CN1662178A - 血液中水分含量检测装置及血液透析时间判定装置 - Google Patents

血液中水分含量检测装置及血液透析时间判定装置 Download PDF

Info

Publication number
CN1662178A
CN1662178A CN038146339A CN03814633A CN1662178A CN 1662178 A CN1662178 A CN 1662178A CN 038146339 A CN038146339 A CN 038146339A CN 03814633 A CN03814633 A CN 03814633A CN 1662178 A CN1662178 A CN 1662178A
Authority
CN
China
Prior art keywords
blood
index
pulse wave
checkout gear
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN038146339A
Other languages
English (en)
Inventor
天野和彦
田中宏晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of CN1662178A publication Critical patent/CN1662178A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0537Measuring body composition by impedance, e.g. tissue hydration or fat content
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7239Details of waveform analysis using differentiation including higher order derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4029Detecting, measuring or recording for evaluating the nervous system for evaluating the peripheral nervous systems
    • A61B5/4035Evaluating the autonomic nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pulmonology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • External Artificial Organs (AREA)

Abstract

一种血液中水分含量检测装置(10),包括:脉搏波检测部(60),其无创伤地检测末梢的脉搏波;指标选取部(80),其从测出的脉搏波中选取根据血液中水分含量变化的指标。该装置还可以设置低频段掩蔽部(70),其从脉搏波检测部(60)检测到的脉搏波中除去形成串扰的低频段频率成分。另外,还可以设置一次微分部(110)、二次微分部(120)。该指标选取部(80)可以选取二次微分波形的波峰比率(b/a)或(d/a)等作为指标。

Description

血液中水分含量检测装置及血液透析时间判定装置
技术领域
本发明涉及一种检测实验对象的血液中水分含量的装置、及使用该装置的血液透析时间判定装置。
背景技术
慢性维持性透析患者因为不能除去废物和水分,所以需要注意包括水分和食物的摄取的日常生活的生活方式。对慢性维持性透析患者的血液透析通常是每周进行3次、每次4~5小时,一般除去3~4升水。
在此,患者因为不能知道血液透析后的体内状况,作为日常的生活方式只好遵守规定的注意事项,因此日常生活中的制约过多。
还有,现实情况是患者必须在事先决定的时间去医院接受定期的血液透析。但是,根据患者本人的免疫力的变化等,应该接受血液透析的时间也应该是变化的。
发明内容
因此,本发明的目的在于提供一种血液中水分含量检测装置,其能通过检测慢性维持性透析患者的血液中水分含量,识别血液透析后体内的状态变化。
本发明的另一目的在于提供一种血液透析时间判定装置,其能根据测出的血液中水分含量,判定应该接受血液透析的时间、或者血液透析开始后应该终止透析的时间。
根据本发明的一个实施例的血液中水分含量检测装置包括:脉搏波检测部,其无创伤地检测末梢的脉搏波;指标选取部,其从测出的脉搏波中选取根据血液中水分含量而变化的指标。
在此,脉搏波检测部以无创伤的方式检测末梢的脉搏波,其以光学方式检测实验对象的脉搏波、或者由脉压来检测脉搏波等。因为指标选取部测出的指标根据血液中水分量而变化(相关),由此能根据其指标识别血液中水分含量。
作为根据血液中水分含量而变化的指标,可以为脉搏波中的切迹的峰值。脉搏波中的切迹的峰值与收缩期前期的血管的扩张性(或者伸展性)有关。对于慢性维持性透析患者来说,血管扩张主要是因为血液中水分含量增加,所以,作为根据血液中水分含量变化的指标优选脉搏波中的切迹的峰值。
在此,因为二次微分波形的峰值的绝对值不稳定,所以,作为指标也可以使用稳定的相对值。作为指标的相对值,可以为脉搏波中的一个周期的最初的上升点的峰值与切迹的峰值的比率(第一比率)。
作为根据血液中水分含量而变化的其它指标,可以为脉搏波中的压力波的峰值。因为脉搏波中的压力波的峰值也与脉搏波中的切迹的峰值相同,与血管的扩张性有关(但是,是收缩期前期)。作为与其对应的相对指标,可以为脉搏波中的一个周期的最初的上升点的峰值与压力波的峰值的比率(第一比率)。
指标抽出部还可以抽出参考指标,该参考指标比该第一比率与血液中水分含量的相关性更低。此时,指标选取部输出指标(第一比率)和参考指标的比率。作为参考指标,可以为脉搏波中的一个周期的最初的上升点的峰值与切迹的峰值的比率(第二比率)。此时,指标选取部将(第一比率)/(第二比率)作为指标输出。
在本发明的一实施例中,还可以包括低频段掩蔽部,其用于从该脉搏波检测部测出的脉搏波中除去伴随******活动的变动(血管运动除外)引起的低频段频率成分。
该低频段频率成分不是血液基于心脏的收缩从大动脉流向末梢血管而生成的纯粹的脉搏波的频率成分,而是比纯粹的脉搏波中的频率成分更低的低频段的频率成分。该低频段频率成分是重叠在脉搏波中的串扰。通过除去该串扰,能以更高的精确度检测脉搏波。
低频段掩蔽部还能除去实验对象静止时的体动引起的低频段频率成分。实验对象即便是静止状态,为维持其静止状态等也存在身体的摇动(体动)。该体动不是有意识地快速运动手脚的动,而是比较平缓的动。因此,由于该体动,低频段频率成分重叠于脉搏波,这个也成为串扰,需要除去。
低频段掩蔽部可以将低频段掩蔽频率设定为0.4~0.5Hz范围内的值。将低频段掩蔽频率设定为0.4~0.5Hz范围内的任一个值,从而除去低频段频率成分,就能够不破坏脉搏波波形固有的特征,并有效地除去串扰。因为伴随******机能的活动的变动(血管运动除外)引起的低频段频率成分和实验对象静止时的体动引起的低频段频率成分,未达到0.4Hz~0.5Hz的低频段掩蔽频率,并且,其未达到低频段掩蔽频率的低频段频率成分不具备脉搏波固有的特征。
以上的低频段掩蔽部能除去伴随交感神经***机能的活动的变动如每10秒生成一次左右的筋泵机能的变动等引起的低频段频率成分(例如,0.1Hz左右)。
低频段掩蔽部还能除去伴随副交感神经***机能的活动的变动如呼吸运动引起的低频段频率成分(例如,15Hz左右)。
低频段掩蔽部也可以由将高频段掩蔽频率设定为16~30Hz范围内的值的带通滤波器构成。由此,也可以除去超过高频段掩蔽频率的多余的高频段成分。高频段掩蔽频率即便留有剩余,设置为30Hz就足够,也可以将高频段掩蔽频率设置为20Hz或者16Hz。
根据本发明的一个实施例的血液中水分含量检测装置,还包括:一次微分部,其将除去所述低频段频率成分的脉搏波进行一次微分;二次微分部,其将经过一次微分的脉搏波进行二次微分。因为将除去低频段频率成分的脉搏波进行二次微分,脉搏波固有的特征能在得到的脉搏波波形中更加明显化。
在此,可以由模拟微分电路形成低频段掩蔽部及一次微分部。该模拟微分电路可以设成将来自脉搏波检测部的模拟信号的脉搏波进行微分,并且具有旁路特性的结构。或者,该模拟微分电路可以设成将来自脉搏波检测部的模拟信号的脉搏波微分,并且具有带通特性的结构。
另外,还能包括将所述脉搏波检测部的输出量子化的量子化部。此时,低频段掩蔽部可以包括:傅立叶变换部,其将量子化数据进行傅立叶变换;数字滤波器,其除去频率未达到低频段掩蔽频率的频谱;逆傅立叶变换部,其将所述的数字滤波器的输出进行逆傅立叶变换。并且,此时,可以由量子化微分部形成一次微分部及二次微分部的至少一个,该量子化微分部用于求出时间轴上的各两个离散值的斜率。
可以由自动增益控制的模拟-数字变换器形成上述量子化部,使脉搏波增幅,以便在动态范围内实现大于等于规定振幅水平。
上述二次微分部输出的二次微分波形,包括在一个周期内沿着时间轴顺次具有峰值a~e的五个变极点。因此,指标选取部能基于五个峰值中的至少一个选取指标。
在此,峰值a~e的波峰没有单位,但是,由放大器输出的这些峰值a~e被自动增益控制输出,以在动态范围内能得到最大振幅。
峰值a对应于脉搏波的一个周期的最初的上升点,峰值b对应于压力波P1的前期波峰之前的点,峰值c对应于退潮波P2的上升点,峰值d对应于从退潮波P2的波峰(收缩期后期)到切迹的斜率(倾斜度),峰值e对应于从切迹到降中波的斜率(倾斜度)。
更详细地说,峰值a是用波峰表示在收缩期上升时的伴随心脏收缩的收缩期前期压的加速度增加的变化的值。峰值b是用波峰表示伴随收缩期的血液射出速度的增大产生的收缩期前期的最大加速度减少的变化的值。该波峰值b意味着大动脉开放的情况,表示收缩期前期的血管伸展性(扩张性)。波峰值c是用波峰表示从收缩期前期转变到收缩期后期的加速度的增加的变化的值。峰值d是表示对应于收缩期前期的驱动压力波的来自末梢的反射压力波的重叠引起的收缩期后期的加速度的变化的值。该峰值d表示收缩期后期的血管伸展性(扩张性)。峰值e是用波峰表示串扰切迹的加速度的变化的值,对于收缩期后期的反射波的重叠,因大动脉瓣膜闭合的影响产生该串扰切迹。
作为上述指标,可以选取二次微分波形的峰值d或者峰值b。还有,作为指标使用上述第一比率时,可以选取波峰比率(d/a)或者波峰比率(b/a)。作为指标使用上述(第一比率)/(第二比率)时,可以选取波峰比率[(d/a)/(e/a)]或者波峰比率[(b/a)/(c/a)]等。或者也可以使用波峰比率[(d/a)/(b/a)]。
作为根据血液中水分含量变化的其他指标,可以为心脏的射血时间、心脏的弛缓时间、心脏的射血时间对脉搏波的一个周期的比率、或者心脏的弛缓时间对脉搏波的一个周期的比率。这些也能从二次微分波形测出,但是如后面所述,即便不使用二次微分波形也能检测。
本发明的其他实施例涉及的血液透析时间判定装置包括:上述血液中水分含量检测装置、基于其血液中水分含量检测装置的输出判定血液透析时间的判定部。
来自血液中水分含量检测装置的指标,与慢性维持性透析患者的血液中的增水率或者除水率有关。因此,判定部通过将作为血液中水分含量检测装置的输出的指标与应该接受血液透析的时间对应的比较值进行比较(血液中水分含量上限值或者增水上限值),由此能判定应该开始进行血液透析的时间。或者,判定部通过将作为血液中水分含量检测装置的输出的指标与血液透析开始后应该将其终止的时间对应的比较值进行比较(血液中水分含量下限值或者除水下限值),由此能判定血液透析的终止时间。
附图说明
图1A、图1B及图1C是根据本发明的实施例的血液中水分含量检测装置的外观图;
图2给出了图1所示的脉搏波检测部的电路构成的一例电路图;
图3是本发明的实施例的基本功能框图;
图4是脉搏波检测部测出的脉搏波的一个周期的波形图;
图5是在图3的基本功能框图上附加一次、二次微分部的功能框图;
图6A、图6B和图6C是分别表示测出的脉搏波的原波形、图6A的一次微分波形和图6A的二次微分波形的波形图;
图7是说明二次微分波形的特征的简要说明图;
图8是说明在血液透析中实验的测定时间的简要说明图;
图9是透析装置及透析终止时间判定装置的框图;
图10是在图8中的时间3测定的血压值(收缩期血压SBP、扩张期血压DBP)和脉搏数HR的测定图;
图11是在图8中的时间3测定的指标b/a、d/a的测定图;
图12是表示指标b/a与增水率的关系的特性图;
图13是表示指标d/a与增水率的关系的特性图;
图14是在四次透析时间的透析经过时间测定的指标ED的测定图;
图15是表示用比较仪将脉搏波与比较值进行比较而生成的、与射血时间相关的矩形波的特性图;
图16是从脉搏波生成图15所示的矩形波的带磁滞的比较仪的电路图;
图17是表示包括低频段掩蔽电路在内的电路的具体结构1的框图;
图18是图17中的模拟微分电路的电路图;
图19A是表示量子化波形的波形图,图19B是表示其微分波形的波形图;
图20是表示图17所示的二次微分部的构成例的框图;
图21是表示包括低频段掩蔽电路在内的电路的具体结构2的框图;
图22是图21中的低频段掩蔽部的电路图;
图23A是表示指标(b/a)与实验对象的年龄的关系的特性图,
图23B是表示指标(d/a)与实验对象的年龄的关系的特性图。
具体实施方式
下面,参照附图对本发明的包括血液中水分含量检测装置的血液透析时间判定装置的一个实施例进行说明。
(血液透析时间判定装置的外观构成)
本实施例的血液透析时间判定装置属于装在实验对象例如手腕上的携带型装置,可以是图1A、图1B及图1C所示那样的外观构成。血液透析时间判定装置10包括:具有手表形状结构的装置本体12、通过连接带57连接于该装置本体12的连接部20的电缆58、及设置在该电缆58的末端部的脉搏波检测部60。在装置本体12上设有腕带56,装置本体12通过腕带56装到实验对象的手腕上。
装置本体12包括连接部20,在连接部12上可拆卸地安装有构成电缆58的端部的连接带57。
图1C表示拆下该连接带57时的连接部20,其包括:例如,与电缆58连接的连接销21、用于进行数据传送的LED 22、以及光电晶体管23。
另外,装置本体12的表面一侧设有由液晶面板构成的显示部54。显示部54包括段显示区域和位显示区域等,显示根据脉搏波中的血液中水分含量而变化的指标和基于该指标判定的血液透析时间等。另外,显示部54也可以不用液晶面板而使用其它的显示装置。
装置本体12的内部包括控制各种运算和变换等的CPU(centralprocessing unit)、用于存储CPU工作的程序以及其他的存储器(省略图示),装置本体12的外周部位分别设有用于进行各种操作和输入的按钮开关14。
另一方面,如图1B所示,脉搏波检测部60被传感器固定用固定带62遮光,同时装到实验对象的食指的指根附近。这样,将脉搏波检测部60装到手指的指跟附近,电缆58就可以设成很短的长度,所以,即使戴着也没有妨碍。还有,由于手指的指跟附近与指尖相比,血流量随气温变化较小,因此,气温等对测出的脉搏波波形的影响比较小。
(脉搏波检测部)
如图2所示,脉搏波检测部60例如包括LED 64、光电晶体管65等,能无创伤即不损伤皮肤地检测末梢的脉搏波。此脉搏波检测部60利用脉搏波波形是与血流量的变化波形(容积脉搏波波形)大致相同的波形,使用光传感器来检测脉搏波(容积脉搏波),该光传感器用于检测对于毛细血管的光照射、毛细血管内的血液引起的反射光量的变化或者透过光量的变化。
更具体地,脉搏波检测部60在开关SW闭合时,提供电源电压,于是从LED 64照射光。这个照射光被实验对象的血管和组织反射后,被光电晶体管65接收。因此,将光电晶体管65的光电流变换为电压,作为脉搏波检测部60的信号PTG被输出。
在此,LED 64的发光波长选择在血液中的血红蛋白的最大吸收波长附近。由此,受光电平根据血流量而变化。所以,通过检测受光电平,能检测脉搏波波形。例如,作为LED 64优选使用InGaN系(铟-镓-氮系)的蓝色LED。这种LED的发光频谱在450nm附近形成最大发光,其发光波长范围可以为从350nm到600nm的范围。
作为与具有这种发光特性的LED对应的光电晶体管65,在本实施例中,能使用例如GaAsP系(镓-砷-磷系)的物质。这种光电晶体管65的受光波长范围的主要灵敏区域是从300nm到600nm的范围,小于300nm也能具有灵敏区域。
将这样的蓝色LED 64和光电晶体管65组合在一起,能在形成其重叠范围的300nm~600nm的波长范围内检测脉搏波,并具有以下优点。
首先,在外界光包括的光中,因为小于700nm的波长范围的光具有难以透过手指组织的倾向,所以,外界光即使照射到未被传感器固定用固定带遮盖的手指部,也不会透过手指组织到达光电晶体管65,只有对检测不产生影响的波长范围的光才到达光电晶体管65。另一方面,因为大于300nm的波长范围的光几乎全部被皮肤表面所吸收,所以,即使受光波长范围为700nm以下,受光波长范围实际上却是300nm~700nm。因此,即使不大面积地遮盖手指,也能抑制外界光的影响。还有,血液中的血红蛋白对波长为300nm~700nm的光的吸收系数大,与对波长为880nm的光的吸收系数相比,大数倍~大约100倍以上。因此,如此例,根据血红蛋白的光吸收特性,将吸光特性好的波长范围(300nm~700nm)的光作为检测光来使用,则其检测值就能随血量变化而灵敏地变化,所以,能提高基于血量变化的脉搏波波形的SN比。
这样,脉搏波检测部60能将根据血流量变化的脉搏波即容积脉搏波,作为存在于皮肤附近的毛细血管网的红血球量的变化来捕获,并作为照射到皮肤上的光的透过量或反射量的变化来检测,所以,不用将传感器对应到末梢动脉例如桡骨动脉或侧指动脉的位置就能检测容积脉搏波。因此,作为末梢动脉的脉搏波(容积脉搏波),脉搏波检测部60能稳定地检测存在于皮肤附近的毛细血管的红血球量的变化。还有,也可以使用对皮下组织的透过性良好、血红蛋白具有吸光特性的880nm以上的近红外波长范围。
另外,脉搏波检测部60也可根据脉压来检测脉搏波。还有,脉搏波检测部60可以如后述装到手指以外的地方,例如可以从耳朵部位检测脉搏波。
(基本功能框构成及低频段掩蔽部)
图3是根据本实施例的血液透析时间判定装置10的功能框图。在图3中,血液透析时间判定装置10除了上述脉搏波检测部60外,还包括低频段掩蔽部70、指标选取部80、血液透析时间判定部90及告知部100。低频段掩蔽部70并不是必需的构成。优选在配戴此血液透析时间判定装置10的实验对象处于安静状态或者至少是静止状态时判定血液透析时间。但是,虽说是安静状态或者静止状态,但在测出的脉搏波中,还重叠有:随实验对象的******的活动的变动(血管运动除外)引起的低频段频率成分,或者维持静止状态期间的实验对象的身体的动作(体动)引起的低频段频率成分。这些将成为检测血液中水分含量时的串扰。通过用低频段掩蔽部70除去这些串扰,能提高检测精确度。下面,对该低频段掩蔽部70进行详细说明。
(脉搏波波形及指标选取部)
图4是显示动脉例如桡骨动脉上的典型的脉搏波波形的特性图。图4所示的一个周期的脉搏波包括:脉搏波中的一个周期的最初的上升点P0、压力波(Ejection Wave)P1、退潮波(Tidal Wave)P2、切迹(Dicrotic Notch)P3、及降中波(Dicrotic Wave)P4各个波峰。
在此,根据本发明人的实验,在上述脉搏波的特征中,特别是压力波P1或切迹P3根据血管的扩张性而变化,结果能判定是根据血液中的水分含量变化的指标。这是因为血管的扩张性依赖于血液的容积(体积),如果血液中水分含量增大则血液的容积也会增大。因为血液透析患者在透析后血液中水分含量增大,因此基于这些变极点P1或者P4的指标,能判定血液中水分含量超过规定值的时间为血液透析时间。
图3的指标选取部80基于指标P1或者指标P3等抽取指标,图3的血液透析时间判定部90基于其指标判定血液透析时间。
指标选取部70既可以从图4所示的脉搏波抽取指标,但是,也可以基于脉搏波的二次微分波形选取指标。这是因为在二次微分波形中,比图4所示的脉搏波的特征更加明显。因此,如图5所示,可以在图3所示的基本功能框构成的基础上,再设置一次微分部110和二次微分部120。
图6A是用脉搏波检测部60测出的脉搏波(或者用低频段掩蔽部70除去低频段频率成分的脉搏波)的原波形PTG的波形图。图6B是将原波形PTG用一次微分部110微分的一次微分波形FDPTG(速度波形)的波形图。图6C是将一次微分波形FDPTG用二次微分部120微分的二次微分波形SDPTG(加速度波形)的波形图。如图7所示,二次微分波形SDPTG具有比原波形PTG更明显的五个变极点,其峰值分别为a~e。
在此,峰值a相当于脉搏波中的一个周期的最初的上升点P0,峰值b相当于压力波P1的前期波峰点之前的点,峰值c相当于退潮波P2的上升点,峰值d相当于从退潮波P2的波峰(收缩期后期)到降中波P3的斜率,峰值e相当于从切迹P3到降中波P4的斜率。如上所述,压力波P1或者切迹P3是根据血液中的水分含量变化的指标,所以,指标选取部80可以将峰值b或峰值d作为指标选取。
但是,可以将峰值b或者峰值d取绝对值来选取,这时,由于身体状况的变化、放大率的变化、串扰的影响等,即便是同一血液中的水分含量,其绝对值也有不同的时候。
因此,指标选取部80只要计算出峰值b或峰值d与作为脉搏波峰值的基准值的峰值例如峰值a的比率就可以。即,指标选取部80计算出比率b/a或者比率d/a。
在此,指标选取部80将比率b/a或者比率d/a定义为第一比率时,还可以再选取一参考指标,该参考指标比第一比率与血液中水分含量的的相关性更低。作为参考指标,可以为相当于脉搏波中的一个周期的最初的上升点P0的峰值a与相当于从切迹P3到降中波P4的斜率的峰值e的第二比率。这时,指标选取部80计算出指标(第一比率)和参考指标(第二比率)的比率,也就是波峰比率[(d/a)/(e/a)]或者波峰比率[(b/a)/(e/a)]。或者指标选取部80也可以选取波峰比率[(d/a)/(b/a)]。这样,能更精确地检测血液中水分含量。
(指标b/a、d/a与血液中水分含量的关系)
将本装置装到慢性丝球体肾炎患者身上,分别测定上述指标b/a及d/a。如图8所示,这个测定在星期一(时间1)、星期三(时间2)、星期五(时间3)及其下一周的星期一(时间4)分别进行的透析中进行实施。图8的实线表示透析时间,患者的体重由于血液中水分减少而减轻。图8的虚线表示非透析时间,患者的体重由于血液中水分增加而增加。
另外,如图9所示,通过动静脉瘘管200、血液泵210及抗凝固液注射泵220将患者的血管连接于透析器230进行血液透析。由透析液供给装置240向透析器230提供透析液。在透析器230,血液中没用的物质转移到透析液中,有用的物质转移到血液中,透析后的血液返回到体内。
在图9,透析中使用的血液透析终止时间判定装置250与图1A~图1C所示的携带型的不同,例如采用装到患者的耳朵上并基于耳朵的脉搏波来判定血液透析终止时间的安置型。当该血液透析终止时间判定装置250告知透析终止时间时,透析被终止。因此,省略了像以往那样,对每个患者决定除水量,再监视这个除水量由此来终止透析的麻烦。另外,可以根据该血液透析终止时间判定装置250的终止时间告知信号,使泵210、220及透析液供给装置240的工作自动停止。另外,在不进行透析的时间,携带图1A所示的装置可以判定血液透析开始时间。或者,在不进行透析的时间,也可以将图9所示类型的装置装到患者的耳朵或者指尖上来判定血液透析开始时间。
作为一个实施例,将图8所示的慢性肾功能不全患者的四次透析中的装在手指上的第3次测定结果的血压和脉搏数的变化显示在图10中,将b/a、d/a显示在图11中。各图的横轴表示透析中的经过时间。因为通过血液透析除去血液中的水分,所以,各图的横轴与血液的除水量等价。另外,图10中,HR、DBP、SBP分别表示心率、扩张期血压(最低血压)、收缩期血压(最高血压)。
从图11明显看出,指标b/a与透析经过时间(除水量)正相关。在此,随着透析的进行,血液中水分减少,所以,心收缩力增大。因此,被认为是心脏要将血液送入大动脉,血管伸展性低下的状态。这种变化被表示为b/a,认为指标b/a随透析时间的延续而增大。
另一方面,从图11明显看出,指标d/a与透析经过时间(除水量)负相关。在此,动脉主要在中小血管受植物神经的支配,但是,随着透析的进行,交感神经处于优势,血管收缩。这种变化被表示为指标d/a,认为指标d/a随着透析时间的延续而减少。
由此,将本装置装到血液透析中的患者身上,只要在整个血液透析中都监视指标,就能判定应该终止其血液透析的时间。具体而言,图5的血液透析时间判定部90,将与透析终止时间对应的除水下限值(血液中水分含量下限值)作为比较值存储。该判定部90能通过比较来自指标选取部80的指标和比较值,判定血液透析的终止时间。
慢性维持性透析患者,因为在血液透析后不能靠自身来除去废物和水分,所以,血液中水分增加。由此,从血液透析终止后,血液中水分含量渐渐增加,并与血液透析中的除水相反地增加水分。因此,在日常生活中,将本装置装在慢性维持性透析患者身上时,与图11不同,指标b/a与增水率负相关,指标d/a与增水率正相关是很容易理解的。图12及图13表示基于图11预测的指标b/a、d/a与增水率的关系。
图5的血液透析时间判定部90,在指标b/a或指标d/a达到图12或者图13所示的比较值(血液中水分含量上限值或者增水上限值)时,能够判定到了下一次的血液透析时间。在此,所说的比较值是与血液透析时间的增水率(例如70%)对应的指标b/a或指标d/a。并且,图5的告知部100能根据血液透析时间判定部90的输出,将血液透析时间告知实验对象。另外,图3所示的血液透析时间判定部90及告知部100只是处理的指标与图5不同,但是能与图5同样,将血液透析的开始或者终止时间告知实验对象或者医师。
在此,在图7中,从与图4的波峰值P0对应的图7的峰值a到与图4的降中波切迹P4对应的图7的峰值e的时间,可以作为射血时间ED(Ejetion Duration)来处理。另外,从峰值e到下一个峰值a可以作为弛缓时间DT来处理(但是,ED+DT=心跳或者脉搏波的一个周期)。另外,在本说明书中,将与心跳或脉搏波的一个周期对应的射血时间的比率ED/(ED+DT)称作“标准化射血时间”。另外,在本说明书中,将与心跳或者脉搏波的一个周期对应的弛缓时间的比率DT/(ED+DT),称作“标准化弛缓时间”。
作为上述指标的其它的实施例,可以为从峰值a到峰值e的射血时间ED、从峰值e到下一个峰值a的弛缓时间、标准化射血时间、或者标准化弛缓时间。
例如,因为血液的容积随着透析的进行而减少,所以,大动脉瓣膜开放的时间随着透析的进行而变短。由此,随着透析的进行,射血时间ED或者标准化射血时间变短,弛缓时间DT或者标准化弛缓时间变长。或者,在非透析时,与透析时相反,血液中水分增加,所以,射血时间ED或者标准化射血时间随着时间的延续而变长,弛缓时间DT或者标准化弛缓时间变短。由此,例如,基于二次微分波形的峰值a及峰值e测量射血时间ED或者标准化射血时间,如果其达到比较值就能判定透析终止或者透析开始时间。同样地,测量弛缓时间DT或者标准化弛缓时间,如果其达到比较值,就能判定透析终止或者透析开始时间。
作为一个示例,图14是与图8所示的慢性肾功能不全患者不同的四次(HD1~HD4)透析中的射血时间ED的测定结果。
另外,射血时间及弛缓时间不一定从二次微分波形求出。例如,图3的指标选取部80可以包括比较仪,如图15所示,对于除去了体动波形的脉搏波PTG,该比较仪在降中波切迹P4的波峰附近设定比较值CO。这个比较仪的输出为图15所示的矩形波REP。另外,在图15中,为了便于说明,在脉搏波PTG上描述矩形波REP,但是,矩形波的高电平为比较仪的第一电源电位Vdd,低电平为第二电源电位Vss。
在此,矩形波的波宽W与从点P0到降中波切迹P4的射血时间ED有关。由此,可以将与矩形波W的对应于脉冲持续时间W的时间长短看作是射血时间ED。可以通过从由其它的方法求出的脉搏波或者心跳的一个周期中减掉射血时间ED,求得弛缓时间DT。
特别优选将此比较仪制成图16所示的带磁滞的比较仪96。此带磁滞的比较仪96的反馈电阻R2连接到+输入端子,构成正反馈。
输入到+输入端子的电压为(V0-V+)×R1/(R1+R2)+V+。在此,输出电压V0经常饱和于驱动比较仪96的第一、第二电源电位Vdd、Vss中的一个。
由此,(V0-V+)经常是大于0的值,输入到+输入端子的电压经常大于脉搏波PTG的电压电平V+。这样,根据正反馈的效果,表观上的+输入电压增大。由此,具有输出电压V0一旦饱和于Vdd或者Vss的任一方时,即便输入发生变化,输出电压也不容易逆转的特性。输出电压V0饱和于Vdd时,脉搏波PTG的电压V+即便下降到基准值CO的电压V-,输出也不直接逆转。由此,在图15中,在降中波切迹P4附近,矩形波RE一旦下降后,就不容易上升,所以,能准确地生成矩形波REP。
(低频段掩蔽部)
下面,对用于提高检测或者判定制度的低频段掩蔽部70进行说明。
低频段掩蔽部70从脉搏波检测部60测出的脉搏波,除去伴随******机能的活动的变动(血管活动除外)引起的低频段频率成分。该低频段频率成分不是血液基于心脏的伸张收缩从大动脉流向末梢血管而生成的纯粹的脉搏波的频率成分,而是比纯粹的脉搏波中的频率成分更低的频段的频率成分。该低频段频率成分重叠在脉搏波中形成串扰,所以,通过除去此串扰能稳定地检测脉搏波。
低频段掩蔽部70能进一步除去实验对象静止时的体动引起的低频段频率成分。实验对象即便是静止状态,由于为维持其静止状态等也存在身体活动(体动)。该体动不是有意识地快速地运动手脚,而是比较自然的动。由此,起因于此体动,低频段频率成分重叠在脉搏波中,这也形成串扰,所以要除去。
低频段掩蔽部70为除去伴随******机能的活动的变动(血管活动除外)及体动引起的低频段频率成分,优选将低频段掩蔽频率设定为0.4~0.5Hz的范围内的值。因为,小于该低频段掩蔽频率的低频段频率成分不包括脉搏波固有的特征,这些形成串扰。作为伴随******机能的变动,包括随交感神经***机能及副交感神经***机能的活动的变动。作为伴随交感神经***机能的活动的变动引起的低频段频率成分,例如,可以为起每10秒生成一次左右的筋泵机能的变动等引起的低频段频率成分(例如,0.1Hz程度)。作为副交感神经***机能的活动的变动引起的低频段频率成分,例如,可以为呼吸运动引起的低频段频率成分(例如,15Hz左右)。
低频段掩蔽部70除上述的低频段频率外,也可以使用将高频段掩蔽频率设定为例如16~30Hz的范围内的值的带通滤波器构成。由此,不但低频段频率成分,也可以除去超过高频段掩蔽频率的无用的高频段成分。高频段掩蔽频率即便留有剩余,设为30Hz也足够了,也可以将高频段掩蔽频率设为20Hz或者16Hz。
(具体的构成例1)
图17是更加具体地显示图5的功能框中的从脉搏波检测部60到二次微分部120的框图。图18是低频段掩蔽部的电路图。如图17所示,构成例1包括脉搏波检测部60、模拟微分电路130、量子化部140及二次微分部120。模拟微分电路130不但具有图5所示的低频段掩蔽部70及一次微分部110的功能,同时兼备高频段掩蔽部的功能。换句话说,此模拟微分电路130具备带通的功能。取代此功能,模拟微分电路130也可以具备旁路功能。因为无论哪种情况,都能掩蔽小于0.4~0.5Hz的掩蔽频率的低频段频率成分。
该模拟微分电路130例如图18所示,包括运算放大器132的正输入端子、负输入端子以及在负反馈路径具有规定常数的元件C1~C3及R1、R2。根据这些元件的常数的设定,该模拟微分电路130能具有使0.4~30Hz、0.4~20Hz或者0.4~16Hz等带宽的频率成分通过的带通功能。无论哪种情况,低频段掩蔽频率都是0.4~0.5Hz。
量子化部140是将来自模拟微分电路130的模拟信号量子化并变换成图19A所示的数字信号的模拟—数字转换器。量子化的方法可以采用众所周知的各种手法。例如,利用图2及图18所示的开关SW使发光元件64点亮熄灭时,由于其切换,输出波形被标准化,所以,只要采用与切换周期相同的频率抽样就可以。此时,量子化部140可以通过AGC(自动增益控制)功能,使输出振幅增大到在动态范围内大于规定电平。脉搏波检测部60的发光元件64和受光元件65之间的光传达经路存在实验对象的皮肤内的血管床。因此需要在动态范围内适当地增大脉搏波检测部60的输出信号。
图17所示的二次微分部120是量子化微分部,能得到在图19A的时间轴上相邻的两个离散值的变动量(斜率)。具体而言,如图20所示,可以包括通过开关122相互存储数据的第一、第二存储部124、126、和取来自第一、第二存储部124、126的数据间的差的数据减法器128。图19A所示的数据的变动量的二次微分波形如图19B所示。
(实验例)
对3名实验对象A~C进行实验,使模拟微分电路130的带通特性不同,收集原波形PTG、一次微分波形FDPTG及二次微分波形SDPTG。作为带通频段,高频范围掩蔽频率同样都是16Hz,但是,低频段掩蔽频率各不相同,为0.1Hz(比较例1)、0.2Hz(比较例2)、0.43Hz(实施例1)、0.6Hz(比较例3)。
对这样测出的各二次微分波形SDPTG,分别算出指标b/a。另外,指标b/a如上所述,根据各实验对象的血液中水分含量而变化,同时,如图23A所示,与实验对象的年龄负相关(-b/a为正相关)。上述测定的结果中,关于实验对象A的实施例1(低频段掩蔽频率=0.43Hz)所示的二次微分波形SDPTG的指标-b/a(=1.12),能确认为是与实验对象的年龄最适宜的值。另外,图23B显示出指标d/a与实验对象的年龄呈正相关。
对于比实验对象A年龄大的实验对象B、和比实验对象A年龄小的实验对象C进行同样的测定。在实施例1测定的实验对象B的指标-b/a=1.18,同样,实验对象C的指标-b/a=0.89,实验对象C的年龄<实验对象A的年龄<实验对象B的年龄的关系、及实验对象C的指标(0.89)<实验对象A的指标(1.12)<实验对象B的指标(1.18)的关系,与年龄顺序一致。由此,带通特性的低频段掩蔽频率与比较例1~3经过对比,实施例1的低频段掩蔽频率0.43Hz为优选。这样,低频段掩蔽频率0.4~0.5Hz最合适,如比较例1~3,与其低频段掩蔽频率相比无论更低(0.1Hz、0.2Hz),还是更高(0.6Hz)都不好。
(具体的构成例2)
图21表示在脉搏波检测部60和低频段掩蔽部70之间设置量子化部140的变形例。量子化部140的功能与图17相同。同样,一次、二次微分部110、120的功能与图17所示的二次微分部90相同。另外,也可以将一次、二次微分部110、120的任一方设为模拟微分电路。
图21所示的低频段掩蔽部70如图22所示,包括用于将量子化数据进行傅立叶变换的傅立叶变换部72、用于除去小于低频段掩蔽频率的频率频谱的数字滤波器74、用于将该数字滤波器的输出进行逆傅立叶变换的逆傅立叶变换部76。在通过傅立叶变换得到的频率频谱中,将频率未达到规定的掩蔽频率的频谱用数字滤波器除去,由此,能除去低频段频率成分。
此外,也可以连低频段掩蔽部70也形成模拟信号处理,在低频段掩蔽部70和一次微分电路110之间设置量子化部140,将一次、二次微分部110、120构成数字微分电路。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (24)

1.一种血液中水分含量检测装置,其特征在于包括:
脉搏波检测部,用于无创伤地检测末梢的脉搏波;以及
指标选取部,用于从被检测到的脉搏波中选取根据血液中水分含量而变化的指标。
2.根据权利要求1所述的血液中水分含量检测装置,其特征在于,所述指标选取部基于所述脉搏波中的切迹的峰值选取所述指标。
3.根据权利要求2所述的血液中水分含量检测装置,其特征在于,所述指标选取部选取所述脉搏波中的一个周期的最初的上升点的峰值与切迹的峰值的第一比率作为所述指标。
4.根据权利要求1所述的血液中水分含量检测装置,其特征在于,所述指标选取部基于所述脉搏波中的压力波的峰值选取所述指标。
5.根据权利要求4所述的血液中水分含量检测装置,其特征在于,作为所述指标,所述指标选取部选取所述脉搏波中的一个周期的最初的上升点的峰值与压力波的峰值的第一比率。
6.根据权利要求3或5所述的血液中水分含量检测装置,其特征在于,所述指标选取部还选取一参考指标,并输出所述指标和所述参考指标的比率,所述参考指标比所述第一比率与血液中水分含量的的相关性更低。
7.根据权利要求6所述的血液中水分含量检测装置,其特征在于,作为所述参考指标,所述指标选取部选取所述脉搏波中的一个周期的最初的上升点的峰值与降中波的峰值的第二比率。
8.根据权利要求1所述的血液中水分含量检测装置,其特征在于,还包括低频段掩蔽部,其用于从所述脉搏波检测部测出的脉搏波中,除去伴随******活动的变化(血管运动除外)引起的低频段频率成分。
9.根据权利要求8所述的血液中水分含量检测装置,其特征在于,所述低频段掩蔽部还除去实验对象静止时的体动引起的低频段频率成分。
10.根据权利要求8或9所述的血液中水分含量检测装置,其特征在于,所述低频段掩蔽部的低频段掩蔽频率被设定为0.4~0.5Hz范围内的值。
11.根据权利要求8至10任一项所述的血液中水分含量检测装置,其特征在于,所述低频段掩蔽部由带通滤波器形成,所述带通滤波器将高频段掩蔽频率设定为16~30Hz范围内的值。
12.根据权利要求1、8至10任一项所述的血液中水分含量检测装置,其特征在于,还包括:
一次微分部,用于将所述脉搏波进行一次微分;
二次微分部,用于将一次微分的脉搏波进行二次微分;
作为所述二次微分部的输出的二次微分波形,在一个周期内沿着时间轴顺次包括具有峰值a~e的五个变极点,所述指标选取部基于所述五个峰值中的至少一个选取所述指标。
13.根据权利要求12所述的血液中水分含量检测装置,其特征在于,所述指标选取部选取峰值比率(d/a)。
14.根据权利要求12所述的血液中水分含量检测装置,其特征在于,所述指标选取部选取峰值比率(b/a)。
15.根据权利要求12所述的血液中水分含量检测装置,其特征在于,所述指标选取部选取峰值比率[(d/a)/(b/a)]。
16.根据权利要求12所述的血液中水分含量检测装置,其特征在于,所述指标选取部选取峰值比率[(d/a)/(e/a)]。
17.根据权利要求12所述的血液中水分含量检测装置,其特征在于,所述指标选取部选取峰值比率[(b/a)/(e/a)]。
18.根据权利要求1或12所述的血液中水分含量检测装置,其特征在于,所述指标选取部从所述脉搏波中选取心脏的射血时间作为所述指标。
19.根据权利要求1或12所述的血液中水分含量检测装置,其特征在于,所述指标选取部从所述脉搏波中选取心脏的弛缓时间作为所述指标。
20.根据权利要求1或12所述的血液中水分含量检测装置,其特征在于,所述指标选取部从所述脉搏波中选取对应于脉搏波的一个周期的心脏的射血时间的比率作为所述指标。
21.根据权利要求1或12所述的血液中水分含量检测装置,其特征在于,所述指标选取部从所述脉搏波中选取对应于脉搏波的一个周期的心脏的弛缓时间的比率作为所述指标。
22.一种血液透析时间判定装置,包括:
权利要求1至21任一项所述的血液中水分含量检测装置;
判定部,其基于所述血液中水分含量检测装置的输出,判定血液透析时间。
23.根据权利要求22所述的血液透析时间判定装置,其特征在于,所述判定部将来自所述血液中水分含量检测装置的所述指标与对应于血液中水分含量上限值的比较值进行比较,基于其比较结果判定血液透析开始时间。
24.根据权利要求22所述的血液透析时间判定装置,其特征在于,所述判定部将来自所述血液中水分含量检测装置的所述指标与对应于血液中水分含量下限值的比较值进行比较,基于其比较结果判定血液透析终止时间。
CN038146339A 2002-07-12 2003-07-11 血液中水分含量检测装置及血液透析时间判定装置 Pending CN1662178A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP203994/2002 2002-07-12
JP2002203994 2002-07-12

Publications (1)

Publication Number Publication Date
CN1662178A true CN1662178A (zh) 2005-08-31

Family

ID=30112691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN038146339A Pending CN1662178A (zh) 2002-07-12 2003-07-11 血液中水分含量检测装置及血液透析时间判定装置

Country Status (4)

Country Link
US (1) US7566309B2 (zh)
JP (1) JP4123230B2 (zh)
CN (1) CN1662178A (zh)
WO (1) WO2004006769A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102573618A (zh) * 2009-06-26 2012-07-11 甘布罗伦迪亚股份公司 用于数据提取的装置、计算机程序产品及方法
CN106573094A (zh) * 2014-02-24 2017-04-19 博通分离膜技术(北京)有限公司 用于利用来自肾脏替代治疗过程之流体中的水分的***
CN111801124A (zh) * 2018-01-10 2020-10-20 尼普洛株式会社 细胞外液量计算装置和细胞外液量计算方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6171768B2 (ja) * 2013-09-13 2017-08-02 カシオ計算機株式会社 脱水状態判定装置
ES2870584T3 (es) * 2015-07-16 2021-10-27 Preventicus Gmbh Procesamiento de datos biológicos
JP6477792B2 (ja) * 2017-07-05 2019-03-06 カシオ計算機株式会社 脱水状態判定装置
WO2020243033A1 (en) * 2019-05-24 2020-12-03 11 Health And Technologies, Inc. Portable dehydration monitoring system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4718891A (en) * 1984-05-03 1988-01-12 Henry Ford Hospital Automated hemodialysis control based upon patient blood pressure and heart rate
JP4374660B2 (ja) * 1999-06-23 2009-12-02 株式会社ジェイ・エム・エス 血液透析装置、血液透析装置を使用した血液処理方法および該血液透析装置を制御する記録媒体
JP2000083914A (ja) 1999-10-25 2000-03-28 Seiko Epson Corp 生体情報計測装置および脈波計測装置
JP3977983B2 (ja) 2000-07-31 2007-09-19 株式会社タニタ 生体インピーダンス測定による脱水状態判定装置
JP3725409B2 (ja) 2000-08-10 2005-12-14 株式会社タニタ 血液粘度計
JP2002119488A (ja) 2000-10-16 2002-04-23 Tanita Corp 複合健康計測装置
JP3603046B2 (ja) * 2001-06-13 2004-12-15 コーリンメディカルテクノロジー株式会社 透析用血圧監視装置および透析装置
JP2003010317A (ja) * 2001-07-02 2003-01-14 Nippon Colin Co Ltd 透析装置
JP2004041482A (ja) * 2002-07-12 2004-02-12 Seiko Epson Corp 脈波検出装置及び生体電位検出装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102573618A (zh) * 2009-06-26 2012-07-11 甘布罗伦迪亚股份公司 用于数据提取的装置、计算机程序产品及方法
CN102573618B (zh) * 2009-06-26 2015-03-11 甘布罗伦迪亚股份公司 用于数据提取的装置及方法
US9433356B2 (en) 2009-06-26 2016-09-06 Gambro Lundia Ab Devices, a computer program product and a method for data extraction
CN104689402B (zh) * 2009-06-26 2017-06-13 甘布罗伦迪亚股份公司 透析机以及用于对信号进行处理的装置和方法
CN106573094A (zh) * 2014-02-24 2017-04-19 博通分离膜技术(北京)有限公司 用于利用来自肾脏替代治疗过程之流体中的水分的***
CN106573094B (zh) * 2014-02-24 2020-06-05 博通分离膜技术(北京)有限公司 用于利用来自肾脏替代治疗过程之流体中的水分的***
CN111801124A (zh) * 2018-01-10 2020-10-20 尼普洛株式会社 细胞外液量计算装置和细胞外液量计算方法

Also Published As

Publication number Publication date
JPWO2004006769A1 (ja) 2005-11-10
US7566309B2 (en) 2009-07-28
US20040210144A1 (en) 2004-10-21
JP4123230B2 (ja) 2008-07-23
WO2004006769A1 (ja) 2004-01-22

Similar Documents

Publication Publication Date Title
CN105708431B (zh) 血压实时测量装置及测量方法
US9717423B2 (en) Low-complexity sensor displacement tolerant pulse oximetry based heart rate measurement
RU2649529C2 (ru) Устройство и способ для получения информации о жизненно важных показателях живого существа
JP2008188216A (ja) 生体情報測定装置
TWI608826B (zh) 光學感測裝置及其量測方法
CN1929779A (zh) 基于信号质量度量而选择用于脉冲血氧计的整体平均权数
US20090312652A1 (en) Electronic manometer for appropriately adjusting internal pressure of cuff and method for controlling the same
US20150208966A1 (en) Physiological trend monitor
CN1578682A (zh) 血液处理装置及血液处理方法
SG189432A1 (en) A photoplethysmographic device and methods therefore
CN1660008A (zh) 血压测定装置及方法
EP2219513A2 (en) Method and apparatus for processing a pulsatile biometric signal
CN1646055A (zh) 基于光体积描记信号的变动监控生理参数
CN1832703A (zh) 测量血流和血容量的***、方法和装置
CN1665443A (zh) 用于增强信噪比的信号处理方法和设备
KR20160008581A (ko) 휴대용 펄스 측정 디바이스
WO1994009698A1 (en) Method and apparatus for reducing ambient noise effects in electronic monitoring instruments
FI128751B (en) Apparatus and method for measuring arterial system functionality
JP2003199719A (ja) 血圧測定装置
CN1456126A (zh) 动脉狭窄检查设备和踝血压测量设备
JP2011050438A (ja) Pwtt換算血圧値でnibp計測を起動する生体情報モニタ
CN1662178A (zh) 血液中水分含量检测装置及血液透析时间判定装置
CN105686815A (zh) 一种无感监测人体生理参数装置
CN113171087A (zh) 一种脑血氧无创监测装置
JP2014147404A (ja) 血糖値ウォッチ装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication