CN1523082A - 合成气处理工艺和催化剂 - Google Patents

合成气处理工艺和催化剂 Download PDF

Info

Publication number
CN1523082A
CN1523082A CNA2004100074302A CN200410007430A CN1523082A CN 1523082 A CN1523082 A CN 1523082A CN A2004100074302 A CNA2004100074302 A CN A2004100074302A CN 200410007430 A CN200410007430 A CN 200410007430A CN 1523082 A CN1523082 A CN 1523082A
Authority
CN
China
Prior art keywords
catalyst
conversion
gas
synthesis gas
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100074302A
Other languages
English (en)
Other versions
CN100350023C (zh
Inventor
N��C��ʩ�µ���
N·C·施奥德特
H���˵�ɭ
P·E·H·尼尔森
P·勒尔曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Publication of CN1523082A publication Critical patent/CN1523082A/zh
Application granted granted Critical
Publication of CN100350023C publication Critical patent/CN100350023C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/688Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1035Catalyst coated on equipment surfaces, e.g. reactor walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1094Promotors or activators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1619Measuring the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1623Adjusting the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1647Controlling the amount of the product
    • C01B2203/1652Measuring the amount of product
    • C01B2203/1657Measuring the amount of product the product being hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1647Controlling the amount of the product
    • C01B2203/1652Measuring the amount of product
    • C01B2203/1661Measuring the amount of product the product being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1671Controlling the composition of the product
    • C01B2203/1676Measuring the composition of the product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Analytical Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Industrial Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种用于提高气体中氢气和/或一氧化碳含量的合成气处理工艺,包括使合成气与含有锰和锆的氧化物的催化剂接触的步骤,其中金属以Mn/Zr摩尔比为0.05-5.00存在。

Description

合成气处理工艺和催化剂
                           技术领域
本发明涉及水煤气变换反应和适于作为水煤气变换催化剂的材料。水煤气变换反应(简称:变换反应)为气相平衡反应:
对任何涉及合成气的工艺,即蒸汽转化、氨合成、氢和还原气的生产等,反应平衡都是至关重要的。
因此,可通过使气流与促进变换反应的催化剂接触而使从蒸汽转化工艺来的排出气富含氢气。
还可以反向方式利用水煤气变换反应,用于通过二氧化碳氢化来生产一氧化碳。通常通过使处理气中的水量最小化和在高温下使水煤气变换反应平衡来实现一氧化碳的生产。
我们的目的在于本发明能在氢气生产和一氧化碳生产方面得到应用。
                           背景技术
变换反应为放热反应并且低温有利于CO转化。因此,只要气体与活性足够的变换催化剂接触,则温度越低,合成气向CO2+H2变换越多。但是,由于变换反应的放热性,通常在至少二个阶段内才使合成气平衡,其中第一个阶段是在比第二个阶段高的温度下工作的。通常的做法是区分为在低温下(通常为180-300℃,低温变换)进行变换反应和在高温下(通常为300-500℃,高温变换)进行变换反应。
目前高温变换选用的催化剂为氧化铁,通常与氧化铬混合使用。但是,这种催化剂存在缺陷,即如果合成气含有与碳含量相比低得多的蒸汽—也就是说,如果氧/碳比低于某一临界值(其为温度的函数),它就形成甲烷。在超过500℃的温度下,总观察到有一些甲烷形成。此外,在500℃及以上,催化剂变质非常快。
本发明的催化剂材料含有氧化锰和氧化锆的微观混合物(Mn-Zr氧化物),可任选地包括其它氧化促进剂和可任选地包括金属促进剂。
本发明的催化剂材料具有对水煤气变换反应非常高的稳定性和极高的选择性(即没有烃形成)的优势,因此能替代或补充传统的铁基催化剂。如果使用铜作为本发明材料的促进剂,那么能显著地提高活性。使用金属银作为Mn-Zr氧化物的促进剂产生类似的效果,尽管提高活性的显著效果较低。
与传统高温水煤气变换催化剂相比,本发明催化剂的另一个优势在于这些材料对其它陶瓷材料以及金属具有超强的附着性能。因此,本发明的催化剂非常适用于催化器具(hardware)的制造,其能在需要水煤气变换活性催化剂的固定和自动装置方面得到应用。
众所周知,氧化锰和氧化锆分别具有一定的催化水煤气变换反应的活性。但非常令人惊奇的是,在这些氧化物之间存在强烈的协同效应。因此,氧化锰和氧化锆的微观混合物的催化活性比任何一种纯氧化物高得多,尤其在气流中短时间后。这在本发明的实施例中得到证明,在450℃的可比条件下,纯氧化锰具有41-42%的转化率,纯氧化锆具有9-11%的转化率,而混合锰-锆氧化物催化剂具有58-60%的转化率。在所有情况下,操作条件下的平衡转化率等于65%。
从同样制备的Mg/Zr和Mn/Ti氧化物具有非常低的活性这一事实来看,氧化锰和氧化锆的协同效应特别令人惊奇。实际上,Mn/Ti氧化物具有甚至比纯氧化锰低的活性(在与上述实施例同样的条件下,转化率为8-16%)。Mg/Zr氧化物具有比纯氧化锆稍高的活性(在与上述实施例同样的条件下,转化率为14-17%),但这是因为氧化镁本身是比氧化锆更有活性的变换反应催化剂的缘故。
此外,混合锰-锆氧化物催化剂具有极高选择性的惊人优势。这在本发明的实施例中得到证明,即使这些材料暴露于干合成气中也不会导致形成任何可察觉量的甲烷。在空速(GHSV)为10000Nl/g/h时,500℃下只形成100ppm甲烷(0.01%),600℃下只形成1000ppm甲烷(0.1%)。实际上,可证实选择性甚至更高,因为在这些条件下,甚至连许多过渡金属的微观杂质都将导致甲烷形成。
                         现有技术描述
在几篇出版物中描述了工业水煤气变换,例如L.Lloyd等人在M.V.Twigg(ed.)“Catalyst Handbook”Manson Publ.,1996中;K.Kochloefl,Ch.3.3在G.Ertl,H.KnÖtzinger and J.Weitkamp(eds.)“Handbook of HeterogeneousCatalysis”第4卷,Wiley-VCH,1997中;和J.R.Rostrup-Nielsen & P.E.Hφjlund-Nielsen在J.Oudar & H.Wise(eds.)“Deactivation and Poisoning ofCatalysts”Marcel Dekker,1985。
对于工业高温水煤气变换,目前使用的催化剂基于铁作为活性金属组分。优选的配方始终为如美国专利US4861745中公开的铁-铬催化剂。在EP0634990B1中,要求了无铬高温变换催化剂,但这些催化剂仍基于铁作为活性金属。在EP062410B1中也提到了铁基催化剂。
从文献中了解到氧化锰与特定其它组分结合的应用。因此,F.M.Gottschalk和G.J.Hutchings在Applied Catalysis 51,127-139(1989)上报道了钴锰氧化物、铜锰氧化物和铁锰氧化物作为水煤气变换催化剂的性能。但是,他们的研究只涉及了这些材料在低于400℃温度下的使用。此外,他们的研究未涉及混合锰-锆氧化物作为水煤气变换催化剂,这是本发明的目的。
由文献从完全不同的方面可了解到混合锰-锆氧化物,即作为NO和NO2脱除吸附剂。在许多论文中都论述过这个课题,I.Matsukuma等人在AppliedCatalysisB 37,107(2002)中,K.Eguchi等人在Applied CatalysisB 16,69(1998)中,K.Eguchi等人在Journal of Catalysis 158,420(1996)中,K.Eguchi等人在Bulletin of the Chemical Society of Japan 68,1739(1995)中。这个领域不涉及水煤气变换反应。
在ZA2001/3424中已声明了各种氧化化合物作为400℃温度以上的水煤气变换反应催化剂。其中就有负载在其它氧化物上的氧化锆和氧化锰。但是,这个专利未涉及混合Mn/Zr氧化物。此外,本发明催化剂的活性远远高于-不损失选择性-上述专利中要求的任何一种催化剂组合物。最后,氧化锰MnO和氧化锆ZrO2之间的协同效应非常惊人,对相对小范围的这些材料的组合物来说,其产生了最佳活性。如本发明实施例证明的,尽管已知MgO在化学和物理性能上类似于MnO,但这种协同效应不因此存在于氧化镁和氧化锆之间。
                           发明内容
本发明的目的正是提供一种用于催化高温下水煤气变换反应且基本没有烃形成的催化剂。
可利用本发明使合成气富含氢气和/或使合成气富含一氧化碳。借助本发明,能通过控制温度和合成气中的蒸汽量来控制氢气和一氧化碳的生产。
在本发明的一般实施方案中,至少50wt%的处于还原态的催化剂由氧化锰和氧化锆组成,其中Mn/Zr比在0.05-5.00之间,更优选在0.05-1.00之间,最优选在0.10-0.80之间。
在本发明的具体实施方案中,还用铜作为催化剂促进剂,其含量以还原催化剂中Cu的重量计在0.1%-8.0%之间,更优选在0.1%-4.0%之间。
在本发明的再一具体实施方案中,催化剂可以呈球形、挤出物、单片或几何体的形式,并可用作为输送待处理的合成气的管壁的涂层。
在本发明的一个具体实施方案中,将催化剂设置在绝热区,在400℃-1000℃温度下操作,更优选在500℃-900℃间。
在本发明的另一具体实施方案中,将催化剂设置在处理气流动方向上的冷却区域内,按照这种方式,入口温度在500℃-1000℃间,更优选在700℃-900℃间,而出口温度在400℃-800℃间,更优选在400℃-700℃间。
                         具体实施方式
以下实施例用来证明锰/锆氧化物催化剂在对水煤气变换反应的活性、选择性和稳定性方面的有益性能。
实施例,一般过程
包括对比催化剂的本发明催化剂A-W的组成列于表7。除也列于表7中的残留的K外,催化剂A-H只包含Mn和Zr金属离子。还包括比较用催化剂I和J。催化剂I包含Mg和Zr,而催化剂J包含Mn和Ti。催化剂K-O包含Zr、Mn离子和另一种形成氧化物的金属,而催化剂Q-V包含Zr、Mn和Cu或Ag中的一种。催化剂P和W为商业水煤气变换催化剂,用于比较。
除非另外指明,所有实施例采用以下过程和工艺参数。
在埋置于自通风炉的衬铜管式反应器(外径9.53mm,内径4.6mm)内,以固定床方式布置1.00g催化剂。装载的催化剂为粒度为0.71-0.85mm的颗粒形式。进入反应器前,在200℃温度和选定的反应压力下混合干气和蒸汽。反应压力通常为25barg。反应器的大小容许气体在达到催化剂前进一步被加热到所需温度。通过反应器上在催化剂床中心外面的热电偶从外部控制和监测温度。在催化剂区后部位置冷却排出气,并减压到环境条件。在分离器内冷凝排出气中的水,同时借助BINOS红外传感器连续分析剩余干气中的CO和CO2,从而监测催化剂在加热和冷却过程中对气体组成的影响。从大约200℃开始,以4℃min-1的速度升高反应器的温度,直到达到通常500℃的温度T停留。在这个加热阶段,利用干排出气中CO的含量(借助BINOS装置连续测量)来得到CO转化率对温度的函数。通过气相色谱(GC)在允许测量CO、CO2、H2、CH4、高级烃和Ar的停留温度下定期分析干排出气。使用Ar作为内标物。根据GC数据和冷凝水重量计算的质量平衡(C、H和O)准确到±5%。
以通常10.0Nl h-1的速度引入组成为74.4%H2、12.6%CO、10.0%CO2、3.0%Ar的干原料气,同时以通常4.25g h-1的速度供给与蒸汽/干气比为0.53-0.54相当的水。
将催化剂于停留温度下停留在气流中12-24小时。当还在气流中时,将反应器冷却到200-300℃,并为了测定废催化剂的活性再次加热到T停留。有时,要反复冷却和加热催化剂。
表1-3列出了在四个不同温度下观察到的各种催化剂的CO转化率。在各种情况下都包括了由平衡组成所规定的最大转化率。
实施例1
根据上面的一般过程测试催化剂A。
在第一加热阶段,400℃时的CO转化率为6%,在此温度下的最大转化率为79%(表1中记作6(79))。在425℃、450℃和475℃时,观测到转化率(平衡转化率)分别为11(79)%、20(69)%和30(63)%。使温度稳定并定期用GC分析排出气。在500℃时,1小时内得到的第一次GC分析证实了气体中H2、CO和CO2的平衡组成,而且表明没有烃形成。气流经19小时后,仍发现排出气处于平衡态且不含烃。降低温度到220℃,并再以4℃/min的速度升高。得到400℃、425℃、450℃和475℃时的转化率分别为10(79)%、21(79)%、36(69)%和49(63)%。
实施例2-6
按照实施例1中描述的过程测试催化剂B、C、D、E和F。结果示于表1。还是用这些催化剂,在500℃时维持了平衡转化率,而且未观测到烃形成。
这些实施例证明了Mn/Zr比变化的影响。当同时考虑活性和稳定性时,催化剂C和D是最优选的。
实施例7-10(对比例)
按照实施例1中描述的过程测试催化剂G、H、I和J,结果示于表1。
催化剂G为纯氧化锆,催化剂H为纯氧化锰。催化剂I为Mg/Zr比为0.38的混合镁-锆氧化物;即组成同催化剂C,但是用镁取代了锰。类似地,催化剂J为Mn/Ti比为0.38的混合锰-钛氧化物。从而,在这种催化剂中钛取代了锆。
非常惊奇地发现,与催化剂C和其它混合Mn/Zr氧化物相比,这些对比催化剂均只有非常小的活性。
实施例11
按照实施例1中描述的过程测试催化剂E,除了差别在于T停留为650℃。如所预料的,初始转化率非常接近于催化剂E的前面测试(实施例5);差异则是由于试验的不确定性。由于较高的T停留值,气流经过21小时后的转化率比实施例5的转化率低。
实施例12
按照实施例1所描述的测试催化剂D,除了差别在于在2barg-25barg之间改变总压。结果示于表1。
这个实施例用于证明可在宽范围工作压力内使用这些催化剂。
实施例13-17
催化剂K、L、M、N和O均包含附加的氧化促进剂;见表7。按照试验1中所描述的测试催化剂。为了测定活性损失,反复将催化剂K加热到500℃并冷却。
结果列于表2。发现可通过氧化促进剂如钇、铌和其它促进剂的添加来改善因催化剂老化引起的相对活性损失。
实施例18
除了以下差别,按照实施例1中描述的同样方式测试催化剂K。将数量为0.15g的催化剂和粒度与催化剂相同、数量为0.85g的僵烧氧化铝颗粒混合。氧化铝的表面积为6m2/g,并注意到氧化铝本身在低于600℃时没有可测的活性。干气流量为11Nl/h,而蒸汽/干气比为0.35。在3bara压力下将催化剂加热到600℃的温度,并在这些条件下于气流中保持137小时,同时定期测定CO转化率。结果示于表3。
考虑到温度非常高,活性损失是惊人地缓和。此外,在气流中大约60小时后,催化剂失活似乎停止。
实施例19
如实施例18所描述地实施这个实施例,差别在于温度为550℃。
实施例20-23
这些实施例用来证明混合Mn-Zr氧化物变换催化催化剂极高的选择性。
按照实施例1中描述的同样方式测试催化剂D、E和B,除了改变蒸汽/干气比和操作温度T停留。实施例20和21证明引入阶段后的甲烷形成低于15ppm的检测极限。在这些高温度下,使用传统的铁基高温变换催化剂时,甲烷产量是非常大的;见对比例C22。
在实施例23中(见表4A),于干合成气中在500℃、550℃和最后在600℃下测试催化剂B,普通的铁基催化剂将导致过量烃形成。但是,使用Mn-Zr催化剂,即使在这些条件下,烃形成也非常少。这个实施例形成了本发明第二个可能的应用,即一氧化碳生产工艺的基础。在所有三个温度下,发现CO2转化率接***衡。
实施例24-30
按照实施例1所描述地实现这些实施例。催化剂Q-S包含不同浓度的铜作为金属促进剂组分,而催化剂T-V包含银。
表5中给出的结果清楚地证明了本发明Mn-Zr催化剂中添加银尤其是铜的有益效果。使用催化剂Q-V在任何时候都未观测到甲烷形成。
实施例31-34
这些实施例用来证明,与商业Cu-Zn-Al型低温水煤气变换催化剂相比,Cu作促进剂的Mn-Zr氧化物催化剂的耐氧性能提高。按照以下方法进行试验。反应器设定与前面的实施例相同。用具有同样颗粒粒度的0.5g惰性氧化铝和0.5g催化剂混合装填入反应器。用合成气使反应器增压到总压力为3bara。在10Nl/h的干合成气中将反应器加热到150℃。然后向工艺气中加入5.3Nl/h蒸汽。在气流中将反应器加热到温度T氧化还原,并在气流中停留1小时。
在这个初始过程后,按照以下过程用交互的发生炉煤气和合成气使催化剂经受多次氧化还原循环。切断工艺气气流并用流量为10Nl/h的干空气替换15分钟。切断空气并用合成气(10.0Nl/h)和蒸汽(5.3Nl/h)替换,同时保持温度在T氧化还原。然后在催化剂S的情况下降低温度到280℃,在商业Cu-Zn-Al氧化物催化剂的情况下降低到200℃,以测定CO转化率。
表6中按照%CO转化率和每次氧化还原循环后的相对CO转化率列出了活性。
比较实施例31和实施例C33,显然,即使操作温度T氧化还原在Cu作促进剂的Mn-Zr氧化物催化剂的情况下比在Cu-Zn-Al催化剂的情况下高80℃,Cu作促进剂的Mn-Zr氧化物催化剂S仍比Cu-Zn-Al氧化物催化剂具有明显小的活性损失。比较实施例32和实施例C34,可看到同样的趋势。
                                        表1
                        不含促进剂的MnO-ZrO2和对比催化剂的活性
实施例  催化剂  Pbarg T停留  Mn/Zr比  TOS小时  %CO转化率400℃(最大%CO转化率) %CO转化率425℃(最大%CO转化率) %CO转化率450℃(最大%CO转化率) %CO转化率475℃(最大%CO转化率)
1  A 25  500  0.06  1  6(79) 11(74) 20(69) 30(63)
25  20  10(79) 21(74) 36(69) 49(63)
2  B 25  500  0.19  1  27(76) 50(71) 60(66) 59(60)
25  16  22(79) 37(74) 57(69) 62(64)
3  C 25  500  0.38  1  54(76) 64(71) 58(65) 58(60)
25  19  34(76) 55(71) 60(65) 57(60)
4  D 25  500  0.44  1  56(76) 64(71) 65(65) 59(60)
25  19  34(76) 50(71) 59(65) 58(60)
5  E 25  500  0.78  1  23(79) 42(74) 60(69) 62(63)
25  16  16(79) 33(74) 50(69) 58(64)
6  F 25  500  2.58  1  31(79) 54(74) 63(69) 61(63)
25  16  10(79) 22(74) 38(69) 54(64)
C7  G 25  500  0.00  1  4(76) 7(71) 11(66) 17(60)
25  19  3(76) 5(71) 9(65) 14(60)
C8  H 25  500  1.00  1  15(76) 25(71) 41(65) 50(60)
25  19  7(76) 19(71) 42(65) 46(60)
C9  I 25  500  Mg-Zr  1  4(76) 9(71) 17(65) 31(60)
25  19  3(76) 7(71) 14(65) 25(60)
C10  J 25  500  Mn-Ti  1  12(76) 15(70) 16(65) 19(60)
25  20  3(75) 5(70) 8(65) 11(59)
11  E 25  650  0.78  1  24(79) 44(74) 60(69) 62(64)
25  21  7(79) 14(74) 24(69) 36(64)
12  D 2  500  0.44  1  23(76) 35(71) 44(65) 50(60)
2  500  23  14(76) 26(71) 35(66) 44(60)
25  500  26  37(76) 56(71) 56(65) 59(60)
5  500  49  22(76) 37(71) 48(66) 53(60)
15  500  56  33(76) 49(71) 57(65) 56(60)
25  500  79  34(76) 53(71) 59(65) 57(60)
                                                    表2
                                        包含氧化促进剂的催化剂的活性
实施例  催化剂  促进剂  蒸汽/干气  TOS小时  %CO转化率400℃(最大%CO转化率) %CO转化率425℃(最大%CO转化率) %CO转化率450℃(最大%CO转化率) %CO转化率475℃(最大%CO转化率)
13  K  Y  0.53  1  47(76) 61(71) 62(65) 57(60)
 0.53  19  37(76) 54(71) 59(65) 55(60)
 0.53  37  28(76) 47(71) 56(66) 55(60)
 0.53  68  30(76) 49(71) 56(65) 55(60)
 0.53  92  28(76) 48(71) 56(65) 56(60)
 0.53  112  27(76) 46(71) 55(65) 56(60)
14  L  Fe  0.53  1  45(76) 59(71) 61(65) 58(60)
 0.53  15  34(76) 51(71) 59(65) 57(60)
15  M  Nb  0.53  1  27(75) 40(70) 51(65) 49(65)
 0.53  39  26(76) 41(70) 51(65) 55(59)
16  N  Cr  0.53  1  51(75) 62(70) 62(65) 58(60)
 0.53  20  37(75) 51(71) 59(65) 58(59)
17  O  Li  0.53  1  45(76) 60(71) 62(65) 58(60)
 0.53  19  18(76) 32(71) 47(65) 53(60)
                                   表3
              高温、低蒸汽含量、高GHSV和低压下催化剂K的活性
实施例  催化剂 蒸汽/干气 T停留(℃) TOS小时 %CO转化率T停留(最大%CO转化率)
18  K  0.35  600  5  35(35)
 0.35  600  11  34(35)
 0.35  600  17  34(35)
 0.35  600  23  33(35)
 0.35  600  29  32(35)
 0.35  600  59  30(35)
 0.35  600  89  29(35)
 0.35  600  99  29(35)
 0.35  600  101  30(35)
 0.35  600  113  29(35)
 0.35  600  125  29(35)
 0.35  600  129  28(35)
 0.35  600  137  29(35)
19  K  0.35  550  3  35(42)
 0.35  550  6  33(42)
 0.35  550  18  30(42)
 0.35  550  38  28(42)
 0.35  550  74  27(42)
                                                     表4
                                                蒸汽含量的变化
实施例  催化剂  Pbarg  T停留  蒸汽/干气  TOS小时  %CO转化率400℃(最大%CO转化率) %CO转化率425℃(最大%CO转化率) %CO转化率450℃(最大%CO转化率) %CO转化率475℃(最大%CO转化率) ppm甲烷T停留
20  D  25  500  0.30  1  36(59) 43(53) 43(46) 39(40) <15
 19  28(60) 40(53) 43(46) 39(40) <15
21  E  25  650  0.54  4  24(79) 44(74) 60(69) 62(64) 210
 21  7(79) 14(74) 24(69) 36(64) <15
C22  P  25  650  0.34  1  54(59) 53(53) 46(46) 39(39) 35000
NM=未测出
表4A
实施例  催化剂  Pbarg  T停留  蒸汽/干气  TOS小时  %COT停留  %CO2T停留  %CO2转化率T停留(最大%CO2转化率) ppm甲烷T停留  ppm乙烷T停留
23  B  25  500  0  1  16.55  5.62  44(45) 100  0
 B  25  550  0  2  17.29  5.02  50(52) 290  20
 B  25  600  0  4  17.81  4.45  56(59) 990  120
                                               表5
                                    Cu和Ag作促进剂的催化剂的活性
实施例  催化剂  促进剂  蒸汽/干气  干气流量(N/h)  催化剂量(g)  T停留  TOS小时  %CO转化率350℃(最大%CO转化率) %CO转化率375℃(最大%CO转化率) %CO转化率400℃(最大%CO转化率)
24  Q  1.1%Cu  0.54  10  1  500  1  74(89) 77(85) 76(81)
 0.54  10  500  19  12(88) 21(85) 34(81)
25  Q  0.54  10  1  400  1  68(88) 74(85) 75(80)
 0.54  10  400  19  60(88) 68(85) 71(80)
26  R  3.7%Cu  0.53  10  1  400  1  85(88) 82(85) 78(80)
 0.54  10  400  19  85(88) 82(85) 78(80)
27  S  7.8%Cu  0.53  10  1  400  1  85(88) 82(85) 78(80)
 0.54  10  400  19  85(88) 82(85) 78(80)
28  S  7.8%Cu  0.53  10  1  400  1  86(88) 82(85) 79(80)
 0.53  10  400  17  85(88) 82(85) 78(80)
 0.53  10  400  89  83(88) 82(85) 77(80)
 0.53  10  400  113  79(88) 81(85) 78(80)
 0.53  10  400  137  75(88) 76(85) 75(80)
29  T  1.2%Ag  0.53  10  1  400  1  14(88) 23(85) 38(80)
 0.53  10  400  19  13(88) 23(85) 38(81)
30  U  4.0%Ag  0.53  10  1  400  1  21(88) 32(85) 46(80)
 0.53  10  400  19  21(88) 32(85) 44(81)
31  V  8.3%Ag  0.53  10  1  400  1  27(88) 41(85) 55(81)
 0.53  10  400  19  27(88) 39(85) 52(80)
 0.53  10  400  37  22(88) 32(85) 45(80)
                                           表6
                            Cu作促进剂的催化剂暴露于空气后的活性
实施例  催化剂 促进剂  T氧化还原  氧化还原循环次数  %CO转化率200℃(最大%CO转化率)  %CO转化率280℃(最大%CO转化率) 相对CO转化率
32  S Cu(7.8)  280  1  -  78(93) 100
 280  2  -  73(93) 94
 280  3  -  72(93) 92
 280  4  -  69(93) 88
33  S Cu(7.8)  350  1  -  85(93) 100
 350  2  -  64(93) 75
 350  3  -  61(93) 72
 350  4  -  56(93) 66
C34  W Cu/Zn/Al  200  1  83(98)  - 100
 200  2  70(98)  - 84
 200  3  63(98)  - 76
 200  4  61(98)  - 73
C35  W Cu/Zn/Al  300  1  82(98)  - 100
 300  2  59(98)  - 72
 300  3  52(98)  - 63
 300  4  47(98)  - 57
 300  5  44(98)  - 54
                                  表7
                               催化剂组成
 催化剂  %Mn  %Zr  M′ %M′  碱  %碱
 A  2.5  68.8  - -  K  <0.01
 B  6.8  60.5  - -  K  NM
 C  12.6  54.9  - -  K  0.09
 D  14.4  53.8  - -  K  0.01
 E  21.1  44.8  - -  K  NM
 F  41.0  26.4  - -  K  0.01
 G  -  71.5  - -  K  NM
 H  67.5  -  - -  K  NM
 I  -  60.6  Mg 6.2  K  0.19
 J  12.1  -  Ti 44.5  K  NM
 K  11.8  52.3  Y 2.3  K  0.09
 L  13.0  45.1  Fe 2.7  K  0.13
 M  11.6  50.7  Nb 7.4  K  0.04
 N  11.1  53.5  Cr 2.9  K  NM
 O  12.0  55.2  - -  Li  0.60
 P  商业Fe/Cr/Cu高温WGS催化剂
 Q  14.9  45.6  Cu  1.1  K   0.09
 R  11.9  48.3  Cu  3.7  K   0.02
 S  12.4  44.4  Cu  7.8  K   0.21
 T  13.1  47.1  Ag  1.2  K   0.21
U 13.0 45.8 Ag 4.0 K 0.60
 V  12.1  43.2  Ag  8.3  K   0.69
 W 商业Cu/Zn/Al低温WGS催化剂
NM=未测出

Claims (8)

1.一种用于提高气体中氢气和/或一氧化碳含量的合成气处理工艺,包括使合成气与含有锰和锆的氧化物的催化剂接触的步骤,其中金属以Mn/Zr摩尔比为0.05-5.00存在于催化剂中,氧化物占还原态催化剂的至少50wt%。
2.如权利要求1要求的工艺,其中催化剂还包括选自铜、银、金、钯和铂中的金属组分和/或选自周期表中III-VIII族和镧系过渡金属的氧化物的金属氧化物。
3.如权利要求2要求的工艺,其中金属组分为铜。
4.如权利要求2要求的工艺,其中金属氧化物选自钇、钛、钒、铌、铬、铁、铈、镧系元素及其混合物的氧化物。
5.如权利要求1要求的工艺,其中催化剂以负载在置于至少部分合成气输送通道上的几何体上的薄层形式存在。
6.如权利要求1要求的工艺,其中催化剂以负载在至少部分合成气输送通道内壁上的薄层形式存在。
7.如权利要求1要求的工艺,其中催化剂以球、挤出物、块、单片或几何体的形式存在。
8.如任一前述权利要求要求的工艺,其中合成气为选自烃催化蒸汽转化、烃自热蒸汽转化、烃二次蒸汽转化和烃气化、煤气化或能源生产燃料处理中的排出气。
CNB2004100074302A 2003-02-05 2004-02-05 合成气处理工艺和催化剂 Expired - Fee Related CN100350023C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA200300160 2003-02-05
DKPA200300160 2003-02-05

Publications (2)

Publication Number Publication Date
CN1523082A true CN1523082A (zh) 2004-08-25
CN100350023C CN100350023C (zh) 2007-11-21

Family

ID=32605197

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100074302A Expired - Fee Related CN100350023C (zh) 2003-02-05 2004-02-05 合成气处理工艺和催化剂

Country Status (14)

Country Link
US (1) US7090789B2 (zh)
EP (1) EP1445235B1 (zh)
JP (1) JP2004238282A (zh)
KR (1) KR101061441B1 (zh)
CN (1) CN100350023C (zh)
AT (1) ATE548324T1 (zh)
AU (1) AU2004200380B2 (zh)
CA (1) CA2456755C (zh)
ES (1) ES2381105T3 (zh)
MX (1) MXPA04001101A (zh)
NO (1) NO328620B1 (zh)
RU (1) RU2344990C2 (zh)
TW (1) TWI318134B (zh)
ZA (1) ZA200400834B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102256687A (zh) * 2008-12-17 2011-11-23 沙特基础工业公司 增加合成气混合物中一氧化碳含量的方法
CN102812110A (zh) * 2010-03-03 2012-12-05 液化石油公司 重整气化气的方法
CN105408018A (zh) * 2013-06-27 2016-03-16 科莱恩公司 氧化锰稳定的氧化锆催化剂支撑体材料
CN106379899A (zh) * 2016-08-30 2017-02-08 成都赛普瑞兴科技有限公司 一种合成气制取一氧化碳和氢气的方法
CN114349594A (zh) * 2021-12-16 2022-04-15 西安近代化学研究所 一种制备多卤代烃的方法及反应器

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7169376B2 (en) * 2004-06-10 2007-01-30 Chevron U.S.A. Inc. Method for making hydrogen using a gold containing water-gas shift catalyst
KR100836169B1 (ko) * 2007-04-27 2008-06-09 인하대학교 산학협력단 스타이렌 전환을 위한 에틸벤젠의 탈수소화 반응 촉매인티타늄, 망간 및 지르코늄의 복합 산화물 촉매, 이의제조방법 및 이를 이용한 스타이렌 모노머의 제조방법
US8961829B2 (en) 2007-04-27 2015-02-24 Saudi Basic Industries Corporation Catalytic hyrogenation of carbon dioxide into syngas mixture
KR100836168B1 (ko) * 2007-04-27 2008-06-09 인하대학교 산학협력단 스타이렌 전환을 위한 에틸벤젠의 탈수소화 반응 촉매인망간 및 지르코늄의 복합 산화물 촉매, 이의 제조방법 및이를 이용한 스타이렌 모노머의 제조방법
US8119558B2 (en) 2008-03-14 2012-02-21 Süd-Chemie Inc. Ultra high temperature shift catalyst with low methanation
PL2300359T3 (pl) * 2008-07-03 2016-01-29 Haldor Topsoe As Sposób eksploatacji reaktora HTS
US20100292076A1 (en) * 2009-05-18 2010-11-18 Sud-Chemie Inc. Ultra high temperature shift catalyst with low methanation
EP2336083A1 (en) 2009-12-17 2011-06-22 Topsøe Fuel Cell A/S Gas generator and processes for the conversion of a fuel into an oxygen-depleted gas and/or hydrogen-enriched gas
GB2490703B (en) * 2011-05-11 2015-11-18 Chinook End Stage Recycling Ltd Control of gas composition
US8962702B2 (en) 2011-12-08 2015-02-24 Saudi Basic Industries Corporation Mixed oxide based catalyst for the conversion of carbon dioxide to syngas and method of preparation and use
US8551434B1 (en) 2012-06-29 2013-10-08 Saudi Basic Industries Corporation Method of forming a syngas mixture
EP3155070A1 (en) 2014-04-03 2017-04-19 Saudi Basic Industries Corporation Process for converting of methane stream reforming syngas with co2
WO2017036794A1 (en) 2015-08-28 2017-03-09 Haldor Topsøe A/S Induction heating of endothermic reactions
US10633320B2 (en) 2018-01-04 2020-04-28 Gevo, Inc. Upgrading fusel oil mixtures over heterogeneous catalysts to higher value renewable chemicals
AU2019393943B2 (en) 2018-12-03 2022-03-17 Shell Internationale Research Maatschappij B.V. A process and reactor for converting carbon dioxide into carbon monoxide
EP4157790B1 (en) * 2020-06-01 2024-04-10 Shell Internationale Research Maatschappij B.V. A process and reactor for converting carbon dioxide into carbon monoxide, involving a catalyst

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2169961A1 (en) 1972-02-05 1973-09-14 Inst Nawozow Sztucznych Steam reforming of hydrocarbons - using surfaces of reactor heating tubes as catalyst
CA1008667A (en) * 1972-06-30 1977-04-19 Foster Wheeler Corporation Catalytic steam reforming
JPS5265190A (en) 1975-11-25 1977-05-30 Inst Nabozofu Sutsukuzunitsuhi Manufacture of contacttreaction tubes carrying catalyst on wall
JPS5382690A (en) 1976-12-29 1978-07-21 Chiyoda Chem Eng & Constr Co Ltd Improved preparation of synthetic gas for ammonia
GB1578365A (en) * 1977-05-09 1980-11-05 Ici Ltd Hydrogen
ZA848604B (en) * 1983-11-04 1985-06-26 Veg Gasinstituut Nv Process for the production of hydrogen
JPH0657601B2 (ja) 1984-10-17 1994-08-03 日揮株式会社 炭化水素の水蒸気改質法
JPH0722694B2 (ja) 1986-03-18 1995-03-15 株式会社日立製作所 燃料改質器
GB8714539D0 (en) * 1987-06-22 1987-07-29 Ici Plc Catalysts
DK156701C (da) 1987-08-27 1990-01-29 Haldor Topsoe As Fremgangsmaade til gennemfoerelse af heterogene katalytiske kemiske reaktioner
US4861745A (en) * 1988-08-03 1989-08-29 United Catalyst Inc. High temperature shift catalyst and process for its manufacture
JP2662529B2 (ja) * 1989-10-02 1997-10-15 三菱化学エンジニアリング株式会社 無電解めっきによる改質ガス製造装置および方法
DK167864B1 (da) 1990-02-02 1993-12-27 Topsoe Haldor As Fremgangsmaade og reaktorsystem til reforming af carbonhydrider under varmeveksling
JPH05155602A (ja) 1991-12-09 1993-06-22 Sekiyu Sangyo Kasseika Center 薄型水蒸気改質反応器
DK169614B1 (da) 1992-08-13 1994-12-27 Topsoe Haldor As Fremgangsmåde og reaktor til fremstilling af hydrogen- og carbonmonoxidrige gasser
DE4303715A1 (de) * 1993-02-09 1994-08-11 Sued Chemie Ag Chromfreier Katalysator auf Basis Eisenoxid zur Konvertierung von Kohlenmonoxid
US5990040A (en) * 1995-01-11 1999-11-23 United Catalysts Inc. Promoted and stabilized copper oxide and zinc oxide catalyst and preparation
ES2158621T3 (es) 1997-01-22 2001-09-01 Haldor Topsoe As Produccion de gas de sintesis por reformacion al vapor utilizando un hardware catalizado.
EP0947487A1 (en) * 1998-03-31 1999-10-06 Haldor Topsoe A/S Fluorite ceramic material
DK173496B1 (da) * 1998-07-16 2001-01-02 Topsoe Haldor As Fremgangsmåde til fremstilling af syntesegas ved vanddampreformering under anvendelse af en katalyseret metaloverflade
US6540975B2 (en) * 1998-07-27 2003-04-01 Battelle Memorial Institute Method and apparatus for obtaining enhanced production rate of thermal chemical reactions
DK173742B1 (da) * 1998-09-01 2001-08-27 Topsoe Haldor As Fremgangsmåde og reaktorsystem til fremstilling af syntesegas
DE10013894A1 (de) * 2000-03-21 2001-10-04 Dmc2 Degussa Metals Catalysts Verfahren zur katalytischen Umsetzung von Kohlenmonoxid in einem Wasserstoff enthaltenden Gasgemisch mit verbessertem Kaltstartverhalten und Katalysator hierfür
DE10013895A1 (de) * 2000-03-21 2001-10-04 Dmc2 Degussa Metals Catalysts Cerdec Ag Verfahren zur katalytischen Umsetzung von Kohlenmonoxid in einem Wasserstoff enthaltenden Gasgemisch
ES2208490T3 (es) * 2000-04-27 2004-06-16 Haldor Topsoe A/S Procedimiento de produccion de un gas rico en hidrogeno.
DE10111197A1 (de) * 2001-03-08 2002-09-19 Basf Ag Verfahren zur Herstellung von Katalysatoren mit geringem Volumenschwund
US20030186804A1 (en) * 2002-03-28 2003-10-02 Sud-Chemie, Inc. Catalyst for production of hydrogen
JP4022615B2 (ja) 2002-05-01 2007-12-19 独立行政法人産業技術総合研究所 水性ガスシフト反応及びメタノール水蒸気改質反応用触媒
JP4227777B2 (ja) * 2002-08-20 2009-02-18 新日本石油株式会社 水性ガスシフト反応方法、該方法を用いた水素製造装置および燃料電池システム
AU2003301060A1 (en) * 2002-12-20 2004-07-22 Honda Giken Kogyo Kabushiki Kaisha Noble metal-free nickel catalyst formulations for hydrogen generation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102256687A (zh) * 2008-12-17 2011-11-23 沙特基础工业公司 增加合成气混合物中一氧化碳含量的方法
US9249079B2 (en) 2008-12-17 2016-02-02 Saudi Basic Industries Corporation Process for increasing the carbon monoxide content of a syngas mixture
CN105948047A (zh) * 2008-12-17 2016-09-21 沙特基础工业公司 增加合成气混合物中一氧化碳含量的方法
CN102812110A (zh) * 2010-03-03 2012-12-05 液化石油公司 重整气化气的方法
US8936658B2 (en) 2010-03-03 2015-01-20 Neste Oil Oyj Method of reforming gasification gas
CN102812110B (zh) * 2010-03-03 2015-04-22 液化石油公司 重整气化气的方法
CN105408018A (zh) * 2013-06-27 2016-03-16 科莱恩公司 氧化锰稳定的氧化锆催化剂支撑体材料
CN105408018B (zh) * 2013-06-27 2018-02-23 科莱恩公司 氧化锰稳定的氧化锆催化剂支撑体材料
CN106379899A (zh) * 2016-08-30 2017-02-08 成都赛普瑞兴科技有限公司 一种合成气制取一氧化碳和氢气的方法
CN114349594A (zh) * 2021-12-16 2022-04-15 西安近代化学研究所 一种制备多卤代烃的方法及反应器
CN114349594B (zh) * 2021-12-16 2024-02-20 西安近代化学研究所 一种制备多卤代烃的方法及反应器

Also Published As

Publication number Publication date
NO20040474L (no) 2004-08-06
US20040191164A1 (en) 2004-09-30
AU2004200380A1 (en) 2004-08-19
TW200425948A (en) 2004-12-01
EP1445235A3 (en) 2007-03-21
ES2381105T3 (es) 2012-05-23
CA2456755C (en) 2013-09-10
US7090789B2 (en) 2006-08-15
TWI318134B (en) 2009-12-11
EP1445235B1 (en) 2012-03-07
NO328620B1 (no) 2010-04-06
JP2004238282A (ja) 2004-08-26
ATE548324T1 (de) 2012-03-15
CA2456755A1 (en) 2004-11-02
KR101061441B1 (ko) 2011-09-02
EP1445235A2 (en) 2004-08-11
ZA200400834B (en) 2004-08-23
CN100350023C (zh) 2007-11-21
AU2004200380B2 (en) 2009-09-17
RU2344990C2 (ru) 2009-01-27
MXPA04001101A (es) 2004-08-10
KR20040071076A (ko) 2004-08-11
RU2004103043A (ru) 2005-07-10

Similar Documents

Publication Publication Date Title
CN1523082A (zh) 合成气处理工艺和催化剂
Dong et al. Methane reforming over Ni/Ce-ZrO2 catalysts: effect of nickel content
JP5592250B2 (ja) 二酸化炭素の合成ガスへの接触水素化
CN1541139A (zh) 含有钴化合物和载体的催化剂的活化方法
CN1914116A (zh) 甲醇和过氧化物之间的催化反应
CN1762790A (zh) 氢气生产方法
WO2007094457A1 (ja) 液化石油ガス製造用触媒
EP2326407B1 (en) Process
EA024259B1 (ru) Способ риформинга газа, полученного газификацией
JP2009051703A (ja) 水性ガスの製造方法
CN114945535B (zh) 用于石油基液态烃的热中和重整的催化剂和方法
WO2018020345A1 (en) Process for producing oxo-synthesis syngas composition by high-pressure hydrogenation of c02 over spent chromium oxide/aluminum catalyst
JP2009051704A (ja) 水性ガスの製造方法
CN113574040B (zh) 甲醇生产方法
WO2024000468A1 (en) Palladium and platinum catalysts for reverse water-gas shift processes
KR20100126304A (ko) 수소의 제조 방법 및 장치
US11858886B2 (en) Process of selectively hydrogenating gas mixture having high acetylene content
US20230149908A1 (en) Catalyst compositions and methods of preparation and use thereof
RU2630473C1 (ru) Способ приготовления и регенерации катализатора гидроксилирования ароматических соединений закисью азота и способ гидроксилирования ароматических соединений
WO2018015828A1 (en) Process for high-pressure hydrogenation of carbon dioxide to syngas in the presence of used chromium oxide supported catalysts
WO2018020343A1 (en) Process for producing an oxo-synthesis syngas composition by high-pressure hydrogenation over a chromium oxide/aluminum supported catalyst
CN113952962A (zh) 一种催化裂解气脱氧催化剂、其制备方法和裂解气脱氧的方法
JP2008136907A (ja) 合成ガス製造用の触媒
JP2006522063A (ja) 炭化水素の少なくとも1種の部分酸化生成物及び/又は部分アンモ酸化生成物の製造方法
Bueno et al. In Situ Study of Structural Modifications in Ni-Fe/Mgal2o4 Catalysts Employed for Ethanol Steam Reforming

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071121

Termination date: 20200205

CF01 Termination of patent right due to non-payment of annual fee