CN1343378A - 金属钒氧化物颗粒 - Google Patents

金属钒氧化物颗粒 Download PDF

Info

Publication number
CN1343378A
CN1343378A CN00804664A CN00804664A CN1343378A CN 1343378 A CN1343378 A CN 1343378A CN 00804664 A CN00804664 A CN 00804664A CN 00804664 A CN00804664 A CN 00804664A CN 1343378 A CN1343378 A CN 1343378A
Authority
CN
China
Prior art keywords
particle
metal
vanadium oxide
silver
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN00804664A
Other languages
English (en)
Inventor
克雷格·R·霍内
哈里克利亚·德瑞斯·瑞特兹
詹姆斯·P·伯格利
苏吉特·库马尔
宇·K·福尔图纳克
毕向欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanogram Corp
Original Assignee
Nanogram Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/246,076 external-priority patent/US6225007B1/en
Priority claimed from US09/311,506 external-priority patent/US6391494B2/en
Application filed by Nanogram Corp filed Critical Nanogram Corp
Publication of CN1343378A publication Critical patent/CN1343378A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/54Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

所生产的金属钒氧化物颗粒的平均直径小于500纳米,并具有很均匀的性质,在实施例中,银钒氧化物是由纳米级钒氧化物和银化合物的混合物经热处理而制成的。激光高温热解法可用来直接生产金属钒氧化物组合物纳米颗粒,反应物流中包括有钒初始粒子和第二金属初始粒子,并从光束中吸收能量从而实现高温热解。金属钒氧化物纳米颗粒可组合入锂基电池的阴极中的提供能量密度,可植入式除纤震器可用具有高能量密度的锂基电池制成。

Description

金属钒氧化物颗粒
本发明涉及金属钒氧化物颗粒。本发明还涉及金属钒氧化物粉末颗粒的制造方法,例如用激光高温分解法。尤其是,本发明涉及一种要用激光高温分解法制造纳米级金属钒氧化物粉末颗粒。本发明还涉及与纳米级金属钒氧化物颗粒,如银钒氧化物颗粒有关的性能改良的电池。
锂基电池由于其很高的能量密度而在商业上获得了很大成功。锂基电池适用的正电极材料应包括那些能将锂原子***到它们晶格中去的材料。负电极可采用锂金属,锂合金或化合物,因它们可以将锂原子可逆地***其晶格中去。由锂金属或锂合金负电极制成的电池称为锂电池,而由可***锂离子的阳极(负电极)活性金属制成的电池称为锂离子电池。
为了生产改良的电池,曾经试用各种材料来作锂基电池的阴极(正电极)活性材料。有各种材料,通常是硫族化合物,可应用于锂基电池,例如氧化钒在某种氧化状态下是制造锂基电池正电极的有效材料。金属钒氧化物一直被认为在用作锂基电池的正电极时具有高的能量密度和功率密度的。而银钒氧化物在用作锂基电池时则具有非常高的能量的功率密度。银钒氧化物电池已经发现其在可植入式心脏除纤震器中的特殊应用,其中的电池必须有能力在十秒钟甚至更短时间内,以快速连续方式向电容重覆充电传送强能量脉冲。
本发明的第一方面是属于一种包含金属钒氧化物的颗粒团,其颗的平均直径小于500纳米。
本发明的另一方面属于一种生产金属钒氧化物的方法,其特征是包括将钒氧化物颗粒和非钒金属氧化物的混合物加热,钒氧化物颗粒的平均直径小于500纳米。
本发明的再一方面属于一种电池,其特征是包括用含氧化钒活性颗粒在粘结剂中的正电极,其钒氧化物颗粒平均直径小于约500纳米。
本发明还属于生产金属钒氧化物颗粒的方法,其特征是包括将含钒初级粒子和第二金属初级粒子合成的反应物流在反应炉中起反应,反应是吸收电磁场中的能量而引起的。
本发明的又一方面是属于一种电池,其特征是包含一种由银钒氧化物活性颗粒和粘合剂而成的阴极。这种正电极所具有的能量密度放电到1.0伏时,大于约340毫安小时/每克活性颗粒。
而且,本发明还属于一种电池,其特征是包含一种具有金属钒活性颗粒和粘合剂的阳极,正电极所具有的能量密度在放电到1.0伏时,大于约400毫安小时/每克活性颗粒。
本发明的再一方面属于一种可植入式除纤震器,其特征是其中的电池具有一个银钒氧化物的阴极,其能量密度在放电到1.0伏时,大于约340毫安小时/每克阴极活性材料。
本发明还属于一种生产元素金属纳米颗粒和钒氧化物纳米颗粒混合物的方法,该方法的特征是包括将含钒初级粒子和第二金属初级粒子合成的反应物流在反应炉中起反应,反应是由吸收电磁场能量而引起的。
本发明的再一方面属于一种生产金属钒氧化物颗粒的方法,其特征是包含将钒初级粒子和第二金属初级粒子合成反应物流在反应炉中起反应,反应由吸收燃烧火焰的能量而引起的。
本发明的又一方面,属于一种含有选自铜、银、金族中的一个单元素金属颗粒团,颗粒团中颗粒的平均尺寸小于约500纳米,而且事实上任何颗粒的直径都不大于其平均直径的四倍。
此外,本发明还属于一种制造颗粒的方法,颗粒包括一种选自铜、银、金族中的一个单元素金属,该方法的特征是包括一种分子流在反应炉中的反应,该分子流包括一种金属初始粒子和辐射吸收剂,其中的反应是由电磁场辐射引起。
本发明的附图的图面说明是:
图1是一个激光高温热解装置一个实例的剖视草图,剖面是从激光辐射途径的中部剖开。上部插图是收集喷咀的俯视图;下部插图是发送喷咀的顶视图。
图2是一个反应物发送装置的草图,该装置用于将蒸汽反应物发送到如图1中的激光高温热解装置中去。
图3A是一个反应物发送装置的侧视草图,该装置用于将气浮反应物发送到如图1中的激光高温热解装置中去。
图3B是一个反应物发送装置另一实例的侧视草图,该装置用于将气浮反应物发送到如图1中的激光高温热解装置中去。
图4是一个放大了的执行激光高温热解的反应炉的透视草图,其中反应炉的组件是透明的以显示其内部结构。
图5是一个如图4中的反应炉沿5-5线剖开的剖视图。
图6是一个用于热处理纳米颗粒的装置的剖视草图,其剖面是通过该装置中心剖开的。
图7是一个用于高热作用纳米颗粒的炉子的剖视草图,剖面从炉子中部剖开。
图8是本发明的一个电池的实施例的透视草图。
图9是一个VO2纳米颗粒的X-光结晶衍射图。
图10是一个将VO2纳米颗粒结晶作热处理而产生的V2O5纳米颗粒的X-光结晶衍射图。
图11是一个V2O5纳米颗粒结晶的透射电子显微镜图。
图12是一个如图11中的V2O5纳米颗粒结晶的颗粒尺寸分布图。
图13是一个由V2O5纳米结晶加上硝酸银后在充氧气氛中热处理而产出的银钒氧化物的四种X光衍射图,其中每个衍射图是根据材料成形的不同条件而得出的。
图14是一个由V2O5纳米结晶加上硝酸银后在充氩气氛中热处理而产出的银钒氧化物的四种X光衍射图,其中每个衍射图是根据材料成形的不同条件而得出的。
图15是一个银钒氧化物纳米颗粒的透射电子显微镜视图。
图16是一个用于生产如图15中银钒氧化物颗粒的V2O5颗粒样品的透射电子显微镜视图。
图17是一个V2O5纳米颗粒和硝酸银粉末混合后在氧化中热处理后产出的银钒氧化物的X光衍射图。
图18是一个从具有如图17的X光衍射图的样品中用微分扫描量热法测量得到的曲线图。
图19是一个直接用激光高温热解法生产而得的混相银-钒氧化物材料的X光衍射图。
图20是一个得到如图19所示的X光衍射图的那个直接用激光高温热解法产出的银-钒氧化物材料的透射电子显微镜视图。
图21是一个银钒氧化物颗粒在经过了具有激光热解法合成的纳米级银-钒氧化物材料的氧气氛中热处理后的X光衍射图。
图22是一个由热处理纳米级银钒氧化物材料生产所得的银钒氧化物颗粒的透射电子显微镜图。
图23是一个含有直接由激光热解生产而得的银钒氧化物纳米颗粒的两个在略有不同条件下获得的X光衍射图。
图24A是一个从相当应于如图23上面一个衍射图的样品中得出的透射电子显微镜图。
图24B是一个从相应于如图23中下面一个衍射图的样品中得出的透射电子显微镜图。
图25是用激光高温热解法直接生产出的银钒氧化物纳米颗粒的混相材料的五个X光衍射图,其中每个图中所生产的材料是由不同的银钒比例得出的。
图26是一个由激光高温热法在如表5中第一列所指定的条件下生产而得的元素银纳米颗粒的X光衍射图。
图27是一个由激光高温热解法在如表5中第二列所指定条件下生产而得的元素银纳米颗粒的X光衍射图。
图28是一个相应于衍射图26中的样品材料的透射电子显微镜图。
图29是一个由根据实例4中所述热处理步骤而获得的银钒氧化物纳米颗粒制造而成的锂电池的以时间为函数的电压曲线图。
图30是一个相应于如图29的电压一时间曲线图的以电容量为函数的电压曲线图。
图31是一个由根据如实例5所述的激光高温热解法获得的混相银钒氧化物纳米颗粒所制成的锂电池的以时间为函数的电压曲线图。
图32是一个相应于如图31的电压-时间曲线图的以电容量为函数的电压曲线图。
图33是一个由根据如实例6所述的热处理步骤制成的银钒氧化物纳米颗粒而制成的锂电池的以时间为函数的电压曲线图。
图34是一个相应于图33所示电压-时间曲线图的以电容量为函数的电压曲线图。
图35是一个由根据如实例7所述的混相银钒氧化物纳米颗粒所制成的锂电池的电压对时间曲线图。
图36是一个相应于图35的电压对时间曲线图的电压对电容量的曲线图。
纳米级金属钒氧化物颗粒的生产是可以直接采用激光高温热解法;也可以采用激光高温分解法来合成纳米级钒氧化物颗粒之后再接受高温/热处理以制成金属钒氧化物纳料颗粒。因此金属钒氧化物是可以由激光高温热解法直接制成,其中激光高温热解反应组成物包括钒的初级粒子和一种第二金属的初级粒子。而且钒氧化物纳米颗粒可以用来制成金属钒氧化物纳米颗粒,例如,银钒氧化物纳米颗粒而并不损失其颗粒的纳米级尺寸。纳米级金属钒氧化物颗粒可以用来制造具有改良性能的电池。
具有各种化学配比和晶体结构的钒氧化物的纳米颗粒是可以单独用激光高温热解法制成,也可以再外加处理方法制成。各种不同形式的钒氧化物纳米颗粒可以用作制造金属钒氧化物纳米颗粒的初始原料。用钒氧化物纳米颗粒再加上准备导入钒氧化物中去的金属化合物混合而成多金属纳米颗粒以便制成在晶格中有两种金属的材料。采用适当的选择而得的处理条件,可以制成组合有两种金属的颗粒而又并不损失初始的钒氧化物纳米颗粒的纳米量级的特性。
优选的金属钒氧化物颗粒因其平均直径小于1微米,且其颗粒直径的分散度很窄小。颗粒直径的分散度甚至都没有尾部。换言之,简直就没有那种比平均直径大一个数量级的颗粒,亦即粒子尺寸分散度快速地下降至零。为了产生钒氧化物纳米颗粒初始材料以进一步加工处理成金属钒氧化物,可以单独采用激光高温热解法或者再和其他处理方法组合起来一起运用。尤其是,激光高温热解法一直是一种优良的有效生产钒氧化物纳米颗粒的方法,它具有很狭窄的平均颗粒直径的分散度。此外,用激光高温热解法生产的纳米级钒氧化物颗粒能够在充氧气氛中或惰性气氛中用软条件加热以便改变其晶体性质和/或钒氧化物颗粒的化学配比而并不破坏其纳料颗粒的尺寸特性。这样,就可以生产出各种不同类型的钒氧化物基的纳米颗粒。
以激光高温热解法生产钒氧化物纳米颗粒的成功应用的基本特点是在于产生出一个含钒初始粒子的反应组成物流,一个辐射吸收源和一个氧气源,反应物流被如激光束那样的强光束高温分解。激光高温热解法提供了不同于在热动力平衡条件下制成材料的物相。一旦反应物流离开光束后,钒氧化物纳米颗粒快速冷却。
由纳米级钒氧化物颗粒开始的金属钒氧化物颗粒可以用热处理方法制成,第二金属初始粒子包括一种非钒的过渡金属。优选的第二金属初始粒子包括具有铜、银、金的组份。第二金属初始粒子化合物是和钒氧化物纳米颗粒团混合在一起再加热而后形成组合两种金属的颗粒。在适当的柔性条件下进行热处理可以有效地产得颗粒而并不破坏初始钒氧化物颗粒的纳米量级尺寸。
如上所述,成功应用激光高温法制造金属钒氧化物纳米颗粒的基本特征是生产一种含钒初始粒子的反应物流;一种第二金属的初始粒子;一个辐射吸收源和一个氧源。反应物流是用强光束进行高温分解。例如激光束或其他强光源。一旦反应物流离开光束之后,金属钒颗粒即被快速淬冷而生产出具有很均匀的尺寸分散度的金属钒氧化物纳米颗粒。
如上所述,锂离子和/或离子可***到各种形态的钒氧化物和金属钒氧化物颗粒中去。为了制作正电极,用作电池放电时的阴极,金属钒氧化物纳米颗粒可以利用例如聚合物这样的粘合剂组合而成电极。电极中最好还要在金属钒氧化物颗粒中再将导电性粒子和在粘合剂里一起组合进去。这种电极可在锂电池或锂离子电池中用作正电极。用含有纳米级金属钒氧化物作阴极的锂基电池所具有的能量密度要比用相应的块状金属钒氧化物所估算的理论最大值还要高。尤其是用金属钒氧化物,特别是银钒氧化物生产而得的能量密度要大于约340毫安小时/每克。较好的金属钡氧化物颗粒所拥有的能量密度可大于350毫安小时/每克,更好的则可达360毫安小时/每克,最好的可高到约370,甚至达到405毫安小时/每克。
当生产金属钒氧化物纳米颗粒或金属钒氧化物纳米颗粒的初始粒子的第一注意力集中在应用激光高温热解法的时候,这里所描述的传送气浮初始粒子的方法同样还可以适用于其他的合成方法,尤其是,初始粒子可以应用在火焰高温热解法中。该初始粒子的传送方法可以适用在各种火焰高温热解方法中。在一个优先方法中,反应物流是进入到氢氧焰中。火焰的能量用于高温热解。这种火焰高温热解方法应能生产与本文激光高温热解技术相似的材料,但是一般不能得到很窄的颗粒尺寸分散度。
当此处理的注意力集中在生产包含有两种金属组成的三元化合物的时候,本方法同样也揭示了可以生产具有很高均匀性的IB族金属元素的纳米颗粒。尤其是,如下面所述的银元素的纳米颗粒的生产就是一个例子。铜、金和其他的IB族元素具有相似的化学性能。因此铜和金纳米颗粒也可以用要相似的方法来生产。
(一)用于生产纳米颗粒的激光高温热解法
激光高温热解法已经揭示了它是生产纳米级钒氧化物颗粒的有效工具。此外,由激光高温热解法生产出来的颗粒是一种很好的材料以便于扩充进一步加工生产出所需的钒氧化物颗粒。于是,单独运用激光高温热解法或者再和外加的处理方法相结合以生产出范围宽广的各种钒氧化物颗粒。而且,激光高温热解法还是直接生产金属钒氧化物颗粒的成功方法。
由激光高温热解法生产出颗粒的质量是取决于反应条件,激光高温热解法的反应条件可以很精确地加以控制以便得到所需特性的颗粒。适用于生产某一类型颗粒的反应条件通常是有赖于特定装置的设计,在特定装置中适用于生产钒氧化物颗粒的特定反应条件将在下面的实例中加以描述。用激光高温热解法生产钒氧化物纳米颗粒的其他信息可以参阅转让Bi和其他人的待审批的美国专利申请,申请号为08/897,778,题目为“钒氧化物纳米颗粒”。此外,在特定装置中用于直接生产银钒氧化物颗粒的激光高温热解法的特定条件也在下面的实例中加以描述。而且还作了反应条件和所得结果之间的相互关系的某些一般的观察结果。
增加激光的功率导致反应区的反应温度的上升以及淬冷速度的加快。快速的淬冷速度可以得到优质的高能物相,这是在接近热平衡状态下处理时所不能获得的。同样,增加反应室压力也可以得到好的高能结构。在反应物流中所提供的氧化源反应物浓度如果升高则生产出颗粒的含氧量增加。
反应物流的程度和反应物气体流的速度与颗粒的尺寸成相反的关系,即反应物气流速度增加则颗粒尺寸较小。颗粒的生长动力学性能对颗粒的大小有很重要的影响。亦即,在相同条件下,不同形式的化合物产品全制成另一种物相中的不同大小的颗粒。激光功率也可以影响颗粒的尺寸,即增加激光功率将有利于对低熔点材料形成较大的颗粒,而对于高熔点材料则形成较小的颗粒。
激光高温热解法一般是用气相反应物来运行的。只能采用气相反应物这一条就对初始粒子化合物的类型有了一些限制。于是就促使技术发展到可以含有反应物初始粒子的气浮引入激光高温热解室中。气浮体喷雾器可以大致分类成用超声发射器以形成气浮体的超声喷雾器,和用一种或多种流动着的流体(液体,气体或超临界流体)本身的能量以形成气浮体的机械喷雾器。改进了气浮发送装置用在反应物***中,以及激光高温热解装置的描述可以参阅普通转让给Gardner和其他人的待审批的美国专利申请,申请号No.09/188,670,名称是“反应物传送装置”。
应用气浮法传送装置后,固体初始粒子化合物就可以将化合物溶解在溶液中后被传送出去。或者,粉末状初始粒子化合物即可以液体/溶液的形式用于气浮体的传送。液体初始粒子化合物,只要愿意,就可以不经掺杂地用液体,或液体/气体混合体,或液体混合体,或液体溶液等的各种方式传送出一个气浮体来。气浮体反应物能够用来得到有重要意义的反应物输出流量。如果用溶剂的活,还可以选择而达到所需的溶解特性。合适的溶剂包括水、甲醇和乙醇等各种有机溶剂。溶剂应具有所需的纯度等级从而使所得颗粒也有所需纯度级别。
如果气浮体初始粒子是用溶剂制成的,则在溶剂遭到反应室中的激光束时就很快被蒸发了,这样就发生气相反应,激光高温热解反应的基本特征是不会改变的。但是气浮体的存在却对反应条件有所影响。用带有气浮初始粒子的激光高温分解法制造锰氧化物的适用条件被描述在待审批的已转让的美国专利申请,申请号No.09/188,770,申请日1998年11月9日,题目是“金属氧化物颗粒”。在此仅供参考。
用带有气浮的初始粒子的激光高温热解法生产银钒氧化物颗粒的合适条件用下述的实施例加以描述。
适用于气浮生产的钒初始粒子包括如三氯化钒(VCl3),三氯氧钒(VOCl3),硫酸氧钒(VOSO4.H2O),钒酸胺(NH4VO3),钡的氧化物(即,V2O5和V2O3,这些可溶于含水硝酸中),以及可溶于无水乙醇中的二氯氧钒(VOCl2)。适用的银的初始粒子包括如硫酸银(Ag2SO4),碳酸银(Ag2CO3),硝酸银(AgNO3),氯酸银(AgClO3)和高氯酸银(AgClO4),适用的铜初始粒子包括如硝酸铜[Cu(NO3)2],二氯化铜(CuCl2),氯化亚铜(CuCl)和硫酸铜(CuSO4)。适用的金的初始粒子包括如,三氯化金(AuCl3)和金的粉末。
这些化合物是最好溶解于浓度大于0.1摩尔的溶液中。通常,初始粒在溶液中的浓度愈大则反应物通过反应室的输出流量也愈大。但是随着浓度的增加,溶液就变得更稠了,于是气浮体就会具有比所希望的尺寸较大的雾滴。因此,溶液浓度的选择就要考虑到在优选的溶液浓度选择中各因素的平衡。
适宜于用蒸气传送的钒初始粒子化合物一般包括具有合理蒸气压力的钒化合物,即,蒸气压力应足以得到在反应物流中的所需的初始粒子蒸气量。如果需要,可以将容器中的固体或液体钒初始粒子化合物加热以增加钒初始粒子的蒸气压力。适用的钒初始粒子包括,如VCl4,VOCl2,V(CO)6和VOCl3。这些有代表性的初始粒子化合物中的氯可以用其他卤素替代。例如,溴、碘和氟。
为了生产金属钒氧化物颗粒,适用的金属初始粒子要有足够的蒸气在压力以便可得到所需的在反应物流中的金属初始粒子蒸气量。适用于蒸气输送的铜初始粒子包括,如,二氯化铜(CuCl2),适用于蒸气输送的银初始粒子包括,如,氯化银(AgCl)。另一方面,钒初始粒子和金属初始粒子中的一种可以用气浮体的方式输送而其另一种则可以用蒸气方式输送。尤其是,如银初始粒子那样的金属初始粒子可以用气浮的方式传送而钒初始粒子侧可用蒸气方式输送。
为了用两种或更多的金属生产混合金属氧化物,各种金属在反应物流中的相对量的变化就会导致所得金属组分相对量的改变。混合金属氧化物的相图要比相应金属氧化物的相图复杂得多。将一种比另一种金属的量更大的金属加入之后所得到的这种增量金属的相,或者是混相产品中的一种主要相,或者是混相产品一种较大相对数量的相。
因此,随着溶液或传送气浮体中的各种金属相对量的变化,颗粒产品的化学配比也会起改变。在传送两种或更多种独立的气浮体的金属初相粒子时,都能得到同样的结果,其中各种金属初始粒子的相对量可以随金属在液体或气浮体的相对量中的浓度的变化而变化。而且,一种或更多种金属初始粒子可以在蒸气状态下传送,于是金属的相对量即可很方便地调整而获得所需的产品。
用作氧源的优选反应物包括,如,O2,CO,CO2,O3以及其混合物。用作氧源的反应化合物。很重要的是不应该在进入反应区之前就先和钒初始粒子起反应,因为通常这将导致大颗粒的形成。
激光高温热解法可以在各种频率的光束中进行。较好的光源包括激光,尤其是工作在红外电磁谱段中的激光。CO2激光是特别优选的光源。含在分子流中的红外吸收体包括,如,C2H4,异丙醇(CH3CHOHCH3),NH3,SF6,SiH4和O3。O3既可作为红外吸收体也可作为氧源。另一方面,如异丙醇那样的一种在溶剂在液体中以气浮体的方式传送时,可以从光束中吸收光。像红外吸收体那样的辐射吸收体可以从辐射束中吸收能量并将能量分配到其他反应物中以促使高温热解。
从辐射束中吸收到的能量会以极大的比率增高温度,其主要比可控条件下的强力放热反应所产生的能量还要大好多倍。当这过程通常包含有非平衡条件时,则温度即可近似地用吸收区中的热量为基础来加描述。激光高温热解过程性质上是不同于燃烧反应器中的过程的,在燃烧反应器中虽然也是一种能源促成一种反应,但这种反应即是由一种放反应释放出的能量来驱动的。
一种隋性保护气体可以用于减少反应物的数量,产生的分子和反应室部件相接触,适用的保护气体可包括,如氩,氦和氮。惰性气体也可以和反应物流混合在一起以便使反应减缓。
一个适用的激光高温热解装置通常包括,一个与周围环境相隔开的反应室。一个反应入口和反应物供给***相连接并产生一反应物流穿过反应室,一光束在反应伍中和反应物流相交。反应物/产品流在经过反应区之后再继续流到出口,然后该反应物/产品流就排出反应室而进入收集***。通常光源是设置在反应室外面,光束通过一适当窗口进入反应室。
参见图1,一个激光高温热解装置的一个特例100是包括一反应物供给***102,反应室104收集***106,光源108,和保护气体传送***110。有两种可替换的反应物供给***可以应用于图1的装置中。第一种反应物供给***是专门用于传送气相反应物的,而第二种反应物供给***则用于传送一种或多种气浮体反应物,有多种元素反应物供给***都可应用。
参见图2,反应物供给***102的第一实施例112包括一个钒初始粒子化合物源120,对液体或固体钒初始粒子而言,可将载气源122中的载气通到初始粒子源120中,以便将钒初始粒子以蒸气形式传送出去。从源122中引出的载气最好是一种红外吸收体或者是一种惰性气体,并在通过液体的初始粒子化合物时成为气泡,或者是传送到固体初始粒子传送***中去。惰性气体用作载气可以减缓反应条件。反应区中初始粒子的蒸汽量是大致正比于载气的流量。
另一方面,载汽也可以直接从红外吸收体源124或惰性气体源126中引出。像氧源那样的外加反应物,是由反应物源128所供给,它可以是一个气瓶或其他适当容器。从初始粒子源出来的气体和红外吸收源124、惰性气体源126以及反应物源中出来的气体是将这些气体合成一条管线130中的方式混合在一起的。这些气体在离开反应室104有足够的距离处就已合成在一起了,以便气体在进入反应室104之前就已充分混合好,管130中的合成气体通过一段管道132进入一矩形通道134中,该通道134构成喷咀的一部分用于将反应物直接喷入反应区中,反应物供给***112中的某些部位可以加热以防止初始粒子化合物沉积在传送***的边壁上。
金属初始粒子可以由金属初始粒子源138供给,它可以是一液体反应物传送设备,一固体反应物传送设备,一个气瓶式其他适用的一个或几个容器。如果金属初始粒子源138是传送一种液体或固体反应物,则由载气源122或别的载气源中的载气可以用于反应物的传送。如图2所示,金属的初始粒子源138是用管道130将金属初始粒子送到管道132中去的。
从各种源122,124,126和128中出来的流量最好是各自采用独立的质量控制器136加以控制,质量流量控制器136最好从各个源处提供出一路可控的流速。适用的质量流量控制器包括,如,由Edwavds HighVacuum International,Wilmington,MA(美国马省,威尔明顿,爱德华国际高真空公司)所生产的爱德华质量流量控制器,型号825系列。
参见图3A,反应物供给***102的另一可替代实施例150是用于供给气浮体到通道134中去。如上所述,通道134构成喷咀的一部分用于将反应物通过反应物入口喷入到反应室中。反应物供给***150包括一气浮体发生器152,载气/蒸气供应管154和汇流器156,通道134,气浮体发生器152和供应管154在汇流器156的空腔158中汇合,供管154对准着通道134的方向发送载气。气浮体发生器152安装得使气浮体生成在内腔158中通道134的入口和供管154的出口之间的空间中。
气浮体发生器152可以按多种原理而工作。例如,产生气浮体的方法可以是:用超声喷咀;用静电喷雾***;用压流喷雾器或单纯的喷雾器;用起泡喷雾器或者用一种气体喷雾器,其中液体在高压下强制通过一个小孔并被气流冲击而散成小滴。适合物超声喷咀可包括压电发射器。具有压电发射器的超声喷咀是现有的,即Sono-Tek Corporation,Milton,NY(美国,纽约州,密尔顿,Sono.Tek公司)的型号8700-120。
适当的气浮体发生器还进一步被描述在下述文献中:待审批和普通转让给Gardner等人的美国专利申请,申请号No.09/188,670,题目是“反应物传送装置”,以供参考。外加的气浮体发生器可以再通过别的口162附加在汇流器156上,这样附加的气浮体即可在内腔158中产生以便传送到反应室中。
汇流器156包括从汇流器156外面进入到内腔158的开口162。这样,通道134,气浮体发生器152和供管154即可适当加以安装。在一个实施例中,汇流器156是一个具有六个开口162的立方体,汇流器156的每个面上装有一个圆柱形开口162。汇流器156可用不锈钢或其他耐用的耐腐蚀的材料制造。在一个开口162上还封上一个窗口161以便可以观察内腔158,汇流器156在底部处的开口162最好还包括一个泄漏口163,以便将积聚而来经通道送出的气浮体从汇流器156中放出。
载气/蒸气供给管154与气源164相连。气源164可包括多个气体容器,液体反应物传送装置,和/或一个固体反应物传送装置,它们与供管154相连以传送所选用的气或气体混合体。这样载气/蒸气供管154就可以传送各种所需的气体和/或蒸气到反应物流中,它们包括,如,激光吸收气,反应物,和/或惰性气体。从气源164中到供给管154去的气流是由一个或多个质量流量控制器166控制,供液管168连到气浮体发生器152上,供液管168还和液源170相连。
为了产生钒氧化物粒子,液源170可装着包含钒初始粒子的液体,为了产生金属钒氧化物颗粒,流源170最好装着同时含有一种钒初始粒子和一种金属初始粒子的液体。或者,为了产生金属氧化物颗粒,液源170可装着含有金属初始粒子的液体,而钒初始粒子则由气源164和供蒸气管154来传送。只要愿意也可以让液源170装着一种含钒初始粒子的液体,而金属初始粒子则通过气源气源164和供蒸气管154供给。在汇流器156中也可采用两个独立的气浮体发生器152,其中一个产生具有钒初始粒子的气浮体,另一个产生具有金属初始粒子的气浮体。
在图3的实施例中,气浮体发生器152产生的气浮体的动量是和由供管154流到通道134去的载气流几乎正交的。这样,从从管154出来的载气/蒸气即将由气浮体发生器152中产生的气浮体初始粒子引导进入通道134。在实际运行时,载气流即将送入室158中的气浮体导入通道134中。这样,气浮体的传送速度即有产地取决于载气的流速。
在另一个实施例中,气浮体发生器设置在与水平方向呈一个向上角度的位置上,使气浮体向前动量的一个分量是指向与通道134相一致的方向的。在一个优选实例中,气浮体发生器引出的输出流是和由通道134开口所限定的正方向,即由供管154进入通道134的流向成45°角而设置的。
参见图3B,是另一个可用于向通道134供给气浮体的反应物供给***102的实施例172,反应物供给***172包括一个外喷咀174和一个内喷咀176,外喷咀174有一个向上的通道178,它引向一个5/8英寸×1/4英寸的矩形出口180而到达外喷咀174的顶端,如图3B中的插图。外喷咀174的顶端,如图3B中的插图。外喷咀174包括一个漏管183在底面184上。漏管183是用于将积聚的气浮体排出外喷咀之外。内喷咀176由套筒185固定在外喷咀174上。
内喷咀176是一个由“Spraying Systems(Wheatm,IL)”所提供的气体喷射器,内喷咀的直径是0.5英寸、长12英寸。喷咀的顶部是一个双孔内混喷咀186(气孔0.055英寸,液孔0.005英寸)。液体通过管187通向发射器,而气体则通过管188通向发射器并导入反应室中,气体和液体的相互作用促使液滴的形成。
外喷咀和内喷咀是同轴安装在一起。外喷咀174将内喷咀176产生的气浮体压成一个扁平的矩形截面。此外外喷咀还使得气浮体的流速均匀和在截面上分布均匀。外喷咀174的形状还可以做得适用于各种不同的反应室。
参见图1,保护气体传送***110包括与一个惰性气导管192相联的惰性气源190,惰性气导管192流进入环状通道194,质量流量控制器196控制进入惰性气导管192的惰性气体的流量。如果采用反应物传送***112,则惰性气源126也可以用作导管192的惰性气源。
反应室104包括一个主室200,反应物供给***102在发射喷咀202处连接到主室200中,反应室104可以加热以保持初始粒子化合物处在蒸气状态。同样,最好也将氩气保护气体加热。主室可以被监测浓度以确保其中的初始粒子不沉积下来。
喷射喷咀202的末端有一个环状开口204,以便有惰性保护气体通过,而反应物入口206则使反应物从中通过并形成一反应物流而进入反应室。反应物入口206最好是一条缝,如图1所示,环状开口204的直径,例如,是约1.5英寸,而沿着半径方向的宽约为1/8英寸到1/16英寸。通过环状开口204的保护气体流是有助于防止通过反应室104的反应物气体和颗粒产品的散失。筒部208,210各包含一个ZnSe窗,窗212,214的直径约为1英寸。窗212,124最好是两个柱面镜,其焦距等于反应室中心到镜面的距离,以便多将光束正好聚焦到喷咀开口中心点的下方。窗212,214最好具有一层抗反射膜,适用的ZnSe透镜可由“Janos Technology,Towrshend,Vermont”处理到。筒部208,210的存在使得窗212,214可以离主反应室200远一些,从而较少受到反应物和/或产品的污染。窗212,214可以处在离主反应室200约3厘米的地方。
窗212,214是用O-型橡胶圈密封在筒部208,210上,以防止周围空气流入反应室104。保护气体通过入口管216,218进入筒部208,210以减少对窗212,214的污染,入口管216,218与惰性气源138相连,或者接到一个单独的惰性气源上。在另一情况下,进入入口管216,218的气流最好由质量流量控制器220加以控制。
光源108产生一条光束222,描准并进入窗212又从窗214中出去。窗212,214限定了一条光路,穿过主反应室200并在反应区224中和反应物流交会,穿出窗214之后,光束222冲到功率计226上,使光束卸载。适当的功率计可由“Coherenf Inc.,Santa Clara,CA”处得到,光源108最好是激光,虽然它也可以是普通的强光源,比如电弧灯,激光源108最好是红外激光器,尤其是一种连续CO2激光器,例如一种“PRCCorp.,Landing,NJ”处有的最大输出功率为1800瓦的激光器。另一个实例是用另一种电磁能源,例如微波发生器来代替光源108。在此实例中,反应物流中包含一种辐射吸收化合物,例如微波吸收体。
反应物通过喷射喷咀202中的反应物入口206从而形成一反应物流。反应物流穿过反应区224,其中的初始粒子和外加反应物化合物即发生反应,气体在反应区224中迅速加热,根据特定条件,大致可达到105度/秒的量级。离开反应区224后的反应即被快速骤冷,即在反应物流中即形成颗粒,而过程的非平衡性质促使所生成的纳米颗粒具有非常均匀的尺寸分布和结构一致性。
反应物/产品流沿途径再继续流到收集喷咀230处。收集喷咀230是和发射喷咀230之间的间距很小而且又存在收集喷咀230致使反应物和产品对反应室104的污染减少。收集喷咀230有一个圆形开口232,由这个开口232即进入收集***106。
反应室的室压由装在主室上的压力计监测。
制造所需氧化物的优选室压一般在约80乇到500乇之间。
反应室104还有两个外加的筒部在图上未显示。其中一个外加筒部是朝向图1剖面所处的平面,而另一个外加筒部则背离图1剖面所处的平面。这样,当从上面向下俯视时,四个筒部几乎是绕着反应室对称分布的。这些外加筒部有用于观察反应室内部的窗。在这个装置的结构中,这两个外加筒部并不用于颗粒的生产。
收集***106最好包括从收集喷咀230延伸的弯管270。因为颗粒的尺寸很小,颗粒产品是随着气流沿曲线而行。收集***106包括一个过滤器272以在气流中收集产品颗粒。由于有弯管270所以过滤器272并不直接支撑在反应室上面。有各种材料都可以用个做过滤器,如聚四氟乙烯,玻璃纤维等,只要材料是惰性并具有足够小的筛孔以便陷落颗粒。优选的材料用于过滤器的是如下公司生产的玻璃纤维过滤器:“ACEGlass Inc.,Vineland,NJ”和“AF Equipment Co.,Sunyvale,CA”生产的筒状“Nomex”牌纤维过滤器。
泵274用于维持收集***106处在所选压力上。可采用各种不同的泵。适用于泵272的产品包括,例如:“Busch,Inc.,Virginia Beach,VA”生产的Busch Model B0024型泵,容量约为25立方英尺/分(cfm)和“Leybold Vacuum Products,Export,PA”生产的Ley bold Model SV 300型泵,容量为195cfm。最好泵的排气流是通过一个洗涤器276以便将剩余反应化学物洗去后再排到空气中去。整个装置100应放在通风橱中以使通风良好,并符合安全条件。通常激光器放在通风橱外边因为其体积大。
整个装置由计算机加以控制。通常计算机控制激光并监测反应室的压力,计算机可以用于控制反应物流和/或保护气流。泵速由插在泵274和过滤器272中的手控针阀或自控节流阀控制。当室压因过滤器272积聚颗粒而增加时,即可相应室压对针阀或节流阀调节而维持泵速不变。
当有足够多的颗粒积聚在过滤器272上以致泵不再能克服通过过滤器272上的阻力而维持反应室104内所需压力时,反应即终止。当反应室104内的压力不能维持正常值时,反应停止,取下过滤器272。本实施例中当压力不够维持前的一轮中收集到6的颗粒约为1-300克。通常一轮的时间可延续约10小时,而与反应物传送***,生产颗粒的类型和过滤器的种类等有关。
反应条件可以很精确地予以控制。尤其是质量流量可以控制得非常精确。激光器的功率稳定性一般约为0.5%,反应室压力可用手控针阀或自控节流阀控制在1%内。
反应物供给***102和收集***106的配量可以反过来。在替代方案中,反应物由反应器的顶部供给,而产品颗粒则在反应室底部收集。这种配置中的收集***可以不用弯管因此收集过滤器直接装在反应室的下面。
激光高温热解装置的另一种设计是描述在题为“用化学反应有效生产颗粒”的美国专利No.5,958,348,供参阅。这一设计方案是旨在生产一种由激光高温热解法制得的商业用的大量颗粒。反应室在沿着激光束的方向上与反应物流相垂直的尺寸上加长了,使得反应物和产品的输出量增加。装置的原始设计是以引入纯气体反应物和基础的。另一引入气浮体到加长反应室的实施例则被描述在普通转让给Gardner等人的待批美国专利申请,No.09/188,670,(1998.11.09申请)题目是“反应物传送装置”,供参考。
通常,所替代的高温热解装置包括:一个旨在减少室壁污染,增加生产能力,和有效利用能源的反应室。为了完成这些目的,采用了一种加长了的反应室,以增加反应物和产品的输出量,但又不相应增加反应室中的死区。这种反应室死区会因未反应化合物和/或反应产物而被污染。
改进了的反应室设计300由图4和图5所示。反应物入口302进入到主室304中,反应物入口302是为引入气体和/或气浮体反应物进入主室304之用。反应物入口302的形状一般是和主室304的形状相符。通过反应物入口302而引入反应物以生产钒氧化物粒子或金属钒氧化物颗粒的过程虽可以随着讨论如图1中适当地采用反应物入口的替代结构后的激光高温热解装置如何引入气浮体和/或蒸气初始粒子而完成。
主反应室304包括一个沿着反应物/产品流的出口306,用以取出产品,未经反应的气体和惰性气体。保护气体入口310位于反应物入口302的两侧。保护气体入口是用来在反应物流的两侧建立一个惰性气体附面层以防止反应物和产品和室壁接触。
简部320,322是由主室304向外延伸出来。筒部320,322固定装着窗324,326以限定激光束穿过反应室300。筒部320,322可包括引入惰性气体进入筒部320,322的惰性气体入口330,332。
加长后的反应物入口316(注:原文如此疑为302之误-译注)的尺寸是按高效生产颗粒而设计的。当使用1800瓦的CO2激光器时,为生产钒氧化物纳米颗粒和金属钒氧化物纳米颗粒而用的反应物入口的合理尺寸是从约5毫米到1米。
改良的装置包括一收集***用于在分子流中取出纳米颗粒,收集***可以设计成不用中止生产即可收集大量的产品颗粒,或者,最好是在收集***中采用切换另一个粒子收集箱的方法以确保连续生产。在收集***中可以在流程中设置类似于图1中收集***中的弯管那样的弯曲部件。
一个用于连续收集模式的颗粒生产***中的收集***的较优选的实施例可参见普通转让给Gavdner等人的待审美国专利申请,No,09/107,729,题目是“颗粒收集装置和相关的方法”。一种用于改良的反应***中的批量收集***可参见普通转让的待批美国专利申请No.09/188,770,(申请日:1998.11.09)题目为“金属氧化物颗粒”。反应物发射组件和收集***的配置是可以倒过来的,即颗粒可以在装置的顶部收集。
如上所述钒氧化物颗粒和金属钒氧化物颗粒的性质可以因后续加工方法而改变。适合的用于热处理的起始材料包括由激光高温热解法产得的钒氧化物颗粒和金属钒氧化物颗粒。适用的钒氧化物材料包括,如,VO,VO1.27,VO2,V2O3,V3O5,V4O9,V6O13和非晶体的V2O5,同样,起码材料可以是由激光高温热解法产出的金属钒氧化物颗粒,如银钒氧化物颗粒和/或铜钒氧化物颗粒。适用的金属钒氧化物材料包括Ag2V4O11和一种如下面描述的新的银钒氧化物晶体形成。此外,用于初始材料的颗粒还安在不同条件下进行一次或多次的热处理步骤。
初始材料一般可以是任何尺寸和形状的颗粒,当然纳米级颗粒是优选的初始材料,这种纳米纳颗粒的平均直径约小于1000纳米和较好的足从约5纳米到500纳米;更好的是从约5纳米到150纳米,适用的纳米级初始材料已经由激光高温热解法生产得到。
钒氧化物颗粒和金属钒氧化物颗粒最好在炉子中加热以便受热均匀。这种算是条件通常都很柔和,而不致出现大量颗粒烧结现象。加热温度最好要低于初始材料和产品材料的熔点。
对于某些目标产品颗粒而言,附加加热不能在一点达到平衡时会引起颗粒组成的进一步改变,加热处理的气氛可以是氧化气氛或惰性气氛。尤其是在基本相同的化学配比条件下,由一种晶体结构转变为另一种晶体结构,或者由一种非晶体颗粒转变为晶体颗粒时,通常是用惰性气氛。颗粒所处的气氛可以是静态的,或者是通过***而流动的气体。
适用的氧化气体包括,如,O2,O3,CO,CO2和这些气体的组合。O2可以从空气中供给。氧化气氛可以选择性地由如Ar,He和N2等惰性气体混合,当有氧化气体和惰性气混合时,氧化气在混合气中的比例可以从约1%到99%,而更好的是从5%到99%,当然也可以单独采用基本纯净的氧化气或纯净惰性气。
精确的条件可以改变所生产出的钒氧化物产品的类型或金属钒氧化物的类型。例如,温度,加热时间,加热和冷却速率,气体以及暴露在气体中的条件等都可以改变。通常,当在氧化气氛中加热时,加热时间越长,则在达到平衡之前,结合到材料中去的氧就越多。一旦达到平衡条件,各种条件就决定了粉末中的结晶相。
各种炉子都可用于加热,图6就是完成这种处理的一个设备400实例。设备400包括一个杯402,用玻璃或别的惰性材料制成,其中放有颗粒。现存的适用的玻璃反应坏是“Ace Glass(Vineland,NJ)”生产的产品。杯顶402用玻璃盖404封住,杯402盖403之间垫有Teflon密封垫405。盖404可用一或多个夹子夹住。盖404上有多个各带有Teflon衬套的孔406,通过盖404中心孔406而***有一个多叶不锈钢搅拌器408,它由适当的电机带动。
有一或多个管子410通过孔406***杯402中以送入气体。管410由不锈钢或其他惰性材料制成,喷散器412装在管410的头部用以将气体喷入杯402中。在杯402周围放着一个加热器/炉414。从“Glas-Col(Terre Haute,IN)”公司可买到适用的电阻加热器。其中有一个管包括一个T形连接器416,通过T形连接器***一个热电偶416以测量杯402中的温度。T形管416还可和一排气口418相连,排气口418提供给通过杯402的循环通风气体排出。排气口418最好通向通风橱或其他通风设备。
最好由所需气体流经杯402。管410通常是与一氧气源和/或一惰性气源相连,从适当气源中来的氧气,惰性气及其组合可在杯402中产生所需的气氛。可以采用各种的流连,流速最好在约1标准立方厘米/分钟到约1000标准立方厘米/分钟(sccm)之间,更好的是从约10 sccm到500sccm。虽然流速和气体组成在加工过程中可作***调整,但通常在整个加热步骤中流速是不变的。另外,也可采用静态气体气氛。
在上述描述的激光高温热解装置中,具有很高熔点的材料VO2是比较容易制成的,VO2是一种适用的初始材料以便氧化成钒氧化物的其他形式。也需要一些经验性的调整以产生适用于制造所要求材料的条件。此外,热处理可以改变的晶体的晶格和/或去掉颗粒上被吸收的化合物以改良颗粒的质量。
用于处理钒氧化物纳米颗粒或金属钒氧化物纳米颗粒,较好的温度范围例如是从约50℃到约500℃或更好的是从约60℃到约400℃。加热最好是延续到约5分钟以上,和般是约2小时到约100小时,优选的是从约2小时到50小时。也需安某些经验性调整来产生适用于生产所需材料的条件。采用柔性条件以避免颗粒间的绕结而形成较大的颗粒尺寸。在稍高一些的温度上进行某些可控的颗粒烧结用以产生稍大一些的平均颗粒直径。
将结晶VO2转变成斜方晶的V2O5和2-D晶体V2O5;和将非晶体V2O5转变成斜方晶的V2O5和2-D晶体V2O5的条件被描述在转让给Bi等人的美国专利No.5,989,514,题目是“用热加工钒氧化物颗粒”,供参考。(二)热处理方法制造金属钒氧化物颗粒
当如上所述可以用激光高温热解法直接生产金属钒氧化物颗粒时,同时也已发现用热处理方法也可生成纳米级金属钒氧化物颗粒。在一种优选的热生成金属钒氧化物颗粒的方法中,首先将钒氧化物纳米颗粒和非钒金属化合物混合在一起,将其混合物在炉中加热以形成一金属钒氧化物组合物。将金属结合进钒氧化物晶格中去的热处理过程可以在氧化环境或者在惰性环境中进行。在任何一种形式的环境气氛中,加热步骤通常都将引起氧对钒比例的变化,此外,热处理还能使结晶晶格变化和/或除去颗粒上吸收的化合物以改善颗粒的性能。
使用相当温和的条件,即温度一定要低于钒氧化物颗粒的熔点,导致金属结合入钒氧化物颗粒中而不致使颗粒大量烧结成较大的颗粒。过程所使用的钒氧化物颗粒最好是纳米级钒氧化物颗粒已经发现,金属钒氧化物组合物可以由处在+5(五价)或小于+5(五价)的氧化状态中的钒氧化物中获得。尤其是处在+2(两价)(VO)到+5(五价)(V2O5)的氧化状态中的钒氧化物可以用来制造金属钒氧化物颗粒。
通常,组合进金属钒氧化物颗粒中的金属是任何非钒转移金属。组合进钒氧化物的金属包括:如,铜,银,金和其组合物,适用的银化合物包括如硝酸银(AgNO3)。适用的铜化物包括如,硝酸铜[Cu(NO3)2]。或者,也可用银金属粉末,铜金属粉末或金金属粉末作为相应的金属源。
适用的氧化气包括如,O2(也可以用空气供给),O3,CO,CO2和其组合物,反应物气体可以用Ar,He和N2等惰性气体稀释。或者,气体也可以只用惰性气体。银钒氧化物颗粒已可以用惰性气氛或者用氧化气氛生产出来,如下面的例子所描述。
多种装置可以用于进行样品退火的热处理之用。适用装置的实例400可参见上面已经描述过的图6,以便用于由激光高温热解法生产而得的钒氧化物的热处理。另一个用于将金属组合入钒氧化物晶格中的装置430则见图7。颗粒放在管434中的指管432。丹或类似的器皿中。所需的气体则通过管434。气体可由氧化气源438或惰性气源436中引入提供给样品。
管434放在炉440中,炉440可采用商品炉如“Mini-MiteTM1000℃Tube Fumacl”由“Lindberg/Blue M,Asheville,NC”生产。管434的相关部分由炉440维持其常温,当然温度可以通过处理步骤加以***调整。温度监测采用一个热电偶442。
为了在加热步骤中制造出金属钒氧化物颗粒,可以将钒氧化物颗粒和金属化合物的混合物放在管434中的批管432舟中。最好是在炉中进一步加热前先将金属化合物的溶液和钒氧化物纳米颗粒混合后蒸干。只要愿意,蒸发可以同时用加热来实现以形成金属钒氧化物组合物。例如,硝酸银和硝酸铜可以用作含水溶液加到钒氧化物颗粒中去。或者,钒氧化物钠米颗粒可以和金属氧化物干粉末或元素金属粉末混合,这样就可避免蒸发这一步骤。加入足够数量金属化合物或元素金属粉末以便生产所需数量的金属组合入钒氧化物晶格中。这种进入钒氧化物的混合是可以用例如,X-光衍射仪来检验,如下所述。
可以选用精确的条件,包括氧化气(如果有的活)的种类,氧化气的浓度,气体的流量和压力,温度和处理时间等,来生产所需类型的产品材料。温度通常不高,即大大低于材料的熔点,应用较柔和的条件是为了避免颗粒间烧结成大尺寸颗粒,可以用稍高些的温度来控制颗粒的烧结从而生产出平均颗粒直径稍大一些的颗粒。
为了将金属组合入钒氧化物中,温度的范围通常是从约50℃到约500℃,较好的是从80℃到约400℃,更好的是从80℃到约325℃。处理温度范围可以从约80℃到约250℃,颗粒最好被加热从约5分钟到约100小时。为了产生适合于制造所需的材料的条件,也可能需要一些经验的调整。(三)颗粒的性质
一团包含有金属钒氧化物化合物的颗粒通常其初始颗粒的平均直径是小于500微米,较好的是从约5微米到约100微米。更好的是从约5微米到约50微米,最好的是从约5微米到约25微米。初始颗粒通常大体具有粗略的球形外貌。仔细观察,结晶颗粒一般总有与其结晶晶格相应的面。然而,初始颗粒结晶因企图在空间三个方向上都表现出生长的趋势,所以就形成大体是球状的外表。在优选实例中,95%的初始颗粒,甚至较好的是99%的颗粒的长轴长度对短轴长度的比是约不大于2。非对称形颗粒的直径的测量是以其主轴平均长度的测量为基础的。
因为这些颗粒的尺寸非常小,所以初始颗粒会因附近粒子的电磁力和Van der Waal力的作用而趋向于出现松散的团聚现象。然而,初始粒子纳米量级可以在对颗粒的透射电子显微镜图中清晰地观察到。颗粒通常具有与颗粒相应的纳米量级的表面面,可在显微镜图中观察出来,而且,由于颗粒的很小的尺寸和它单位重量的很大的表面面积而显示出其很独特的特性。例如,在锂电池中钒氧化物颗粒具有令人十分惊奇的高能量密度,参见美国专利No.5,952,125,题目是“具有电激活纳米颗粒的电池”。
初始颗粒的尺寸最好具有很高的均匀度。激光高温热解法通常可以得到其直径分布范围很窄的颗粒。而且在很柔和条件下进行的热处理并不会改变其直径分布范围很窄的特点,用气浮体传送时,颗粒直径的分布对反应条件是十分敏感的,当然,要是反应条件得到适当控制的话,在气浮体传送***中可以得到直径分布范围很窄的颗粒,如上所述。根据透射电子显微镜的观察结果,初始颗粒通常所具有的尺寸分布是:至少约95%,较好的是99%的初始颗粒的直径要大于平均直径的约40%,并小于平均直径的约160%。较好的是,初始粒子的直径分布是:至少约95%和较好是99%的初始颗粒的直径要大于平均直径的约60%和小于平均直径的约140%。
而且,在优选的实施例中,没有比平均直径大约四倍的初始粒子,或者更好的是三倍,甚至两倍,换言之,在颗粒的尺寸分布图上不出现一个表示有小量具有明显较大直径的粒子的尾部,这是由于反应区很小和粒子受到急骤冷却的缘故。尺寸分布图的尾部被有效地切除,这意味着在106数量的粒子中其直径比平均直径以上某一特定切割值略大的直径更大一些的粒子不会超过一个。
很窄的尺寸分布,分布图中没有尾部,和大致是球状的形态可以开发出很多应用领域。
此外,纳米颗粒一般具有很高的纯度。用上述方法生产的结晶的金属钒氧化物颗粒可望比反应物具有较高的纯度,因为在结晶形成的过程中有将杂质从晶格中排除出去的趋势。而且由激光调温热解法生产的结晶的钒氧化物颗粒具有很高的结晶度。同样,用热处理方法生产的结晶的金属钒氧化物纳米颗粒也具有很高的结晶度。在颗粒表面的杂质在加热时被清除,使颗粒不仅得到很高的结晶度而且还得到很高的纯度。
钒氧化物具有一种错综复杂的相图,因为钒有很多种可能的氧化状态。已知的钒所存在的氧化状态是在两价钒到五价钒之间,不同氧化状态下钒的氧化物之间的能量差别并不大。因此,就有可能生产出化学混合价的化合物。钒氧化物的已知形式有VO,VO1.27,V2O3,V3O5,V2O,V6O13,V4O9,V3O7,和V2O5,单独采用激光高温热解法或再结合外加加热可以很成功地产出具有很多不同氧化状态的单相钒氧化物,并已由X-光衍射天空所证明。这些单相材料通常是结晶体,固然也有某些非晶体纳米颗粒产出。热处理方法是有利于增加钒氧化物颗粒的氧化状态或使钒氧化物颗粒转变成更为有序的相。
钒氧化物相图中也有混相区域。在混相区中颗粒可以成形成不同的氧化状态,或者其中可以同时有具有不气体状态的不同颗粒。换言之,某些颗粒或颗粒的某些部分具有一种化学配比而另一些颗粒或颗粒的另一些部分则具有另一种不同的化学配比。混相纳米颗粒已经制成。非化学配比材料也可以制成。
钒氧化物通常形成的晶体是八面体或受损的八面体配位。特别是,VO,V2O3,VO2,V6O13和V3O7能形成八面体配位。而且,V3O7还可形成双棱锥三角晶系配位。V2O5所形成的是方棱锥体结晶结构,最近V2O5也已能生成双维晶体结构,参见M.Hibino等人所著“Solid State Ionics”79:239-244(1995)一书。在适合的条件下,钒氧化物纳米颗粒还可以是非晶体的。钒氧化物的结晶晶格可以用X-光衍射测量方法来评价。
金属钒氧化物化合物可以形成各种化学配比,此处引用Liang等人的美国专利No.4,310,609,题目是“金属氧化物组成阴极材料用于高能量密度电池”,其中叙述的形式有:Ag0.7V2O5.5,AgV2O5.5和Cu0.7V2O5.5。欠氧银钒氧化物产品是描述在Takenchi等人的美国专利No.5,389,472,题目“用Ag(0)和V2O5作起始材料制备银钒氧化物阴极”中化学式为AgxV2Oy,其中:0.3≤X≤2.0,4.5≤Y≤6.0,再含有化学掺合物V2O5和AgVO3的银钒氧化物的相图是被描述在题目是“非水电化学电池中的阴极材料”欧洲专利申请No.0689256A一文中,列此供参考。(四)电池
参见图8电池450有一负电极452,一正电极454和在负电池452和正电极454之间的隔层456。一个单电池能包含多个正电极和/或多个负电极,电介质可以各种形式供给,如下所述。电池450最好包括和正电极454,和负电极452分别相联在一起的集流片458,460。只要愿意,多个集流片可以和各个电极相联。
锂在电池中一直被用在还原/氧化反应中,因为它是最轻的金属,和因为它是最为正电性的金属。将锂离子***或相类似的机理例如用局部化学吸收法组合到其结构中去的某些金属氧化物的形式是已知的,可以在钒氧化物晶格的各种适当形式中,以及金属钒氧化物组合物的晶格中***锂离子。在电池中适用折金属钒氧化物纳米颗粒可以用钒氧化物纳米颗粒和金属化合物一起热处理而产出,也可以用金属钒氧化物纳米颗粒直接由激光高温热解法再另加或不另加热处理的方法产出。尤其是在电池放电时锂***到钒氧化物晶格中或金属钒氧化物晶格中。锂在放电时离开晶格,即当由外加EMF接到电池上,而使电压加到电池上。使电流流到正电极时,锂离开晶格。正电极454在放电时是一个阴极而负电极452在电池放电时是一个阳极。金属钒氧化物颗粒可以直接用作锂基电池的正电极,以提供给电池高的能量密度。适当的金属钒氧化物颗粒可以是锂或锂离子电池中阳极的有效电活泼材料。正电极454包括电活废的纳米颗粒例如,与高聚物粘合剂那样的粘合剂结合在一起的金属钒氧化物纳米颗粒。用正在电极454中的纳米颗粒通常具有各种形状,例如大体上球形的纳米颗粒或者拉长的纳米颗粒。除金属钒氧化物颗粒外,正电极45还包括其它的电活泼纳米颗粒,例如TiO2纳米颗粒,钒氧化物纳米颗粒和锰氧化物纳米颗粒。TiO2纳米颗粒的生产已有美国专利No.4,705,762予以描述,供参考。已知钒氧化物纳米颗粒显示出十分惊人的高能量密度,参见美国专利No.5,952,125。题目是“具有电活泼纳米颗粒的电池”。锰氧化物纳米颗粒的生产描述在普通转让给Kumar等人的待审批的美国专利申请No.09/188,770,申请日为1998,11,09,题目是“金属氧化物颗粒”中供参考。
某些电活泼材料是合理的电导体。正电极通常在电活泼纳米颗粒中还包括外加的电导颗粒。这些附加的,电导颗粒通常夹带在粘合剂中。适用的电导颗粒包括可导的碳颗粒例如碳黑,金属颗粒例如银颗粒,金属纤维例如不锈钢纤维等。颗粒的高填入量可以在粘合剂中得到。颗粒的重量最好是整个正电极重量的80%以上,更好的是大于90%。粘合剂可以是任何种类的适当的高聚物,例如,聚偏三氟乙烯、聚乙烯氧化物、聚乙烯、聚丙烯、聚四氟乙烯、聚丙烯酸酯、乙烯-(丙烯-二烯单体)的共聚物(EPDM)和它们的混合物及共聚物。
负电极452可以用各种适合与锂离子电解质一起利用的材料构成。在锂电池中,负电极可以包括锂金属或锂合金金属,不论其形式是箔,栅或粘合剂中的金属颗粒均可。
锂离子电池采用一种能***锂的组合物的颗粒。这种颗粒是由粘合剂夹带在负电极之中。
适用的***化合物包括,例如,石墨,合成石墨,焦碳,中炭素,含添加剂的炭(doped carbons),五氧化铌,锡合金,SnO2和它们的混合物和组合物。
集流片458,460用于收集从电池流出的电流。集流片458,460是电导体,一般由镍、铜、铝、铁和不锈钢等金属制成,并制成金属箔或最好是一金属栅。集流片458,460可以放在它们相关的电极上,或者处在它们相关电极之中。
隔层456是电绝缘体,并至少给某些形式的离子提供通路。通过隔层的离子迁移使得电池的各个部分保持电中性。通常,隔层阻止了正电极中的电活泼化合物和负电极中的电活泼化合物相接触。
有各种材料可用于隔层。例如,隔层可由玻璃纤维形式多空矩阵而构成。最好的隔层是由如用在粘合剂中的高聚物制成。高聚物隔层可做成多空的形式以便离子的传导。或者高聚物隔层可以用如聚乙烯氧化物那样的高聚物制成的固体电介质。将电介质结合进高聚物矩阵中的固体电介质使离子不必需要液体溶液也得以传导。
用于锂电池或锂离子电池中的电介质可以包括各种锂的盐类。较好的锂盐具有惰性负离子并且是无毒的。适用的锂盐包括,如,六氟磷酸锂,六氟砷酸锂,2-(3氟甲基硫酸亚胺)锂,三氟甲烷磺酸锂,3-(3氟甲基硫酰)甲基化锂,四氟硼酸锂,过氯酸锂,四氯铝酸锂,氯化锂,和过氟丁烷锂。
如果用液体溶液溶解电介质,则溶液最好是惰性并且不致将电活泼材料溶解。通常适用的包括:如,碳酸丙烯脂,二甲基碳酸脂,二乙基碳酸酯,2-甲基四氢呋喃,二氧五环,四氢呋喃,1,2-二甲氧基乙烷,碳酸乙烯酯,a-丁内脂,二甲基亚砜,乙睛,甲酰胺,二甲基甲酰胺,硝基甲烷。
电池组分的形状可加以调整以适应于最后所需的产品,例如钮扣电池,矩形或圆形电池。电池通常包括一个包壳,其适当部分和电池的集电片和/或电极保持电气连接。如果采用液体电介质,则外壳应防止电介质泄漏。外壳应保持电池的各个单元相互紧密相靠,以减少电池的内部的电阻。可将多个电池放在一个外壳中,其中各个电池可以并联或串联。实施例实施例1-用激光高温热解法生产钒氧化物
单相VO2颗粒可以用激光热解法生产。VOCl3(Strem Chemical Inc.,Newburyport,MA生产)初始蒸气可以由氩气在室温下通过容器中的VOCl3液体成气泡而带入反应室中。含有VOCl3,Ar,O2和C2H4的反应物混合气体进入反应物气体喷咀并喷进反应室中,反应物气体喷咀的尺寸是5/8英寸×1/8英寸。C2H4气是用作激光吸收气。氩是用作惰性气体。
合成的钒氧化物纳米颗粒可以直接含带在空气中、生产这种材料的代表性反应条件参见表1。
                     表
    相     VO2
    晶体结构     单斜棱晶
    压力    (乇)     210
    氩-窗(sccm)     700
    氩-保护(slm)     7.0
    乙烯(slm)     1.61
    载气-氩(slm)     1.4
    氧(slm)     0.47
    初始粒温度  (℃)     40
    产率(gm/hr)     35
    激光功率输入(Watts)     780
    激光功率输出(Watts)     640
  其中:sccm=标准立方厘米/分
    slm=标准立升/分
    氩-窗=经过入口216,218的氩气流
    氩-保护=经过环形通道142的氩气流。
一种代表性纳米颗粒的X光衍射图见图9,与一种单科棱晶状结构相应衍射类峰在其中清晰可见。在衍射图中所认定的结构和在较大颗粒尺寸的相应块材中的结构几乎是完全一致的。实施例2-热处理形式V2O5纳米颗粒晶体
用于热处理的初始材料是由激光高温热解法按表1中的参数生产出的VO2纳料颗粒。
纳米颗粒在大致如图6中的炉子中热处理。颗粒按约100克到约150克一批,逐批送入玻璃杯中。氧化按流量为155立方厘米/分通过1/8英寸的不锈钢管。在热处理时采用不变的混合速度5rpm混合粉末。粉末先以100℃加热30分钟,再以200℃加热30分钟,最后用230℃加热16小时。加热速度是按每4℃/分钟将样品加热到目标温度。所获得的纳米颗粒是单相结晶的V2O5纳米颗粒。这种材料的X光衍射图见图10。从X光衍射图中可以确定所得的颗粒是斜方晶的V2O5
透射电子显微镜(TEM)图可以从经热处理后的典型纳米颗粒下得到。见图11。手动测量图11中的颗粒直径可以得到大致的尺寸分布,见图12。可得平均约为10-11纳米。只对图中边缘清晰的颗粒才测量及记录其尺寸,以避免电子显微镜图的模糊区。这并不致引起测量偏差,因为电子显微镜只从单方向观察,则于晶体的不同指向而看不到所有颗粒的清晰图像。实施例3-将V2O5纳米颗粒热处理而形成银钒氧化物
本实施例是采用钒氧化物纳米颗粒为初始材料的生产纳米量级的银钒氧化物。该银钒氧化物是用热处理方法而生产的。
将约9.5克的硝酸银(AgNO3)(“EM lndustries,Hawthorne,NY”生产)溶解在约15毫升去离子水中。将按实施例2中所述方法所得到的约10克的V2O5纳米颗粒放到硝酸银溶液中形成混合液,在磁性搅拌器中搅拌约30分钟。充分搅拌后的溶液在炉中加热到160℃去除水分。再用研钵和杵研磨其所得的干粉混合物。从所得研磨粉末中算出重量在约100毫克到300毫克的6份样品分别放在1立方厘米的舟中。将舟再放到穿过加热炉的石英管中进行热处理。加热炉基本如上述图7所示。通入1.0英寸直径石英管中的氧气或氩气的流量约为20 sccm。各个样品在下列条件下在炉中加热:
1)250℃,氩气中60小时,
2)250℃,氧气中60小时,
3)325℃,氩气中4小时,
4)325℃,氧气中4小时,
5)400℃,氩气中4小时,
6)400℃,氧气中4小时。
样品的平均升温速度是约2℃/分,并按约1℃/分的速度冷却。上述条件中的时间并不包括升温和冷却时间。
用X光衍射法检测热处理后的样品颗粒结构,在氩气和氧气中加热后的样品的X-光衍射图分别表示在图13和图14中。各种加热后样品所得的衍射图中的峰,表示出其中有Ag2V4O11在400℃上加热后的样品显示其缺乏大量的V2O5。当样品是用较低温度作较长时间热处理时,则应将任何残留的V2O5初始材料除去。
银钒氧化物颗粒的透射电子显微镜图见图15。作为比较,在图16中表示出制造银钒氧化物钠米颗粒用的V2O5纳米颗粒样品的透射电子显微镜图。两个图的尺寸比例是相同的。图16中的V2O5纳米颗粒的秤条件是与实施例1和2中所述的相同,图15中的银钒氧化物颗粒的平均直径居然很惊奇地还比图16中的钒氧化物纳米颗粒初始材料还略小一些。实施例4将VO2纳米颗粒热处理而形成银钒氧化物
这个实施例表示了利用VO2钒氧化物纳米颗粒作为初始粒子生产纳米量级银钒氧化物的例子。银钒氧化物是用热处理方法生产。
VO2纳米颗粒是在和实施例1中相似条件下生产而得的。用10克纳米结晶VO2粉末经500毫升去离子水清况以除去残留的氯,用一个牌号为“Corming”的500毫升过滤***,带有0.2微米的“Nylon”(尼龙)膜和侧臂是抽其空的过滤***来清洗。清洗后的纳米结晶VO2粉末在真空下用低于30英寸汞柱(750)温度为100℃到120℃之间,至少12小时干燥。清洗和干燥后的纳米结晶VO2再在“SPEX TM 800”混合研磨器中处理15分钟以将团聚物打碎。
用由“EM lndustries(Hawthorne,NY)”生产的硝酸银结晶粉末(99%以上纯度)按重量比例加到去团聚后的纳米结晶VO2粉末中,比例是1摩尔的AgNO3对2摩尔的VO2。再将这混合粉末放在牌号为“FritschMortar Grinder Model P-2(Gilson Company,Inc.,Worthington,OH)”的研磨器中研磨20分钟。然后再在管式炉中加热,如图7所示,其中流动的氧气氛的氧流量为190毫升/分。
热处理还包括用一小时以上时间从室温加热到180℃然后再化至少一小时的均衡时间。之后再逐步升温到约400℃,将这最终温度保持约20小时,然后再将产品用5到15小时以上的时间冷却到室温。
所得的粉末的结晶结构是X光衍射法测量,其X光衍射图见图17。图中有与银钒氧化物(Ag2V4O11)的类峰。
所得的银钒氧化物纳米颗粒再用微分扫描热量计(DSC)来测量其特性。该DSC装置是由“TA Instruments,Inc.,New Castle,DE”提供的“model Universal V2.3C DSC”装置,测得的按温度为函数的热流图见图18。该曲线表示出只有两个各相应于在558℃有转熔反应和在545℃有低共熔点的等温点。在银钒氧化物中的转移现象的进一步描述可参见文献:“P.Flenry,Rev.Chim.miner.,6(5)819(1969)”。
并未观察到更低温度的吸热点,尤其是相应于AgVO3的熔点463℃附近的吸热点并未观察到。
这样,DSC数据就说明了相对于在DSC测试极限1000℃之前具有相转移的材料而言纳米级银钒氧化物材料在成分上是很纯的。
这种干粉混合方法也可成功地从纳米颗粒结晶V2O5和结晶的硝酸银粉末的混合粉末中生产出银钒氧化物纳米颗粒来,只是因为纳米结晶V2O5颗粒是由热处理而得并不含有氯所以通常就不再需要情况步骤。另外,充分子比也作为相应调整。实施例5-直接用激光高温热解法合成纳米级银钒氧化物材料
本实施例所述的纳米级银-钒氧化物材料的合成是用激光高温热解法完成的。颗粒的生产主要是采用如图1所示的激光高温热解装置,和采用如图3A所示的反应物传送装置。
作为反应室中气浮体而传送的溶液是用钒初始粒子生产而得的。为了生产这种钒初始粒子溶液,先将“Aldrich Chemical(Milwaukee,WI)”出产的V(三价)氧化物V2O3样品20.0克悬浮在240毫升的去离子水中。用60毫升的含水硝酸(HNO3)(70%重量比)滴入三价钒氧化物中并加以强力搅拌。注意这个加硝酸的反应是放热反应并释放疑为NO2的棕色气体。所得的钒初始粒子溶液是深兰色的。
为生产初始粒子溶液作气浮体传送之用,将“Aldrich Chemical(Milwaukee,WI)”出品的硝酸银22.7克溶解在200毫升去离子水中而制备成硝酸银溶液。该用作金属混合物溶液以备气浮体传送之用的硝酸银溶液加到钒初始粒子溶液中并不断搅拌。这种深兰色溶液的钒对银的摩尔比约为2∶1。采用较高比率量的银得到差不多的结果。
将具有钒和银初始粒子的含水溶液作为气浮体而送入反应室中。C2H4气是用作激光吸收气,氩气则为惰性气体。O2,Ar和C2H4都送入反应物供给***的供气管中。含有钒氧化物,硝酸银,Ar,O2,和C2H4的反应混合物被送入反应物喷咀以喷射到反应室中,反应物喷咀的开口尺寸是5/8英寸×1/4英寸。与实施例1中颗粒相关的激光高温热解法合成的另一些参数见表2。
                                 表2
    结晶结构     混合相
    压力    (乇)     450
    氩-窗(sccm)     2.00
    氩-保护(slm)     9.81
    乙烯(slm)     0.73
    氩(slm)     4.00
    氧(slm)     0.96
    激光功率输(Watts)     490-510
    激光功率输出(Watts)     450
    钒/银摩尔比     221
    初始粒子温度(℃)     室温
slm=标准立升/分,
氩-窗=经过入口 216,218的氩气流量,
氩-保护=经过环形通道142的氩气流量,
氩=直接和气浮体混合的氩气流量。
为了评价原子排列,在“Siemess D 500”X光衍射仪上利用Cu(Kα)辐射线进行X-光衍射试验。按表2条件所生产的样品的X-光衍射图见图19,衍射图上的峰值可以认定出VO2,V2O3和元素银。图中另一些峰认不出和已知的材料相关联,并将进一步在实施例7中加以讨论。
在表2条件下产得的样品粉末用透射电子显微镜作进一步分析,其透射电子显微镜(TEM)见图20。TEM图中有一批颗粒是落在不同的尺寸分质布上。这就是用激光高温热解法制得的混相材料的特征,其中每一种材料通常有一个很窄的颗粒尺寸分布。
此外,如下实施例所述,这些在氧环境中的纳米级银-钒氧化物材料可以得到很高产率的Ag2V4O11结晶体。实施例6-激光高温热解法产得的纳米级银-钒氧化物材料的热处理
本实施例表示了利用如实施例5所述激光高温热解法产得的纳米级银钒氧化物材料作为初始材料来生产纳米级结晶的银钒氧化物Ag2V4O11
将相应于实施例5所得样品银钒氧化物粉末样品约重量为300到700毫克之间的纳米颗粒放在1立方厘米的小舟中,将小舟放到穿在加热炉中的石英管中进行热处理。该炉基本上如上述图7所示。氧气以30sccm的流量通入10英寸直径的石英管中。
热处理是先用1小时以上时间从室温加热到180℃,然后再化至少一小时作为均衡时间。然后,以约每分钟3℃的速度将温度升到约360℃,在此最终温度上保持16.5小时,在最终温度上加热达所需时间后,产品再以每分钟1℃的速率冷却到室温。上述的热处理时间并未包括加热和冷却时间。
热处理后的颗粒结构用X-光衍射法加以测量,热处理后样品的X-光衍射图见图21。热处理后的粉末也用透射电子显微镜(TEM)测试,样品的TEM图见图22。实施例7-直接用激光高温热解法合成银钒氧化物纳米颗粒
本实施例描述了用激光高温热解法合成银钒氧化物纳米颗粒。颗粒的生产基本上是利用如图1所示的激光高温热解装置,如上所述,并利用如图3A或3B的反应物传送装置。
必须制备两种溶液以便作为气浮体而传送反应室中。两种溶液都是用差不多的钒初始粒子溶液生产得出。为了生产第一种钒初始粒子溶液,从“Aldrich Chemical(Milwaukee,WI)”处购得三价钒氧化物(V2O3)样品10.0克悬浮在120毫升去离子水中。用30毫升的含水硝酸(HNO3)(70%重量比)溶液滴入V2O3悬浮液中,强力搅拌。注意其加硝酸的反应是放热反应,并释放出疑为NO2的棕色气体。所得的钒初始粒子溶液(约150毫升)是深兰色溶液。
第二种钒初始粒子溶液和第一种钒初始粒子溶液完全一样只是其中各个成份的量是第一种的三倍。
为了生产第一种银溶液,将“Alclrich Chemieal(Milwaukee,WI)”出品的碳酸银(Ag2CO3)9.2克悬浮在100毫升的去离子水中而成Ag2CO3溶液。再将10毫升量的含水硝酸(70%重量比)滴入其中强力搅拌。硝酸滴完后得到无色清晰溶液。为了生产第一种金属混合物溶液供传送气浮体之用,将银溶液加到第一种钒初始粒子溶液中不断搅拌。所得深兰色第一金属混合溶液具有钒对银的摩尔比是约2∶1。
为了生产第二种银溶液,将“Alclrich Chemical(Milwaukee,WI)”的碳酸银(Ag2CO3)34.0克溶入300毫升的去离子水中。为了制备第二种金属混合物溶液供传送气浮体之用,将硝酸银溶液加到第二种钒初始粒子溶液中不断搅拌。所得第二种深兰色金属混合溶液也具有钒对银的摩尔比是约2∶1。
所选的含水的钒和银初始粒子溶液以气浮体方式送入反应室中。C2H4气是用作激光吸收体,氩气则为惰性气体。O2,Ar和C2H4都送入反应物供应***的供气管中。含有钒氧化物,硝酸银,Ar,O2,和C2H4的反应混合物被送入反应物喷咀以便喷射入反应室,反应物喷咀的开口尺寸是5/8英寸×1/4英寸。与颗粒合成相关的激光高温热解法合成的其他的合成参数见表3。样品的制备是采用如图3A所示的反应物传送***,而样品2的制备则使用如图3B所示的反应物传送***。
                               表3
    1     2
    晶体结构     混合相     混合相
    压力    (乇)     600     600
    氩-窗(sccm)     2.00     2.00
    氩-保护(slm)     9.82     9.86
    乙烯(slm)     0.74     0.81
    氩(slm)     4.00     4.80
    氧(slm)     0.96     1.30
    激光功率输入(Watts)     490-531     390
    激光功率输出(Watts)     445     320
    初始粒子溶     1     2
    初始粒子温度(℃)     室温     室温
其中:
slm=标准立升/分,
氩-窗=经过入口216,218的氩气流量,
氩-保护=经过环形通道142的氩气流量,
氩=直接混合在气浮体中氩气流量。
为了评价原子排列,在“Siemess D 500”X-光衍射仪上利用Cu(Kα)辐射线进行X-光衍射试验。按表3条件所生产的样品1(下面曲线)和样品2(上面曲线)的X-光衍射图见图23,样品具有与VO2,元素银相应的峰,但再没有与已知材料相应的峰。这些样品的主要结晶相在20上具有的峰等于30-31°,32,33和35。曾认为这个相是早先未知的银钒氧化物的相。这个相现在用钒氧化物纳米颗粒和硝酸银相混合后在样品加热到不足时间周期以产生Ag2V4O11的条件下制备而得的样品中观察到了。样品1放到钮扣电池中后的比容测量将在后面加以叙述,也支持了这种解释。在如实施例5中所述的条件下所得的样品也能观察到这样的较小的峰。
在表3条件下产得的样品粉末用透射电子显微镜作进一步分析,其透射电子显微镜图(TEM)见图24A(表3中第一列)和图24B(表3中第二列)。TEM图中有一批颗粒落在不同的尺寸分布中,这就是用激光高温热解法制得的混相材料的特征,其中第一种材料通常有一个很窄的颗粒尺寸分布。氧流量增加,激光功率减少和压力增加都可以使混相材料中银钒氧化物的部分增加。实施例8-直接用激光高温热解法合成银钒氧化物纳米颗粒
本实施例描述了用激光高温热解法合成银钒氧化物颗粒。颗粒的生产是基本上利用如图1所示的激光高温热解装置,如上所述;和利用如图3B所示的反应物传送装置。
要制备一种溶液以便作为气浮体传送入反应室中。为了生产第一种钒初始粒子溶液,从“Aldrich Chemical(Milwawkee,WI)”处得到三价钒氧化物(V2O3)样品20克悬浮在240毫升的去离子水中,用60毫升的含水硝酸(HNO3)(70%重量比)溶液滴入V2O3悬浮液中强力搅拌。注意其加硝酸的反应是放热反应,产释放出疑为NO2的棕色气体,所得的钒初始粒子溶液(约300毫升)是深兰色溶液。
制备五种不同的银溶液以便产生一种溶液作为气浮体按可变的银钒比例进行传送。为了生产银溶液,将“Alarich Chewical(Milwanka,WI)”的硝酸银(AgNO3)溶入200毫升的去离子水中,这五种溶液中硝酸银的重量分别是:1)15.9克,2)18.1克,3)20.4克,4)22.7克,5)23.8克。将硝酸银溶液加到钒初始粒子溶液中不断搅拌以制备用作气浮体的金属混合物溶液。
这五种溶液具有下列的银对钒的摩尔比:1)0.7∶2,2)0.8∶2,3)0.9∶2,4)1.0∶2,5)1.05∶2。
将所选的含水具有钒和银初始粒子溶液作为气浮体而送入反应室中。C2H4气是用作激光吸收气体,氩气则为惰性气体。O2,Ar和C2H4都送入反应物供给***的供气管中。含有钒氧化物,硝酸银,Ar,O2,和C2H4的反应混合物被送入反应物喷咀以喷射到反应室中,反应物喷咀的开口尺寸是5/8英寸×1/4英寸。与颗粒合成相关的激光高温热解法合成的其他参数见表4。
                       表4
    结晶结构     混合相
    压力        (乇)     600
    氩-窗       (sccm)     2.0
    氩-保护     (slm)     9.86
    乙烯        (slm)     0.81
    氩          (slm)     4.80
    氧          (slm)     1.30
    激光功率输入(Watts)     390
    激光功率输出(Watts)     320
    初始粒子温度(℃)     室温
slm=标准立升/分,
氩-窗=经过入口216,218的氩气流量,
氩-保护=经过环形通道142的氩气流量,
氩=直接和气浮体混合的氩气流量。
为了评价原子排列,在“Siemess D 500”X光衍射仪上利用Cu(Kα)辐射线进行X-光衍射试验。按表4所示条件生产的样品1-5的X-光衍射图见图25,样品具有相应于VO2,元素银,可能是V2O3的峰,和与已知材料不相应的峰。这些样品的主要结晶相表20上具有的峰等于30-31°,32,33和35。如上已指明,曾认为这个相是早先未被认知的银钒氧化物的相。当银钒的比例增加的条件下,与钒氧化物相应的峰就增加,由此证明了,当银的相对量增加时,外加的含有钒,氧和可能有银的非晶态成分也增加了。实施例9-激光高温热解法生产元素银纳米颗粒
本实施例所述的元素银钠米颗粒的合成是用激光高温热解法实现的。颗粒的生产主要是用如图1所示的激光高温热解装置,如上所述;和采用如图3A所示的反应物传送装置。
用作气浮体而传送反应室中的1摩尔硝酸银溶液的制备是将“AldrichChemical,Milwaukee,WI”的硝酸银50.96克溶解在300毫升的去离子水中而产得的澄清溶液。C2H4气是用作激光吸收气体,而氩气则为惰性气体。O2,Ar和C2H4都送入反应物供给***的供气管中。含有硝酸银,Ar,O2,和C2H4的反应混合物被送入反应物喷咀以喷射到反应室中,反应物喷咀的开口尺寸是5/8英寸×1/4英寸。与颗粒合成相关的激光高温热解法合成的其他参数见表5。
                                    表5
    1     2
    晶体结构   面共轴方方体     面共轴方方体
    压力      (乇)     450     450
    氩-窗     (sccm)     2.00     2.00
    氩-保护   (slm)     9.82     9.82
    乙烯      (slm)     1.342     0.734
    氩        (slm)     5.64     3.99
    氧        (slm)     1.41     0.96
  激光功率输入(Watts)     970     490
  激光功率输出(Watts)     800     450
  产率        (gv/hr)     1.44     1.02
  初始粒子温度(℃)     室温     室温
其中:
slm=标准立升/分,
氩-窗=经过入口 216,218的氩气流量,
氩-保护=经过环形通道142的氩气流量,
氩=直接混合在气浮体中氩气流量。
为了评价原子排列,在“Siemess D 500”X-光衍射仪上利用Cu(Kα)辐射线进行X-光衍射试验。按表5所示条件所生产的样品1和样品2的X-光衍射图分别见图26,和27,样品具有与元素银相应的很强的峰。
在表5第一列的条件下产得的样品粉末用透射电子显微镜作进一步分析。电子显微镜图如图28,在TEM图中的颗粒尺寸分布是比用激光高温热解法合成的颗粒尺寸分布要宽。颗粒尺寸分布可以或者使用气相初始粒子,或者使用更均匀的气浮体传送而大大地较窄。
典型的颗粒也用元素分析法加以分析。这些材料的典型元素分析结果是约(重量比)银93.09%,碳2.40%,氢0.05%,和氮0.35%。氧不能直接测量出来,可能占剩余量中的一部分。元素分析是采用“DesertAnalytics,Tucson,Arizon”完成的。
纳米颗粒中的碳组成似乎是以涂层的形式存在的,这种碳涂层可由反应物流引入的乙烯而形成。通常,碳可以在柔和的氧化气氛条件下加热而除去。这种除碳被进一步描述在普通受让的待审美国专利申请No.09/123,255中,题目为“金属(硅)氧化物/碳组合的颗粒”供参考。
由于IB族中的另外一些元素铜和金具有和银相类似的化学性质,所以用铜和金初始粒子在相同条件下来代替银初始粒子应该得到元素铜或金纳米颗粒产品。实施例10-用银钒氧化物纳米颗粒制造锂电池
本实施例描述用银钒氧化物颗粒生产锂基电池的合适性和增加容量的可能性。为了生产***由上述实施例之一产得的银钒氧化物试验电池,
秤取所需的银钒氧化物纳米颗粒和予定量的石墨粉末(ChuetsuGraphite Works,Co.,Osaka Japan)和电石的黑色粉末(Catalog number 55,Cheveon Corp.)组合成可导电的稀释剂,产在水中加60%(重)的Teflon弥散剂作为粘合剂。该混合物包括70%(重)银钒氧化物纳米颗粒,10%(重)石墨,10%(重)电石黑和10%(重)Teflon。将所得的组合物充分揉合滚压成1毫米厚的薄片,从薄片中切出一2厘米2面积的圆片。然后将该圆片干燥并在直径1.6厘米的模具中用45-60秒和加压12,000磅,以形成一个实心的小丸。然后将该小丸真空干燥和秤重。
该压制的干燥圆片在2025钮扣电池中用作活性阴极。为了制作钮扣电池冲击一个1.6厘米2面积的镍多孔金属网圆片,用电阻焊焊在2025钮扣电池的不锈钢外壳盖(Catalog No.10769,Alfa Aesar,Inc.,Ward Hill,MA)内作为集电片。用Hohsen Corp(Osaka Japan)的电池级锂箔冲出一个2厘米2圆片并冷焊在镍多孔金属网上。将适当尺寸的多孔聚丙烯圆隔离片(Celgard2400,Hoechst-Celanese,Charlotte,NC)放在锂圆片上。
将预定量的电介质加到隔离片/锂圆片组合件中,电介质溶液是由1M LiPF6盐组成,电介质溶液的溶剂是1∶1(体积化)的碳酸乙烯和二甲基碳酸盐。将第二个被冲出1.6厘米2面积的不锈钢多孔金属网圆片用电阻焊焊在2025钮扣电池的不锈钢外壳内。将活性阴极小丸放在镍多孔金属网上并如上述隔离片/锂圆片组件相配。不锈钢外壳和不锈钢外壳盖之间用聚丙烯塑圈隔开。再将该相配后的组合件卷边固定成一个试验钮扣电池。
用“Maccor Bottery Test Sysfem,Series 400,from Maccor,Inc.,(Tulsa,OK)”出品的电池测试装置进行测试,记录下其放电图,并获得该活性材料的放电容量。
在制作第一钮扣电池时,是采用如实施例4中所述的将纳米VO2颗粒和硝酸银加热形成的纳米银钒氧化物0.143克制出阴极小丸。卷边之后马上测出的开路电压就是3.53伏。将电池放入恒温室中(温度为37±1℃)平衡4个小时。然后,按每平方厘米活性电极交界面积有0.1毫安的恒定放电电流使电池放电。当电压达到1.0伏时,则允许电流衰减但让电池保持1.0伏电压不变,达5小时。在1.0伏电压下可允许进行与放电达最后电流值时出现的极化效应无关的电池容量的测量。这样得出的电池容量测量值是更为按近于用无限慢放时得到的最大值。
以时间为函数的电压图且图29,图中的开始4小时是在温度平衡(并不包含任何电池放电)期间测出的。以蓄电容量为函数的电压曲线见图30。所测得的蓄电池放电容量是51.0毫安小时,或比容值约为357毫安小时/克(活性银钒氧化物纳米颗粒)。这就比理论比容值更大。
第二个电池是按上述实施例5所述用银钒氧化物直接合成而制出的,阴极包含有0.148克钠米银钒氧化物颗粒。卷边后立即测得的开路电压是3.3伏。将电池放入37±1℃的恒温室中平衡4小时。电池的稳定放电电流是按每平方厘米活性电极交界面积0.309毫安。当电压达到1.0伏时,允许放电电流减少并保持电池电压在1.0伏,5小时。
电压一时间曲线如图31。图中初始4小时是在温度平衡期间得到的,并不包含任何电池放电。电压对蓄电容量曲线见图32。如图所示测出的蓄电放电容量是15.4毫安小时,或比容值约为104.3毫安小时/克(活性银钒氧化物纳米颗粒)。放电容量的测量是由电压和分电流的乘积对放电电流的积分而得到的。比容值是由放电容量除以活性材料的质量而得到的。
第三个试验电池是按上述实施例6所说的用激光高温热解法和后序的炉中退火程序合成的银钒氧化物按如上所述方法制作而成的。活性阴极小丸含0.157克银钒氧化物纳米颗粒。卷边后立即测试的开路电压是3.5伏。电池放在37±1℃的恒温室中平衡4小时。电池的稳定放电电流是按每平方厘米活性电极交界面积0.100毫安。当电压达到1.0伏时,允许放电电流减少并保持电池电压在1.0伏,5小时。
电压-时间曲线如图33。图中初始4小时是在温度平衡期间得到的,并不包含任何电池放电。电压对蓄电容量曲线见图34。如图所示测出的蓄电放电容量是63.53毫安小时,或比容值约为404毫安小时/克(活性银钒氧化物纳米颗粒)。
第四个试验电池是用上述实施例7在表3中第一例所指明的条件下用激光高温热解法合成的银钒氧化物按上述方法制作而成的。活性阴极小丸含0.154克银钒氧化物纳米颗粒。卷边后立即测得的开路电压是3.4伏。电池放在37±1℃的恒温室中平衡4小时。电池的稳定放电电流是按每平方厘米活性电极交界面积0.309毫安。当电压达到1.0伏时,允许放电电流减少并保持电池电压在1.0伏,5小时。
电压一时间曲线如图35。图中初始4小时是在温度平衡期间得到的,并不包含任何电池放电。电压对蓄电容量曲线见图36。图35,36中所示电压曲线具有银钒氧化物所特有的特征,如图所示,测出的蓄电放电容量是35.54毫安小时,或比容值约为35.54毫安小时/克(活性银钒氧化物纳米颗粒)。该低的比容值被认为是银钒氧化物颗粒中有部分混相材料的缘故。
曾经报导了每克(7克当量的锂)Ag2V4O11的锂论容量是315毫安小时,参见“Takeuchi等人,‘在锂/银钒氧化物电池中银钒氧化物的还原’J.Electrochem,Soc.135:2691(Nov.1988)”和“Leising等人,Jonrhalof Power Sources 68:730-734(1997)”。可见,此处实施例中所描述的电容值要大大超过了理论值。
上述的实施例只是属于想表明的几个但决不是仅有的。另外的实施例包含在权利要求中。本发明已参用优选实施例予以描述,但本专业人员都应明白,任何形式或细节上的改变都并未脱离本发明的范围和精神。

Claims (47)

1.一种颗粒集团,其特征在于包括金属钒氧化物,所述颗粒的平均直径不大于500纳米。
2.一种如权利要求1所述的颗粒集团,其特征在于其中颗粒的平均直径从约5纳米到100纳米。
3.一种如权利要求1所述的颗粒集团,其特征在于其中颗粒的平均直径从约5纳米到50纳米。
4.一种如权利要求1所述的颗粒集团,其特征在于其中的金属钒氧化物包括银钒氧化物。
5.一种如权利要求1所述的颗粒集团,其特征在于其中的金属钒氧化物包括Ag2V4O11
6.一种如权利要求1所述的颗粒集团,其特征在于其中实际上没有直径大于颗粒集团的平均直径约4倍的颗粒。
7.一种如权利要求1所述的颗粒集团,其特征在于其中实际上没有直径大于颗粒集烤的平均直径约2倍的颗粒。
8.一种如权利要求1所述的颗粒集团,其特征在于其中颗粒集团的尺寸分布是至少约95%颗粒的直径大于平均的约40%和小于平均直径的约160%。
9.一种如权利要求1所述的颗粒集团,其特征在于其中颗粒集团的尺寸分布是至少约95%颗粒的直径大于平均的约60%和小于平均直径的约140%。
10.一种生产金属钒氧化物颗粒的方法,其特征在于包括将钒氧化物颗粒和非钒金属化合物的混合物加热,所说的钒氧化物颗粒的平均直径小于约500纳米。
11.如权利要求10的方法,其特征在于其中钒氧化物颗粒的平均直径是从约5纳米到约100纳米。
12.如权利要求10的方法,其特征在于其中非钒金属化合物包括硝酸银。
13.如权利要求10的方法,其特征在于其中钒氧化物颗粒含有结晶的V2O5
14.如权利要求10的方法,其特征在于其中的加热条件是最大温度约200℃到330℃。
15.如权利要求10的方法,其特征在于其中的加热条件是最大温度从约200℃到约300℃。
16.如权利要求10的方法,其特征在于其中的加热条件是小于约20小时。
17.一种电池,其特征在于包括一具有活性颗粒的正电极,所述的活性颗粒包含带有粘合剂的金属钒氧化物,所述活性颗粒的平均直径小于500纳米。
18.如权利要求17的电池,其特征在于其中的活性颗粒和平均直径从约5纳米到约100纳米。
19.如权利要求17的电池,其特征在于其中的金属钒氧化物包含银钒氧化物。
20.如权利要求19的电池,其特征在于其中的银钒氧化物含有Ag2V4O11
21.如权利要求17的电池,其特征在于其中的金属钒氧化物包含铜钒氧化物。
22.如权利要求17的电池,其特征在于其中的正电极还包括附加的导电颗粒。
23.如权利要求17的电池,其特征在于其中实际上没有其直径大于活性颗粒集团平均直径约4倍以上的活性颗粒。
24.一种生产金属钒氧化物的方法,其特征在于包括将一含有钒初始颗粒的反应物流和一第二金属初始粒子在反应室中进行反应,所述的反应由从电磁场中吸收的能量所驱动。
25.如权利要求24的方法,其特征在于其中的反应物流还包括一反应物,即氧源。
26.如权利要求24的方法,其特征在于其中的反应物流还包括一辐射吸收化合物。
27.如权利要求24的方法,其特征在于其中的钒初始粒子在反应物流中是以气浮体的形式存在。
28.如权利要求24的方法,其特征在于其中的第二金属初始粒子在反应物流中是以气浮体的形式存在。
29.如权利要求24的方法,其特征在于其中在反应物流中的钒初始粒子和第二金属初始粒子两者都以气浮体的形式存在。
30.如权利要求24的方法,其特征在于其中金属钒氧化物颗粒的平均直径是从5纳米到100纳米。
31.如权利要求24的方法,其特征在于其中的金属钒氧化物颗粒包括银钒氧化物,AgxV2Oy,0.3≤X≤2.0,4.5≤Y≤6.0。
32.如权利要求24的方法,其特征在于其中的金属钒氧化物颗粒包括Ag2V4O11
33.如权利要求24的方法,其特征在于其中实际上没有其直径大小颗粒集团平均直径约4倍以上的金属钒氧化物颗粒。
34.如权利要求24的方法,其特征在于其中金属钒氧化物的颗粒尺寸分布是至少约95%颗粒的直径大于平均直径的约40%和小于平均直径的约160%。
35.如权利要求24的方法,其特征在于其中的第二金属初始粒子包含钒阳离子。
36.如权利要求24的方法,其特征在于其中的钒初始粒子包含钒阳离子。
37.一种电池,其特征在于包括一具有活性颗粒的阴极,所述的活性颗粒包括带有粘合剂的银钒氧化物,所述的正电极具有的能量密度在放电到约1.0伏时大于约340毫安小时/克活性颗粒。
38.如权利要求37的电池,其特征在于其中的活性颗粒的平均直径从约纳米到100纳米。
39.如权利要求37的电池,其特征在于其中银钒氧化物颗粒包括银钒氧化物,AgxV2Oy,0.3≤X≤2.0,4.5≤Y≤6.0。
40.如权利要求39的电池,其特征在于其中的银钒氧化物包括Ag2V4O11
41.一种如权利要求37的电池,其特征在于其中的阴极还包括附加的电导颗粒。
42.一种如权利要求37的电池,其特征在于其中阴极具有的能量密度大于约350毫安小时/克活性颗粒。
43.一种可植入的除纤震器其中包括一锂基电池,其特征在于该电池阴极包括有银钒氧化物并在放电到约1.0伏时其能量密度大于约340毫安小时/克阴极活性材料。
44.一种电池,其特征在于包括一具有活性颗粒的阴极,所述活性颗粒包括带有粘合剂的金属氧化物,当放电到1.0伏时,所述的正电极具有的能量密度大于约400毫安小时/克活性颗粒。
45.一种生产元素金属纳米颗粒和钒氧化物纳米颗粒组合物的方法,其特征在于该方法包括,将一含有钒初始粒子的反应物流,和第二金属初始粒子在反应室中起反应,所述的反应是由从电磁场吸吸取的能量所驱动。
46.一种生产金属钒氧化物颗粒的方法,其特征在于包括将一含有钒初始粒子的反应物流和第二金属初始粒子在反应室中起反应,所述的反应是由从电磁场中吸收的能量所驱动。
47.一种生产颗粒的方法,所述颗粒包括一种选由含金、银、铜族中的一种元素金属,其特征在于所述方法包括将一分子流在反应室中起反应,所述的分子流包括一金属初始粒子和辐射吸收体,所述的反应是由电磁场辐射驱动。
CN00804664A 1999-02-05 2000-02-02 金属钒氧化物颗粒 Pending CN1343378A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/246,076 US6225007B1 (en) 1999-02-05 1999-02-05 Medal vanadium oxide particles
US09/311,506 1999-05-13
US09/311,506 US6391494B2 (en) 1999-05-13 1999-05-13 Metal vanadium oxide particles
US09/246,076 1999-05-13

Publications (1)

Publication Number Publication Date
CN1343378A true CN1343378A (zh) 2002-04-03

Family

ID=26937704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00804664A Pending CN1343378A (zh) 1999-02-05 2000-02-02 金属钒氧化物颗粒

Country Status (6)

Country Link
EP (1) EP1163703A4 (zh)
JP (1) JP2002536286A (zh)
KR (1) KR20020018997A (zh)
CN (1) CN1343378A (zh)
HK (1) HK1044631A1 (zh)
WO (1) WO2000046867A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102598394A (zh) * 2009-11-03 2012-07-18 诺基亚公司 具有用户可查看的充电状态的电池单元
CN103123968A (zh) * 2013-01-29 2013-05-29 中国科学院过程工程研究所 一种高性能磷酸铁锂正极材料及其制备方法
CN105230659A (zh) * 2015-11-17 2016-01-13 中国科学院海洋研究所 一种Ag2V4O11纳米线光催化杀菌剂及其制备方法和应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030077221A1 (en) * 2001-10-01 2003-04-24 Shivkumar Chiruvolu Aluminum oxide powders
US6692660B2 (en) * 2001-04-26 2004-02-17 Nanogram Corporation High luminescence phosphor particles and related particle compositions
US6503646B1 (en) 2000-08-28 2003-01-07 Nanogram Corporation High rate batteries
US6749648B1 (en) 2000-06-19 2004-06-15 Nanagram Corporation Lithium metal oxides
US6577114B1 (en) 2000-07-31 2003-06-10 Marvell International, Ltd. Calibration circuit
US7120656B1 (en) 2000-10-04 2006-10-10 Marvell International Ltd. Movable tap finite impulse response filter
CA2493517A1 (en) 2002-07-22 2004-01-29 Nanogram Corporation High capacity and high rate batteries
US20070286796A1 (en) * 2006-06-06 2007-12-13 Nanoscale Corporation Synthesis of high surface area nanocrystalline materials useful in battery applications
WO2019006151A1 (en) * 2017-06-28 2019-01-03 The Texas A & M University System THERMOCHROME WINDING FILMS CONTAINING VANADIUM DIOXIDE NANOCRYSTALS
EP3633042A1 (en) * 2018-10-02 2020-04-08 Nanobacterie Method for removing impurities from nanoparticles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122275A (ja) * 1993-05-25 1995-05-12 Wilson Greatbatch Ltd 電気化学電池用のカソード、その調製方法および電気化学電池
US5435874A (en) * 1993-11-01 1995-07-25 Wilson Greatbatch Ltd. Process for making cathode components for use in electrochemical cells
US5580683A (en) * 1993-11-01 1996-12-03 Wilson Greatbatch Ltd. high pulse power cell
US5549880A (en) * 1994-03-31 1996-08-27 Koksbang; Rene Method of making lithium-vanadium-oxide active material
US5545497A (en) * 1994-06-21 1996-08-13 Wilson Greatbatch Ltd. Cathode material for nonaqueous electrochemical cells
WO1997009454A1 (en) * 1995-09-07 1997-03-13 The Penn State Research Foundation High production rate of nano particles by laser liquid interaction
IT1281338B1 (it) * 1995-11-24 1998-02-18 Cise Spa Processo per produrre polveri nanometriche di ossidi metallici da cloruri metallici
WO2000027754A1 (en) * 1998-11-09 2000-05-18 Nanogram Corporation Metal oxide particles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102598394A (zh) * 2009-11-03 2012-07-18 诺基亚公司 具有用户可查看的充电状态的电池单元
CN102598394B (zh) * 2009-11-03 2016-03-16 诺基亚技术有限公司 具有用户可查看的充电状态的电池单元
CN103123968A (zh) * 2013-01-29 2013-05-29 中国科学院过程工程研究所 一种高性能磷酸铁锂正极材料及其制备方法
CN103123968B (zh) * 2013-01-29 2015-08-19 中国科学院过程工程研究所 一种高性能磷酸铁锂正极材料及其制备方法
CN105230659A (zh) * 2015-11-17 2016-01-13 中国科学院海洋研究所 一种Ag2V4O11纳米线光催化杀菌剂及其制备方法和应用

Also Published As

Publication number Publication date
KR20020018997A (ko) 2002-03-09
EP1163703A1 (en) 2001-12-19
WO2000046867A1 (en) 2000-08-10
HK1044631A1 (zh) 2002-10-25
JP2002536286A (ja) 2002-10-29
EP1163703A4 (en) 2004-12-29

Similar Documents

Publication Publication Date Title
CN1915837A (zh) 金属氧化物颗粒
US6749966B2 (en) Metal vanadium oxide particles
US7722787B2 (en) Metal vanadium oxide particles
CN1155525C (zh) 锂镍钴复合氧化物及其制法以及用于蓄电池的阳极活性材料
JP5286582B2 (ja) リチウム金属酸化物
CN1343378A (zh) 金属钒氧化物颗粒
CN1402888A (zh) 包含特定尺寸颗粒的电极
CN1255890C (zh) 用于锂离子二次电池的负极的电极材料及其应用
CN1209830C (zh) 用于可充电锂电池的正极活性材料及其制备方法
CN1183622C (zh) 锂二次电池及其制造方法
CN1883067A (zh) 用于二次电池的正极材料、其生产方法以及二次电池
CN1300869C (zh) 非水电解液二次电池用正极活性物质及其电池
CN1346160A (zh) 用于可充电锂电池的正电极活性材料及其制备方法
US20030044346A1 (en) Multiple metal oxide submicron particles
CN1761086A (zh) 用于锂离子二次电池的负极、其制造方法以及包含所述负极的锂离子二次电池
CN1300449A (zh) 制备正极活性材料的方法以及制备非水电解质二次电池的方法
CN1765024A (zh) 用于锂二次电池的电极材料和具有该电极材料的电极结构
CN1389941A (zh) 制备可充电锂电池的正极活性物质的方法
JP2004508669A (ja) 高率電池
CN1430796A (zh) 锂蓄电池及其正极活性物质、正极板及它们的制造方法
CN1286733C (zh) 含氧化锰的颗粒的收集物及其生产方法
CN101076906A (zh) 负极复合材料、制造方法、负极和锂离子电池
CN1643713A (zh) 负极材料及使用了该材料的非水电解质二次电池
CN1320669C (zh) 用于锂原电池的正电极及其制造方法和锂原电池
CN1429336A (zh) 组合式化学合成

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1044631

Country of ref document: HK