电压范围即可。
为了在此图和下图中简便起见,以及为了使它们与常规的移动接触开关或延迟区分开,这些开关用如下规定表示。单“蝴蝶结”符号(如图21所示)表示单投(CD4016B或CD4066B型)开关。双“蝴蝶结”(例如,图23中的开关270)表示双投(CD4053B型)开关。在每一种情形中,进入“蝴蝶结”终端的线是开关线,而从侧面指向里面的箭头代表控制输入。
CD4016B或CD4066B开关由逻辑高(“1”)输入打开,由逻辑低(“0”)输入关闭。对于根据控制输入用两个不同连接线路构成的双投开关,小数字“1”和“0”将放在双蝴蝶结符号(再者,如图23中的开关270所示)的终端,以便示出哪个输入状态导致每个连接线路的形成。
频率发生器202和206优选是不稳振荡器,每个由具有电阻和电容反馈的反相CMOS逻辑门形成,从而每个门产生在逻辑高电压与逻辑低电压之间交替切换的两个互补输出。根据应用,这些输出之一或两个都可以使用。这些振荡器的具体实施例在图23以及其后的附图中示出,并且在随附的正文中有所描述。
如果一级循环包含多于两个的一级间隔T1、T2,或者如果这些间隔中的一个或多个比频率发生器202的实际半循环时间(具有恒定的高或低输出的时间)长,那么就使用定序机204。否则,发生器202在通过其固有的二阶振荡循环时能够直接产生切换输出。
同样,如果二级循环包含多于两个的二级间隔t1、t2,或者如果这些间隔中的一个或多个比频率发生器206的实际半循环时间(具有恒定的高或低输出的时间)长,那么就使用时序开关208。否则,发生器206在通过其固有的二阶振荡循环时能够直接产生切换输出。
无源器件212可包括电阻器、电容器、二极管、或这些器件的串联或并联组合。器件212可影响频率发生器202,206或二者的计时。或者是,一些开关210可以控制逻辑信号,以便选择或不选择多种电路功能。
在一些情形中,将频率发生器202和206进行组合是实际的:例如,通过使发生器202的输出经过数字划分网络,该网络的输出取代发生器206的输出(如图26所示)。
利用本领域公知的动力供应装置,可以将动力从电力干线(一般为120或240伏A.C.,50或60Hz)供给本发明。然而,由于干线的使用造成一些电击的危险,因此本发明优选用电池230供电,电池的输出诸如大约在6-8伏之间。电池230可以是原电池或充电电池,但是更优选锂原电池,因为这种类型具有高功率密度和相对平坦的放电特征。对于低功率应用,电池230最优选是利用非导电外壳在其边缘封装和保持的3伏特锂硬币电池堆,例如CR2032。可加入动力开关232、串联二极管234和/或缓冲电容器236,以保存电池寿命,消除来自不适当电池安装的任何危险,并且使电池的内部电阻作用最小。
当许多不同的方式可以由同一器件中提供时,或者当需要编程序时,用低功率的CMOS微控制器250(例如,微芯片PIC16F627)(如图22的框中所示)代替频率发生器、定序机、模拟开关和相关无源器件的一些组合,被证实是更实际的。频率发生器202和206以及定序机204和208,由此用微处理器程序中的软件模块而不是用离散的硬接线器件执行。这样做时没有发生功能性的变化;微处理器只接收一些或所有计时和排序功能,从而能够取消相应的电开关210和与其相连的无源器件212(一般,这些器件有助于产生计时)。然而,对于一些目的,有益的是,保留其它这些开关和无源器件(如图所示),以便用微处理器输出直接控制这些器件。
本发明的第一具体实施方案在图23中示出。为了图示目的,此实施方案已经有意被简化,以便产生现有技术的三阶一级循环,其中一个一级间隔被二级循环(在图4中示出,并且在U.S.6,535,767中有所描述)或者被相同通用形式但不同一级循环长度的一类交替波形中的任一个细分。所示出的电路由此是通过动态选择导致一级循环间隔长度不同的器件212,产生这种波形的交替方式,其表示出本发明的原理。
由两个反相CMOS逻辑门262a和262b、固定电阻器264、可变电阻器266和由开关装置270交替选择的两个电容器268a和268b构成的第一频率发生器260,以主要由电阻器266和所选电容器设定的频率自由运行。逻辑门262a和262b可以是能够在电池供应电压工作的任何类型的CMOS集成电路中的单门,但优选提供缓冲输出的CD4000B系列集成电路中的两个门。
开关装置270优选是通常购得的CD4053B三联2-通道、CMOS模拟数据倍增器部件。如上所解释的,符号终端的小数字“0”和“1”表示其与相应输入信号形成的连接。注意,为了将切换信号电压保持在正负供电电平之间的范围内,将CMOS模拟开关放在逻辑门输出和与其相连的任何电容器之间。将开关放在电容器的相反侧上可将其暴露于范围外的电压,因此结果难以预测。
除了在交替的电容值之间、由此在交替的计时或频率范围之间提供电切换之外,图示的振荡器构造是电路设计领域公知的通用结构。假设理想的器件行为、循环时间或一个完整振荡的时间由以下公式给出:
TCYC=2RCIn(3)
这里,R是电阻器266的值,C是所选电容器268a或268b的值,1n(3)大约为1.0986。循环时间由此与所选电容器的值和电阻器266所调到的值都成正比。
发生器260的输出即方波,驱动形成十阶定序机274的二进制小数或其它位数的计数器。优选地,此计数器是通常购得的CD4017B CMOS十进制计数器,这种计数器具有译码的“N之一(one-of-N)”输出,其中“N”通常为十。为了简单起见,其在示意图中简单地表示为具有时钟输入和十编码输出的框。在CD4017B中,由于输出是以Q0开始编码的,因此此输出代表第一阶,Q1代表第二阶,Q2代表第三阶,等等。
对于十阶,即使用单CD4017B芯片可能具有的最大数目,将芯片的复位输入简单地接地,因此在此图中没有示出。每个输出通常在逻辑低处,但在循环的相应阶中被拉到逻辑高处。定序机在从逻辑低到逻辑高的时钟输入跃迁上行进到下一阶。该顺序从1持续到10,然后返回到1,从而只要时钟脉冲持续到达,则循环重复。
在定序机274的第1阶到第9阶,来自定序机的输出10在逻辑低(“0”)处,并且开关270选择电容器268a,而在第10阶,输出在逻辑高(“1”)处,并且开关选择电容器268b。所选的电容器然后确定相应阶的长度。结果,第1阶至第9阶的长度相等(除了起动跃迁之外),而第10阶具有不同的长度。
优选地,电容器268a具有约1.5至约2.7倍电容器268b的值,从而利用相同比例,导致第1阶至第9阶持续得比第10阶更长。电容器266可以是简单的电位计(如图所示),或者是以单个或组合方式选择多个固定电阻器中的任一个的开关。优选地,电阻器266具有约15,000欧姆-约15,00000欧姆的可能范围值,电容器268a具有0.022微法拉的值,电容器268b具有0.01微法拉的值。电阻器264的值不严格,只要其至少是电阻器266的最高可能值的两倍即可。
给出这些优选值,其中电阻器266被设定为约146,000欧姆的一个值,并且假设所有器件中的理想行为,定序机274的第1阶至第9阶每个花费7.05毫秒,而第10阶花费3.21毫秒。对于15.0Hz的一级频率Fp,所获得的十阶一级循环由此花费66.7毫秒。电阻器266的其它值给出不同的循环长度,但是保存了所有阶长度之间的比例性。对于从15,000欧姆至1.5兆欧姆的范围,相应的一级频率(再假设理想的响应)在从146Hz低至1.46Hz的范围内。
当定序机274在第1阶至第8阶的任一个中时,输出驱动器280a和280b都具有分别被电阻器282a和282b拉到逻辑“低”的输入,从而它们的差动输出电压为零。第1阶至第8阶因此是作为单个持续间隔T1出现的,在此间隔过程中输出保持零电流或电压的恒定输出状态。
当定序机274在第9阶时,其打开由二输入CMOS NAND门292、反相CMOS逻辑门294、三个固定电阻器296,298和300、二极管302和电容器304构成的第二频率发生器290。再者,这次除了允许产生不对称输出波形的电阻器300和二极管302存在之外,这是一种电路设计领域公知的通用振荡器构造。振荡器的功能,在通过加入额外电阻器和二极管修正时,在U.S.6,011,994中有详细解释,该文献作为参考并入本文。第二NAND门输入,在保持在逻辑高处而定序机在第9阶时,用作仅在此间隔过程中打开发生器290的启动输入。
来自发生器290的输出信号包括在线306a和306b上的两个互补逻辑电平信号。利用打开的发生器,这两条线交换具有由以下公式给出(接近近似值)的频率和工作循环的逻辑状态:
FOSC=1/C In(3)(RS+RP)和
DCS=RS/(RS+RP)
这里,RS是单独电阻器298的值,RP是电阻器298和300的平行组合值加上由二极管302贡献的小项目,C是电容器304的值,再者,1n(3)大约为1.0986。工作循环在此处代表在如图23所表示的更大正极性(而不是在更大负极性)花费的时间比。优选地,选择RS、RP和C,以便使FOSC置于1000至2000KHz之间,使DC在67%至95%的范围内,以便满足前面部分的条件(g)。更优选的是,FOSC位于4000至4500Hz的范围内,DC大约为88%。这例如可通过分别将180,000欧姆、33,000欧姆和.001微法拉的储备分量值给予电阻器298和300以及电容器304,来实现。
线306a和306b上的信号通过开关310a和310b分别被发送到驱动器280a和280b,所述开关在此处是利用相同CD4053芯片的两个剩余部分(芯片的第一部分形成开关270)形成的,但是由来自定序机的输出9控制。为了简单起见,由于不使用“零连通”这些开关的一半(halves),因此所示出的开关似乎都是单极的,每个开关旁边的小数字“1”表示这是连通此开关的逻辑控制电平。
在第1阶至第8阶的过程中,以及在第10阶的过程中,开关310a和310b接收逻辑低控制输入,并由此不形成连接。在第9阶的过程中,它们接收逻辑高输入,连通并使互补输出信号通过到达驱动器。这在第9阶的过程中产生具有前述特征的二级循环输出信号,此信号由此代表一级循环中的T2。
在代表一级循环中的T3的定序机254的第10阶的过程中,发生器260再次断开,并且其输出与输出驱动器断开。然而,二极管312现在将正逻辑信号从定序机的输出10馈送到驱动器208a的输入,从而压倒电阻器282a的作用,而驱动器280b的输入仍然由电阻器282b保持在逻辑低处。这再次导致驱动器输出假定相反的逻辑状态,借此产生与在T2过程中的大部分时间存在的电压相等和相反的差动输出电压,从而在T3过程中,基本上中和了任何得到的电荷失衡。
假设对于电阻器264,266,296,298和300以及电阻器268a,268b和304以上给出的分量值,所获得的计时间隔将近似为:
T1=56.4毫秒(5.8-580毫秒),
T2=7.05毫秒(0.72-72毫秒),
T3=3.21毫秒(0.33-33毫秒),
t1=198微秒,以及
t2=28微秒,
这里,对于每个T1、T2和T3给出的第一值,对应于可变电阻器266的额定设定值,而其在括号内显示的范围代表所有的可能设定值范围。
为了使这种中和不完全时导致的电荷失衡最小,电容器314a和314b形成避免任何剩余的净直流电出现在输出316的输出滤波器。
虽然图23的电路比U.S.6,011,994和6,535,767中所述的电路明显更复杂,但是其优点是,允许所有的一级计时间隔将由单个可变的电阻器266来设定,从而,通过改变此电阻器的值,使用者能够改变脉冲串重复频率FP,而不会影响所获得的输出的电荷平衡,并且对二级循环没有任何作用,所述二级循环保持恒定频率FS(等于以上的FOSC)和工作循环DCS。
本发明的第二具体实施方案在图24中示出。此执行方式既能够产生图7或图16的输出波形,也能够产生具有相同的通用形式但不同一级循环长度、二级循环长度、频率特征或任何这些特征的组合的一类交替波形组中的任一个。
第一频率发生器330和定序机332产生一级循环。频率发生器330和定序机332与前面的实施方案大致相同,只是在形成定序机的CD4017B芯片中,输出5与复位输入相连,从而在到达此状态时,定序机立即(一般在200纳秒之内)返回到第1阶。一级循环由此仅包括四个阶T1、T2、T3和T4,每个阶对应于定序机的刚好一个阶。
如前所述,一级间隔的长度部分由频率发生器330中的切换电容来确定。然而,在此处,有三个电容器334a、334b和334c,所有电容器的值相等。在这些电容器中,电容器334a一直连接着,而其它电容器根据定序机输出分别通过开关336a和336b连接或断开。固定电阻器338和可变电阻器340在此处以分别与前面执行方式中的电阻器264和266相同的方式起作用。
在T1过程中,开关336a和336b都断开,从而电容器334a单独帮助设定间隔时间:
T1=2 In(3)RC
在这里,R是可变电容器340的值,C是电容器334a的值。再者,固定电容器338的值不严格,只要其至少是电阻器340的最大值的两倍即可。
在T2、T3和T4过程中,开关336a通过由来自定序机332的输出驱动的变极器342连通。(换言之,其仅在T1过程中断开)。这使电容器334b与电容器334a平行连接。此外,仅在T3过程中,开关336b也由来自定序机的输出3连通,从而使电容器334c与其它电容器平行连接。结果,
T2=T4=2 In(3)R(2C)=4 In(3)RC和
T3=2 In(3)R(3C)=6 In(3)RC
从而T2是T1的两倍长,T3是T1的三倍长,T4又是T1的两倍长。
同时,第二频率发生器344除了在由T1过程中的变极器342断开时之外,一直都运行着。发生器344严格类似图23中的发生器290,只是图23中用来产生不对称振荡的额外二极管和电阻器在这里不存在。结果,发生器344在线346a和346b上产生互补方波输出。
也与定序机332的输出连接的是NOR门348和350。门348与输出2和3相连,从而在间隔T2和T3过程中产生逻辑低输出,在间隔T1和T4过程中产生逻辑高输出。同样,门350与输出3和4相连,从而在间隔T3和T4过程中产生逻辑低输出,在T1和T2过程中产生逻辑高输出。
将门348的输出馈送到第三NOR门352的一个输入中,门352的其它输入是线346b上的方波信号。结果,门352的输出在整个T1和T4中处于恒定的逻辑低处,而在T2和T3过程中它是逆转的线346b上的信号。
以类似方式,将门350的输出馈送到第NOR门354的一个输入中,门354的其它输入是线346a上的方波信号。结果,门354的输出在整个T1和T2中处于恒定的逻辑低处,而在T3和T4过程中它是逆转的线346a上的信号。
这些关系在图25中示出,在这里,间隔360a、360b、360c和360d分别是T1、T2、T3和T4;踪迹346a和346b代表类似编号的信号线上的电压;以及踪迹348、350、352和354代表类似编号的门的输出。踪迹360简单地是踪迹352与354之间的差。注意,踪迹360与图7中的一样。
由踪迹360代表的信号具有由稍微不同频率的两个正弦波的干涉产生的正弦调制信号的一些特征。这是用于干涉电疗的经典信号,其中该信号是通过将两个稍微不同频率的正弦波信号通过分开的电极对施加到身体上而产生的。这样的信号由踪迹362代表。
踪迹360和362的信号是一样的,它们都具有最大和最小强度的交替周期,最小强度周期仅持续较短时间,而最大强度周期相对长。它们主要在谐波含量方面不同:这是由于踪迹360的信号具有尖角,它包含大量的更高频率,而踪迹362的信号没有尖角,因为此波近似于正弦曲线。
踪迹360的信号正象其作用的一样,可用于电疗。在T2和T4过程中存在一些电荷失衡,但是由于这些间隔过程中的波形名义上是相等的且极性相反,因此将这些波形大大删除。利用直流电阻挡电容器,可删除任何剩余失衡(如果必需的话)。
然而,在一些情形中,需要更接近“经典的”干涉波形。为了实现这一点,通过优选地利用有源工作放大器电路进行带通或低通滤波,可去除更高频率的分量。可同时阻挡直流电输出分量。
例如,示意图表示在电路框356a中的单个工作放大器、谐振带通滤波器,通过将所有频率阻挡在所选择的相对窄的带之外,将实施用于门352的输出信号的这些功能。由于此电路是有源滤波器设计领域内公知的类型,因此其功能在此不做进一步的讨论。第二个相同滤波器356b(为了简明起见此处仅仅表示为一个空框),实施相同的用于门354的输出的功能。为了便利起见,两个滤波器都可以用低功率、双工作放大器集成电路例如LF353N或TL082来制造。
踪迹364代表这种滤波的结果。正如所容易明白的,信号与前面具有相同的全面特征,但是高频循环现在要圆得多,从而表明,大多数谐波已经消除。注意,踪迹364与图16中的一样。
在图26中示出的本发明的第三具体实施方案被设计成用相同的紧凑器件并且按使用者的选择产生与图4类似的不对称调制脉冲串信号,此信号适合组织愈合刺激和减轻疼痛;类似形式、适合肌肉刺激的方波调制信号;或者类似前面实施方案的、适合干涉刺激的准正弦信号。
为了图示目的,在此实施方案中,常规形式的单个频率发生器400,直接产生二级循环并驱动二进制计数器402(例如CD4040B集成电路),此计数器与频率选择开关404和定序机406一起产生一级循环。计数器402由此用作二级频率发生器206(如图21所示)。
发生器400优选地以1000-200KHz、更优选4000-4500Hz的频率运行。为了简单起见,在随后的解释中假设工作频率为4096Hz(212Hz)。然而,基本原理与实际频率无关。
发生器400之后是由电容器410和电阻器412构成的脉冲定形网络追,从而在用以下的CMOS门使脉冲成方形之后,
RC=1/(KFOSC)
这里,R是电阻器412的值,C是电容器410的值,FOSC是发生器400的工作频率,K是确定所得到的脉冲串波形的工作循环的数字常数。优选地,K位于2-14的范围内,从而产生67%-95%的工作循环,由此满足前面部分中的条件(g)。更优选的是,K大约为5.75,从而产生接近88%的工作循环。开关414然后允许选择对称或不对称的输出波形版本。优选地,信号然后用门416缓冲,此信号可逆转(如图所示)。
二进制计数器402具有代表不同二进制除数的多个抽头。可利用开关404选择这些抽头的任一个,或优选这些抽头的所选亚组的任一个。所选抽头处的信号然后形成输入定序机406的时钟输入,通过将第9阶的输出和复位输入连接在一起,定序机是为8个阶构造的。结果,一级循环频率代表时钟频率被8除的除数。例如,利用图中所示的可选择抽头的亚组以及4096Hz的振荡器频率:
  所选抽头   时钟频率   一级频率
  ÷4   1024Hz   128Hz
  ÷32   128Hz   16Hz
  ÷256   16Hz   2Hz
  ÷2048   2Hz   0.25Hz
来自定序机406的第1阶的输出420由门422逆转。OR门424合并来自定序机406的第1、2、3和4阶的输出信号。同样,OR门426合并第4、5和6阶的输出信号。
两极、三位置开关440然后选择信号420、422、424和426的一些组合,以便被这两个极选择的信号分别出现在线442a和442b上。在位置“A”,两个极选择信号424。同样,在位置“B”,两个极选择信号420。在位置“C”,一个极选择信号422,而另一个极选择信号426,以便这些信号分别出现在线442a和442b上。
AND门444然后合并来自门416以及线442a上的信号,以便使载波信号通过,而无论何时线442a是高的。同样,NAND门446对来自门416以及线442a上的信号进行合并,只是载波在通过时,也被逆转,从而使来自门444和446的载波信号是互补的。当需要电压或电流放大时,门444和446可以是高电流输出类型,或者是被缓冲放大器追随(如图21所示)。
滤波器448然后优选地阻挡DC和约40KHz(10FS)以上的频率分量,并使输出电压上升(如果需要的话),从而在终端450产生差动输出。可任选地给予滤波器448多个不同滤波和/或电压上升特征,还有开关选择特征,以适应不同的波形和它们的预计应用。
结果在图27中示出。踪迹404代表输入定序机406的时钟输入。踪迹416代表所选择的载波波形,此处示出的是不对称的;循环长度为了清楚起见被放大。踪迹420代表第1阶的输出,而踪迹424、426和432代表图26中的相应线上的信号。踪迹450a、450b和450c分别代表开关440的位置“A”、“B”和“C”的合成差示输出信号450,从而忽视了滤波器448的任何作用。
开关404、414和440可以是电子开关(例如CD4016B、CD4051B、CD4052B或CD4053B集成电路中的那些),或者常规的机械开关。在任一种情形中,期望限制设置的可能组合到代表最通常可用的输出波形的一些便利小数字。例如,所有的选择可与用于数字万用表中的那些类似,可组合在定制的多极旋转开关中,并且一个位置产生每个所选择的组合,另一个位置切断刺激器。
从此实施方案获得的预期波形实施例,以及产生它们的开关组合是:
  波形   开关404   开关416   开关440
  肌肉刺激   对称   ÷2048   A
  组织刺激   不对称   ÷32   B
  干涉   2Hz,对称   ÷256   C
  干涉   16Hz,对称   ÷32   C
  干涉   128Hz,对称   ÷4   C
肌肉刺激波形包括交替的导致肌肉纤维收缩的二秒脉冲群、与使肌肉松弛的二秒的无信号期。组织刺激波形与本发明第一实施方案所产生的类似,而干涉波形与第二实施方案所产生的类似。
本发明的第四具体实施方案被设计成产生非正弦、不对称、但具有与图15所示类似的电荷平衡的输出,此输出还包含图12所示的二级循环频率偏移。此实施方案在图28中示出。
频率发生器500,与前面的实施方案类似,驱动具有10个阶的定序机502(正如在所述的第一实施方案中那样)。由于发生器500没有随时间改变的分量,因此其以恒定的速率运行,该速率优选为约1个阶/秒。定序机502的整个循环由此在约10秒钟内完成。
NOR门510合并定序机输出2、3和4,从而在这些阶过程中产生逻辑低输出,否则就产生逻辑高输出。第NOR门512用输出1和5实施同样的操作,从而在这些阶过程中产生逻辑低输出,否则就产生逻辑高输出。这些输出定义了T1-T4,从而T1等于第1阶,并且门510的输出高,但门512的输出低;T2等于被合并的第2、3和4阶,并且门510的输出低,但门512的输出高;T3等于第6阶,并且输出与T1中相同;T4等于第6-10阶的和,并且两个输出都高。因此,T1和T3是相等的,并且每个持续约1秒钟,而T2持续约3秒钟,T4持续约5秒钟。循环然后重复进行。
NAND门514然后合并门510和512的输出,从而其输出在T4过程中处于逻辑低处,但在所有其它时间处于逻辑高处。相同的输出是从由定序机输出6-10馈送的NOR门获得的,或者在CD4017B或等同的集成电路中,是直接从Cout(“完成”)销钉获得的。
第二频率发生器520由NAND门522、反相器524、三个电阻器526,528和530、二极管532、永久连接的电容器534a以及第二电容器534b构成,其中第二电容器534b通过开关536能够暂时与其平行放置,并且由门510控制,从而在T2过程中其是断开的。发生器520在线538上产生单个输出。门522被门512的输出所控制,从而发生器520仅在T2和T4过程中运行,同时信号512较高,因此在线538上产生振荡输出,而在T1和T3过程中,信号512较低,并且振荡器520的输出也恒定地保持较低。
与电阻器528平行连接的电阻器530和二极管532的组合,使振荡不对称,这如U.S.6,011,994中所解释的。利用如图所示取向的二极管532,线538上的信号在振荡过程中约为88%的时间于逻辑高处。电阻器526,528和530优选分别具有约2.2兆欧姆、270,000欧姆和27,000欧姆的值,电容器434a和434b分别具有约0.01微法拉和1微法拉的值。
利用这种电路构造和这些值,在T2过程中,仅电容器534a在电路中,并且对于约300Hz的二级频率FS,发生器520的输出耗费在逻辑高处的约3毫秒和逻辑低处的0.3毫秒的交替周期。在T4过程中,将电容器534b的值加到电容器534a中,并且对于约3Hz的二级频率,发生器的输出耗费约300毫秒在逻辑高处和30毫秒在逻辑低处。
XOR(专用OR)门540接收线538上并来自门510的信号作为输入,此信号如上所述在T1、T3和T4过程中处于逻辑高处,在T2过程中处于逻辑低处。结果,门540使在T2过程中未改变的来自线538的信号通过,但是在所有其它时间使其反相。
同样,第二XOR门542接收线538上并来自门514的信号作为输入,此信号在T1、T2和T3过程中处于逻辑高处,但在T4过程中处于逻辑低处。结果,门540使在T2过程中未改变的来自线538的信号通过,但是在所有其它时间使其反相。
门540和542的输出分别馈送缓冲放大器544a和544b。来自本发明这个实施方案的输出包括这两个缓冲输出之间的差示信号。
合成信号在图29中示出,其中踪迹538是线538上的发生器520的输出;踪迹510,512,514,540和542是类似编号的门的输出;踪迹546是来自缓冲器544a和544b的差示输出信号。表示出T2过程中的二级循环长度,并且循环数目相应地减小了,从而,与图5所示对应的T2与T4之间的极性改变明显。注意,除了此反相之外,踪迹544基本上与图12中的踪迹相同。
在一些情形中,间歇的而不是连续的治疗是需要的。例如,在轻度到中度疼痛的治疗中,最好允许病人控制剂量:在按压按钮后开始治疗,使待产生的信号持续预先设定的时期例如30或60分钟,然后切断治疗,直到病人再次按压按钮为止,等等。或者是,“断开”期也是预先设定的,从而设备在每半个小时到几个小时的“开”和“关”时期之间连续循环,或者在接受另一次按钮按压之前,需要预先设定的最小“断开”间隔。
在任一种情形中,频率发生器500的输出可以便利地施加到二进制或其它计数链条550(几乎与前一实施方案一样),而计数链条的输出552驱动门512的额外输入。信号552可以从如图所示的信号输出中采集,或者派生于几个这样的输出:例如,通过使用与门510类似设置、由反相器追随的NOR门。信号552最初在逻辑低处,能够使门512和频率发生器520如前所述那样工作。然而,在计数器550中得到具体计数之后,信号552变到逻辑高,迫使门512的输出到逻辑低,并由此使发生器520丧失能力,以及迫使差示输出信号从缓冲器544a和544b到零。
根据计数器550的设置,进一步的计数随后是不能实施的,从而没有来自缓冲器的进一步输出,直到诸如通过如其所述按压按钮,将计数器重新设定到零为止。或者是,允许计数继续进行,从而在得到一些其它具体计数之后,发生器520将再次激活,并且输出在由零输出的具体间隔分开的具体时间长度后将周期性地恢复。通过稍微修改所述电路,其它选择也是可能的。
本发明的第五具体实施方案被设计成产生非正弦、近似指数衰减的信号,而无论何时用外部电源来触发它。
对称指数衰减的理想化曲线在图30中用踪迹600示出;注意,这样重新产生图5的踪迹110,只是其以更大的标度表示。踪迹602表示出由五个间隔604a、604b、604c、604d和604e构成的近似值,每个包含具有从每个间隔向下到下一个间隔的稳定幅度加上零幅度的间隔604f的载波信号。按照本发明的原理,间隔604f代表一级间隔T1,而间隔604a、604b、604c、604d和604e依次代表T2、T3、T4、T5和T6。该图表示出T1在开始时、依次被其它五个一级间隔追随的代表性部分604f,以及最后来自下一个一级循环的T1的代表性部分604f’。为了更清楚地看到踪迹602上的阶,此处省略了在图5中用来表示二级循环的存在的垂直阴影。
一级循环中的间隔,以T2开始,以T6终止,可以相等或依次更长。优选地,间隔T2、T3和T4都具有相同长度,间隔T5具有二倍的此长度,间隔T6具有四倍的此长度。更优选的是,给出此时间关系,信号在T2、T3、T4、T5和T6过程中的相对幅度分别接近于100%、80%、60%、40%和20%。T1过程中的幅度,如其所述,是零。根据应用,T1在长度上是固定的,从而产生周期性信号,或者是任意长,从而产生不定期的信号。
踪迹606表示指数衰减、具有追随踪迹600的曲线的幅度。踪迹608表示按照本发明原理的信号,该信号利用如踪迹602所示电压或电流的多个电平近似追随相同衰减曲线。踪迹610表示按照本发明原理的更实用的信号,其中仅使用三个电压或电流电平,但通过改变再次如踪迹602所示的二级循环内的这些电平的时间关系,而使有效幅度减小。注意,踪迹610与以上图11中所示的踪迹相同。
图31表示出能够产生踪迹610的波形或类似一大类中的任一个的电路实施例。如上所提到的,这种通用形式的信号,在以相对高的强度施加时,已经显示出,在体外使一些微生物失活,也许由此可用于保存食品或饮料,或者用于消毒药物材料或饮用水。由于无意与人或动物的身体直接连接,因此图31所示的电路也许用类似前面实施方案的电池或电力主线来提供动力。
第一频率发生器620和定序机622产生十个计时阶。定序机622的“复位”输入诸如通过电阻器626与通常保持在逻辑低的外部输入线624相连。
发生器620是前述的通用形式,包括反相门630和632、电阻器634和636以及电容器638,但是不同的是,开关640在连通时,将电阻器634和636以及电容器638的接合连接到正电源上。这使得发生器停止,并且门632的输出还较高,从而电容器638实质上用逻辑高处的两个终端放电。当开关640重新打开时,发生器620在其下一个跃迁之前,然后从公知状态并由此以公知的可重现的初始计时间隔重新开始。假设理想的分量特征、开关连通与输出到逻辑高的下一个跃迁之间的间隔、前进定序机622,将是
TT1=(In(2)+In(3))RC≈1.792RC
这里,R是电阻器636的值,C是电容器638的值。由于发生器620继续运行,因此到逻辑高的进一步跃迁将发生在以下间隔:
TT2=2In(3)RC≈2.197RC
并且定序机622在这些时间前进。
当定序机622到达第10阶之后,此输出使OR门642的一个输入升高,迫使其输出也升高。这样切断开关640,使发生器620停止(已经描述过)。由于定序机然后不再接收时钟脉冲,因此其保留在此状态,直到通过输入624处的逻辑高被重新设定到第1阶为止。
输入624也馈送门642,从而只要输入保持在逻辑高则发生器620仍然不运行。仅在输入624返回到逻辑低时,发生器620才重新开始振荡:使定序机622在大约1.792R C之后前进到第2阶,然后以约2.197R C的间隔到以下每个阶,直到其再次到达第10阶并停下来等待另一个复位输入为止。
第二频率发生器650与发生器620一样,只是其以足够更高的频率工作,其中至少两个并且一般是几百个二级循环出现在定序机622的每阶过程中,从反相门652和654采集互补输出。发生器650的工作频率是载波频率。
类似于发生器620,发生器650包含在连通时使其停止在可重现状态的开关656。开关656用定序机622的输出10直接驱动,从而其停止在第10阶过程中,但在所有其它时间(包括T1)都运行。
定序机622的输出4和5由OR门660合并,从而产生在整个第4和5阶处于逻辑高处的单个输出。同样,输出6、7、8、9和10由OR门662合并,从而产生在整个第6-10阶处于逻辑高处的单个输出。
来自定序机622的输出2和3以及门660和662的输出,分别控制开关664a、664b、664c和664d。这些每一个开关,在连通时,都用来自门652的输出将不同取值的电阻器666a、666b、666c或666d切换成串联状态。电阻器666a、666b、666c和666d的值依次更小,并且这些电阻器与公共线668相连,门654的输出(与门652的互补)通过电容器670也与此公共线668相连。
这种设置的结果在图32中示出,在这里,踪迹652和654代表类似编号的门的输出,踪迹668a、668b和668c代表在三个不同工作条件下和载频的几个循环上的线668上的电压:踪迹668a没有所选择的电阻器656a-656d,踪迹668b具有所选择的相对大取值的电阻器,踪迹668c具有所选择的相对小取值的电阻器。
每个电压668a、668b和668c急剧上升或下降,并且门654每次都向上或向下跃迁。二极管674a和674b避免此电压明显超出供应电压范围。此后,电压668向电压652衰减,并且时间常数由电容器670和所选电阻器的值来确定。
XOR门680然后比较电压654和668。由于4000B-串联CMOS门经历在大约供应电压(用图32中的水平虚线672表示)之间的中点的输入电压的输出跃迁,因此门680在发生器650的每个半循环过程中产生逻辑低输出,只要电压654与668之间的差保持小于供应电压的一半以及其后的逻辑高输出(如对于所选择的无电阻器、高取值电阻器和低取值电阻器的条件,分别用踪迹680a、680b和680c所示的)即可(为了具有更好的可视性,这些踪迹在图中彼此稍稍偏置)。结果是,以两倍载频重复的逻辑低脉冲,此脉冲的长度大约与所选电阻器的值成正比。当没有选择电阻器时,结果是持续低的逻辑的电平。
OR门682a和682b然后分别将电压680与电压652和654进行比较,每个门在电压652或654的相应逻辑低半循环过程中分别产生对应于来自门680的逻辑低脉冲。通过用输出缓冲器684a和684b进行缓冲(以及优选地进行电压放大),这些产生差示输出686(如对于各自电阻器选项用踪迹686a、686b和686c所示的)。再者,为了具有更好的可视性,这些踪迹在图中稍稍彼此偏置。
在定序机第10阶的过程中,当发生器650丧失能力时,仍然选择电阻器666d,门680的输入由此被迅速拉到并保持在相反的逻辑电平处,并且其输出产生恒定的逻辑高,使该逻辑高通过这两个输出,从而它们之间的差动电压为零。
当定序机622用也断开的发生器650和零差示输出停止时,此定序机的第10阶代表一级循环的间隔T1。
在第1阶,由于线624较高或者直到线624再次降低之后的门632的输出的第一跃迁为止,发生器650运行,但是没有电阻器可选择。于是,线668(踪迹668a)上的电压实质上与来自门654的输出的相同,并且差示输出在最大的工作循环处:载频处的方波,从完全正的输出电压或电流运行到完全负的输出电压或电流。这代表一级循环的间隔T2。
总共在第2阶、第3阶、第4阶和第5阶,以及总共在第6、7、8和9阶,接连选择更低的电阻器,从而导致输出采集由接连更长的零输出周期分开的、完全正输出电压或电流和完全负输出电压或电流交替的接连更窄脉冲的形式,借此通过工作循环中的逐渐变化近似于指数衰减。在每种情形中,信号(被认为是各为一个正脉冲和一个负脉冲对)在载频重复,但是接连更大的时间部分耗费在零电压或电流处。这些定序机阶或阶的组合由此代表一级循环的T3、T4、T5和T6。
在第9阶之后,定序机返回到第10阶(T1),并且循环然后在输入624接受另一个正脉冲之后自身进行重复。通过简单地将周期性间隔的脉冲施加到由比发生器620的9个循环长的间隔分开的输入中,可以使所得循环呈周期性的(如果需要的话)。或者是,循环每次可以不定期地开始,从而得到一特定组的处理条件,例如正确放置待治疗的一定容器或体积的材料。
迄今为止描述的所有实施方案都仅在它们的一级循环中使用多阶定序机,并且所有需要的二级间隔由二状态频率发生器和辅助电路产生。本发明的第六具体实施方案,在图33中示出,说明与前一实施方案类似的利用多阶二级循环和定序机产生输出,但是具有更大的一致性和精度。
一级频率发生器620和二级频率发生器650与前一实施方案中的类似编号的器件一样,并且以相同的方式起作用,只是在此处,发生器650以十倍的所需载频进行工作。为了简明起见,这些发生器仅以轮廓的形式在图33中示出。一级定序机622和OR门642、660和662也与前一实施方案中的类似编号的器件一样,只是在此处门662仅合并从第6阶到第9阶的信号。除了与门662缺乏连接之外,来自定序机第10阶的输出恰恰与前一实施方案中一样进行工作。
然而,发生器650的输出,现在向定序机700提供时钟输入,定序机700类似于定序机622,是为10个相等阶的循环构造的。定序机700的“复位”输入接地,但是在图中没有示出。
而且,与定序机622类似,定序机700的输出由OR门合并,从而产生更复杂的输出。门702合并输出1和6,从而产生具有20%工作循环的信号,而门704合并输出4、5、9和10,从而产生具有40%工作循环的信号,二者都是以二倍的载频(发生器650的频率的五分之一)。信号704被门706a逆转,信号702被门706b逆转,从而产生类似频率但分别为60%和80%工作循环的信号。
第三OR门708合并定序机700的输出1、2、3、4和5,从而以载频产生50%工作循环的信号。CD4017B包装已经包括这样的门,从而产生输出“Cout”(“完成”),此输出通常用于合并多个这样的芯片,从而形成多阶段计数器;因此,门708在图中没有示出,并且仅标记了其输出线。如果不同类型的集成电路用来形成定序机700,那么门708就需要在外部加入。
信号702、704、706a、706b和708,代表类似编号的门的输出,横贯图34的顶部表示成一行。
AND门710将代表定序机622的第6阶至第9阶的门662的信号与代表20%工作循环的门702的信号合并。同样,AND门712将代表第4阶和第5阶的门660的信号与代表40%工作循环的门704的信号合并;AND门714将第3阶的信号与代表60%工作循环的门706b的信号直接合并;以及AND门716将第2阶的信号与代表80%工作循环的门706a的信号直接合并。
注意,承载在线718上的定序机622的第1阶的信号,在整个第1阶中总是代表100%的工作循环。
OR门720然后将线718上的信号与AND门710、712、714和716的信号合并。所得信号是两倍载频的矩形脉冲,它的工作循环随着定序机622的阶的不同而改变:在第1阶(T2)中为100%(总是较高)、在第2阶(T3)中为80%、在第3阶(T4)中为60%、在第4阶和第5阶(T5)中为40%、在第6-9阶(T6)中为20%。由于定序机622的第10阶的输出不与门622相连,因此该门的输出信号在此阶段(T1)过程中持续低,因此代表零工作循环。
定序机700的信号Cout 708,如上所述,是具有载频的方波,而信号720以两倍于此速度运行。结果,信号720的一个脉冲落在信号708的每个半循环内:一个较高,另一个较低。
采集信号708作为输入的变极器708,产生第二互补方波:在信号708低时就高,在信号708高时就低。AND门730然后合并信号708和720,从而其输出包括与信号720具有相同长度的脉冲,但是仅在信号708的正的半循环过程中。同样,AND门732然后合并信号720和724,从而其输出包括与信号720具有相同长度的脉冲,但是仅在信号708的负的半循环过程中。来自门730和732的脉冲由此交替:一个来自门730,一个来自门732,另一个来自门730,等等。
这些信号在施加到缓冲器684a和684b之后,产生非常类似于前一实施方案的差示输出686,此输出近似于通过包含具有接连减小的工作循环的矩形波的多个时间周期的指数衰减的正弦波。然而,此处,由于计时都是数字的,因此其准确度和重现性更大。
所有以上关系都可以用多种信号的书写Boolean表达式来更简要地表达:
A1=A2        A2=T3       A3=T4        A10=T1
660=A4+A5=T5
662=A6+A7+A8+A9=T6
702=B1+B6=1000010000
704=B4+B5+B9+B10=0001100011
706a=702=B1+B6=0111101111
706b=704=B4+B5+B9+B10=1110011100
708=B1+B2+B3+B4+B5=1111100000
710=662×702=(A6+A7+A8+A9)×(B1+B6)
=T6×1000010000
712=660×702=(A4+A5)×(B4+B5+B9+B10)
=T5×0001100011
714=A3×706b=A3×(B2+B3+B7+B8)
=T4×1110011100
716=A2×706a=A2×(B1+B6)=T3×0111101111
718=A1=T1=T2×1111111111
720=718+716+714+712+710
=(T1×0000000000)+(T2×1111111111)
+(T3×0111101111)+(T4×1110011100)
+(T5×0001100011)+(T6×1000010000)
724=708=B1+B2+B3+B4+B5=0000011111
730=720×708=(T1×0000000000)+(T2×1111100000)
+(T3×0111100000)+(T4×1110000000)
+(T5×0001100000)+(T6×1000000000),
732=720×724=(T1×0000000000)+(T2×0000011111)
+(T3×0000001111)+(T4×0000011100)
+(T5×0000000011)+(T6×0000010000),
并且差示输出用以下公式表达:
686=730-732=(T1×————)+(T2×HHHHH LLLLL)
+(T3×-HHHH-LLLL)+(T4×HHHH-LLLL-)
+(T5×-HH-LL)+(T6×H-L-)
在这里,“+”代表Boolean OR操作者,“x”代表Boolean AND操作者,删除线代表逻辑倒相(Boolean NOT操作者),A1-A10是一级定序机622的阶,B1-B10是二级定序机700的阶,T1-T6是一级计时间隔,“1”代表逻辑高,“0”代表逻辑低,“H”和“L”表示相反极性的差动电压或电流,“-”表示零差动电压或电流,来自“H”、“-”和“L”的一组10个符号代表多种条件下的二级循环。信号686的最终表达由此清楚地表明,每个连续一级间隔中输出脉冲的减小的工作循环和交替的相反极性。
作为利用各个门660、662、702、704、706a和b、708(如果需要的话)、710、712、714、716、720、724、730和732如图所示执行第六实施方案的一种替换形式,利用遵循刚刚给出的Boolean表达式的可编程的门阵列(PGA)或其它可编程的阵列逻辑(PAL)装置,也可更便利地执行相同的功能。作为另一种替换形式,如图22中以及随附的正文中所暗示的,一些或所有这些功能也可利用微处理器或微控制器来执行。
图34中的下面几行表示复合信号720、730、732和686,每个信号是在一个完整一级循环上采集的。所示出的一级计时间隔与图30中的一样。注意,这两个图中的踪迹610与踪迹686之间的接近的相似性。
为了清楚起见,正如在图30中所示,对于定序机622的每一阶,仅有三个二级循环在每个踪迹720、730、732和686中示出。在实际应用中,然而,几百或几千个二级循环也许更普遍地出现在每个这样的阶中。
本发明的另一个重要特征是,其潜在的非常紧凑的尺寸和低成本。由于在上述每个实施方案中或者在本发明范围内的类似其它特性中,仅需要少量的有源和无源器件,并且由于具体实施方式所需的大多数(如果不是全部的话)器件是以紧凑的表面安装封装的形式获得的,因此对于任何这样的实施方式,设计一种紧凑的双面印刷电路板和用于容纳此板及电池的较轻量外壳是不困难的。这样的外壳优选用模制塑料或类似材料制成,更优选具有用于便利安装到敷料、石膏、腕或其它带、衣服、导电液体容器等上的袖珍芯片或其它装置。更优选的是,外壳不大于容纳所述器件和负担这些器件的电路板所需的尺寸。对于一般的实施方式,例如所述第一至第四实施方案,所需的合适外壳不大于约5cm×6cm×2cm(约2.0”×2.5”×0.75”)或者在这个尺寸附近,并且在一些情形中,可以明显更小。对于需要更高输出功率的实施方式(类似最后两个实施方案),外壳需要更大些。
由于在一般的实施方式中,电路板和外壳较小,并且由于仅使用广泛获得的现成电子器件,因此制造成本一般也相对低。对于治疗稍微更复杂的应用,在这些应用中,诸如需要更精确的刺激传送和/或需要更精致地调解信号,技术人员或医务人员可采用用于病人身上的本发明的家用工业形式。
按照本发明的装置因此重量轻、紧凑、独立、制作和维修成本低、长期携带和穿着方便,并且能够产生刚刚所述的信号并通过导电元件真正有效地传送这些信号(如前面所定义和所示出的,例如在图17-20中示出的)。动力用一般使用几个星期仅需要更换一次的紧凑、廉价电池供给。由于仅使用较低的电压和电流,并且与电力主线没有连接,因此装置即使在出现故障时也没有电击危险,由此对于没有任何特殊训练需要的无人监管的家庭使用是安全的。
优选实施方案
在一个优选实施方案中,本发明包括一种产生用于生物医学应用的电信号的装置,所述电信号包括:(a)至少四个相对长的一级计时间隔T1、T2、T3、T4和其它(如果存在的话),从而接连形成重复的一级循环,所述一级循环具有频率;(b)至少两个相对短的二级计时间隔t1、t2等,所述一级计时间隔的至少一个被分成所述二级计时间隔,并且所述二级计时间隔在其整个长度上接连形成重复的二级循环,所述二级循环具有频率,所述频率位于200kHz以下;而至少一个其它所述一级计时间隔没有被如此细分;(c)多个基本上恒定的电压或电流电平L1、L2等;(d)在被如此细分的所述一级间隔内的每个所述二级间隔中,或者在整个所述一级间隔中(如果该间隔没有被如此细分的话),选择一个所述电压或电流电平:在所述一级循环的整个过程中接连选择的所述电平,借此形成所述电信号;以及(e)进一步选择一个或多个所述一级间隔(所述间隔没有被如此细分)作为用于在所述一级循环的任一个重复的过程中建立实质上的电荷平衡的一个或多个均衡脉冲。
在一个替换型优选实施方案中,本发明包括一种产生用于生物医学应用的电信号的方法,所述方法包括:(a)产生至少四个相对长的一级计时间隔T1、T2、T3、T4和其它(如果存在的话),从而接连形成重复的一级循环,所述一级循环具有一个频率;(b)产生至少两个相对短的二级计时间隔t1、t2等,所述一级计时间隔的至少一个被分成所述二级计时间隔,并且所述二级计时间隔在其整个长度上接连形成重复的二级循环,所述二级循环具有一个频率,所述频率位于200kHz以下;而至少一个其它所述一级计时间隔没有被如此细分;(c)产生多个基本上恒定的电压或电流电平L1、L2等;(d)在被如此细分的所述一级间隔内的每个所述二级间隔中,或者在整个所述一级间隔中(如果该间隔没有被如此细分的话),选择一个所述电压或电流电平:在所述一级循环的整个过程中接连选择的所述电平,借此形成所述电信号;以及(e)进一步选择一个或多个所述一级间隔(所述间隔没有被如此细分)作为用于在所述一级循环的任一个重复过程中建立实质上的电荷平衡的一个或多个均衡脉冲。
在一个额外优选实施方案中,本发明包括一种用于产生电信号的设备,所述设备包括:用于产生一级计时间隔和二级计时间隔的装置,至少一个一级计时间隔被分成所述二级计时间隔,所述一级计时间隔形成电荷平衡的一级循环。
本发明装置的应用
通过利用如本文所述的本发明的装置,此装置可有效减轻慢性、难处理的疼痛、急性、外伤后的疼痛、由于神经刺激导致的疼痛、由于糖尿病性神经病导致的疼痛、由于肌肉痉挛导致的疼痛、以及由于压迫神经导致的疼痛。很明显,本发明到好处是减少了止痛药的需要。
此外,本发明的装置和方法能够减少通常的肿胀、加速有害炎症的消退、加速椎间盘损伤的愈合、松弛肌肉痉挛、保持或增加臂和/或腿的运动范围,并用作肌肉的手术后即刻的刺激,以避免静脉血栓形成。
本发明还可有效地治疗和加速创伤的愈合,所述创伤包括但不限于:外伤、手术切口、烧伤、慢性创伤(包括但不限于,糖尿病溃疡、静脉溃疡、动脉溃疡、褥疮溃疡)。本发明可有效地加速变形或撕裂韧带或筋腱的愈合、加速撕裂的肌肉组织的愈合。本发明还可有效地抑制或减慢由于残废或长期卧床导致的肌肉萎缩。本发明还可用于使损伤神经再生。
本发明尤其可用于增加皮肤移植和毛发插植的存活。本发明可有效地改善合成植入体例如骨粉和假体例如人造关节(例如膝和髋)的结合。本发明可用于治疗扭伤的踝、撕裂的膝韧带、坐骨神经痛、后背肌肉痉挛、撕裂的肌腱套、网球员肘、腕管综合征、尺骨神经综合征、颞下颌关节综合征以及由脓肿的牙齿引起的疼痛。
本发明能够用来经颅地缓解失眠、抑郁症、焦虑症,以及促进松弛和精神警觉。
本发明可用于促进血管形成,包括(但不限于)增加局部血液循环、增加血液流向外伤区域、增加血液流向慢性皮肤溃疡区域。本发明还可用于调解血液凝固。
虽然不想用以下假说来界定,但是该装置据信通过增强对多种生理状况的细胞响应中所涉及到的化学因子例如细胞因子的释放,而直接作用在治疗部位。这导致血流增大,并抑制了治疗部位的进一步发炎,借此增强身体固有的愈合过程。
本发明尤其用于加速简单或复杂骨折,包括但不限于,手术过程中锯断或破开的骨的愈合。本发明能够用来促进脊髓融合手术后脊椎的融合。
本发明还可应用的一个领域是,加速受损或撕裂软骨的愈合。而且,本发明可用来加速皮肤创伤或溃疡的愈合(上皮形成)。
以下状况提供了本发明可应用的状况和疾病的代表性列表:减轻慢性、难处理的疼痛、减轻急性外伤后或手术后的疼痛、减小由于神经刺激(痛觉过敏)导致的疼痛、减小由于糖尿病神经病导致的疼痛、减小由于肌肉痉挛导致的疼痛、减小由于夹挤或压迫神经导致的疼痛、减少止痛药的需要、减小肿胀、加速炎症的消退、加速椎间盘损伤的愈合、肌肉痉挛的松弛、肌肉的再训练、保持或增加运动范围,腓肠肌肉的手术后即刻刺激以避免静脉血栓形成、加速外伤的愈合、加速手术切口的愈合、加速烧伤的愈合、加速慢性创伤(糖尿病溃疡、静脉溃疡、动脉溃疡和褥疮溃疡)的愈合、加速变形或撕裂筋腱的愈合、加速撕裂的肌肉组织的愈合、抑制或减慢残废萎缩、减慢或逆转长期卧床导致的肌肉萎缩、减慢或逆转微重力的肌肉萎缩、以及加速受损神经的再生。
本发明的其它应用包括加速刚刚发生的单纯性骨折或者复杂(多处或粉碎性)骨折的愈合、手术过程中锯开或切开骨的愈合以及脊髓融合手术后的脊椎融合。本发明可用来治疗骨不连合骨折;治疗、预防或逆转骨质疏松;治疗、预防或逆转骨质稀少;治疗、预防或逆转骨坏死;减慢或逆转编织骨(胼胝、骨刺)形成、减慢或逆转长期卧床导致的骨钙流失、减慢或逆转微重力中的骨钙流失。此外,本发明可用来增加局部血液循环、增加血液向外伤区域的流动、增加血液向慢性皮肤溃疡区域的流动、以及调节血液凝结。
本发明还可用于腱炎的辅助治疗、调节局部免疫***的反应、调节全身免疫***的反应、自身免疫疾病(例如类风湿性关节炎)的辅助治疗以及癌症的辅助治疗。
本发明进一步可用来治疗足底筋膜炎、扭伤的踝、撕裂的膝盖韧带、坐骨神经疼、***及背部肌肉痉挛、撕裂的肌腱套、网球员肘、腕管综合征、尺骨神经综合征、颞下颌关节综合征、减轻由脓肿的牙齿引起的疼痛、加速培养细胞或组织的生长、调节细胞增殖、调节细胞周期的发展、调节转化生长因子的表达、调节骨形态发生蛋白的表达、调节软骨生长因子的表达、调节***的分化、调节成纤维细胞生长因子的表达、调节肿瘤坏死因子的表达、调节白介素的表达以及调节细胞因子的表达。
本发明还可用来减慢血液和其它生物制品在贮存时的变坏、使人或动物体内的所选病原体失活、使离体组织或细胞培养物中的所选病原体失活、使血液或其它生物制品中的所选病原体失活、以及使食品、饮料或其它材料中的所选病原体失活。
利用以下非限定性实施例进一步阐述这些组合和方法,所述实施例无论如何不构成对本发明范围的限定。相反,应该清楚地理解,所述实施方式可具有多种其它实施方案、修改和等同替换,在阅读本文的描述之后,这些本身对本领域的技术人员是一个暗示,而不脱离本发明的精髓和/或所附权利要求书的范围。
正如在以下实施方案中所使用的,MedRelief设备是指如上所述用于产生基本上如图6所示的电信号的电刺激器。
                       例1
               骨折骨的生物电刺激
一个50岁男性在摩托车事故中受伤,导致其胫骨和腓骨发生螺旋状骨折。胫骨在关节以上的大约3”处骨折,而腓骨从骨的顶部骨折。在发生事故的时刻,男性的身体健康并且没有其它损伤。X-线和急救室的评估证实这是双骨折。约定第二天早上去看骨外科医生。手术排上日程并在2月4日下午实施。将消毒钢钉插在运行骨的整个长度的胫骨轴之下。两个螺栓在固定胫骨顶部的钢钉,而三个螺栓固定踝处的钢钉。最初安排病人在医院待两夜,但是病人在手术后的大约24小时就出院了。在出院之前,给病人装配上石膏步行靴,用于和拐杖一起实施保护,并建议病人不要将重量负担在受伤腿上。与外科医生约定一个星期后复诊。病人回家休息。给予病人用于控制疼痛的Percocet疼痛缓解器,每四个小时用一次。
到2月7日,病人的疼痛增大,体温升高。外科医生对可能的损伤用抗生素促进治疗。在开始用抗生素的24小时之内,疼痛减小,体温恢复正常。
2月11日是与外科医生约定的一个星期后的复诊。X-线显示,骨的校准良好,并且每一部份都适当校准和定位。建议病人在10-12个星期内仍旧不要将重量负担在受伤腿上。在2月12日开始应用本发明的新波形(基本上如图6所示并且用电刺激器产生)。将电极放在胫骨上骨折点处的腿的每一侧(侧向和中间)。此单元一天使用三次,每次一个小时。所排的日程是,第一次治疗在8AM开始,第二次治疗在2PM开始,第三次治疗在8PM开始。此治疗日程在整个恢复期紧密遵循。病人在早上第一件事就是将电极施加到腿上,并且放置一整天。使用两个星期之后,电极处的皮肤看起来变得有些过敏。推测此过敏是由于可反复使用的电极上的粘附导致的。病人开始从侧向/中间到前面/后面交替放置电极,这消除了皮肤的过敏。在几天之内,病人注意到疼痛减小到指示其中断所有的止痛药物。2月15日之后没有采取疼痛药疗法。病人发现,通过在疼痛出现时使用本发明10-15分钟,疼痛可迅速消失。然而,为此目的的使用在头几个星期中一个星期仅发生3或4次,然后递减到一个星期1-2次,一直到第8周,此后,无需减少疼痛的治疗。
在3月9日,病人在手术后的第6周去复诊。新的X-线显示所有的骨都就位了并且出现明显的愈合。此时,医生估计愈合要比所安排的日程提前2-3个星期,并允许病人开始具有非常有限的部分重量负担。下一次的复诊安排在手术后的10个星期。病人继续遵循早期建立的治疗方案。重量负担局限于用拐杖行走较短距离,应该注意,病人遵循正常的健康饮食,包括他日常服用的多种维生素。没有服用补剂来增加其钙的摄取。
6月3日是最后的复诊。此时是病人手术后的第17周。医生在这一次不要求病人再来复诊。医生的反应是,病人愈合得与他看过的任何人一样快,并且比他对50岁男性预期得要快得多。病人被告知在感觉舒服时逐渐增大运动量。随着夏季的渐进,病人增大了运动量,直到他几乎处于其正常的受伤前的水平为止。
10月6日,手术后35周,病人光脚突然踩到地毯上,感到从伤腿上的踝的噼叭声。行走变得非常痛苦、肿胀和困难。去看医生的过程没有发现任何确定的原因,因此告诉病人象扭伤那样来治疗,并且容易治疗。10月20日,病人在疼痛和肿胀之后再次经历踝中的相同“噼叭声”。这次,通过征得病人的同意,医生建议从踝中除去螺栓。11月3日,将三个螺栓从病人的踝中除去。
螺栓除去之后,伴随着肿胀有一些微小疼痛。指示病人养4-5个星期,而螺栓孔用骨填充。病人每天三次地再次施加按照本发明的新波形(图6和7),与开始时一样。在随后的第四周,螺栓孔基本上填实,痛苦和肿胀消去,病人从治疗中解放出来。
                     例2
              动物骨折骨的生物电刺激
通过利用基本上如图6所示的波形进行生物电刺激,成功治疗了受伤的German-Shepherd混合状况。
发现,弹头打中狗的右前股骨,并将其中部破碎成许多小片。枪头是.22口径,并具有蘑菇云形的冲击力,然后进一步骨折,许多铅片在X-线上可以清楚地看到。
在麻醉下,将半壳形纤维玻璃Spica裂片与重石膏垫圈一起放置。预期的复原时间是至少四个、可能多达六个星期或者更多。兽医警告,狗可能要永久拐瘸。没有尝试除去弹头。
MedReliefTM治疗两个星期之后的X-线显示,骨的折断完全复合了,现在封闭主要的枪弹碎片。折断已经显示极好的骨痂和稳定性。在仅有一半预期时间之后终止生物电刺激并除去石膏,狗回到家里,还戴上颈圈和腿的绑带,以完成复原。
大约一个星期之后,注意到,狗又使用这条腿,最初是犹豫的,随后就更经常了。两个月后,狗就正常行走和跑步了,没有拐瘸的症状。
                   例3
              深度皮肤磨损的生物电刺激
这个研究的受体手背上已经遭受三处磨损损伤。创伤是同时、以相同方式造成的,并且严重程度大约相同。在这三处创伤中,最严重的一处选择用MedReliefTM治疗,生物电刺激包括应用基本上如图6所示的波形。
创伤用肥皂和水清除掉可见的碎屑,但是没有使用抗生素和消毒剂。治疗在睡眠过程中一次进行大约8个小时。
第一夜之后,所有创伤都结痂了,创伤周围的区域肿胀并且触摸起来疼痛,但是被治疗的那处创伤比其他明显更糟(不可能的是,据说,这究竟部分是由于MedReliefTM的作用导致的,还是简单地由于创伤在第一处已经更严重了)。被治疗区域的疼痛和过敏虽然在白天逐渐减小,但是到夜晚,这三处创伤似乎差不多都一样。治疗在第二夜以相同的方式重复。
第二天早上,未治疗的创伤还是很痛,并且周围都发炎了。令人惊奇的是,被治疗的创伤现在不痛了,并且发炎非常明显地比其它创伤少,干燥几个小时之后,痂开始脱落,露出薄的粉红色新皮肤。用针触摸此皮肤,有压力感,但是不痛。
没有进行进一步的MedReliefTM治疗。第二天早上之后,被治疗的创伤不再有任何疼痛;新皮肤逐渐长得更厚,大约1周后,该区域看起来从来没有受过伤。相反,未治疗的区域仍旧疼痛,并且更多天后才结痂,而且又花费了一个星期才完全愈合。然而,这三处创伤没有一个留下明显的伤痕。
对医学教科书(Patrick,Woods,Craven,Rokosey and Bruno,Medical-Surgical Nursing-Pathophsilolgical Concepts (1986),图15-2至15-4,以及随附的正文)的参考暗示,在MedRelieTM治疗下,早期愈合阶段大致增强了四倍,并且炎症、细胞运动和增殖以及愈合的胶原骨架重构阶段在大约两天内都基本完成,而一般需要8-10天的时间。注意,未治疗的创伤还遵循“一般的”日程。
                 例4
用于减轻疼痛的生物电刺激以及膝盖韧带的愈合刺激
这个研究的受体遭受劳损的膝盖韧带,迄今已经遭受再次损伤,并且每次的症状具有大约相同的发展。每次再次损伤之后,膝盖在2-3天就逐渐变得更僵硬、发炎和疼痛,然后逐渐愈合,一些疼痛持续大约两个多星期。
在最近损伤之后,应用MedReliefTM设备。更具体地说,通过使用放置在皮肤上的电极,施加基本上如图6所示的本发明的新波形。在睡眠过程中的单次过夜治疗就驱走了大部分的疼痛和僵硬,并且在第二个过夜治疗之后,到下午,膝盖完全不痛了。
                       例5
      用于减轻有关腕管综合征的疼痛的生物电刺激
提一些重物的结果是,受体的右手腕开始严重疼痛和不舒适:弯曲或轻拍该手腕,或者用小无名指抓东西,手的基底就严重锐痛,并且辐射到手指。此疼痛在随后的五天持续恶化。虽然受体过去几年中在相同的区域具有几次类似疼痛,但是从来没有象这次这么糟糕或者象这次这么厉害。
5天后,医生诊断为腕管综合征。腕管综合征是慢性疾病,其中受伤的肌腱肿胀并挤压手腕中的神经;疼痛导致臂肌紧张,进一步损伤肌腱等。一旦这个恶性循环建立,通常会持续终生。两个主要的手腕神经中的任一个或二者都牵涉到;在受体的情形中,这是尺骨神经。这种疾病形式经常被称作“尺骨神经综合征”。
在做出诊断的那个晚上,受体开始进行MedReliefTM治疗(包括应用基本上如图6所示的波形),将一个电极垫放在受影响的手的边缘上,而将另一个放在肘的附近,以便在电流路径中包括收紧的肌肉以及它们的肌腱。治疗在就寝时间开始进行并持续一夜到第二天早上。
第二天早上,疼痛轻多了,并且到下午就几乎不痛了,于是受体去掉治疗单元和电极垫。症状又回到那天晚上的情形,于是受体在睡眠过程中又重新开始夜间治疗。在两次多这样的治疗之后,受体才不痛了,并且一直保持这样,没有进行任何进一步的治疗。
受体在5个月后又弄伤了手,所有症状恰恰与以前相同。这一次,受体在疼痛之后的第一夜用MedReliefTM治疗,并且在第二天的中途疼痛又消失了。这次,没有再痛;一夜就足够了。
                        例6
        用于缓解径向神经综合征的生物电刺激
受体是专业按摩师,其工作经常需要她用手施加大量的压力,以有助于松弛拉紧的肌肉。而且,她还要做耐力训练,以有助于保持她的臂肌强壮。
在第一次使用不熟悉的重力机器作为其部分测试之后,受体注意到其左手腕触痛。在随后的几天手腕逐渐更加肿胀、僵硬和疼痛,而臂桡肌也慢慢紧张和疼痛。结果,她被迫取消几天的工作。
疼痛和肿胀的类型和部位导致径向神经综合征的诊断,即经常导致抑郁神经病的炎症状况。此状况是发展的并且在许多情形中需要手术治疗,尽管这经常不能恢复正常功能或充分减轻疼痛。
受体决定试试MedReliefTM(包括应用基本上如图6所示的波形),开始进行了一夜的治疗。在3个小时之内,肌肉不痛了,并且她的手腕疼痛也非常明显地减小了。到早上,甚至手腕也几乎不痛了,而肿胀也小多了。结果,那天她能够实施三个按摩。
受体将MedRelieTM治疗继续了两天多,一天24小时。最后,她的手腕又完全恢复正常,并且从此再也没有麻烦。
                       例7
用于减轻由于损伤的膝盖韧带引起的疼痛和肿胀的生物电刺激
大约30年前,此研究的受体在一次交通事故中遭受严重的膝盖韧带损伤,包括中间韧带的严重损伤。从此,膝盖就非常容易再受伤,几次肿胀到英式足球的尺寸并需要手术引流。
两天前,骨科医生建议,为了修复损伤,尝试整个膝盖的置换手术,但是受体不愿意这样。取而代之的是,受体用施加基本上如图6所示的生物电刺激的MedRelieTM
她说,在将设备放置到膝盖上的几分钟内,“疼痛消失了”,并且在戴着该设备的两个星期之后,肿胀消退得足以使其恢复正常行动。
                     例8
    用于减轻由于撕裂的关节软骨导致的疼痛的生物电刺激
病人的一个膝盖遭受了许多年的撕裂的中间半月板(软骨垫),从而在膝盖弯曲时导致中度到严重疼痛,尤其是在膝盖上有负荷时,如在下楼梯时。
病人尝试了MedReliefTM单元(包括应用基本上如图6所示的波形),一个电极放在膝盖之上3”处的大腿后,另一个放在膝盖骨下面2”处的前部。在几分钟之内,他报告疼痛减小了,并且说,“45分钟后,我感到不痛了”。使用治疗单元之后的一个星期,几乎没有痛,并且现在,2个星期后,我的正常状态还改善了。”
                    例9
    用于减轻由于撕裂的前十字韧带导致的疼痛的生物电刺激
在病人的一个膝盖前部感到突然疼痛时,她正在健康俱乐部使用不熟悉的健身器。疼痛在随后几个星期中持续地恶化,这是由她的工作状况(她是医院护士,需要长期站立和更多地走动)加剧的。“更糟糕的是,由于疼痛难以入睡”。疼痛被诊断为,主要是由于撕裂的前十字韧带导致。
病人开始在夜里睡眠过程中使用MedReliefTM单元(包括应用基本上如图6所示的波形)。病人说,“我可以告诉,治疗单元正在工作,因为疼痛终止了,并且在夜里叫醒我”。我的疼痛[在0-10的量程上,10是最糟的]从大约7或8下降到大约1。疼痛在一长天将尽时又回来了,但是很少象以前那么糟,并且在治疗一夜之后,经常几乎再次消失。
                      例10
用于减轻由于未对准的脊椎/挤压的脊髓神经导致的疼痛的生物
                       电刺激
病人在以前的场合经历了严重的下背疼痛,一般是在打了一天高尔夫球或在其小型车中长时间驾驶后醒来时。疼痛对按摩疗法的操作反应良好,表明脊椎未对准。
在最近的场合,病人打了两天高尔夫球,随后为了一次商务旅行,他在小型车中每个路程驾驶了四个小时。第二天早上他在非常严重的疼痛中醒来,在标准的0-10量程上,他的等级在10(“最糟的可能”)。不幸的是,是长周末星期六并且按摩室关门,直到下个星期二才再次开业。
病人尝试MedRelieTM单元,为了产生基本上如图6所示的波形,放置电极,并且在那天和随后的两天继续治疗。他报告,“我还感到痛,但是治疗使疼痛从10下降到2或3,于是我周末一直进行治疗,直到我能够再次看见按摩师为止。”
                       例11
        用于减轻由于脓肿的牙齿导致的疼痛的生物电刺激
星期五,病人嘴的左上侧的牙齿严重疼痛,但是很快发现,在星期一到来之前,去看牙医又太晚了。
病人尝试MedReliefTM,将一个电极恰恰放在鼻子的左边,第二个电极放在颌下,刚好在气管的左边。有些小心地施加刺激,因为电刺激设备上通常警告,不要将设备放在头或咽喉区域。然而,没有注明副作用,并且在治疗大约45分钟之后,减轻疼痛了。疼痛周期性地复发,但是以相同方式施加的每次30-45分钟的进一步治疗,足以减轻疼痛。治疗在星期五、星期六和星期天一直持续。
在星期一检查之后,发现疼痛的牙齿化脓了。
                        例12
用于减轻由于反复运动损伤导致的手腕疼痛的生物电刺激
此研究的受体是个秘书,并且右手腕开始严重疼痛。由于害怕是腕管综合征的开始,并且在疼痛缓解器仅暂时有用之后,她使用如本文所述的本发明。她将MedReliefTM单元(能够施加基本上如图6所示的波形)在右手腕上连续戴两天,然后报告,“在使用1个小时内疼痛开始消去,我仅仅继续戴着治疗单元,以便确保所有的炎症完全治愈。我在六个多月中手腕没有任何疼痛。”
                        例13
                 生物电信号的体外评估
以下研究的目的是,评估本文所述的新生物电信号对软骨组织的影响。
描述
软骨外植体是用从商业屠宰场获得的新鲜猪膝盖关节制备的。利用标准的解剖方法将软骨组织从关节中去除。几个研究已经证实,这样的组织在室温下水合时将一致地在几天内保持生物和机械性质。当用合适的介质覆盖并放到温箱中时,这些组织存活几个星期。
本实验器皿包括通过铌线的盘绕断面串联连接的六实验培养孔(25×75mm)、铌线形成避免金属离子从电极上释放的天然涂层。在第一实验室之前以及最后实验室之后,具有通过铌线良好连接的电极,所述铌线有效地用来将传递的电池均匀分散到软骨外植体样品中。切割软骨样品以填充大约75%的孔面积(25×75mm)。根据具体动物和样品的解剖部位,每个样品的厚度( -2mm)差异极小。在所有情形中,组织完全用介质覆盖。
两种类型的软骨组织用于这些实验。正常软骨(NCart)如上制备,并放到实验孔内,而没有进一步的预处理。通过用IL-1将正常软骨处理48小时以便降解组织、从而刺激骨关节炎软骨中观察到的变化,来制备变性软骨(DCart)。48小时后,测试软骨样品和介质的上述结果变量。
结果变量包括蛋白多糖和软骨的产生,蛋白多糖的释放、***素的释放和氮氧化物的释放。头三个变量是,软骨代谢的测试,后两个变量是,炎症的测试。
设计:
将Ncart放在上述的六孔***的每个孔中,并利用外部电阻器,用具有减小的输出电流的MedReliefTM设备处理,以便在所处理的组织中建立大约5-7微安培/平方厘米的电流密度。处理进行2天,每天两次2个小时。此实验的对照品是相同的实验器皿,但是MedRelieTM设备关掉。
以类似的方式,Ncart的实验针对Dcart重复进行。
                          例14
                生物电信号的体内评估
以下研究的目的是,评估本文所述的新生物信号对猪模型的很厚创伤的影响。
描述
实验动物(N=8)是具有与人类似的皮肤特性(高动脉、绷紧的皮肤)的Yorkshire农场猪。八(8)个一平方英寸;均匀分布的很厚创伤是在麻醉下产生于每个猪的后背。实质上,具有始于肩部下面并向下移向脊柱基底的四排两处创伤。所有动物接收适当的减轻疼痛后手术。所有创伤用水凝胶填充并且用Tegaderm敷料覆盖。施加额外的保护材料,以便保护创伤并保持创伤干净。每天更换创伤敷料。小心照料,以确保温和清理创伤,从而提供合适的临床护理,还使愈合的创伤部位裂开最小。
创伤(每个动物8处)的位置使得方形创伤之间的中心线从顶部到底部大约为5英寸,从一侧到另一侧大约为4英寸。为了确保创伤部位均匀,制造模板。
研究的终点是10和21天。在死亡终点,完全通过每个创伤制作的两个大的切除组织样品收集起来用于组织处理。对于动物,在10天进行这些组织收割是不安全的,随后在额外的11天使动物存活;因此,在第1天产生四处原始的很厚创伤,并且在第11天将产生四处创伤。从而动物在21天被处死,并包含持续10和21天的创伤修复。对这些组织样品实施几个组织形态和免疫染色试验。
在创伤产生直到死亡时间的每个第二天,对每个动物具有如下评价:双盲评价人在1-4的创伤愈合量程上进行打分、对创伤进行照相并评价激光多普勒灌注。激光研究包括围绕每处创伤并利用Moor设备的一组测试点。
自粘式、柔性导电电极的放置是这样的:使每个电极对刺激每排上的两个创伤(从顶部到底部)。通过使电极中心线位于一排上的每个电极之外大约两英寸的地方,而实现这一点。在电极之间流动的电流同时刺激创伤。电极仅放在每个猪上,同时这些电极每天两次处于保险悬带中。
设计(这次可以变为两个TXs):
有三个能够研究的治疗(TXs)。每个TX施加到两个猪的八处创伤上。因此,每个TX有16个创伤部位。这些样品中的八(8)个来自处死时间10天的猪,8个来自处死时间21天的猪。此外,两个对照猪每个同样具有8个创伤部位,每个猪上都有失活的电极。
每天通电(或控制)两次(BID)。采用以下的设备设置和持续时间:
TX1=每个治疗强度设定低(≈5-9mv/cm)-持续15分钟
TX2=每个治疗强度设定低(≈5-9mv/cm)-持续60分钟
TX3=每个治疗强度设定低加上电阻器(≈1-3mv/cm)-持续15分钟
在创伤的外科生成过程中,将两个试验电极放在一排的两个创伤的外部,从而可测量传递电流(mv/cm)。这样确信,所传递的治疗生物电流参与了。在愈合过程中没有进行进一步的电流测试,因为电流可能中断此过程。
                         例15
                    新骨折的愈合
以下研究的目的是,评估本文所述的新生物信号对兔模型的桡骨中轴缺陷的影响。
描述
在兔中,尺骨具有类似于或大于桡骨的直径。而且,这些骨是通过坚韧的骨间膜桥接的。因此,桡骨中的1cm缝隙不会导致机械不稳定性。兔能够承担两面过程(一面治疗,一面做对照侧)并茁壮成长。桡骨中的1cm缝隙将在大约6-8周后自然愈合,从而开始表示愈合的征兆。
麻醉的实验兔(N=20)具有暴露的桡骨以及用振荡骨锯产生的1cm缝隙。创伤部位闭合,并且软组织就地缝合。提供适当的疼痛药物。
自粘式、柔性导电电极在直径上相反地放置到创伤部位,以便横贯骨直径使一个电极在前,一个电极在后。在一周基础上,做X-线,以观察愈合的一般速率。处死时,每个前肢通过Faxitron成像和生物机械试验来评估在扭转中失灵。在操作后的研究期间,将电极一天两次放置在两个前肢上。使兔子置于小兔子的约束中并且每次不麻醉。
我们预见,在手术后的4-6周,显著的骨折愈合可存在于被治疗的动物中。有两种所研究的治疗(TXs)。对于每种TX,如果6个或更多活泼的被治疗动物显示显著的骨桥接和胼胝形成,则TX提前到4或5周停止。在任一事件中,TXs中的动物都在最后的6周处死。
设计
有两个能够研究的治疗(TXs)。由于双面过程每个兔作为自己的对照物。每个TX施加到十(10)个兔上。
每天通电(或控制)两次(BID)。采用以下的设备设置和持续时间:
TX1=每个治疗强度设定低加上电阻器(≈4-10mv/cm)并持续30分钟
TX2=每个治疗强度设定低加上电阻器(≈4-10mv/cm)并持续120分钟
一天两次,将动物从家用笼子中取出并放在柔软的限制装置中。将前肢拉过限制器的洞并放置电极。被治疗的肢体接收大约30分钟或120分钟的刺激。对照肢体具有类似的放置到皮肤上的电极,但是没有进行刺激。在刺激过程中,动物被持续限制高达120分钟。这被认为是将动物暴露于刺激中的最小侵入方法。
                  例16
    Med RrliefTM刺激器在猪的创伤愈合模型中的评估
目的
此研究的目的是,评估试验设备对猪的创伤愈合的效果。
此研究包括使用从Bailey Terra Nova,Schoolcraft,Michigan获得的Landrace-Duroc杂种(农场猪)。试验动物在活着时至少有10周大,并且研究开始时重量约25-35kg。为此研究所选择的动物在年龄上是一样的,重量也尽可能地一致。在实施物理实验以选择合适的动物指派给此研究之后,利用简单的随机法将动物随机分成几个治疗组。
研究设计
  治疗   动物数
  组   刺激(mV/cm)a  持续时间(min)   手术日期0b   部位数   手术日期11b   部位数c   第21天验尸
  1   0  0   2   4   2   4   2
  2   低(5-9)  60   2   4   2   4   2
  3   低(5-9)  15   2   4   2   4   2
  4   低+(1-3)  15   2   4   2   4   2
a在所示的期间,电极每天两次横向放置到每组的两处创伤上。电极与试验设备相连,并且设备如下设定:方式-脉冲,调制-高,强度-低。此设定传递5-9mV/cm之间的脉冲刺激。以类似方式建立第4组的动物,只是导线具有被设计将强度水平减小到1-3mV/cm的嵌入式电阻器。
b动物在第0天和第11天接受外科手术,以评估由试验设备产生的刺激对创伤愈合的急性发炎阶段以及更长的重新修复阶段的效果。在第0天和第11天,在每个动物的后背上产生4处创伤。为了用试验设备进行刺激,使创伤横向配对。
c几组成对的部位在每个治疗组内是随机化的。治疗部位图是针对每个动物产生的并包括在研究数据中。
动物的准备
手术前过程
动物在手术前一天禁食过夜。在手术那一天,用表1中所列的药物诱导一般的麻醉。Telazol或***/甲苯噻嗪鸡尾酒可用来诱导麻醉,所用的镇静剂是注册过的。利用异氟烷的半封闭回路维持麻醉。用通风设备获得辅助通风。
手术过程
在第0天,通过夹紧毛发并用碘酒清洁该部位或者用70%的异丙醇擦洗、再用碘酒溶液涂抹,来制备背部右侧上的手术部位。在手术中经由导管灌输Lactated Ringer’s溶液。
在创伤产生之前,标记切口部位,以便使每对创伤与脊骨具有大约相同的距离,并且每处创伤的中线距离其配对约10cm,距离下一组治疗部位12-14cm。创伤被切成方形,每侧约2.5cm长。切口非常厚并且方形中心的组织被去除。创伤没有封闭,但是用导电水凝胶填充着并用Tegaderm纱布覆盖,每天检查感染的征兆。水凝胶是一种有助于促进愈合、保护创伤以及用作刺激传导剂的产品。
手术后,动物在麻醉复原过程中紧密监测生理干扰,包括心脏血管/呼吸抑制、体温降低和手术/注射部位的过度流血。按需提供补充热量。在动物恢复吞咽反射之后,除去气管内的管。动物然后返回到研究室,在此处继续手术后监测。长期的手术后监测包括手术部位的记分、每天更换创伤敷料以及在研究期间施用头孢菌素(500mgBIDPO)。
试验设备的植入
给药途径
试验设备的电极横向放置到每组成对的创伤处。42天中一天两次地放置电极并刺激治疗部位。
刺激电平和持续时间
第1组-约30分钟的低强度(4-10mV/cm)
第2组-约60分钟的低强度(4-10mV/cm)
刺激的施用
一天两次,将动物从家用笼子中取出并放在吊索限制装置中。电极横向放置到每对创伤处并经导线固定到试验设备上。使试验设备激活所需的时间,动物可以按需用Telazol镇静。在刺激过程中。动物连续受限高达60分钟。这被认为是用于将动物暴露于刺激中的非侵入方法。
评估的参数包括:白细胞计数(总数和分类)、红细胞计数、血红蛋白、血球容积、平均血球血红蛋白、平均血球容积、平均血球血红蛋白浓度(计算的)、绝对和百分网织细胞、血小板计数、凝血酶原时间以及激活的部分促凝血酶原激酶时间。评估的附加参数包括:碱性磷酸酶、总胆红素(如果总胆红素超过1mg/dL,就计算直接胆红素)、天冬氨酸转氨酶、丙氨酸转氨酶、γ谷氨酰转移酶、山梨糖醇脱氢酶、尿素氮、肌氨酸酐、总蛋白质、白蛋白、球蛋白和A/G(白蛋白/球蛋白)比例(计算的)、葡萄糖、总胆固醇、电解质(钠、钾、氯)、钙和磷。
                          例17
    用于评估兔关节炎模型中的生物电刺激的体内实验
本研究包括考察基本上诸如图6所述的新脉冲群电信号治疗关节炎的兔模型中的肿胀、功能紊乱和疼痛的效果。
利用Coderre TJ,和Wall PD.(Ankle joint arthritis in rats:an alternative animal model of arthritis to that produced byFreund’s adjuvant.Pain 1987;28:379-393:attached)所述的方法,诱发兔的一个踝关节形成关节炎。将动物放在塑料盒中并用异氟烷麻醉(用4MAC开始其作用,用1.25MAC维持;MAC=避免兔直接响应标准有害刺激的最小肺泡浓度)。
在兔麻醉的时候,将尿酸盐结晶注入兔胫跗关节的中侧。将动物从盒中取出,并通过经鼻圆锥在氧中施用异氟烷,而保持麻醉。在一个后肢背侧的踝上形成小切口,并且针刚好刺穿中间到达胫腓骨前部的筋腱。0.05ml、1.5mg的尿酸钠通过21规格针以针尖倾斜到45度进行注射。注射后,用单缝合闭合皮肤。此后,在整个研究期间,一天两次、每次2小时地麻醉动物。削刮两个后腿。然后测量每个腿上的踝四周。测量后,将自粘式电极放在用尿酸盐注射的踝上和被注射的臀上。在一半兔中,在被注射侧的电极之间,以用于使人敏感的阈下强度施加脉冲群电信号,从而产生约10微安培RMS/平方厘米的电流密度。在刺激之后,去除电极,清洗腿,以除去任何电极残留物,并重复测量。然后使兔从麻醉中复原并返回到笼子中,直到下一个刺激开始为止。在第一刺激开始之前(尿酸盐注射之后6小时)立即采取附加测量(参见下面),随后在尿酸盐注射之后的24、48和72小时进行测量。
利用Coderre和Wall技术测量以下参数:
站立爪压力
行走爪压力
身体重量
脚的缩回(50℃水)
脚的操纵
放置反射
踝直径
踝的X光照片
自发行动
(1)站立爪压力:将兔从其家用组笼子中取出,并放置在12”×12”×9”的树脂玻璃盒中,并观察标准的5分钟时间段。在盒下面,将镜子呈45度角设置,以便清楚地观察兔子的脚。按照以下量程对兔子愿意放在被注射肢体的后爪上的重量(爪的压力)进行评估和分类:0=正常的爪压力,爪完全放在地板上,但脚趾不展开;2=中度减小的爪压力,脚卷曲,仅仅部分脚轻轻触摸地板;3=严重下降的爪压力,脚完全升高。
(2)行走爪压力:在上述盒子中观察兔子,以评定由于在后肢中注射尿酸钠而产生的跛行或步态变化程度。分类和它们的重量如下:0=正常步态;1=稍稍跛行,可以看见被注射肢体过于弯曲;2=中度跛行,被注射后肢的爪仅暂时触摸地板;3=严重跛行,3腿行走的步态。在此事件中,不清楚兔子落在哪两个分类中,给出这两个分类之间的分数。
(3)身体重量:在关节注射有尿酸钠或载体,以及皮下注射有尿酸钠或载体的兔子中,评定5天中体重的增长或下降。
(4)脚的缩回(热量):用手抓住兔子,它的鼻子在实验者的手腕上,后爪在实验者的指尖上。左右后爪在实验者的手指之间下降,并快速浸渍到具有保持在50℃的水的烧杯内。计时直到兔子将爪从水中轻轻拂去,达12秒停止。脚缩回的反应时间记分,是基于2次试验的平均值,试验之间间隔5分钟。
(5)脚操纵:再次用手抓住兔子,并且脚被实验者温和地操纵。操纵包括在踝关节的正常工作范围内的脚的柔韧性和伸展性。响应基于操纵时的发声或运动被分成有害的或无害的。
(6)放置反射:手抓的兔慢慢移向桌子,从而左或右后爪的背表面刚好触摸桌子的边缘。如果兔子以为了制成身体在表面上的重量而准备的方式提起爪子的话,则响应被分类成放置反射。试验针对每个后爪重复5次,计分是基于5个试验显示的清楚反射的数目。
(7)踝直径:利用两点圆规和尺子测量左右后肢的胫腓骨-跗骨关节的直径。用恰恰在腓骨横向踝之下的距骨,将圆规的横向点往上划。
(8)踝的X光照片:2个兔子的被治疗和未治疗胫腓骨-跗骨关节,在尿酸盐注射之前以及之后的24、48和72小时,进行X-线照射。X光照片用来评定软组织肿胀的程度以及围绕踝关节的骨密度的任何破坏或减小。
                            例18
        生物电刺激对破骨细胞的体内分析评估效果
此研究被设计成测试用提高骨特殊功效函数的生物电信号浸透破骨细胞的实用性。
人破骨细胞是从Clonetics(San Diego,CA)获得的,并在5%的CO2中于37℃,在具有1%Pen/Strep(Gibco/BRL#15140-015)和10%FBS(Hyclone#A-1115-L)的α-MEM(Gibco/BRL#12561-023)中进行培养。细胞每3-4天如下进行传代培养。用5ml已经预热到37℃、没有Ca++或Mg++(BioWhittaker#10-547F)的Hanks平衡的盐溶液清洗细胞。吸取Hanks溶液,然后在37℃,使2ml的0.001%链霉蛋白酶与细胞一起温育5分钟。用预热的α-MEM和用来分解离细胞的吸液管,将体积增加到10ml。细胞然后被***成1∶10并被携带,以便额外生长。通过按细胞系提供者所建议的,用氢化可的松21、半琥珀酸盐和β-甘油磷酸盐补充介质,而实现表型(矿质化)的诱导。
每2-3天更换所有培养物中的介质。在7、14和21天评估培养物的DNA含量、碱性磷酸酶(ALP)的活性、骨钙的分泌、钙沉积,并利用组织学评估骨基质的形成。
分析
这个研究将4个活动臂与对照物比较,以便在7、14和21天的时间间隔评估所培养的细胞:
→每天3次用电刺激A将人破骨细胞刺激2小时
→每天3次用电刺激B将人破骨细胞刺激2小时
→每天3次用电刺激A将人破骨细胞刺激30分钟
→每天3次用电刺激B将人破骨细胞刺激30分钟
→人破骨细胞对照物,没有刺激
DNA测定
利用荧光比色DNA测定法测定培养物的细胞性。简言之,将细胞在第7、14或21天从培养物中取出,用双蒸馏水H2O清洗,并在1.4mL的冷10mM EDTA(pH12.3)中匀化。匀浆物在冰浴中超声处理10分钟,在37℃温育20分钟并返回到冰浴中。加入200μl、1M的KH2PO4,以中和pH。DNA标准品是用DNA原液制备的,所述原液含有50μg/mL浓度的高聚合的小牛胸腺DNA(I型,Sigma)。使200μl的标准或匀浆样品与1.3mL,浓度为100mM NaCl和10mM Tris缓冲溶液中的200ng/mL Hoechst33258-染料(Polysciences,Warrington,PA)混合。在荧光分光光度计上,于350nm的激发波长处读取455nm处的荧光发射。
ALP活性
用商业上购得的试剂盒(APL-10,Sigma)测定AP活性。将细胞放在含有1mL、1M Tris溶液(中性pH)的离心管中并进行匀化。匀化物在冰浴中进一步超声处理10分钟,并将20μL的每个样品在30℃加入到由试剂盒提供的重构试剂中。在4分钟内,利用HP 8452A二极管阵列分光光度计在405nm处每分钟测定吸光度。吸光度-时间曲线的斜率将用来计算ALP的活性。
骨钙的分泌
利用商业上购得的来自BTI(stoughton,MA)的夹心免疫测定(BT-480),测定在培养介质中分泌的骨钙。BTI Mid-Tact骨钙Elisa试剂盒是高度特异性的。它测定完整的人骨钙和主要(1-43)片段。测定是采用两个单克隆抗体的夹心ELISA(酶联免疫测定法)。一个抗体(1-19)在孔中固定,第二个抗体(30-40)被生物素化。测定是高度灵敏的(0.5ng/ml)并且仅需要25微升的样品。所有必需的试剂、96-孔试条板和完全的 小时的方案都包括在试剂盒中。
钙沉积
利用邻甲酚肽络合酮(Sigma Diagnostics,Procedure No.587)测定培养碟内的钙沉积。支架用蒸馏水清洗,并放置在定轨振荡器上,以便在2mL、0.5N的醋酸存在下温育过夜。将测定试剂盒中配备的等体积钙结合剂(0.024%邻甲酚肽络合酮和0.25%8-羟基喹酮(8-hydoxyquinalone))以及钙缓冲剂(500mmol/L的2-氨基-2-甲基-1,3丙二醇和其它不活泼的稳定剂)混合,从而生成测定工作溶液。将300μL的工作溶液加入到96孔板上的10μL样品中。为了产生标准曲线,制备CaCl2的连续稀释液(1-250μg/mL)。此板在室温下温育10分钟,然后在575nm处读数。来自每个支架的钙沉积是作为mg Ca2+的等同物报告的。
组织学和四环素荧光显微镜法
支架被浸渍固定在2%戊二醛中,在浓度上升的乙醇中脱水并迅速包埋在塑料内,以便切成薄片。切片用Goldner三色和甲苯胺蓝方法进行染色。通过在培养介质中加入四环素-HCL、使最终浓度为10μg/mL,来评估矿物沉积,并且是一种良好建立的用于评估基质沉积的方法。四环素聚集在骨形成部位,并且在尼康E1000研究用显微镜上利用标准的Bioquant软件完成形态测量评估。
概要
此研究被设计成测试用提高骨特殊功效函数的生物电信号浸透破骨细胞的实用性。该研究在三个分离的时间段评估了5种状况。研究的“快速、肮脏部分”评估碱性磷酸酶和骨钙作为第一测定结果。第二个目的是寻找识别形态标准,即作为基质矿化指数的钙沉积和四环素的吸收。如下收集数据:
  治疗   7-天治疗   14-天治疗   21-天治疗
  破骨细胞30分钟,每天3次,刺激A
  破骨细胞30分钟,每天3次,刺激A
  破骨细胞30分钟,每天3次,刺激A
  破骨细胞2个小时,每天3次,刺激A
  破骨细胞2个小时,每天3次,刺激A
  破骨细胞2个小时,每天3次,刺激A
  破骨细胞30分钟,每天3次,刺激B
  破骨细胞30分钟,每天3次,刺激B
  破骨细胞30分钟,每天3次,刺激B
  破骨细胞2个小时,每天3次,刺激B
  破骨细胞2个小时,每天3次,刺激B
  破骨细胞2个小时,每天3次,刺激B
  对照的破骨细胞
  对照的破骨细胞
  对照的破骨细胞
每个实验条件下分别进行两次,每个治疗臂最少6个孔。为了适应矿化和四环素评估,将额外两组排入日程,并实施21天,因为这是临界矿化前缘(front)。在此研究中,需要15个臂×2组数据培养物,和5个额外组×2以进行矿化分析。
上述实施例被认为仅仅用来阐述本发明的原理。而且,由于对于本领域的技术人员来说,许多修改和改变都是容易产生的,因此不期望将本发明限定于所示和所述的精确构造和操作,并且据此,所有适当的修改和等同物都可以采取,从而落在本发明的范围内。由此,对于本领域的技术人员,显而易见的是,在不脱离如所附权利要求书限定的本发明精髓和范围的前提下,能够对本文所述的优选实施方案做出许多改变和替换。

Claims (86)

1、一种产生用于生物医学应用的电信号的装置,所述电信号包括:
(a)至少四个相对长的一级计时间隔T1、T2、T3、T4和其它(如果存在的话),从而接连形成重复的一级循环,所述一级循环具有一个频率;
(b)至少两个相对短的二级计时间隔t1、t2等,所述一级计时间隔的至少一个被分成所述二级计时间隔,并且所述二级计时间隔在其整个长度上接连形成重复的二级循环,所述二级循环具有一个频率,所述频率位于200kHz以下;而至少一个其它所述一级计时间隔没有被如此细分;
(c)多个基本上恒定的电压或电流电平L1、L2等;
(d)在被如此细分的所述一级间隔内的每个所述二级间隔中,或者在整个所述一级间隔中(如果该间隔没有被如此细分的话),选择一个所述电压或电流电平:在所述一级循环的整个过程中依次选择的所述电平,借此形成所述电信号;以及
(e)进一步选择一个或多个所述一级间隔(所述间隔没有被如此细分),作为用于在所述一级循环的任一个重复的过程中建立实质上的电荷平衡的一个或多个均衡脉冲。
2、如权利要求1所述的装置,其特征在于,所述一级和二级计时间隔的选择以及每个间隔内的所述电压或电流电平的选择,导致所述电信号仿效具体、定义的数学函数,所述函数具有随时间改变的幅度。
3、如权利要求2所述的装置,其特征在于:
(a)所述任何给定一级计时间隔内的所述电信号具有A.C.和D.C.幅度,所述的任一幅度可为零,以及
(b)所述一级计时间隔内的所述A.C.幅度,如果不为零的话,是由于所述二级计时间隔的存在导致的。
4、如权利要求3所述的装置,其特征在于:
(b)所述A.C.分量在至少一个所述一级计时间隔内具有零幅度,以及
(c)所述A.C.分量在至少一个其它所述一级计时间隔内具有非零幅度。
5、如权利要求4所述的装置,其特征在于:
(a)第一所述一级计时间隔T1具有在整个过程中选择的单个电压或电流电平L1,从而产生零A.C.幅度;
(b)第二所述一级计时间隔T2被分成所述二级间隔t1、t2等,从而在一级间隔T2的整个长度形成所述二级循环,所述二级循环在所述一级间隔内产生多个完全的重复,电平L1、L2等之一是为每个二级间隔t1、t2等选择的,从而产生非零的A.C.幅度;
(c)第三所述一级计时间隔T3、第四所述一级计时间隔T4和每个所述一级计时间隔T5、T6等,如果存在的话,可以T1的方式包含单个恒定电压或电流电平,或者以T2的方式被细分;
(d)所述一级循环内的每个所述二级间隔或未细分的一级间隔,具有在此间隔重现时总选择的、来自L1、L2等中的、独特分派的电压或电流电平;并因此,
(e)所述电信号在所述一级循环的任何两个重复之间基本上一样。
6、如权利要求5所述的装置,其特征在于,所述基本上恒定的电压或电流电平L1、L2等,采取位于+10.0与-10.0毫安之间的恒电流电平形式。
7、如权利要求5所述的装置,其特征在于,所述一级循环包括具有以下关系的两个最长的一级计时间隔TA和TB:
2TA≤TB≤20TA
其中TB是最长的一级间隔,TA第二长,借此产生具有66%-95%的工作循环的不对称一级循环。
8、如权利要求5所述的装置,其特征在于,所述至少四个一级计时间隔中的至少两个在长度上不同,并包含在频率上也不同的二级循环。
9、如权利要求5所述的装置,其特征在于,所述二级循环精确地包括具有以下关系的两个所述二级计时间隔t1和t2:
2tA≤tB≤20tA
其中tA可以是所述二级计时间隔中的任一个,而tB是另一个,借此产生具有66%-95%的工作循环的不对称二级循环。
10、如权利要求5所述的装置,其特征在于,所述二级循环包括超过两个的所述二级计时间隔t1、t2、t3等。
11、如权利要求5所述的装置,其特征在于,所述电信号在预定时间段之后自动切断。
12、如权利要求5所述的装置,其特征在于,包括:
(a)产生所述多个一级计时间隔T1、T2等,借此形成所述重复的一级循环;
(b)产生所述多个二级计时间隔t1、t2等,借此在被如此细分的所述至少一个一级循环中形成所述重复的二级循环;
(c)在所述多个恒电压或电流电平L1、L2等中,为被如此细分的所述一级间隔内的每个所述二级间隔或者整个所述一级间隔(如果没有被如此细分的话)选择一个恒电压或电流电平,借此形成所述电信号;以及
(d)用于将所述电信号施加到活的或非活材料中的导电材料。
13、如权利要求12所述的装置,其特征在于,还包括用于从所述电信号中去除无用分量的滤波器。
14、如权利要求12所述的装置,其特征在于,所述多个一级计时间隔或所述多个二级计时间隔的所述生成中的至少一个,包括多阶定序机,所述生成借此形成所述重复的一级循环或所述重复的二级循环。
15、如权利要求12所述的装置,其特征在于,所述电信号是周期性的,并且其中所述一级和二级计时间隔大约具有以下大小和关系:
(a)50微秒(T1,T2,…)30秒
(b)200微秒(T1+T2+…)120秒
(c)2.55微秒(t1,t2,…)50毫秒
(d)5微秒(ta+tb+…)0.5TA;以及
(e)(tx,ty,…)≤2(ta+tb+…);
在此处,(T1,T2,…)、(T1+T2+…)、TA、(t1,t2,…)、(ta+tb+…)和(tx,ty,…)如说明书中所定义的。
16、如权利要求15所述的装置,其特征在于,所述装置被构造成产生四个所述一级计时间隔T1、T2、T3和T4、多个所述二级间隔t1、t2等、以及三个所述电压或电流电平L1、L2和L3,从而:
(a)L1基本上为零;
(b)L2和L3具有基本上相等的幅度但相反的极性;
(c)T1耗费在恒定的L1处;以及
(d)T2、T3和T4都包含二级计时间隔。
17、如权利要求16所述的装置,其特征在于:
(a)T1是所述一级间隔T1、T2、T3和T4中最短的;
(b)T2和T4在长度上大致相等;
(c)T3比T2或T4长;以及
(d)由T2和T4内的所述二级计时循环产生的A.C.幅度,减小到由T3内的所述二级计时循环产生的A.C.幅度之下。
18、如权利要求17所述的装置,其特征在于:
(a)所述一级计时循环的重复率可以横贯1Hz-500Hz的一部分范围连续或逐步改变,以便适合所需的应用;以及
(b)T2、T3和T4内的所述二级计时循环的重复率基本上相等并位于1000hz-200Khz之间的范围内。
19、如权利要求17所述的装置,其特征在于,通过在T3中选择在T2或T4中不使用的至少一个所述电压或电流电平,而整个或部分获得在T3中之下的、T2和T4中的所述信号幅度减小。
20、如权利要求17所述的装置,其特征在于,通过在T3中使用不同于在T2或T4中使用的所述二级计时循环,而整个或部分获得在T3中之下的、T2和T4中的所述信号幅度减小。
21、如权利要求15所述的装置,其特征在于,所述装置被构造成产生至少四个所述一级计时间隔T1、T2、T3等中的多个P、偶数目S的所述二级计时间隔t1、t2、t3等、以及奇数目Q的所述电压或电流电平L1、L2、L3等,从而:
(a)L1基本上为零;
(b)剩余的所述电压和电流电平L2和L3等形成至少一对例如LX、LY,每个所述对的成员在大小上基本相等但极性相反;
(c)T1耗费在恒定的L1处;以及
(d)所有其它所述一级计时间隔T2、T3等都包含二级循环,所有二级循环具有基本相等的重复速率;
(e)最大的信号幅度存在于一级计时间隔TN中,其中N优选等于约P/2+1;以及
(f)在剩余的所述一级间隔中,所述信号幅度从T1到TN逐渐增大围绕所述一级计时循环向前或向后流逝,借此近似于在TN中具有最大值、在T1中具有最小值的正弦包迹。
22、如权利要求15所述的装置,其特征在于,所述装置被构造成产生任何数目的所述一级计时间隔T1、T2、T3等、两个所述二级计时间隔t1和t2等、以及三个所述电压或电流电平L1、L2和L3,从而:
(a)L1基本上为零;
(b)L2和L3具有基本上相等的幅度但相反的极性;以及
(c)一级间隔被分成三个组,其中
(1)每个所述组中的第一所述一级计时间隔例如T1、T4、T7等,耗费在恒定的L1处;
(2)每个所述组中的第二所述一级计时间隔例如T2、T5、T8等,包含在t1中的L2与t2中的L3之间交替的所述二级计时循环,借此在每个这样的偶数编号的一级间隔内形成方波信号或矩形波信号;以及
(3)每个所述组中的第三所述一级计时间隔例如T3、T6、T9等,耗费在与L1不同的恒定电压或电流处,借此形成均衡脉冲。
23、如权利要求22所述的装置,其特征在于,在整个一级计时循环内中的D.C.幅度的和为零,从而合成的所述电信号是电荷平衡的。
24、如权利要求23所述的装置,其特征在于:
(a)每个所述组中的所述第二一级计时间隔,包含具有非零D.C.幅度的矩形波,以及
(b)每个所述组中的所述第三一级计时间隔具有相反的D.C.幅度,从而导致所述电信号基本上是电荷平衡的。
25、如权利要求22所述的装置,其特征在于,所述三个组中的至少一个组内的所述第二和第三一级计时间隔,具有与所述三个组中的至少另一个组相反的极性。
26、如权利要求25所述的装置,其特征在于:
(a)在所述三个组中的至少一个组内并形成均衡脉冲的至少一个所述第三一级计时间隔,短得不能完全获得电荷平衡;以及
(b)在所述三个组内,通过至少一个所述第二一级计时间隔与至少另一个所述第二一级计时间隔之间的极性逆转,而全部或部分获得电荷平衡。
27、如权利要求22所述的装置,其特征在于,在所述三个组中的至少一个组内的至少一个所述第二一级计时间隔,包含二级计时间隔,所述二级计时间隔的重复率不同于至少另一个所述第二一级计时间隔。
28、如权利要求19所述的装置,其特征在于,还包括开关,由此一级计时间隔、二级计时间隔、电压或电流电平、或这些特征的组合,可以改变,以便按照要求产生多个已经描述的电信号中的任一个。
29、如权利要求68所述的装置,其特征在于,所述选择包括:
(a)如权利要求21所述的电信号;或
(b)如权利要求24所述的电信号。
30、如权利要求1所述的装置,其特征在于,所述电信号是不定期的,并且其中所述一级和二级计时间隔大约具有以下大小和关系:
(a)50微秒(T2,T3,…)30秒
(b)200微秒(T2+T3+…)120秒
(c)2.55微秒(t1,t2,…)50毫秒
(d)5微秒(ta+tb+…)0.5TA;以及
(e)(tx,ty,…)≤2(ta+tb+…);
在此处,T1可以任意长,(T2,T3,…)、(T2+T3+…)、TA、(t1,t2,…)、(ta+tb+…)和(tx,ty,…)如说明书中所定义的。
31、如权利要求30所述的装置,其特征在于,所述装置被构造成产生任何数目P的所述一级计时间隔T1、T2、T3等、偶数目S的所述二级计时间隔t1、t2、t3等、以及奇数目Q的所述电压或电流电平L1、L2、L3等,从而:
(a)L1基本上为零;
(b)剩余的所述电压和电流电平L2、L3等形成至少一对例如LX、LY,每个所述对的成员在大小上基本相等但极性相反;
(c)T1耗费在恒定的L1处;
(d)所有其它所述一级计时间隔T2、T3等都包含二级循环,所有二级循环具有基本相等的重复速率;
(e)最大的信号幅度存在于T2中;以及
(f)在剩余的所述一级间隔中,所述信号幅度在所述整个一级计时循环中逐渐减小,借此近似于在T2中具有最大值、在TP中具有最小值的指数衰减包迹。
32、如权利要求31所述的装置,其特征在于,一级计时间隔的每个反复由外部信号启动。
33、如权利要求12所述的装置,其特征在于,所述电信号通过导电材料施加给人或动物体、离体组织或细胞培养物,以便减轻疼痛、刺激愈合、或增加细胞的代谢、增殖、分化或所需物质的产生。
34、如权利要求33所述的装置,其特征在于,所述导电材料构成直接施加到皮肤表面上的多个导电材料平坦主体。
35、如权利要求33所述的装置,其特征在于,所述导电材料包括至少一个施加到组织表面而不是皮肤上的导电材料主体。
36、如权利要求33所述的装置,其特征在于,所述导电材料包括至少一个***或植入人或动物体或组织内的导电材料主体。
37、如权利要求33所述的装置,其特征在于,所述导电材料包括至少一个全部或部分浸渍在导电液体中的导电材料主体。
38、如权利要求33所述的装置,其特征在于,所述导电材料包括可浸渍人或动物体或组织或其部分的导电液体主体。
39、如权利要求12所述的装置,其特征在于,所述电信号通过导电材料施加给人或动物体、离体组织或细胞培养物、食品、饮料或其它材料,以便使可存在的所选病原有机体失活。
40、一种产生用于生物医学应用的电信号的方法,所述方法包括:
(a)产生至少四个相对长的一级计时间隔T1、T2、T3、T4和其它(如果存在的话),从而接连形成重复的一级循环,所述一级循环具有一个频率;
(b)产生至少两个相对短的二级计时间隔t1、t2等,所述一级计时间隔的至少一个被分成所述二级计时间隔,并且所述二级计时间隔在其整个长度上接连形成重复的二级循环,所述二级循环具有一个频率,所述频率位于200kHz以下;而至少一个其它所述一级计时间隔没有被如此细分;
(c)产生多个基本上恒定的电压或电流电平L1、L2等;
(d)在被如此细分的所述一级间隔内的每个所述二级间隔中,或者在整个所述一级间隔中(如果该间隔没有被如此细分的话),选择一个所述电压或电流电平:在所述一级循环的整个过程中依次选择的所述电平,借此形成所述电信号;以及
(e)进一步选择一个或多个所述一级间隔(所述间隔没有被如此细分)作为用于在所述一级循环的任一个重复过程中建立基本上的电荷平衡的一个或多个均衡脉冲。
41、如权利要求40所述的方法,其特征在于,所述一级和二级计时间隔的选择以及每个间隔内的所述电压或电流电平的选择,导致所述电信号仿效具体、定义的数学函数,所述函数具有随时间改变的幅度。
42、如权利要求41所述的方法,其特征在于:
(a)所述任何给定一级计时间隔内的所述电信号具有A.C.和D.C.幅度,所述的任一幅度可为零,以及
(b)所述一级计时间隔内的所述A.C.幅度,如果不为零的话,是由于所述二级计时间隔的存在导致的。
43、如权利要求42所述的方法,其特征在于:
(b)所述A.C.分量在至少一个所述一级计时间隔内具有零幅度,以及
(c)所述A.C.分量在至少一个其它所述一级计时间隔内具有非零幅度。
44、如权利要求43所述的方法,其特征在于:
(a)第一所述一级计时间隔T1具有在整个过程中选择的单个电压或电流电平L1,从而产生零A.C.幅度;
(b)第二所述一级计时间隔T2被分成所述二级间隔t1、t2等,从而在一级间隔T2的整个长度形成所述二级循环,所述二级循环在所述一级间隔内产生多个完全的重复,电平L1、L2等之一是为每个二级间隔t1、t2等选择的,从而产生非零的A.C.幅度;
(c)第三所述一级计时间隔T3、第四所述一级计时间隔T4和每个所述一级计时间隔T5、T6等,如果存在的话,可以T1的方式包含单个恒定电压或电流电平,或者以T2的方式被细分;
(d)所述一级循环内的每个所述二级间隔或未细分的一级间隔,具有在此间隔重现时总选择的、来自L1、L2等中的、独特分派的电压或电流电平;并因此,
(e)所述电信号在所述一级循环的任何两个重复之间基本上一样。
45、如权利要求44所述的方法,其特征在于,所述基本上恒定的电压或电流电平L1、L2等,采取位于+10.0与-10.0毫安之间的恒电流电平形式。
46、如权利要求5所述的方法,其特征在于,所述一级循环包括具有以下关系的两个最长的一级计时间隔TA和TB:
2TA≤TB≤20TA
其中TB是最长的一级间隔,TA第二长,借此产生具有66%-95%的工作循环的不对称一级循环。
47、如权利要求5所述的方法,其特征在于,所述至少四个一级计时间隔中的至少两个在长度上不同,并包含在频率上也不同的二级循环。
48、如权利要求44所述的方法,其特征在于,所述二级循环精确地包括具有以下关系的两个所述二级计时间隔t1和t2:
2tA≤tB≤20tA
其中tA可以是所述二级计时间隔中的任一个,而tB是另一个,借此产生具有66%-95%的工作循环的不对称二级循环。
49、如权利要求44所述的方法,其特征在于,所述电信号在预定时间段之后自动切断。
50、如权利要求40所述的方法,其特征在于,还包括过滤所述电信号,以除去无用的分量。
51、如权利要求40所述的方法,其特征在于,多阶定序机用来有助于产生所述一级计时间隔T1、T2等,从而形成所述重复的一级循环。
52、如权利要求51所述的方法,其特征在于,所述多阶定序机的输出确定所述一级计时间隔的相对长度。
53、如权利要求41所述的方法,其特征在于,多阶定序机用来有助于产生所述二级计时间隔t1、t2等,从而形成所述重复的二级循环。
54、如权利要求53所述的方法,其特征在于,所述多阶定序机的输出确定所述二级计时间隔的相对长度。
55、如权利要求40所述的方法,其特征在于,所述电信号是周期性的,并且其中所述一级和二级计时间隔大约具有以下大小和关系:
(a)50微秒(T1,T2,…)30秒
(b)200微秒(T1+T2+…)120秒
(c)2.5微秒(t1,t2,…)50毫秒
(d)5微秒(ta+tb+…)0.5TA;以及
(e)(tx,ty,…)≤2(ta+tb+…);
在此处,(T1,T2,…)、(T1+T2+…)、TA、(t1,t2,…)、(ta+tb+…)和(tx,ty,…)如说明书中所定义的。
56、如权利要求55所述的方法,其特征在于,产生四个所述一级计时间隔T1、T2、T3和T4、多个所述二级间隔t1、t2等、以及三个所述电压或电流电平L1、L2和L3,从而:
(a)L1基本上为零;
(b)L2和L3具有基本上相等的大小但相反的极性;
(c)T1耗费在恒定的L1处;以及
(d)T2、T3和T4都包含二级计时循环。
57、如权利要求56所述的方法,其特征在于:
(a)T1是所述一级间隔T1、T2、T3和T4中最短的;
(b)T2和T4在长度上大致相等;
(c)T3比T2或T4长;以及
(d)由T2和T4内的所述二级计时循环产生的A.C.幅度,减小到由T3内的所述二级计时循环产生的A.C.幅度之下。
58、如权利要求57所述的方法,其特征在于:
(a)所述一级计时循环的重复率可以横贯1Hz-500Hz的一部分范围连续或逐步改变,以便适合所需的应用;以及
(b)T2、T3和T4内的所述二级计时循环的重复率基本上相等并位于约1000hz-200Khz之间的范围内。
59、如权利要求57所述的方法,其特征在于,通过在T3中选择在T2或T4中不使用的至少一个所述电压或电流电平,而整个或部分获得在T3中之下的、T2和T4中的所述信号幅度减小。
60、如权利要求57所述的方法,其特征在于,通过在T3中使用不同于在T2或T4中使用的所述二级计时循环,而整个或部分获得在T3中之下的、T2和T4中的所述信号幅度减小。
61、如权利要求55所述的方法,其特征在于,产生至少四个所述一级计时间隔T1、T2、T3等中的多个P、偶数目S的所述二级计时间隔t1、t2、t3等、以及奇数目Q的所述电压或电流电平L1、L2、L3等,从而:
(a)L1基本上为零;
(b)剩余的所述电压和电流电平L2、L3等形成至少一对例如LX、LY,每个所述对的成员在大小上基本相等但极性相反;
(c)T1耗费在恒定的L1处;以及
(d)所有其它所述一级计时间隔T2、T3等都包含二级循环,所有二级循环具有基本相等的重复速率;
(e)最大的信号幅度存在于一级计时间隔TN中,其中N优选等于约P/2+1;以及
(f)在剩余的所述一级间隔中,所述信号幅度从T1到TN逐渐增大围绕所述一级计时循环向前或向后流逝,借此近似于在TN中具有最大值、在T1中具有最小值的正弦包迹。
62、如权利要求55所述的方法,其特征在于,产生任何数目的所述一级计时间隔T1、T2、T3等、两个所述二级计时间隔t1和t2、以及三个所述电压或电流电平L1、L2和L3,从而:
(a)L1基本上为零;
(b)L2和L3具有基本上相等的大小但相反的极性;以及
(c)一级间隔被分成三个组,其中
(1)每个所述组中的第一所述一级计时间隔例如T1、T4、T7等,耗费在恒定的L1处;
(2)每个所述组中的第二所述一级计时间隔例如T2、T5、T8等,包含在t1中的L2与t2中的L3之间交替的所述二级计时循环,借此在每个这样的所述偶数编号的一级间隔内形成方波信号或矩形波信号;以及
(3)每个所述组中的第三所述一级计时间隔例如T3、T6、T9等,耗费在与L1不同的恒定电压或电流处,借此形成均衡脉冲。
63、如权利要求62所述的方法,其特征在于,在整个一级计时循环中的D.C.幅度的和为零,从而合成的所述电信号是电荷平衡的。
64、如权利要求63所述的方法,其特征在于:
(a)每个所述组中的所述第二一级计时间隔,包含具有非零D.C.幅度的矩形波,以及
(b)每个所述组中的所述第三一级计时间隔具有相反的D.C.幅度,从而导致所述电信号基本上是电荷平衡的。
65、如权利要求62所述的方法,其特征在于,所述三个组中的至少一个组内的所述第二和第三一级计时间隔,具有与所述三个组中的至少另一个组相反的极性。
66、如权利要求66所述的方法,其特征在于:
(a)在所述三个组中的至少一个组内并形成均衡脉冲的至少一个所述第三一级计时间隔,短得不能完全获得电荷平衡;以及
(b)在所述三个组内,通过至少一个所述第二一级计时间隔与至少另一个所述第二一级计时间隔之间的极性逆转,而全部或部分获得电荷平衡。
67、如权利要求62所述的方法,其特征在于,在所述三个组中的至少一个组内的至少一个所述第二一级计时间隔,包含二级计时循环,所述二级计时循环的重复率不同于至少另一个所述第二一级计时间隔。
68、如权利要求40所述的方法,其特征在于,还包括选择包括一级计时间隔、二级计时间隔、电压或电流电平、或这些特征的组合的多个组之一,以便按照要求产生多个已经描述的电信号中的任一个。
69、如权利要求68所述的方法,其特征在于,所述选择包括:
(a)如权利要求62所述的电信号;以及
(b)如权利要求64所述的电信号。
70、如权利要求40所述的方法,其特征在于,所述电信号是不定期的,并且其中所述一级和二级计时间隔大约具有以下大小和关系:
(a)50微秒(T2,T3,…)30秒
(b)200微秒(T2+T3+…)120秒
(c)2.5微秒(t1,t2,…)50毫秒
(d)5微秒(ta+tb+…)0.5TA;以及
(e)(tx,ty,…)≤2(ta+tb+…);
在此处,T1可以任意长,(T2,T3,…)、(T2+T3+…)、TA、(t1,t2,…)、(ta+tb+…)和(tx,ty,…)如说明书中所定义的。
71、如权利要求70所述的方法,其特征在于,产生任何数目P的所述一级计时间隔T1、T2、T3等、偶数目S的所述二级计时间隔t1、t2、t3等、以及奇数目Q的所述电压或电流电平L1、L2、L3等,从而:
(a)L1基本上为零;
(b)剩余的所述电压和电流电平L2、L3等形成至少一对例如LX、LY,每个所述对的成员在大小上相等但极性相反;
(c)T1耗费在恒定的L1处;
(d)所有其它所述一级计时间隔T2、T3等都包含二级循环,所有二级循环具有基本相等的重复速率;
(e)最大的信号幅度存在于T2中;以及
(f)在剩余的所述一级间隔中,所述信号幅度在所述整个一级计时循环中逐渐减小,借此近似于在T2中具有最大值、在TP中具有最小值的指数衰减包迹。
72、如权利要求71所述的方法,其特征在于,一级计时间隔的每个反复由外部信号启动。
73、如权利要求40所述的方法,其特征在于,所述电信号通过导电材料施加给人或动物体、离体组织或细胞培养物,以便减轻疼痛、刺激愈合、或增加细胞的代谢、增殖、分化或所需物质的产生。
74、如权利要求73所述的方法,其特征在于,所述导电材料构成直接施加到皮肤表面上的多个导电材料平坦主体。
75、如权利要求73所述的方法,其特征在于,所述导电材料包括至少一个施加到组织表面而不是皮肤上的导电材料主体。
76、如权利要求73所述的方法,其特征在于,所述导电材料包括至少一个***或植入人或动物体或组织内的导电材料主体。
77、如权利要求73所述的方法,其特征在于,所述导电材料包括至少一个全部或部分浸渍在导电液体中的导电材料主体。
78、如权利要求73所述的方法,其特征在于,所述导电材料包括可浸渍人或动物体或组织或其部分的导电液体主体。
79、如权利要求40所述的方法,其特征在于,所述电信号通过导电材料施加给人或动物体、离体组织或细胞培养物、食品、饮料或其它材料,以便使可存在的所选病原有机体失活。
80、如权利要求1所述的装置,其特征在于,所产生的电信号基本上是图6、图7、图8、图9、图10、图11、图12或图15所示的电信号。
81、如权利要求1所述的装置,其特征在于,所产生的电信号基本上是图6所示的电信号。
82、如权利要求40所述的方法,其特征在于,所产生的电信号基本上是图6、图7、图8、图9、图10、图11、图12或图15所示的电信号。
83、如权利要求40所述的方法,其特征在于,所产生的电信号基本上是图6所示的电信号。
84、一种用于产生电信号的设备,包括用于产生一级计时间隔和二级计时间隔的装置,至少一个一级计时间隔被分成所述二级计时间隔,所述一级计时间隔形成电荷平衡的一级循环。
85、一种能够产生基本上如图6、图7、图8、图9、图10、图11、图12和图15所示的电信号的装置。
86、如权利要求83所述的装置,所述装置的使用者能够选择将要产生的所述电信号之一。
CN2004800243258A 2003-06-24 2004-06-24 生物电刺激、加速愈合、减轻疼痛或病原体失活的装置和方法 Expired - Fee Related CN1842356B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US48089003P 2003-06-24 2003-06-24
US60/480,890 2003-06-24
PCT/US2004/020207 WO2005002663A2 (en) 2003-06-24 2004-06-24 Apparatus and method for bioelectric stimulation, healing acceleration, pain relief, or pathogen devitalization

Publications (2)

Publication Number Publication Date
CN1842356A true CN1842356A (zh) 2006-10-04
CN1842356B CN1842356B (zh) 2011-05-04

Family

ID=33563819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800243258A Expired - Fee Related CN1842356B (zh) 2003-06-24 2004-06-24 生物电刺激、加速愈合、减轻疼痛或病原体失活的装置和方法

Country Status (17)

Country Link
US (1) US7117034B2 (zh)
EP (1) EP1648553A4 (zh)
JP (1) JP4980713B2 (zh)
KR (1) KR101134242B1 (zh)
CN (1) CN1842356B (zh)
AR (1) AR044915A1 (zh)
AU (1) AU2004253501B2 (zh)
BR (1) BRPI0411817A (zh)
CA (2) CA2530396C (zh)
CR (1) CR8170A (zh)
EA (1) EA200600093A1 (zh)
HK (1) HK1096882A1 (zh)
IL (1) IL172726A (zh)
MX (1) MXPA05014141A (zh)
TW (1) TWI306407B (zh)
WO (1) WO2005002663A2 (zh)
ZA (1) ZA200600654B (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101827628A (zh) * 2007-09-18 2010-09-08 G·马里尼奥 用于快速疼痛抑制的装置和方法
CN102497806A (zh) * 2009-08-04 2012-06-13 生命波有限公司 诊断和筛选潜在疾病的电子标记物的方法
TWI500379B (zh) * 2008-08-06 2015-09-21 Utoc B V I O 使用prf培養細胞或組織之方法及prf於培養細胞或組織之用途
CN105310680A (zh) * 2015-05-14 2016-02-10 南京神桥医疗器械有限公司 一种植入式神经信号阻断装置
CN105611964A (zh) * 2013-09-17 2016-05-25 高潮基金会 静脉电刺激装置和方法
CN107800406A (zh) * 2017-11-22 2018-03-13 北京品驰医疗设备有限公司 高频脉冲刺激信号生成方法、脉冲刺激方法及设备
CN108031002A (zh) * 2018-02-08 2018-05-15 中国医科大学附属盛京医院 用于促进自体移植脂肪瓣再生的电刺激设备
CN108355245A (zh) * 2018-03-08 2018-08-03 广州圆医生物科技有限公司 一种用于神经和肌肉刺激仪的电极
CN109076298A (zh) * 2016-04-27 2018-12-21 科利耳有限公司 使用有限组件的可植入振动装置
CN109152919A (zh) * 2016-03-21 2019-01-04 蒂宾根大学Nmi自然科学和医学研究所 活性视网膜植入物
CN105934261B (zh) * 2013-06-29 2019-03-08 赛威医疗公司 用于改变或诱导认知状态的经皮电刺激设备和方法
US10258788B2 (en) 2015-01-05 2019-04-16 Thync Global, Inc. Electrodes having surface exclusions
US10293161B2 (en) 2013-06-29 2019-05-21 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
US10426945B2 (en) 2015-01-04 2019-10-01 Thync Global, Inc. Methods and apparatuses for transdermal stimulation of the outer ear
US10485972B2 (en) 2015-02-27 2019-11-26 Thync Global, Inc. Apparatuses and methods for neuromodulation
US10537703B2 (en) 2012-11-26 2020-01-21 Thync Global, Inc. Systems and methods for transdermal electrical stimulation to improve sleep
US10646708B2 (en) 2016-05-20 2020-05-12 Thync Global, Inc. Transdermal electrical stimulation at the neck
US10792495B2 (en) 2016-12-01 2020-10-06 Thimble Bioelectronics, Inc. Neuromodulation device and method for use
US10814131B2 (en) 2012-11-26 2020-10-27 Thync Global, Inc. Apparatuses and methods for neuromodulation
US10967179B2 (en) 2015-02-02 2021-04-06 Novintum Medical Technology Gmbh Venous electrical stimulation apparatus and methods and uses thereof
US11033731B2 (en) 2015-05-29 2021-06-15 Thync Global, Inc. Methods and apparatuses for transdermal electrical stimulation
US11235148B2 (en) 2015-12-18 2022-02-01 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
US11278724B2 (en) 2018-04-24 2022-03-22 Thync Global, Inc. Streamlined and pre-set neuromodulators
US11534608B2 (en) 2015-01-04 2022-12-27 Ist, Llc Methods and apparatuses for transdermal stimulation of the outer ear

Families Citing this family (368)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US7837719B2 (en) * 2002-05-09 2010-11-23 Daemen College Electrical stimulation unit and waterbath system
US7801585B1 (en) 2003-06-02 2010-09-21 Newlife Sciences Llc System for analyzing and treating abnormality of human and animal tissues
US7640052B2 (en) 2004-05-28 2009-12-29 Ippp, Llc Method of integrated proton beam and therapeutic magnetic resonance therapy
US7744869B2 (en) * 2003-08-20 2010-06-29 Ebi, Llc Methods of treatment using electromagnetic field stimulated mesenchymal stem cells
US9427598B2 (en) 2010-10-01 2016-08-30 Rio Grande Neurosciences, Inc. Method and apparatus for electromagnetic treatment of head, cerebral and neural injury in animals and humans
US9415233B2 (en) 2003-12-05 2016-08-16 Rio Grande Neurosciences, Inc. Apparatus and method for electromagnetic treatment of neurological pain
US9433797B2 (en) 2003-12-05 2016-09-06 Rio Grande Neurosciences, Inc. Apparatus and method for electromagnetic treatment of neurodegenerative conditions
US8961385B2 (en) 2003-12-05 2015-02-24 Ivivi Health Sciences, Llc Devices and method for treatment of degenerative joint diseases with electromagnetic fields
US10350428B2 (en) 2014-11-04 2019-07-16 Endonovo Therapetics, Inc. Method and apparatus for electromagnetic treatment of living systems
US9656096B2 (en) 2003-12-05 2017-05-23 Rio Grande Neurosciences, Inc. Method and apparatus for electromagnetic enhancement of biochemical signaling pathways for therapeutics and prophylaxis in plants, animals and humans
US20070026514A1 (en) * 2005-03-07 2007-02-01 Pilla Arthur A Electromagnetic treatment apparatus for enhancing pharmacological, chemical, and topical agent effectiveness and method for using same
US20060212077A1 (en) * 2005-03-07 2006-09-21 Pilla Arthur A Electromagnetic treatment apparatus for augmenting wound repair and method for using same
US9440089B2 (en) 2003-12-05 2016-09-13 Rio Grande Neurosciences, Inc. Apparatus and method for electromagnetic treatment of neurological injury or condition caused by a stroke
US7783353B2 (en) 2003-12-24 2010-08-24 Cardiac Pacemakers, Inc. Automatic neural stimulation modulation based on activity and circadian rhythm
AU2005205853B2 (en) 2004-01-22 2011-01-27 2249020 Alberta Ltd. Method of routing electrical current to bodily tissues via implanted passive conductors
US8165695B2 (en) * 2004-02-11 2012-04-24 Ethicon, Inc. System and method for selectively stimulating different body parts
US8751003B2 (en) 2004-02-11 2014-06-10 Ethicon, Inc. Conductive mesh for neurostimulation
US7979137B2 (en) 2004-02-11 2011-07-12 Ethicon, Inc. System and method for nerve stimulation
US7647112B2 (en) 2004-02-11 2010-01-12 Ethicon, Inc. System and method for selectively stimulating different body parts
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
US8454543B2 (en) 2004-03-10 2013-06-04 Vision Quest Industries Incorporated Electrodes for orthotic device
US8936560B2 (en) * 2004-03-10 2015-01-20 Vision Quest Industries Incorporated Bracing and electrostimulation for arthritis
US8070703B2 (en) * 2004-03-10 2011-12-06 Vision Quest Industries Incorporated Electrically stimulating orthotic device and segmented liner
AU2005234749A1 (en) 2004-04-19 2005-11-03 Andre' Dimino Electromagnetic treatment apparatus and method
US20060030906A1 (en) * 2004-08-06 2006-02-09 Carroll William J Switchable and programmable electrode configuration
US7509165B2 (en) * 2004-08-12 2009-03-24 Avazzia, Inc. Biofeedback electronic stimulation device
CA2582520C (en) 2004-10-08 2017-09-12 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument
US7734340B2 (en) * 2004-10-21 2010-06-08 Advanced Neuromodulation Systems, Inc. Stimulation design for neuromodulation
US20060155220A1 (en) * 2004-12-07 2006-07-13 Oslay Theodore F Method and device for current assisted massage for correction of soft tissue dysfunction in humans
US20060136011A1 (en) * 2004-12-17 2006-06-22 Paul Vo Quang Dang Electronic healthcare device
US20070088407A1 (en) * 2005-02-01 2007-04-19 Smith Timothy B Method and device for treating injuries
US7319902B2 (en) * 2005-05-09 2008-01-15 O'kelly Gregory Method and device for electrochemical rejuvenation of skin and underlying tissue, and muscle building
US20080039901A1 (en) * 2005-06-03 2008-02-14 Kronberg James W Methods for modulating chondrocyte proliferation using pulsing electric fields
PT1888162E (pt) * 2005-06-03 2015-11-20 Medrelief Inc Sistema para modular o desenvolvimento osteocondral usando terapia de campo eletromagnético por impulsos
US7840272B2 (en) * 2005-06-03 2010-11-23 Medrelief Inc. Methods for modulating osteochondral development using bioelectrical stimulation
US20070276449A1 (en) * 2005-06-15 2007-11-29 Med-Lectric Corporation Interactive transcutaneous electrical nerve stimulation device
EP1898784B1 (en) 2005-07-01 2016-05-18 Impedimed Limited Method and apparatus for performing impedance measurements
EP3287073A1 (en) 2005-07-01 2018-02-28 Impedimed Limited Monitoring system
US7912541B2 (en) * 2005-08-12 2011-03-22 Avazzia, Inc. Biofeedback electronic stimulation device using light and magnetic energy
US20070073354A1 (en) 2005-09-26 2007-03-29 Knudson Mark B Neural blocking therapy
WO2007039786A1 (en) * 2005-10-06 2007-04-12 Antonio La Gatta Generation radiant energy device
EP1948017B1 (en) 2005-10-11 2014-04-02 Impedimed Limited Hydration status monitoring
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
AU2006306529A1 (en) * 2005-10-21 2007-05-03 Purdue Research Foundation Telemetrically controllable system for treatment of nervous system injury
US10716749B2 (en) * 2005-11-03 2020-07-21 Palo Alto Investors Methods and compositions for treating a renal disease condition in a subject
US8983628B2 (en) * 2009-03-20 2015-03-17 ElectroCore, LLC Non-invasive vagal nerve stimulation to treat disorders
US9339641B2 (en) 2006-01-17 2016-05-17 Emkinetics, Inc. Method and apparatus for transdermal stimulation over the palmar and plantar surfaces
US20070167990A1 (en) * 2006-01-17 2007-07-19 Theranova, Llc Method and apparatus for low frequency induction therapy for the treatment of urinary incontinence and overactive bladder
US9610459B2 (en) 2009-07-24 2017-04-04 Emkinetics, Inc. Cooling systems and methods for conductive coils
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US8027718B2 (en) * 2006-03-07 2011-09-27 Mayo Foundation For Medical Education And Research Regional anesthetic
EP2007476A2 (en) * 2006-04-05 2008-12-31 Ro-Tec B.V.B.A. Appliance and sequence of pulses for the application of electrotherapy
US10786669B2 (en) 2006-10-02 2020-09-29 Emkinetics, Inc. Method and apparatus for transdermal stimulation over the palmar and plantar surfaces
US11224742B2 (en) 2006-10-02 2022-01-18 Emkinetics, Inc. Methods and devices for performing electrical stimulation to treat various conditions
US9005102B2 (en) 2006-10-02 2015-04-14 Emkinetics, Inc. Method and apparatus for electrical stimulation therapy
CA2665134A1 (en) 2006-10-02 2008-04-10 Emkinetics, Inc. Method and apparatus for magnetic induction therapy
WO2008046361A1 (en) * 2006-10-20 2008-04-24 Pavlov Vladimir A Electro-energy apparatus and application of electric current frequency for normalization of nerve centres
US8175713B1 (en) * 2007-01-10 2012-05-08 Jozef Cywinski Electro-stimulation device to pump blood from legs
CA2676991A1 (en) * 2007-01-31 2008-08-07 Adam Heller Methods and compositions for the treatment of pain
US8034014B2 (en) 2007-03-06 2011-10-11 Biomet Biologics, Llc Angiogenesis initation and growth
US8068918B2 (en) 2007-03-09 2011-11-29 Enteromedics Inc. Remote monitoring and control of implantable devices
US8423148B1 (en) * 2007-03-19 2013-04-16 Michael Lytinas Method for treating cartilage defects
US8226675B2 (en) 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
WO2008128281A1 (en) 2007-04-20 2008-10-30 Impedimed Limited Monitoring system and probe
US8532787B2 (en) 2007-05-31 2013-09-10 Enteromedics Inc. Implantable therapy system having multiple operating modes
WO2008151300A1 (en) * 2007-06-05 2008-12-11 Reliant Technologies, Inc. Method for reducing pain of dermatological treatments
US8159312B2 (en) * 2007-06-27 2012-04-17 Medrelief Inc. Method and system for signal coupling and direct current blocking
WO2009015005A1 (en) 2007-07-20 2009-01-29 Boston Scientific Neuromodulation Corporation Use of stimulation pulse shape to control neural recruitment order and clinical effect
US11376435B2 (en) 2007-07-20 2022-07-05 Boston Scientific Neuromodulation Corporation System and method for shaped phased current delivery
US20130304152A1 (en) * 2012-05-14 2013-11-14 Boston Scientific Neuromodulation Corporation System and method for shaped phased current delivery
US8882791B2 (en) 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
CA2733081C (en) * 2007-08-06 2015-12-15 Great Lakes Biosciences, Llc Methods and apparatus for electrical stimulation of tissues using signals that minimize the effects of tissue impedance
US20110046505A1 (en) 2007-08-09 2011-02-24 Impedimed Limited Impedance measurement process
US20090048504A1 (en) * 2007-08-17 2009-02-19 Biofisica Inc. Medical electrode systems and methods
US8738137B2 (en) 2007-08-23 2014-05-27 Bioness Inc. System for transmitting electrical current to a bodily tissue
US9757554B2 (en) 2007-08-23 2017-09-12 Bioness Inc. System for transmitting electrical current to a bodily tissue
US7813804B1 (en) * 2007-09-28 2010-10-12 Boston Scientific Neuromodulation Corporation Methods and systems for treating a nerve compression syndrome
US8352026B2 (en) 2007-10-03 2013-01-08 Ethicon, Inc. Implantable pulse generators and methods for selective nerve stimulation
AU2008308606B2 (en) 2007-10-05 2014-12-18 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
US20090204173A1 (en) 2007-11-05 2009-08-13 Zi-Ping Fang Multi-Frequency Neural Treatments and Associated Systems and Methods
US20090132010A1 (en) * 2007-11-19 2009-05-21 Kronberg James W System and method for generating complex bioelectric stimulation signals while conserving power
US9089707B2 (en) 2008-07-02 2015-07-28 The Board Of Regents, The University Of Texas System Systems, methods and devices for paired plasticity
US8457757B2 (en) * 2007-11-26 2013-06-04 Micro Transponder, Inc. Implantable transponder systems and methods
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US20090149732A1 (en) * 2007-12-08 2009-06-11 Weinstock Ronald J System for use of electrical resonant frequencies in analyzing and treating abnormality of human and animal tissues
DE102008004241B4 (de) * 2008-01-14 2012-01-12 Erbe Elektromedizin Gmbh Verfahren zur Steuerung eines elektrochirurgischen HF-Generators sowie Elektrochirurgiegerät
US8874223B2 (en) 2008-02-01 2014-10-28 Prev Biotech Inc. Mitigation of pressure ulcers using electrical stimulation
US20110112604A1 (en) * 2008-02-01 2011-05-12 The Governors Of The University Of Alberta Mitigation of pressure ulcers using electrical stimulation
GB2457470A (en) * 2008-02-13 2009-08-19 Pulse Medical Technologies Ltd Silver ion wound dressing with electromagnetic coil
US8340775B1 (en) 2008-04-14 2012-12-25 Advanced Neuromodulation Systems, Inc. System and method for defining stimulation programs including burst and tonic stimulation
US8972024B2 (en) * 2008-06-20 2015-03-03 Medrelief Inc. Systems, apparatuses, and methods for providing non-transcranial electrotherapy
US20090326612A1 (en) * 2008-06-26 2009-12-31 Michael J. Distler Electronic biofeedback stimulation device
US20090326602A1 (en) * 2008-06-27 2009-12-31 Arkady Glukhovsky Treatment of indications using electrical stimulation
US8630714B1 (en) * 2008-06-30 2014-01-14 Electrostim Medical Services, Inc. Bone growth stimulation using a constant current capacitively coupled stimulator
US20100324627A1 (en) * 2008-07-28 2010-12-23 Newlife Sciences, Llc Method and apparatus for resistivity measurement, detection and treatment in living tissue
JP5309765B2 (ja) 2008-07-29 2013-10-09 富士通株式会社 情報アクセス・システム、情報記憶装置、および読取り書込み装置
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8058771B2 (en) 2008-08-06 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
JP2012502699A (ja) * 2008-09-19 2012-02-02 ムーア、テリー・ウィリアム・バートン 電気操作を通して筋肉の緊張を低減する方法及びデバイス
US9327121B2 (en) 2011-09-08 2016-05-03 Nevro Corporation Selective high frequency spinal cord modulation for inhibiting pain, including cephalic and/or total body pain with reduced side effects, and associated systems and methods
US8255057B2 (en) 2009-01-29 2012-08-28 Nevro Corporation Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions
US8897885B2 (en) 2008-12-19 2014-11-25 Ethicon, Inc. Optimizing the stimulus current in a surface based stimulation device
US8882758B2 (en) * 2009-01-09 2014-11-11 Solta Medical, Inc. Tissue treatment apparatus and systems with pain mitigation and methods for mitigating pain during tissue treatments
US8506506B2 (en) * 2009-01-12 2013-08-13 Solta Medical, Inc. Tissue treatment apparatus with functional mechanical stimulation and methods for reducing pain during tissue treatments
US8326426B2 (en) 2009-04-03 2012-12-04 Enteromedics, Inc. Implantable device with heat storage
ES2624748T3 (es) 2009-04-22 2017-07-17 Nevro Corporation Modulación de alta frecuencia selectiva de la médula espinal para la inhibición del dolor con efectos secundarios reducidos, y sistemas y métodos asociados
EP4257178A3 (en) 2009-04-22 2023-10-25 Nevro Corporation Spinal cord modulation systems for inducing paresthetic and anesthetic effects
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8319400B2 (en) 2009-06-24 2012-11-27 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8461744B2 (en) 2009-07-15 2013-06-11 Ethicon Endo-Surgery, Inc. Rotating transducer mount for ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8788060B2 (en) 2009-07-16 2014-07-22 Solta Medical, Inc. Tissue treatment systems with high powered functional electrical stimulation and methods for reducing pain during tissue treatments
WO2011011748A1 (en) 2009-07-23 2011-01-27 Emkinetics, Inc. Method and apparatus for magnetic induction therapy
US8498710B2 (en) 2009-07-28 2013-07-30 Nevro Corporation Linked area parameter adjustment for spinal cord stimulation and associated systems and methods
US8428738B2 (en) * 2009-08-26 2013-04-23 Andrew D. Valencia Coupled neuraxial mesoscopic desynchronization electrostimulation therapy (cNMDET) method
MX2012001181A (es) 2009-09-21 2012-04-30 Medtronic Inc Ondas para terapia de estimulacion electrica.
US9302102B2 (en) * 2009-10-05 2016-04-05 Arp Manufacturing Llc Electro-therapeutic stimulator
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US9050093B2 (en) 2009-10-09 2015-06-09 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US9168054B2 (en) * 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
EP2493551A4 (en) 2009-10-26 2013-04-17 Emkinetics Inc METHOD AND APPARATUS FOR ELECTROMAGNETIC STIMULATION OF NERVE, MUSCLE, AND ORGANIC TISSUES
AU2010312305B2 (en) 2009-10-26 2014-01-16 Impedimed Limited Fluid level indicator determination
JP5755234B2 (ja) 2009-11-18 2015-07-29 インぺディメッド リミテッドImpedimed Limited 患者−電極間測定のための装置およびシステム
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8961547B2 (en) 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US8682448B2 (en) * 2010-03-11 2014-03-25 Emc2 Holdings Llc EMF probe configurations for electro-modulation of ionic channels of cells and methods of use thereof
CA2793443A1 (en) * 2010-03-18 2011-09-22 Emc2 Holdings Llc System for diagnosing and treatment of diabetic symptoms
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US8588884B2 (en) 2010-05-28 2013-11-19 Emkinetics, Inc. Microneedle electrode
US20110306921A1 (en) * 2010-06-10 2011-12-15 Protopeutics, Incorporated Therapeutic device and methods of using and making same for multimodal stimulation of living tissue
JP5838557B2 (ja) 2010-07-05 2016-01-06 ソニー株式会社 生体情報処理方法および装置、並びに記録媒体
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
WO2012051495A2 (en) 2010-10-15 2012-04-19 The Research Foundation Of State University Of New York Compositions and methods for enhancing the biological response to chemical agents and physical stimuli
JP5367800B2 (ja) * 2010-11-09 2013-12-11 株式会社 資生堂 コンテンツ再生装置、コンテンツ再生方法、及びコンテンツ再生プログラム
JP5944918B2 (ja) 2010-11-30 2016-07-05 ニューライフ サイエンシーズ エルエルシー 身体インピーダンスアナライザによる疼痛治療装置および方法
WO2012075198A2 (en) 2010-11-30 2012-06-07 Nevro Corporation Extended pain relief via high frequency spinal cord modulation, and associated systems and methods
US8275461B2 (en) * 2010-12-02 2012-09-25 Xavant Technology Pain relieving waveform system and method
AU2012204526B2 (en) 2011-01-03 2016-05-19 California Institute Of Technology High density epidural stimulation for facilitation of locomotion, posture, voluntary movement, and recovery of autonomic, sexual, vasomotor, and cognitive function after neurological injury
US20120197356A1 (en) * 2011-01-27 2012-08-02 Medtronic, Inc. Waveforms for Remote Electrical Stimulation Therapy
US9168374B2 (en) 2011-01-28 2015-10-27 Medtronic, Inc. Intra-burst pulse variation for stimulation therapy
TWI426285B (zh) * 2011-02-11 2014-02-11 Univ Nat Taiwan 擾動自我測試電路
TWI446944B (zh) 2011-05-13 2014-08-01 Univ Nat Chiao Tung 具負載適應性之生物電流刺激器
KR101093103B1 (ko) * 2011-06-09 2011-12-13 김미승 주파수 패턴을 이용한 전기 자극기
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
WO2013016664A2 (en) 2011-07-27 2013-01-31 Vision Quest Industries Incorporated Dba Vq Orthocare Electrostimulation system
US9566426B2 (en) * 2011-08-31 2017-02-14 ElectroCore, LLC Systems and methods for vagal nerve stimulation
EP2776120B1 (en) 2011-11-11 2020-09-09 Neuroenabling Technologies, Inc. Non invasive neuromodulation device for enabling recovery of motor, sensory, autonomic, sexual, vasomotor and cognitive function
AU2012351988B2 (en) 2011-12-14 2017-05-04 Impedimed Limited Devices, systems and methods for determining the relative spatial change in subsurface resistivities across frequencies in tissue
US8343027B1 (en) 2012-01-30 2013-01-01 Ivivi Health Sciences, Llc Methods and devices for providing electromagnetic treatment in the presence of a metal-containing implant
WO2013119545A1 (en) 2012-02-10 2013-08-15 Ethicon-Endo Surgery, Inc. Robotically controlled surgical instrument
US8676331B2 (en) 2012-04-02 2014-03-18 Nevro Corporation Devices for controlling spinal cord modulation for inhibiting pain, and associated systems and methods, including controllers for automated parameter selection
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US8923976B2 (en) 2012-04-26 2014-12-30 Medtronic, Inc. Movement patterns for electrical stimulation therapy
US9833614B1 (en) 2012-06-22 2017-12-05 Nevro Corp. Autonomic nervous system control via high frequency spinal cord modulation, and associated systems and methods
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9259343B2 (en) 2012-07-06 2016-02-16 Newman Technologies LLC Device for mitigating plantar fasciitis
BR112015007010B1 (pt) 2012-09-28 2022-05-31 Ethicon Endo-Surgery, Inc Atuador de extremidade
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US9474891B2 (en) 2014-05-25 2016-10-25 Thync Global, Inc. Transdermal neurostimulator adapted to reduce capacitive build-up
US9440070B2 (en) 2012-11-26 2016-09-13 Thyne Global, Inc. Wearable transdermal electrical stimulation devices and methods of using them
CN204147427U (zh) * 2012-11-26 2015-02-11 塞恩克公司 可穿戴的皮肤电刺激设备
US9295854B2 (en) 2012-11-28 2016-03-29 Point Source, Inc. Light and bioelectric therapy pad
EP2931361B1 (en) 2012-12-14 2023-07-05 Case Western Reserve University Population based encoding of neural information
WO2014105964A1 (en) * 2012-12-27 2014-07-03 The General Hospital Corporation Systems and methods for delivering pulsed electric fields to skin tissue
US9885031B2 (en) 2013-02-05 2018-02-06 Ohio State Innovation Foundation Galvanotaxis assay for quantitative assessment of the metastatic potential of cancer cells
WO2014123947A1 (en) 2013-02-05 2014-08-14 Ohio State Innovation Foundation A galvanotaxis assay for quantitative assessment of the metastatic potential of cancer cells
US9777265B2 (en) 2013-02-05 2017-10-03 Ohio State Innovation Foundation Non-contact method for accelerating wound healing using an electromagnetic coil to induce an electric field transverse to an axis of the wound
US9108055B1 (en) 2013-02-12 2015-08-18 Vincent Tellenbach System for electrical muscle and nerve stimulation in aqueous media
US9724535B1 (en) * 2013-02-19 2017-08-08 Blugreen Technologies, Inc. Low frequency magnetic pulse variable resonator for actively influencing the interaction and intercommunication at the cellular level for biological organisms and molecular level of matter
US9174053B2 (en) 2013-03-08 2015-11-03 Boston Scientific Neuromodulation Corporation Neuromodulation using modulated pulse train
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9119966B2 (en) * 2013-05-10 2015-09-01 Case Western Reserve University Systems and methods that provide an electrical waveform for neural stimulation or nerve block
PL3003473T3 (pl) 2013-05-30 2019-05-31 Neurostim Solutions LLC Miejscowa stymulacja neurologiczna
US11229789B2 (en) 2013-05-30 2022-01-25 Neurostim Oab, Inc. Neuro activator with controller
US9895539B1 (en) 2013-06-10 2018-02-20 Nevro Corp. Methods and systems for disease treatment using electrical stimulation
WO2015003015A2 (en) * 2013-07-01 2015-01-08 Intersection Medical, Inc. Compact and wearable apparatuses for home use in determining tissue wetness
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
CN103519797A (zh) * 2013-10-25 2014-01-22 江苏美伦影像***有限公司 一种基于fpga的生物医学信号发生器
US10149978B1 (en) 2013-11-07 2018-12-11 Nevro Corp. Spinal cord modulation for inhibiting pain via short pulse width waveforms, and associated systems and methods
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
CA2933555A1 (en) * 2013-12-16 2015-06-25 Case Western Reserve University Patterned stimulation intensity for neural stimulation
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
EP3096834A1 (en) * 2014-01-21 2016-11-30 Cerephex Corporation Methods and apparatus for electrical stimulation
WO2015131093A1 (en) 2014-02-27 2015-09-03 Thync, Inc. Methods and apparatuses for user control of neurostimulation
JP6424402B2 (ja) * 2014-02-28 2018-11-21 バイオアイ株式会社 生体電気刺激装置
CA2940838C (en) * 2014-02-28 2021-02-09 The Governing Council Of The Universtiy Of Toronto Selective, directable electrotaxis of precursor cells with biphasic electrical stimulation
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
EP3131628A4 (en) 2014-04-16 2017-11-22 Ivivi Health Sciences, LLC A two-part pulsed electromagnetic field applicator for application of therapeutic energy
CN103933662A (zh) * 2014-05-05 2014-07-23 重庆新大地电子有限公司 生物负电子靶向治疗带
JP5636129B1 (ja) 2014-05-16 2014-12-03 株式会社テクノリンク 呼吸異常改善装置
JP6701096B2 (ja) 2014-05-17 2020-05-27 ハイイン エクイティ インベストメント ファンド エル.ピー. 経皮神経刺激を使用するアンサンブル波形の印加のための方法および装置
US9333334B2 (en) 2014-05-25 2016-05-10 Thync, Inc. Methods for attaching and wearing a neurostimulator
CA2953578C (en) 2014-07-03 2019-01-08 Boston Scientific Neuromodulation Corporation Neurostimulation system with flexible patterning and waveforms
US9968301B2 (en) 2014-07-09 2018-05-15 The Board Of Regents, The University Of Texas System Body-driven pseudorandom signal injection for biomedical acquisition channel calibration
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10086198B1 (en) 2014-10-10 2018-10-02 Apogee Medical, Llc Electrostimulation principle, method and device for impedance change theoretically enhancing calcium-calmodulin binding
US9597507B2 (en) 2014-10-31 2017-03-21 Medtronic, Inc. Paired stimulation pulses based on sensed compound action potential
US9956404B2 (en) 2014-11-19 2018-05-01 Medtronic, Inc. Electrical stimulation to inhibit bladder and/or bowel contraction
US20160144171A1 (en) * 2014-11-25 2016-05-26 TrioWave Technologies Systems and methods for generating biphasic waveforms
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US11077301B2 (en) 2015-02-21 2021-08-03 NeurostimOAB, Inc. Topical nerve stimulator and sensor for bladder control
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US11103696B2 (en) 2015-05-05 2021-08-31 Cosmo Haralambidis Device for electrical stimulation of peridontal complex and surrounding tissue
EP3291880B1 (en) 2015-05-05 2021-07-07 Haralambidis, Cosmo Device for electrical stimulation of peridontal complex and surrounding tissue
KR101744673B1 (ko) * 2015-05-08 2017-06-21 계명대학교 산학협력단 전기 자극장치를 부착한 기브스 및 이를 이용한 전기 자극방법
AU2016268007B2 (en) 2015-05-28 2019-04-18 Boston Scientific Neuromodulation Corporation Neuromodulation using stochastically-modulated stimulation parameters
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
EA201890244A1 (ru) * 2015-07-08 2018-07-31 Вэйв Форс Электроникс Инк. Устройство, система и способ излучения биорезонансной частоты
US20170021173A1 (en) * 2015-07-21 2017-01-26 Andreas Peneder System and method for medical devices and pain reduction
US9630012B2 (en) * 2015-08-06 2017-04-25 Meagan Medical, Inc. Spinal cord stimulation with interferential current
US9541537B1 (en) 2015-09-24 2017-01-10 Frito-Lay North America, Inc. Quantitative texture measurement apparatus and method
US11243190B2 (en) 2015-09-24 2022-02-08 Frito-Lay North America, Inc. Quantitative liquid texture measurement method
US10070661B2 (en) 2015-09-24 2018-09-11 Frito-Lay North America, Inc. Feedback control of food texture system and method
US10107785B2 (en) 2015-09-24 2018-10-23 Frito-Lay North America, Inc. Quantitative liquid texture measurement apparatus and method
US10969316B2 (en) 2015-09-24 2021-04-06 Frito-Lay North America, Inc. Quantitative in-situ texture measurement apparatus and method
US10598648B2 (en) 2015-09-24 2020-03-24 Frito-Lay North America, Inc. Quantitative texture measurement apparatus and method
US11058475B2 (en) 2015-09-30 2021-07-13 Cilag Gmbh International Method and apparatus for selecting operations of a surgical instrument based on user intention
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
ES2571460B1 (es) * 2015-10-23 2017-01-05 Indiba, S.A. Procedimiento cosmético para la reducción o prevención de la acumulación de tejido adiposo
US11318310B1 (en) 2015-10-26 2022-05-03 Nevro Corp. Neuromodulation for altering autonomic functions, and associated systems and methods
US9956405B2 (en) 2015-12-18 2018-05-01 Thyne Global, Inc. Transdermal electrical stimulation at the neck to induce neuromodulation
WO2017106503A1 (en) 2015-12-18 2017-06-22 Medtronic, Inc. High duty cycle electrical stimulation therapy
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10828058B2 (en) 2016-01-15 2020-11-10 Ethicon Llc Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
WO2017132174A1 (en) 2016-01-25 2017-08-03 Nevro Corp. Treatment of congestive heart failure with electrical stimulation, and associated systems and methods
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10799701B2 (en) 2016-03-30 2020-10-13 Nevro Corp. Systems and methods for identifying and treating patients with high-frequency electrical signals
US10420939B2 (en) * 2016-03-31 2019-09-24 The Cleveland Clinic Foundation Nerve stimulation to promote neuroregeneration
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US11446504B1 (en) 2016-05-27 2022-09-20 Nevro Corp. High frequency electromagnetic stimulation for modulating cells, including spontaneously active and quiescent cells, and associated systems and methods
JP5976977B1 (ja) * 2016-06-17 2016-08-24 株式会社 Mtg 筋肉電気刺激装置
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10525268B2 (en) 2016-08-23 2020-01-07 Medtronic, Inc. Delivery of independent interleaved programs to produce higher-frequency electrical stimulation therapy
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10736649B2 (en) 2016-08-25 2020-08-11 Ethicon Llc Electrical and thermal connections for ultrasonic transducer
US10569088B2 (en) 2016-09-16 2020-02-25 Medtronic, Inc. Dorsal spinal column characterization with evoked potentials
EP3522975B1 (en) * 2016-10-04 2021-08-04 Medtronic, Inc. Cathode-minimized stimulation programming
EP4230253A1 (en) 2016-10-28 2023-08-23 Medtronic, Inc. High frequency stimulation based on low frequency titration gauge
US10806942B2 (en) 2016-11-10 2020-10-20 Qoravita LLC System and method for applying a low frequency magnetic field to biological tissues
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US11045650B2 (en) 2016-12-06 2021-06-29 Medtronic, Inc. High frequency neurostimulation for pelvic symptom control
JP2020503111A (ja) * 2016-12-27 2020-01-30 アヴェント インコーポレイテッド 糖尿病性末梢神経障害を処置するための物品及び方法
WO2018132678A1 (en) 2017-01-13 2018-07-19 Orthofix Inc. Systems and methods for musculoskeletal tissue treatment
US10792497B2 (en) * 2017-03-14 2020-10-06 Akemi NISHIMURA Frequency therapy device
WO2018187734A1 (en) 2017-04-07 2018-10-11 Medtronic, Inc. Complex variation of electrical stimulation therapy parameters
EP3974021B1 (en) 2017-06-30 2023-06-14 ONWARD Medical N.V. A system for neuromodulation
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
CN109420252B (zh) * 2017-08-22 2023-10-31 精能医学股份有限公司 电刺激装置、产生电信号的方法以及计算机可读存储介质
WO2019060435A1 (en) * 2017-09-21 2019-03-28 Frito-Lay North America, Inc. APPARATUS AND METHOD FOR QUANTITATIVE TEXTURE MEASUREMENT
WO2019074949A1 (en) 2017-10-10 2019-04-18 Medtronic, Inc. TREATMENT MANAGEMENT BY ELECTRICAL STIMULATION
JP2019072329A (ja) * 2017-10-18 2019-05-16 オージー技研株式会社 電気刺激装置
KR102562469B1 (ko) 2017-11-07 2023-08-01 뉴로스팀 오에이비, 인크. 적응형 회로를 구비한 비침습성 신경 활성화기
US11052249B2 (en) * 2017-11-21 2021-07-06 Nikunj Arunkumar Bhagat Neuromuscular stimulation using multistage current driver circuit
EP3720338A1 (en) 2017-12-05 2020-10-14 Ecole Polytechnique Federale de Lausanne (EPFL) A system for planning and/or providing neuromodulation
JP6488458B1 (ja) * 2017-12-25 2019-03-27 株式会社テクノリンク 生体刺激装置
RU2675174C1 (ru) * 2017-12-28 2018-12-17 Александра Игоревна Булава Электродная платформа для электроболевой стимуляции животных
ES2968385T3 (es) * 2018-01-18 2024-05-09 Pulsar Medtech Ltd Parche electrónico externo para acelerar la curación o regeneración ósea después de un traumatismo
CN108744269B (zh) * 2018-04-08 2022-04-05 南京艾威奇医疗器械有限公司 射频信号输出***和细胞激活设备
EP4085971B1 (en) 2018-06-21 2023-12-13 Medtronic, Inc. Ecap based control of electrical stimulation therapy
AU2019288752A1 (en) 2018-06-21 2021-02-18 Medtronic, Inc. ECAP based control of electrical stimulation therapy
JP2021536280A (ja) * 2018-09-03 2021-12-27 グレタップ アーゲーGretap AG 患者のニューロンを刺激してニューロンの病的同期活動を抑制するための治療装置及び方法
WO2020061532A1 (en) * 2018-09-20 2020-03-26 Cal-X Stars Business Accelerator, Inc. System and method for treating inflammation
DE18205821T1 (de) 2018-11-13 2020-12-24 Gtx Medical B.V. Steuerungssystem zur bewegungsrekonstruktion und/oder wiederherstellung für einen patienten
EP3653258A1 (en) 2018-11-13 2020-05-20 GTX medical B.V. A control system for closed-loop neuromodulation
DE18205817T1 (de) 2018-11-13 2020-12-24 Gtx Medical B.V. Sensor in bekleidung von gliedmassen oder schuhwerk
AU2020207940A1 (en) 2019-01-17 2021-08-12 Nevro Corp. Sensory threshold and/or adaptation for neurological therapy screening and/or parameter selection, and associated systems and methods
US11590352B2 (en) 2019-01-29 2023-02-28 Nevro Corp. Ramped therapeutic signals for modulating inhibitory interneurons, and associated systems and methods
EP3695878B1 (en) 2019-02-12 2023-04-19 ONWARD Medical N.V. A system for neuromodulation
WO2020190691A1 (en) * 2019-03-15 2020-09-24 Boston Scientific Scimed, Inc. Time multiplexed waveform for selective cell ablation
CN110175427B (zh) * 2019-06-03 2023-06-09 江西理工大学 一种在耦合振子***中实现非对称振荡死亡的方法
KR20220019712A (ko) 2019-06-12 2022-02-17 트루릴리프 엘엘씨 펄스화된 전류를 생체 조직에 전달하기 위한 시스템 및 방법
US11458311B2 (en) 2019-06-26 2022-10-04 Neurostim Technologies Llc Non-invasive nerve activator patch with adaptive circuit
CN114616026A (zh) * 2019-09-11 2022-06-10 艾斯奎尔先进医疗设备有限公司 组织的电刺激
US11547855B2 (en) 2019-10-25 2023-01-10 Medtronic, Inc. ECAP sensing for high frequency neurostimulation
US11931582B2 (en) 2019-10-25 2024-03-19 Medtronic, Inc. Managing transient overstimulation based on ECAPs
EP3827871A1 (en) 2019-11-27 2021-06-02 ONWARD Medical B.V. Neuromodulation system
US20230012949A1 (en) * 2019-12-10 2023-01-19 Activcell Group Ag Therapeutic device for cell therapy or cell stimulation
CN114728161A (zh) 2019-12-16 2022-07-08 神经科学技术有限责任公司 具有升压电荷输送的非侵入性神经激活器
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US12023086B2 (en) 2019-12-30 2024-07-02 Cilag Gmbh International Electrosurgical instrument for delivering blended energy modalities to tissue
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US20210196363A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with electrodes operable in bipolar and monopolar modes
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
RU2727587C1 (ru) * 2020-02-05 2020-07-22 Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр реабилитации и курортологии» Министерства здравоохранения Российской Федерации (ФГБУ «НМИЦ РК» Минздрава России) Способ стимуляции мышц тазового дна методом электробальнеотерапии
KR20210123615A (ko) 2020-04-03 2021-10-14 박진호 혈당측정 기능이 부설된 체외 전기자극을 이용한 통증완화시스템
EP4135832A1 (en) * 2020-05-07 2023-02-22 Vanquish Innovation ApS Device for electrical wound care
US11857793B2 (en) 2020-06-10 2024-01-02 Medtronic, Inc. Managing storage of sensed information
US11707626B2 (en) 2020-09-02 2023-07-25 Medtronic, Inc. Analyzing ECAP signals
US11896828B2 (en) 2020-10-30 2024-02-13 Medtronic, Inc. Implantable lead location using ECAP
JP7453130B2 (ja) * 2020-11-26 2024-03-19 株式会社モリタ製作所 歯科用治療装置
US11426574B1 (en) 2021-02-05 2022-08-30 Theragen, Inc. Systems, methods and devices for electrical stimulation therapy
US11911605B2 (en) 2021-03-05 2024-02-27 Truerelief Llc Method and apparatus for injury treatment
WO2023150215A1 (en) * 2022-02-03 2023-08-10 CRC EP, Inc. Systems and methods for pulsed-field ablation with charge-balanced waveforms
FR3132226A1 (fr) * 2022-02-03 2023-08-04 Winback Group Dispositif d'électrothérapie associant l'électrostimulation et la técarthérapie

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1129142A (en) 1965-05-26 1968-10-02 Medical And Biolog Instrumenta A circuit arrangement for an electric muscle stimulator
US3294092A (en) 1965-09-13 1966-12-27 Fred S Landauer Therapeutic apparatus
US3589370A (en) 1967-06-09 1971-06-29 Medical Biolog Instrumentation Electronic muscle stimulator
US4026304A (en) 1972-04-12 1977-05-31 Hydro Med Sciences Inc. Bone generating method and device
GB1459397A (en) 1973-03-22 1976-12-22 Biopulse Co Ltd Apparatus for treating organisms by applying an electrical signal thereto
JPS54119792A (en) 1978-03-03 1979-09-17 Iriyou Kougaku Kenkiyuushiyo K Electric stimulation device for removing pain
CA1172366A (en) * 1978-04-04 1984-08-07 Harold W. Gosling Methods and apparatus for encoding and constructing signals
US4255790A (en) 1978-09-25 1981-03-10 Hondeghem Luc M Programmable pulse generating system
US4431000A (en) 1978-11-29 1984-02-14 Gatron Corporation Transcutaneous nerve stimulator with pseusorandom pulse generator
US4340063A (en) 1980-01-02 1982-07-20 Empi, Inc. Stimulation device
US4580570A (en) 1981-01-08 1986-04-08 Chattanooga Corporation Electrical therapeutic apparatus
US4612934A (en) 1981-06-30 1986-09-23 Borkan William N Non-invasive multiprogrammable tissue stimulator
US4580370A (en) * 1982-11-30 1986-04-08 Energy Adaptive Grinding, Inc. Centerless and center-type grinding systems
CA1215128A (en) 1982-12-08 1986-12-09 Pedro Molina-Negro Electric nerve stimulator device
US4784142A (en) 1984-01-09 1988-11-15 Pain Suppression Labs, Inc. Methodology for electronic dental analgesia
US4607639A (en) 1984-05-18 1986-08-26 Regents Of The University Of California Method and system for controlling bladder evacuation
AU569636B2 (en) 1984-09-07 1988-02-11 University Of Melbourne, The Bipolar paired pulse supplied prosthetic device
US4600010A (en) 1984-10-04 1986-07-15 Biolectron, Inc. Electric stimulator and test instrument therefor
US4592359A (en) 1985-04-02 1986-06-03 The Board Of Trustees Of The Leland Stanford Junior University Multi-channel implantable neural stimulator
CA1278045C (en) 1985-05-15 1990-12-18 Wu Dumin Apparatus and method for generating vital information signals
US4754759A (en) 1985-07-03 1988-07-05 Andromeda Research, Inc. Neural conduction accelerator and method of application
US5031614A (en) * 1986-09-12 1991-07-16 Eckhard Alt Pacemaker rate control using amplitude and frequency of activity signal
US5117826A (en) 1987-02-02 1992-06-02 Staodyn, Inc. Combined nerve fiber and body tissue stimulation apparatus and method
JPH064096B2 (ja) * 1987-03-25 1994-01-19 株式会社アドバンス 皮膚貼着型低周波治療器
US4846181A (en) 1987-10-02 1989-07-11 Staodynamics, Inc. Soft tissue wound healing therapy utilizing pulsed electrical stimulation
US4895154A (en) 1988-02-19 1990-01-23 Staodynamics, Inc. Electronic stimulating device for enhanced healing of soft tissue wounds
US4938223A (en) 1988-03-28 1990-07-03 T. H. Charters, Inc. Transcutaneous nerve block device
US4924880A (en) * 1988-11-16 1990-05-15 Sion Technology, Inc. Dental anesthesia apparatus
RU2091089C1 (ru) * 1989-03-06 1997-09-27 Товарищество с ограниченной ответственностью "ОКБ РИТМ" Устройство для электростимуляции
US5063929A (en) 1989-08-25 1991-11-12 Staodyn, Inc. Electronic stimulating device having timed treatment of varying intensity and method therefor
US5097833A (en) * 1989-09-19 1992-03-24 Campos James M Transcutaneous electrical nerve and/or muscle stimulator
US5067495A (en) 1989-09-27 1991-11-26 Brehm Richard L Electro wave therapy
US5851223A (en) 1991-05-21 1998-12-22 Medi Consultants, Inc. Combination non-intrusive analgesic neuroaugmentive system and method triple-modulated gigatens with optional bipolar spike
US5109847A (en) 1991-05-21 1992-05-05 E.P. Inc. Non-intrusive analgesic neuroaugmentive apparatus and management system
US5217009A (en) 1991-07-10 1993-06-08 Kronberg James W Compact biomedical pulsed signal generator for bone tissue stimulation
US5350414A (en) 1991-12-10 1994-09-27 Electro Science Technologies, Inc. Local application microprocessor based nerve and muscle stimulator
US5565005A (en) 1992-02-20 1996-10-15 Amei Technologies Inc. Implantable growth tissue stimulator and method operation
US5487759A (en) 1993-06-14 1996-01-30 Bastyr; Charles A. Nerve stimulating device and associated support device
US5413596A (en) 1993-11-29 1995-05-09 The United States Of America As Represented By The United States Department Of Energy Digital electronic bone growth stimulator
WO1995033514A1 (en) 1994-06-09 1995-12-14 Magnetic Resonance Therapeutics, Inc. Electro-therapeutic method
US5601608A (en) 1995-02-02 1997-02-11 Pacesetter, Inc. Methods and apparatus for applying charge-balanced antiarrhythmia shocks
US6865423B2 (en) * 1996-06-13 2005-03-08 The Victoria University Of Manchester Stimulation of muscles
DE69729452T2 (de) 1996-06-13 2005-06-30 The Victoria University Of Manchester Muskelreizung
US6321119B1 (en) 1997-09-24 2001-11-20 Healthonics, Inc. Pulsed signal generator for bioelectric stimulation and healing acceleration
US6011994A (en) 1997-09-24 2000-01-04 Equitech Intl' Corporation Multipurpose biomedical pulsed signal generator
US5974342A (en) 1997-10-16 1999-10-26 Electrologic Of America, Inc. Electrical stimulation therapy method and apparatus
JP2001293097A (ja) * 2000-04-17 2001-10-23 Seiji Nochida 低周波治療装置
US7024247B2 (en) * 2001-10-15 2006-04-04 Northstar Neuroscience, Inc. Systems and methods for reducing the likelihood of inducing collateral neural activity during neural stimulation threshold test procedures
US6505079B1 (en) * 2000-09-13 2003-01-07 Foster Bio Technology Corp. Electrical stimulation of tissue for therapeutic and diagnostic purposes
US6701190B2 (en) * 2000-10-10 2004-03-02 Meagan Medical, Inc. System and method for varying characteristics of electrical therapy
US6535767B1 (en) 2001-08-21 2003-03-18 James W. Kronberg Apparatus and method for bioelectric stimulation, healing acceleration and pain relief
US7483748B2 (en) * 2002-04-26 2009-01-27 Medtronic, Inc. Programmable waveform pulses for an implantable medical device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101827628A (zh) * 2007-09-18 2010-09-08 G·马里尼奥 用于快速疼痛抑制的装置和方法
CN101827628B (zh) * 2007-09-18 2015-07-01 G·马里尼奥 用于快速疼痛抑制的装置和方法
TWI500379B (zh) * 2008-08-06 2015-09-21 Utoc B V I O 使用prf培養細胞或組織之方法及prf於培養細胞或組織之用途
CN102497806A (zh) * 2009-08-04 2012-06-13 生命波有限公司 诊断和筛选潜在疾病的电子标记物的方法
US10537703B2 (en) 2012-11-26 2020-01-21 Thync Global, Inc. Systems and methods for transdermal electrical stimulation to improve sleep
US10814131B2 (en) 2012-11-26 2020-10-27 Thync Global, Inc. Apparatuses and methods for neuromodulation
CN105934261B (zh) * 2013-06-29 2019-03-08 赛威医疗公司 用于改变或诱导认知状态的经皮电刺激设备和方法
US10293161B2 (en) 2013-06-29 2019-05-21 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
CN105611964A (zh) * 2013-09-17 2016-05-25 高潮基金会 静脉电刺激装置和方法
CN105611964B (zh) * 2013-09-17 2017-12-01 诺维图姆医疗科技有限公司 静脉电刺激装置和方法
CN107715258A (zh) * 2013-09-17 2018-02-23 诺维图姆医疗科技有限公司 静脉电刺激装置和方法
US10406357B2 (en) 2013-09-17 2019-09-10 Novintum Medical Technology Gmbh Venous electrical stimulation apparatus and methods and uses thereof
US10092752B2 (en) 2013-09-17 2018-10-09 Novintum Medical Technology Gmbh Venous electrical stimulation apparatus and methods and uses thereof
US10426945B2 (en) 2015-01-04 2019-10-01 Thync Global, Inc. Methods and apparatuses for transdermal stimulation of the outer ear
US11534608B2 (en) 2015-01-04 2022-12-27 Ist, Llc Methods and apparatuses for transdermal stimulation of the outer ear
US10258788B2 (en) 2015-01-05 2019-04-16 Thync Global, Inc. Electrodes having surface exclusions
US10967179B2 (en) 2015-02-02 2021-04-06 Novintum Medical Technology Gmbh Venous electrical stimulation apparatus and methods and uses thereof
US10485972B2 (en) 2015-02-27 2019-11-26 Thync Global, Inc. Apparatuses and methods for neuromodulation
CN105310680A (zh) * 2015-05-14 2016-02-10 南京神桥医疗器械有限公司 一种植入式神经信号阻断装置
CN105310680B (zh) * 2015-05-14 2018-03-27 南京神桥医疗器械有限公司 一种植入式神经信号阻断装置
US11033731B2 (en) 2015-05-29 2021-06-15 Thync Global, Inc. Methods and apparatuses for transdermal electrical stimulation
US11235148B2 (en) 2015-12-18 2022-02-01 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
CN109152919A (zh) * 2016-03-21 2019-01-04 蒂宾根大学Nmi自然科学和医学研究所 活性视网膜植入物
CN109076298A (zh) * 2016-04-27 2018-12-21 科利耳有限公司 使用有限组件的可植入振动装置
US10646708B2 (en) 2016-05-20 2020-05-12 Thync Global, Inc. Transdermal electrical stimulation at the neck
US11801383B2 (en) 2016-12-01 2023-10-31 Hinge Health, Inc. Neuromodulation device and method for use
US10792495B2 (en) 2016-12-01 2020-10-06 Thimble Bioelectronics, Inc. Neuromodulation device and method for use
CN107800406A (zh) * 2017-11-22 2018-03-13 北京品驰医疗设备有限公司 高频脉冲刺激信号生成方法、脉冲刺激方法及设备
CN108031002A (zh) * 2018-02-08 2018-05-15 中国医科大学附属盛京医院 用于促进自体移植脂肪瓣再生的电刺激设备
CN108355245A (zh) * 2018-03-08 2018-08-03 广州圆医生物科技有限公司 一种用于神经和肌肉刺激仪的电极
US11278724B2 (en) 2018-04-24 2022-03-22 Thync Global, Inc. Streamlined and pre-set neuromodulators
US11833352B2 (en) 2018-04-24 2023-12-05 Thync Global, Inc. Streamlined and pre-set neuromodulators

Also Published As

Publication number Publication date
WO2005002663A2 (en) 2005-01-13
EP1648553A4 (en) 2017-05-31
CA2876835A1 (en) 2005-01-13
CR8170A (es) 2006-06-01
EP1648553A2 (en) 2006-04-26
CA2530396C (en) 2015-03-24
HK1096882A1 (en) 2007-06-15
JP4980713B2 (ja) 2012-07-18
AU2004253501A1 (en) 2005-01-13
TW200513282A (en) 2005-04-16
US20040267333A1 (en) 2004-12-30
WO2005002663A3 (en) 2005-08-18
AU2004253501B2 (en) 2011-10-20
IL172726A0 (en) 2006-04-10
CN1842356B (zh) 2011-05-04
BRPI0411817A (pt) 2006-05-23
CA2876835C (en) 2020-06-30
CA2530396A1 (en) 2005-01-13
KR20060033737A (ko) 2006-04-19
JP2007524459A (ja) 2007-08-30
ZA200600654B (en) 2007-01-31
TWI306407B (en) 2009-02-21
KR101134242B1 (ko) 2012-04-09
MXPA05014141A (es) 2006-03-09
IL172726A (en) 2010-11-30
US7117034B2 (en) 2006-10-03
AR044915A1 (es) 2005-10-12
EA200600093A1 (ru) 2006-08-25

Similar Documents

Publication Publication Date Title
CN1842356A (zh) 生物电刺激、加速愈合、减轻疼痛或病原体失活的装置和方法
US11826579B2 (en) System and method for applying a low frequency magnetic field to biological tissues
CN1918285B (zh) 通过施加由特异性和选择性的电以及电磁信号产生的场上调骨细胞中骨形态发生蛋白(bmp)基因表达的***以及方法
CA2501554C (en) Regulation of type ii collagen gene expression using specific and selective electrical and electromagnetic signals
Victoria et al. Bone stimulation for fracture healing: What's all the fuss?
CN100446743C (zh) 利用特异性和选择性的电以及电磁信号调节聚集蛋白聚糖的基因表达
CN1646187A (zh) 利用双相感应脉冲序列进行电诱发/刺激深层肌肉收缩的方法和装置
CA2529374C (en) Regulation of matrix metalloproteinase gene expression using specific and selective electrical and electromagnetic signals
CN1893999A (zh) 治疗人髋部的骨关节炎与软骨疾病、缺损、与损伤的方法与装置
JP5596563B2 (ja) 特異的且つ選択的な電場および電磁場の印加を使用した生体細胞における線維芽成長因子−2(fgf−2)遺伝子発現の制御
CN104350150A (zh) 使用特异性和选择性电场与电磁场调节干细胞基因生产
Shi Some Electrical Stimulation Methods for Articular Cartilage Regeneration
NZ544655A (en) Apparatus and method for bioelectrics stimulation, healing acceleration, pain relief, or pathogen devitalization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1096882

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1096882

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110504

Termination date: 20200624