JP2004041482A - 脈波検出装置及び生体電位検出装置 - Google Patents

脈波検出装置及び生体電位検出装置 Download PDF

Info

Publication number
JP2004041482A
JP2004041482A JP2002203995A JP2002203995A JP2004041482A JP 2004041482 A JP2004041482 A JP 2004041482A JP 2002203995 A JP2002203995 A JP 2002203995A JP 2002203995 A JP2002203995 A JP 2002203995A JP 2004041482 A JP2004041482 A JP 2004041482A
Authority
JP
Japan
Prior art keywords
pulse wave
detection
electrode
biopotential
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002203995A
Other languages
English (en)
Inventor
Kazuhiko Amano
天野 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002203995A priority Critical patent/JP2004041482A/ja
Publication of JP2004041482A publication Critical patent/JP2004041482A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

【課題】検出信号に重畳されるノイズを低減することができる脈波検出装置及び生体電位検出装置を提供すること。
【解決手段】非侵襲的に末梢における脈波を検出する脈波検出装置10は、被験者の脈波検出部位に接触されて被験者の脈波を検出する脈波検出プローブ61と、被験者の脈波検出部位と隣接する部位に接触されて生体アースをとる少なくとも一つの生体アース電極63と、脈波検出プローブ61及び生体アース電極63を覆って配置され、脈波検出プローブ61及び生体アース電極63を被験者に装着させる装着保持部材62とを有する。装着保持部材62は、導電性部材にて形成され、かつ、生体アース電極63に接続されている。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、検出信号のノイズを低減できる脈波検出装置及び生体電位検出装置に関する。
【0002】
【背景技術及び発明が解決しようとする課題】
被験者に装着されて被験者の末梢の脈波を被侵襲的に検出する脈波検出装置の開発が進められている。被験者は、自身の健康状態等を、携帯型脈波検出装置にて検出された脈波から自ら知ることができる。
【0003】
脈波を被侵襲的に検出するのに、脈波を光学的に検出したり、あるいは脈圧に基づいて脈波を検出することが知られている。
【0004】
上記のようにして検出される脈波波形は、心臓の伸収縮に基づき大動脈から末梢血管に血液が流れることで生ずる純粋な脈波波形とはならない。検出される脈波波形には、ノイズが重畳されるからである。
【0005】
心電位、筋電位などの生体電位検出装置でも、同様にノイズの問題がある。
【0006】
本発明者は、このノイズについて検討した結果、共に、生体アースの取り方に改善の余地があることを見出した。
【0007】
本発明の目的は、検出信号に重畳されるノイズを低減することができる脈波検出装置及び生体電位検出装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明の一態様に係る脈波検出装置は、非侵襲的に末梢における脈波を検出する脈波検出装置において、被験者の脈波検出部位に接触されて被験者の脈波を検出する脈波検出プローブと、被験者の前記脈波検出部位と隣接する部位に接触されて生体アースをとる少なくとも一つの生体アース電極と、前記脈波検出プローブ及び前記生体アース電極を覆って配置され、前記脈波検出プローブ及び前記生体アース電極を被験者に装着させる装着保持部材とを有する。そして、前記装着保持部材は、導電性部材にて形成され、かつ、前記生体アース電極に接続されている。
【0009】
この構成によれば、下記の動作によりS/Nが向上すると考えられる。まず、脈波検出プローブ及び生体アース電極は、それらを被験者に装着させるための導電性の装着保持部材により覆われている。しかも、装着保持部材は生体アース電極に接続されている。これにより、脈波検出プローブに電磁波ノイズなどの外乱ノイズの影響を受けることが低減される。次に、被験者の脈波検出部位と隣接する部位であって、脈波検出部位と常に一定の距離にある部位に接触する生体アース電極が設けられる。ここで、脈波はアース電位を基準電位として検出される。このため、検出部位の近くの一定距離の位置にて生体アース電位を設定することで、従来のように検出部位と離れたり、あるいは設定の都度に検出部位からの距離が異なるもの比較して、アース電位の電位が不安定になることはない。よって、アース電位の電位差に起因して生ずる弊害を防止できる。
【0010】
脈波検出プローブは、光学的に脈波を検出するものとすることができ、発光素子と受光素子とを含むことができる。この場合、生体アース電極は、発光素子及び受光素子を挟んだ両側にそれぞれ配置することができる。あるいは、生体アース電極を、発光素子及び受光素子を囲んで配置してもよい。
【0011】
脈波検出部位は、指の橈骨動脈と対応する部位に設定することができる。この場合、装着保持部材は、指に挿入される筒型の指サック形状に形成することができる。脈波検出部位は、手首の橈骨動脈と対応する部位に設定しても良い。この場合、装着保持部材は、手首に巻回して保持されるリストバンドの形状に形成することができる。脈波検出部位は他の末梢部位例えば耳などに設定してもよく、その検出部位に適合するように装着保持部材の形状を設定すればよい。なお、装着保持部材としてのリストバンドに電池を内蔵する筐体を設けることができる。このとき、その電池の基準電位線と筐体とを接続し、かつ、その筐体をリストバンドに接続することができる。こうして、電池の基準電位を設定する筐体を生体アース電極に接続できる。
【0012】
装着保持部材は、導電体のメッシュにて形成することができる。長時間の装着でも検出部位が蒸れることがなく、しかも電磁気のシールド効果を発揮できる。なお、装着保持部材に遮光機能を持たせるのであれば、発光・受光素子以外の場所に通気孔、メッシュなどを形成する等して、通気性を持たせることができる。
【0013】
本発明の他の態様に係る生体電位検出装置は、被験者の検出部位に接触して配置される生体電位検出電極と、前記生体電位検出電極に接続される信号電位取出ケーブルと、前記信号電位取出ケーブルの周囲に電気的に絶縁されて配置されるシールドケーブルと、前記シールドケーブルの端部に電気的に接続されて、前記検出部位と非接触となるように配置され、前記生体電位検出電極を覆うシールド用筒部とを有する。
【0014】
この生体電位検出装置においては、生体電位検出電極を覆ったシールド用筒部により、外乱ノイズが生体電位検出電極に入ることを低減できる。また、信号取出ケーブルはシールドケーブルにより覆われているので、信号取出ケーブルにも外乱ノイズが入ることを防止でき、S/Nが向上する。
【0015】
生体電位検出電極は、被験者の検出部位に接触して配置される電極部と、前記電極部に接続された端子とを含むことができる。この場合、信号電位取出ケーブルは、生体電位検出電極の端子と着脱可能に接続される。このように、生体電位検出電極と信号電位取出ケーブルとを着脱可能とすることで、生体電位検出電極を検出部位に設定する作業が容易になる。
【0016】
本発明の他の態様に係る生体電位検出装置は、取り出される生体電位信号が不活性な部位に接触される生体アース電極をさらに有することができる。そして、シールドケーブルはその生体アース電極に接続されることで、外乱ノイズの悪影響を低減できる。
【0017】
信号電位取出ケーブルは、心電位を取り出すもの、あるいは筋電位を取り出すものとすることができ、本発明の生体電位検出装置を心電図計測装置、筋電図計測装置等に適用できる。
【0018】
【発明の実施の形態】
以下、本発明の一実施形態について、図面を参照して説明する。
【0019】
<第1の実施形態>
本発明の第1の実施形態は、脈波検出装置である。
【0020】
(脈波検出装置の外観構成)
本実施形態の脈波検出装置は、被験者の例えば手首に装着される携帯型であり、図1(A)、図1(B)および図1(C)に示すような外観的構成とすることができる。脈波検出装置10は、腕時計状の構造を有する装置本体12と、この装置本体12のコネクタ部20にコネクタピース57を介して接続されるケーブル58と、このケーブル58の先端側に設けられた脈波検出部60とを含んで構成されている。装置本体12にはリストバンド56が取り付けられ、リストバンド56によって装置本体12が被験者の手首に装着される。
【0021】
装置本体12はコネクタ部20を備えており、コネクタ部20にはケーブル58の端部となっているコネクタピース57が着脱自在に取り付けられている。
【0022】
図1(C)は、このコネクタピース57を取り外したコネクタ部20を示しており、例えば、ケーブル58との接続ピン21や、データ転送を行うためのLED22、フォトトランジスタ23を備えている。
【0023】
また、装置本体12の表面側には、液晶パネルからなる表示部54が設けられている。表示部54は、セグメント表示領域や、ドット表示領域などを有し、脈波中の血管中水分量に依存して変化する指標や、それに基づいて判定される血液透析時期など表示する。なお、表示部54には液晶パネルではなく他の表示装置を用いてもよい。
【0024】
装置本体12の内部には、各種演算や変換などを制御するCPU(central processing unit)、CPUを動作させるプログラムその他を記憶するメモリを備え(図示省略)、装置本体12の外周部には各種操作や入力を行うためのボタンスイッチ14がそれぞれ設けられている。
【0025】
一方、脈波検出部60は、図1(B)に示すように、脈波検出プローブ61と、その両側に配置された2つのアース電極63,63を有する。この脈波検出部60は、指サック形状のセンサ固定用バンド(装着保持部材)62によって遮光されながら、被験者の人差し指の根本付近に装着される。このように、脈波検出部60を指の根本付近に装着すると、ケーブル58が短くて済むので、装着しても邪魔にならない。また、指の根元付近は指先に比べると気温による血流量の変化が少ないため、検出した脈波波形に対する気温などの影響が比較的少ない。
【0026】
(脈波検出部)
脈波検出プローブ61は、例えば図2に示すように、アース電極63により接地された発光素子例えばLED64、受光素子例えばフォトトランジスタ65を含み、非侵襲的すなわち皮膚を破ることなく末梢における脈波を検出できるように構成されている。この脈波検出プローブ61は、脈波波形が血流量の変動波形(容積脈波波形)とほぼ同様の波形となることを利用し、毛細血管網に対する光照射と、毛細血管内の血液による反射光量の変動または透過光量の変動の検出とを行うように形成された光センサを用いて脈波(容積脈波)を検出する。
【0027】
さらに具体的には、脈波検出プローブ61は、スイッチSWがオン状態となり、電源電圧が印加されると、LED64から光が照射される。この照射光は、被験者の血管や組織によって反射した後に、フォトトランジスタ65によって受光される。したがって、フォトトランジスタ65の光電流を電圧に変換したものが、脈波検出部60の信号PTGとして出力される。
【0028】
図3は、脈波検出プローブ61と2つのアース電極63,63の配置を説明するための平面図である。2つのアース電極63,63は、発光素子64及び受光素子65を含む脈波検出プローブ61を挟んだ両側にて、脈波検出プローブ61に接近し、かつ、脈波検出プローブ61から常に一定距離だけ離れた位置に生体アース電極63,63が配置されている。あるいは、発光素子64及び受光素子65を囲むようにガードリング形状のアース電極としても良い。ここで、脈波はアース電位を基準電位として検出される。このため、検出部位の近くの一定距離の位置にて生体アース電位を設定することで、従来のように検出部位と離れたり、あるいは設定の都度に検出部位からの距離が異なるもの比較して、アース電極の電位が不安定になることはない。
【0029】
ここで、図1(A)(B)に示すセンサ固定用バンド(装着保持部材)62は、導電性部材により形成され、かつ、2つのアース電極63,63と電気的に接続されている。このように、脈波検出プローブ61を覆うセンサ固定バンド62は、アース電極63,63に接続されているので、脈波検出プローブ61への外乱ノイズの侵入を防止するシールド部材として兼用することができる。
【0030】
以上の構成から、脈波検出プローブ61にて検出される脈波のS/Nが向上する。
【0031】
LED64の発光波長は、血液中のヘモグロビンの吸収波長ピーク付近に選ばれる。このため、受光レベルは血流量に応じて変化する。したがって、受光レベルを検出することによって、脈波波形が検出されることとなる。例えば、LED64としては、InGaN系(インジウム−ガリウム−窒素系)の青色LEDが好適である。このLEDの発光スペクトルは、450nm付近を発光ピークとし、その発光波長域は、350nmから600nmまでの範囲とすることができる。
【0032】
このような発光特性を有するLEDに対応するフォトトランジスタ65として、本実施形態においては、例えばGaAsP系(ガリウム−砒素−リン系)のものを用いることができる。このフォトトランジスタ65の受光波長領域は、主要感度領域が300nmから600nmまでの範囲とし、300nm以下にも感度領域があるものとすることができる。
【0033】
このような青色LED64とフォトトランジスタ65とを組み合わせると、その重なり領域である300nmから600nmまでの波長領域において、脈波を検出することができ、以下のような利点がある。
【0034】
まず、外光に含まれる光のうち、波長領域が700nm以下の光は、指の組織を透過しにくい傾向があるため、外光がセンサ固定用バンドで覆われていない指の部分に照射されても、指の組織を介してフォトトランジスタ65まで到達せず、検出に影響を与えない波長領域の光のみがフォトトランジスタ65に達する。一方、300nmより長い波長領域の光は、皮膚表面でほとんど吸収されるので、受光波長領域を700nm以下としても、実質的な受光波長領域は、300nm〜700nmとなる。したがって、指を大掛かりに覆わなくとも、外光の影響を抑圧することができる。また、血液中のヘモグロビンは、波長が300nmから700nmまでの光に対する吸光係数が大きく、波長が880nmの光に対する吸光係数に比して数倍〜約100倍以上大きい。したがって、この例のように、ヘモグロビンの吸光特性に合わせて、吸光特性が大きい波長領域(300nmから700nm)の光を検出光として用いると、その検出値は、血量変化に応じて感度よく変化するので、血量変化に基づく脈波波形のSN比を高めることができる。
【0035】
このように、脈波検出部60は、血流量に対応して変化する脈波すなわち容積脈波を、皮膚付近に存在する毛細血管網における赤血球量の変動としてとらえ、皮膚に照射した光の透過量または反射量の変動として検出することができるため、センサを末梢動脈例えば橈骨動脈や側指動脈の位置に合わせることなく検出することができる。したがって、脈波検出部60は、皮膚付近に存在する毛細血管における赤血球量の変動を、末梢動脈における脈波(容積脈波)として安定して検出することが可能である。
【0036】
(基本機能ブロック構成及び低域遮断部)
図4は、実施形態に係る脈波検出装置10の機能ブロック図である。図4では、脈波検出装置10は、上述した脈波検出部60の他、低域遮断部70、指標抽出部80及び告知部90を有する。低域遮断部80は必ずしも必須の構成ではない。この脈波検出装置10を装着した被験者は、安静状態あるいは少なくとも静止状態のときに血液透析時期を判定することが好ましい。しかし、安静状態または静止状態といえども、検出される脈波には、被験者の自律神経系機能の活動に伴う変動(血管の動きは除く)に起因した低域周波数成分、あるいは静止状態を維持する間の被験者の体の揺らぎ(体動)に起因した低周波数成分が重畳する。これらも、脈波を検出する際のノイズとなる。このノイズを低域遮断部70にて除去することで、検出精度がさらに高められる。この低域遮断部70の詳細については後述する。
【0037】
(脈波波形及び指標抽出部)
図5は、動脈例えば橈骨動脈における典型的な脈波波形を示す特性図である。図5に示す一周期分の脈波は、脈波のうちの一周期の最初の立ち上がり点P0、駆出波(Ejection Wave)P1、退潮波(Tidal Wave)P2、切痕(Dicrotic Notch)P3、切痕波(Dicrotic Wave)P4の各ピークを有している。
【0038】
図3の指標抽出部80は、指標P0〜P4のうちのいずれかの波高あるいは波高比率等に基づいて指標を抽出するものである。
【0039】
指標抽出部70は、図5に示す脈波から指標を抽出しても良いが、脈波の二次微分波形に基づいて指標を抽出しても良い。二次微分波形には、図5に示す脈波の特徴がより顕在化されるからである。従って、図6に示すように、図4に示す基本機能ブロックの構成に加えて一次微分部100と二次微分部110とをさらに設けることができる。
【0040】
図7(A)は脈波検出部60にて検出された脈波(あるいは低域遮断部70にて低域周波数成分が除去された脈波)の原波形PTGの波形図である。図7(B)は、原波形PTGが一次微分部100にて微分された一次微分波形FDPTG(速度波形)の波形図である。図7(C)は、一次微分波形FDPTGが二次微分部110にて微分された二次微分波形SDPTG(加速度波形)の波形図である。二次微分波形SDPTGは、図8に示すように、原波形PTGより明確な5つの変極点を有し、その波高値をそれぞれa〜eとする。
【0041】
ここで、波高値aは脈波のうちの一周期の最初の立ち上がり点P0に相当し、波高値bは駆出波P1に相当し、波高値cは退潮波P2に相当し、波高値dは切痕P3に相当し、波高値eは切痕波P4に相当する。指標抽出部80は、波高値a〜波高値dのいずれか、あるいはそれらの波高比率などを指標として抽出することができる。
【0042】
(低域遮断部)
次に、検出精度をさらに高めるための低域遮断部70について説明しておく。
【0043】
低域遮断部70は、脈波検出部60にて検出された脈波から、自律神経系機能の活動に伴う変動(血管の動きは除く)に起因した低域周波数成分を除去するものである。この低域周波数成分は、心臓の伸収縮に基づき大動脈から末梢血管に血液が流れることで生ずる純粋な脈波の周波数成分ではなく、純粋な脈波中の周波数成分よりも低域の周波数成分である。この低域周波数成分が脈波中に重畳するノイズとなるので、このノイズを除去することで、安定して脈波を検出できる。
【0044】
低域遮断部70は、被験者の静止時の体動に起因した低域周波数成分をさらに除去することができる。被験者は、静止した状態であったとしても、その静止状態を維持するため等により体の揺らぎ(体動)がある。この体動は、意識的に手足を速く動かした時のようなものでなく、比較的ゆったりとした動きである。よって、この体動に起因して脈波に低域周波数成分が重畳し、これもノイズとなるので除去している。
【0045】
低域遮断部70は、自律神経系機能の活動に伴う変動(血管の動きは除く)及び体動に起因した低域周波数成分を除去するためには、低域遮断周波数を0.4〜0.5Hzの範囲中の値に設定することが好ましい。この低域遮断周波数未満の低域周波数成分には脈波固有の特徴は含まれてなく、これらはノイズとなるからである。自律神経系機能に伴う変動として、交換神経系機能及び副交換神経系機能の活動に伴う変動がある。交換神経系機能の活動に伴う変動に起因した低域周波数成分として、例えば10秒に1回程度に生ずる筋ポンプ機能の変動等に起因した低域周波数成分(例えば0.1Hz程度)を挙げることができる。副交感神経系機能の活動に伴う変動に起因した低域周波数成分として、例えば呼吸運動に起因した低域周波数成分(例えば0.15Hz程度)を挙げることができる。
【0046】
低域遮断部70は、上述の低域遮断周波数の他に、高域遮断周波数が例えば16〜30Hzの範囲中の値に設定されたバンドパスフィルタにて構成してもよい。これにより、低域周波数成分に加えて、高域遮断周波数を越える無駄な高域成分も除去できる。高域遮断周波数は、余裕を見ても30Hzとすれば十分であり、高域遮断周波数を20Hz、あるいは16Hzとしてもよい。
【0047】
(具体的構成例1)
図9は、図6の機能ブロックのうちの脈波検出部60から二次微分部110までをより具体的に示すブロック図であり、図10は低域遮断部の回路図である。図9に示すように、構成例1は、脈波検出部60、アナログ微分回路120、量子化部130及び二次微分部110を有する。アナログ微分回路120は、図6に示す低域遮断部70及び一次微分部100の機能に加えて高域遮断部の機能も兼ね備えている。換言すれば、このアナログ微分回路120は、バンドパス機能を備えている。これに代えて、アナログ微分回路120が、ハイパス機能を備えるものであっても良い。いずれの場合も、0.4〜0.5Hzの遮断周波数未満の低域周波数成分を遮断できるからである。
【0048】
このアナログ微積分回路120は、例えば図10に示すように、オペアンプ122の正入力端子、負入力端子及び負帰還経路に所定の定数を有する素子C1〜C3及びR1,R2を備えて構成できる。これらの素子の定数の設定により、このアナログ微分回路120は、0.4〜30Hz、0.4〜20Hzあるいは0.4〜16Hzなどの帯域の周波数成分を通過させるバンドパス機能を備えることができる。いずれの場合も、低域遮断周波数は0.4〜0.5Hzである。
【0049】
量子化部130は、アナログ微分回路120からのアナログ信号を量子化して、図11(A)に示すようなデジタル信号に変換するアナログ−デジタル変換器である。量子化の手法は、公知の種々の手法を採用できる。例えば、図2及び図10に示すスイッチSWにて発光素子64を点滅させた場合、そのスイッチングにより出力波形は標本化されているので、スイッチング周期と同じサンプリングレートでサンプリングすればよい。このとき、量子化部130はAGC(オート・ゲイン・コントロール)機能により、出力振幅をダイナミックレンジの範囲内で一定レベル以上となるように増幅させると良い。脈波検出部60の発光素子64と受光素子65との間の光伝達経路には、被験者の皮膚内の血管床が存在する。このため、脈波検出部60の出力信号を、ダイナミックレンジの範囲内で適切に増幅する必要があるからである。
【0050】
図9に示す二次微分部110は、量子化微分部であり、図11(A)の時間軸上で隣り合う2つの離散値の変化量(傾き)を得るものである。具体的には、図12に示すように、スイッチ112によって交互にデータが記憶される第1,第2の記憶部114,116と、第1,第2の記憶部114,116からのデータ同士の差分をとるデジタル減算器128とで構成できる。図11(A)に示すデータの変化量である二次微分波形は図11(B)に示す通りとなる。
【0051】
(実験例)
被験者A〜Cの3名について、アナログ微分回路120のバンドパス特性を異ならせて、原波形PTG、一次微分波形FDPTG及び二次微分波形SDPTGを収集してみた。バンドパス帯域として、高域遮断周波数は16Hzで共通させたが、低域遮断周波数は、0.1Hz(比較例1)、0.2Hz(比較例2)、0.43Hz(実施例1)、0.6Hz(比較例3)と異ならせた。
【0052】
こうして検出された各二次微分波形SDPTGのそれぞれについて、指標−b/aを算出して見た。なお、指標−b/aは、上述したように個々の被験者の血管中水分量に依存して変化すると共に、図15に示すように被験者の年齢と正相関を有するものである。上記の測定の結果、被験者Aについての実施例1に示す二次微分波形SDPTGの指標−b/a(=1.12)が、被験者Aの年齢に最も相応しい値であることが確認できた。
【0053】
被験者Aより年齢が高い被験者Bと、被験者Aよりも年齢が低い被験者Cについても同様に測定した。実施例1にて測定した被験者Bの指標−b/a=1.18であり、同じく被験者Cの指標−b/a=0.89であり、被験者Cの年齢<被験者Aの年齢<被験者Bの年齢の相関と、被験者Cの指標(0.89)<被験者Aの指標(1.12)<被験者Bの指標(1.18)の相関は、年齢順に一致した。これにより、バンドパス特性の低域遮断周波数は、比較例1〜3と対比すると、実施例1の低域遮断周波数0.43Hzが最適であることが分かった。このように、低域遮断周波数は0.4〜0.5Hzが最適であり、比較例1〜3のように、その低域遮断周波数より低く過ぎても(0.1Hz,0.2Hz)高過ぎても(0.6Hz)好ましくない。
【0054】
(具体的構成2)
図13は、脈波検出部60と低域遮断部70との間に量子化部130を設けた変形例を示している。量子化部130の機能は図9と同じである。同様に、一次・二次微分部100,110の機能は、図9に示す二次微分部110と同じである。なお、一次・二次微分部100,110のいずれか一方を、アナログ微分回路とすることも可能である。
【0055】
図13に示す低域遮断部70は、図14に示すように、量子化データをフーリエ変換するフーリエ変換部72と、低域遮断周波数未満の周波数スペクトルを除去するデジタルフィルタ74と、前記デジタルフィルタの出力を逆フーリエ変換する逆フーリエ変換部76とを有する。フーリエ変換により得られた周波数スペクトルのうち、所定遮断周波数未満の周波数スペクトルをデジタルフィルタで除去することで、低域周波数成分を除去できる。
【0056】
この他、低域遮断部70までをアナログ信号処理とし、低域遮断部70と一次微分回路100との間に量子化部130を設け、一次・二次微分部100,110をデジタル微分回路として構成しても良い。
【0057】
(脈波検出部位の変形例)
上述した実施形態では、脈波検出部位を指に設定したが、他の部位例えば手首あるいは耳の橈骨動脈などであっても良い。
【0058】
図16に示す脈波検出装置200は、図1(A)と同様に腕時計状の構造を有する装置本体210と、装置本体210を被験者の手首に装着するためのリストバンド212とを有する。図16には、図3に示す脈波検出部60は図示されていないが、リストバンド212の内側に配置されている。そして、このリストバンド212を脈波検出部60の装着保持部材として兼用している。このため、リストバンド212は導電性部材にて形成され、図3の2つのアース電極63,63と接続される。これにより、図16のリストバンド212は図1(B)のセンサ固定バンド62と同様に機能させることができる。
【0059】
なお、装置本体210は電池(図示せず)を内蔵している。この電池の基準電位線は、装置本体210の筐体に接続することができる。また、この筐体はリストバンド212と電気的に接続されることで、アース電極と同電位に設定することができる。
【0060】
<第2の実施形態>
次に、本発明を生体電位検出装置に適用した実施形態について説明する。この生体電位検出装置の一例として、心電図(Electrocardiogram)測定装置を挙げることができる。この心電図測定装置は、心臓活動電流を心電計によって図形記録するために、心電位を検出するための電極が必要である。
【0061】
図17は、本実施形態に係る心電図測定装置の信号電位検出部300を示している。この信号電位検出部300は、被験者の検出部位302に接触して配置される生体電位検出電極310と、生体電位検出電極310に接続される信号電位取出ケーブル320と、信号電位取出ケーブルの周囲に電気的に絶縁されて配置されるシールドケーブル330と、シールドケーブル330の端部に電気的に接続されて、検出部位302と非接触となるように配置され、生体電位検出電極310を覆うシールド用筒部340とを有する。生体電位検出電極310は、被験者の検出部位302に接触して配置される電極部312と、その電極部312に接続された端子314とを含む。信号電位取出ケーブル320は、生体電位検出電極310の端子312と着脱可能に接続され例えば嵌合する嵌合部322を有する。
【0062】
生体電位検出電極310を検出部位302に設置するには、信号電位取出ケーブル320、シールドケーブル330及びシールド用筒部340を生体電位検出電極310とは切り離す。よって、生体電位検出電極310単体で検出部位302に設置できる。生体電位検出電極310は、電極部312を検出部位302に固定するために、絶縁性粘着層316を有する絶縁テープ318を用いることができる。
【0063】
この構成によれば、生体電位検出電極310を覆ったシールド用筒部340により、外乱ノイズが生体電位検出電極310に入ることを低減できる。また、信号取出ケーブル320はシールドケーブル330により覆われているので、信号取出ケーブル330にも外乱ノイズが入ることを防止でき、S/Nが向上する。
【0064】
なお、図17に示す電極は一つの活用電極を用いるモノポール法に用いられるものであるが、二つの活用電極を用いるバイポーラ法に用いる電極にも適用できる。
【0065】
また、この生体電位検出装置としては、心電図を測定するものに限らず、筋電図(Elecromyogram)を測定する筋電図測定装置にも同様に適用できる。筋電図測定装置は、筋が収縮、緊張する際に発生する活動電位を記録したもので、心電図測定装置と同様な表面電極(皮膚電極)が用いられるからである。筋電図測定装置にもモノポール法とバイポーラ法があるが、本発明はさその双方に適用することができる。
【0066】
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。例えば、装着保持部材である図1(B)のセンサ固定バンド62や図16のリストバンド212などは、長時間装着しても検出部位が蒸れないように、通気性を確保してもよく、例えばメッシュ形状としても良い。装着保持部材により脈波検出部60の遮光を行う場合には、通気部の位置を工夫して、発光・受光素子に外光が入らないようにすればよい。
【図面の簡単な説明】
【図1】図1(A)、図1(B)及び図1(C)は、本発明の第1の実施形態に係る脈波検出装置の外観図である。
【図2】図1に示す脈波検出部の回路構成の一例を示す回路図である。
【図3】図1(B)に示す脈波検出プローブと2つの生体アース電極とを示す平面図である。
【図4】本発明の実施形態の基本機能ブロック図である。
【図5】脈波検出部にて検出された脈波の1拍分の波形図である。
【図6】図3の基本機能ブロックに一次・二次微分部を付加した機能ブロック図である。
【図7】図7(A)は検出された脈波の原波形、図7(B)は図7(A)の一次微分波形、図7(C)は図7(A)の二次微分波形をそれぞれ示す波形図である。
【図8】二次微分波形の特徴を説明するための概略説明図である。
【図9】低域遮断回路以降の回路の具体的構成1を示すブロック図である。
【図10】図9中のアナログ微分回路の回路図である。
【図11】図11(A)は量子化波形を示し、図11(B)はその微分波形を示す波形図である。
【図12】図9に示す二次微分部の構成例を示すブロック図である。
【図13】低域遮断回路以降の回路の具体的構成2を示すブロック図である。
【図14】図13中の低域遮断部の回路図である。
【図15】指標(−b/a)と被験者の年齢との相関を示す特性図である。
【図16】脈波検出部位を手首とした脈波検出装置の外観図である。
【図17】本発明の第2の実施形態に係る生体電位検出装置の信号検出部の概略断面図である。
【符号の説明】
10 脈波検出装置
60 脈波検出部
61 脈波検出プローブ
62 センサ固定用バンド(装着保持部材)
63 生体アース電極
64 発光素子
65 受光素子
70 低域遮断部
72 フーリエ変換部
74 デジタルフィルタ
76 逆フーリエ変換部
80 指標抽出部
90 告知部
100 一次微分部
110 二次微分部
112 スイッチ
114,116 第1,第2の記憶部
118 デジタル減算器
120 アナログ微分回路(低域遮断部+一次微分回路+高域遮断部)
122 オペアンプ
130 量子化部
200 脈波検出装置
210 装置本体
212 リストバンド(装着保持部材)
300 信号電位検出部
302 検出部位
310 信号電位検出電極
312 電極部
314 端子
316 粘着層
318 絶縁テープ
320 信号取出ケーブル
322 嵌合部
330 シールドケーブル
340 シールド筒部
PTG 原波形
FDPTG 一次微分波形
SDPTG 二次微分波形

Claims (12)

  1. 非侵襲的に末梢における脈波を検出する脈波検出装置において、
    被験者の脈波検出部位に接触されて被験者の脈波を検出する脈波検出プローブと、
    被験者の前記脈波検出部位と隣接する部位に接触されて生体アースをとる少なくとも一つの生体アース電極と、
    前記脈波検出プローブ及び前記生体アース電極を覆って配置され、前記脈波検出プローブ及び前記生体アース電極を被験者に装着させる装着保持部材と、
    を有し、
    前記装着保持部材は、導電性部材にて形成され、かつ、前記生体アース電極に接続されている脈波検出装置。
  2. 請求項1において、
    前記脈波検出プローブは、発光素子と受光素子とを含み、
    前記生体アース電極は、前記発光素子及び受光素子を挟んだ両側にそれぞれ配置されている脈波検出装置。
  3. 請求項1において、
    前記脈波検出プローブは、発光素子と受光素子とを含み、
    前記生体アース電極は、前記発光素子及び受光素子を囲んで配置されている脈波検出装置。
  4. 請求項1乃至3のいずりれかにおいて、
    前記脈波検出部位は、指の橈骨動脈と対応する部位であり、
    前記装着保持部材は、指に挿入される筒型の指サック形状に形成されている脈波検出装置。
  5. 請求項1乃至3のいずれかにおいて、
    前記脈波検出部位は、手首の橈骨動脈と対応する部位であり、
    前記装着保持部材は、手首に巻回して保持されるリストバンドの形状に形成されている脈波検出装置。
  6. 請求項5において、
    前記リストバンドに電池を内蔵する筐体が設けられ、前記電池の基準電位線と前記筐体とが接続され、かつ、前記筐体がリストバンドに接続されている脈波検出装置。
  7. 請求項1乃至6のいずれかにおいて、
    前記装着保持部材は、導電体のメッシュにて形成されている脈波検出装置。
  8. 被験者の検出部位に接触して配置される生体電位検出電極と、
    前記生体電位検出電極に接続される信号電位取出ケーブルと、
    前記信号電位取出ケーブルの周囲に電気的に絶縁されて配置されるシールドケーブルと、
    前記シールドケーブルの端部に電気的に接続されて、前記検出部位と非接触となるように配置され、前記生体電位検出電極を覆うシールド用筒部と、
    を有する生体電位検出装置。
  9. 請求項8において、
    前記生体電位検出電極は、被験者の検出部位に接触して配置される電極部と、前記電極部に接続された端子とを含み、
    前記信号電位取出ケーブルは、前記生体電位検出電極の前記端子と着脱可能に接続される生体電位検出装置。
  10. 請求項8または9において、
    取り出される生体電位信号が不活性な部位に接触される生体アース電極をさらに有し、
    前記シールドケーブルは前記生体アース電極に接続されている生体電位検出装置。
  11. 請求項8乃至10のいずれかにおいて、
    前記信号電位取出ケーブルは、心電位を取り出すものである生体電位検出装置。
  12. 請求項8乃至10のいずれかにおいて、
    前記信号電位取出ケーブルは、筋電位を取り出すものである生体電位検出装置。
JP2002203995A 2002-07-12 2002-07-12 脈波検出装置及び生体電位検出装置 Withdrawn JP2004041482A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203995A JP2004041482A (ja) 2002-07-12 2002-07-12 脈波検出装置及び生体電位検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203995A JP2004041482A (ja) 2002-07-12 2002-07-12 脈波検出装置及び生体電位検出装置

Publications (1)

Publication Number Publication Date
JP2004041482A true JP2004041482A (ja) 2004-02-12

Family

ID=31709713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203995A Withdrawn JP2004041482A (ja) 2002-07-12 2002-07-12 脈波検出装置及び生体電位検出装置

Country Status (1)

Country Link
JP (1) JP2004041482A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004006769A1 (ja) * 2002-07-12 2005-11-10 セイコーエプソン株式会社 血液中水分量検出装置及び血液透析時期判定装置
JP2006102261A (ja) * 2004-10-06 2006-04-20 Nippon Telegr & Teleph Corp <Ntt> 光電式血圧計
JP2006141678A (ja) * 2004-11-19 2006-06-08 Seiko Instruments Inc 血液レオロジー測定装置
KR100859981B1 (ko) 2007-01-19 2008-09-25 삼성전자주식회사 광용적맥파 측정 센서
JP2008245943A (ja) * 2007-03-30 2008-10-16 Citizen Holdings Co Ltd 脈波測定装置
JP2010535574A (ja) * 2007-08-07 2010-11-25 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ 動脈のナンディパルス波形の定量的検出に有用な非侵襲装置「ナンディ・トラジーニ」
WO2017110291A1 (ja) * 2015-12-22 2017-06-29 京セラ株式会社 計測センサ用パッケージおよび計測センサ
CN111093484A (zh) * 2017-09-15 2020-05-01 欧姆龙健康医疗事业株式会社 电极单元、脉波测定单元以及脉波测定装置
JP2020526353A (ja) * 2017-07-21 2020-08-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. ウェアラブルセンサを使用して生理学的パラメタを測定する機器
US11051760B2 (en) 2016-05-09 2021-07-06 Belun Technology Company Limited Wearable device for healthcare and method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004006769A1 (ja) * 2002-07-12 2005-11-10 セイコーエプソン株式会社 血液中水分量検出装置及び血液透析時期判定装置
JP2006102261A (ja) * 2004-10-06 2006-04-20 Nippon Telegr & Teleph Corp <Ntt> 光電式血圧計
JP4574314B2 (ja) * 2004-10-06 2010-11-04 日本電信電話株式会社 光電式血圧計
JP2006141678A (ja) * 2004-11-19 2006-06-08 Seiko Instruments Inc 血液レオロジー測定装置
JP4611001B2 (ja) * 2004-11-19 2011-01-12 セイコーインスツル株式会社 血液レオロジー測定装置
KR100859981B1 (ko) 2007-01-19 2008-09-25 삼성전자주식회사 광용적맥파 측정 센서
JP2008245943A (ja) * 2007-03-30 2008-10-16 Citizen Holdings Co Ltd 脈波測定装置
JP2010535574A (ja) * 2007-08-07 2010-11-25 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ 動脈のナンディパルス波形の定量的検出に有用な非侵襲装置「ナンディ・トラジーニ」
WO2017110291A1 (ja) * 2015-12-22 2017-06-29 京セラ株式会社 計測センサ用パッケージおよび計測センサ
JPWO2017110291A1 (ja) * 2015-12-22 2018-08-16 京セラ株式会社 計測センサ用パッケージおよび計測センサ
US11051760B2 (en) 2016-05-09 2021-07-06 Belun Technology Company Limited Wearable device for healthcare and method thereof
JP2020526353A (ja) * 2017-07-21 2020-08-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. ウェアラブルセンサを使用して生理学的パラメタを測定する機器
US11259709B2 (en) 2017-07-21 2022-03-01 Koninklijke Philips N.V. Apparatus for measuring a physiological parameter using a wearable sensor
CN111093484A (zh) * 2017-09-15 2020-05-01 欧姆龙健康医疗事业株式会社 电极单元、脉波测定单元以及脉波测定装置
CN111093484B (zh) * 2017-09-15 2022-12-20 欧姆龙健康医疗事业株式会社 电极单元、脉波测定单元以及脉波测定装置
US11793414B2 (en) 2017-09-15 2023-10-24 Omron Corporation Electrode unit, pulse wave measurement unit, and pulse wave measurement device

Similar Documents

Publication Publication Date Title
US20220296107A1 (en) Combined physiological sensor systems and methods
US11058339B1 (en) Electrode harness and method of taking biopotential measurements
US20220192513A1 (en) Remote Physiological Monitor
CN105960197B (zh) 健康监视***和方法
ES2559263T3 (es) Dispositivo de mano con capacidad para vigilar la salud
CN105078438B (zh) 脉搏周期检测设备和方法和可穿戴电子设备
US9675250B2 (en) System and method for measurement of vital signs of a human
EP2116183B1 (en) Robust opto-electrical ear located cardiovascular monitoring device
CN110811598A (zh) 腕带式生物信号采集设备及其制作方法
EP3593707B1 (en) System for diagnosing sleep
KR20100083288A (ko) 동잡음 제거를 위한 광전용적맥파 계측용 센서모듈의 형태 및 방법
JP2004041482A (ja) 脈波検出装置及び生体電位検出装置
KR20200001823A (ko) 웨어러블 디바이스를 이용하는 심전도 측정 방법 및 시스템
CN211560089U (zh) 腕带式生物信号采集设备
EP4356822A2 (en) Sleep staging using an in-ear photoplethysmography (ppg)
US20230172499A1 (en) Vital signs or health monitoring systems and methods
CN209966352U (zh) 一种腕带监测器
JP2004275563A (ja) 心弾図モニター装置
KR20200116885A (ko) 웨어러블 디바이스를 이용하는 심전도 측정 방법 및 시스템
Roj et al. Hardware design issues and functional requirements for smart wristband monitor of silent atrial fibrillation
US20240215902A1 (en) Multimodal brain function signal acquisition device and method
EP3241494A1 (en) Device for detecting or monitoring bioelectrical parameters
CN214564819U (zh) 一种座椅及车辆
US20230263409A1 (en) Monitoring device for monitoring of vital signs
JP2004041481A (ja) 携帯型脈波検出装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004