CN1317495C - 内燃机的气门驱动*** - Google Patents

内燃机的气门驱动*** Download PDF

Info

Publication number
CN1317495C
CN1317495C CNB2003101197945A CN200310119794A CN1317495C CN 1317495 C CN1317495 C CN 1317495C CN B2003101197945 A CNB2003101197945 A CN B2003101197945A CN 200310119794 A CN200310119794 A CN 200310119794A CN 1317495 C CN1317495 C CN 1317495C
Authority
CN
China
Prior art keywords
motor
valve
cam
combustion engine
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2003101197945A
Other languages
English (en)
Other versions
CN1508415A (zh
Inventor
浅田俊昭
江崎修一
辻公寿
日下康
片冈显二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN1508415A publication Critical patent/CN1508415A/zh
Application granted granted Critical
Publication of CN1317495C publication Critical patent/CN1317495C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/32Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for rotating lift valves, e.g. to diminish wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/22Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2201/00Electronic control systems; Apparatus or methods therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

一种气门驱动***,应用在多缸内燃机中用来驱动设在每个气缸的进气门或排气门,该气门驱动***包括:多个气门驱动装置,每个装置用于进气门和排气门中的至少一个,每个气门驱动装置包括一个作为产生旋转运动的驱动源的电动机,和一个动力传动机构,该动力传动机构设有传动部分用来传递电动机所产生的旋转运动,和运动转换部分用于将由传动部分所传递的旋转运动转换为所要驱动的气门的开启和关闭运动;以及一个电动机控制装置,该装置根据内燃机的运行状态,对各自气门驱动装置的电动机的运行进行控制。

Description

内燃机的气门驱动***
技术领域
本发明涉及一种用于驱动内燃机的进气门或排气门的气门驱动***,以及一种组成气门驱动***的气门驱动装置。
背景技术
传统内燃机的进气门或者排气门由内燃机的曲轴输出的动力所打开和关闭。然而,近年来人们开始尝试一种新的方法,即利用电动机来驱动进气门或者排气门。比如,日本专利公开第8-177536号揭露了这样一种气门驱动装置,该装置用电动机驱动凸轮轴以打开或关闭进气门;并且为了驱动EGR阀,也已知一种气门驱动装置,利用气门杆处的螺杆机构将电动机的旋转运动转换为气门开启和关闭的直线运动(见JP-A No.10-73178)。
因为利用螺杆机构将电动机的旋转运动转换为气门开启和关闭运动的这种装置,需要电动机有很高的转速,是一种低效的方法,所以并不适合作为进气门或者排气门的驱动装置,因为驱动装置需要使气门高速、周期性地运动。
而另一方面,电动机带动凸轮轴旋转,则可能有效地驱动进气门或排气门。对于具有多个气缸的内燃机,这种内燃机通常也都是车辆的动力源,排成一排的若干个气缸共用一根凸轮轴。如果这根共用的凸轮轴只由电动机来驱动,那么凸轮轴的运动变化将对由它所驱动的所有进气门和排气门的运行特性产生影响。因此,通过控制电动机而得到的气门运动特性的灵活性并不是很高。
发明内容
本发明的一个目的是提供一种应用于多缸内燃机的气门驱动***,该***能够有效地开启和关闭进气门或者排气门,并且相对于传统技术,能够提高与每个气门的运行特性相关的灵活性。本发明的另一个目的是提供一种用于上述气门驱动***的气门驱动装置。
为了达到上述目的,本发明提供了一种气门驱动***,应用在多缸内燃机中用来驱动设在每个气缸的进气门或排气门,该气门驱动***包括:多个气门驱动装置,每个装置用于进气门和排气门中的至少一个,每个气门驱动装置包括一个作为产生旋转运动的驱动源的电动机,和一个动力传动机构,该动力传动机构设有传动部分用来传递电动机所产生的旋转运动,和运动转换部分用于将由传动部分所传递的旋转运动转换为所要驱动的气门的开启和关闭运动;以及一个电动机控制装置,该装置根据内燃机的运行状态,对各自气门驱动装置的电动机的运行进行控制。
依照本发明的这个气门驱动***,由于提供了多个气门驱动装置,因此可能提供各气缸的进气门或排气门的适当的运行特性,以匹配内燃机的运行状态。在本发明的气门驱动***中,气门驱动装置可以驱动不同气缸的至少每一个进气门或排气门。因此,可以为每个气缸独立地提供气门驱动装置,或者可以为每个气缸的进气门和排气门独立地提供气门驱动装置。部分的、或者全部的气门驱动装置可以驱动两个或更多不同气缸的进气门或排气门。在一些气缸里,进气门开启或排气门开启的时间并不交迭,即使这些气缸的进气门或者排气门由一个共同的电动机来驱动,每个气缸的进气门或排气门的运行特性都可以被改变,而不受由共用的电动机所驱动的进气门或者排气门的运动的影响。
在本发明的气门驱动***里,电动机控制装置可以依照内燃机的运行状态对电动机的运行进行控制,从而可以改变所要驱动的气门的至少一个运行特性,如运行角度,升程特性和最大升程量。在这些情况下,该***可以更加灵活地改变进气门或排气门的运动,而不像传统的气门驱动装置那样,只能改变气门的开启和关闭时间。如果当进气门或者排气门开启时,电动机的转速上升或者下降,则运行角度发生改变;如果转速,比如,加速度发生改变,则升程特性也发生改变。升程特性可以理解为,关于升程与进气门或排气门的曲轴转角之间相应关系的特性。关于升程,可以通过以下控制限制进气门或排气门的升程,使其小于最大升程量:在上升位置达到最大升程位置前的阶段,即在进气门或排气门的升程达到最大值前,改变凸轮转向,令其反向旋转。
在本发明的气门驱动***中,动力传动机构的运动转换部分,能够利用凸轮或连杆将电动机产生的旋转运动转换为进气门或排气门的开关运动。如果通过凸轮或连杆将旋转运动转换为进气门或排气门的开关运动,则与使用螺杆机构进行相应的运动转换时相比,气门动量与电动机转速之间的传动比增大了。也就是说,在使用螺杆机构的时候,如果想让气门被充分地开启和关闭,螺杆就至少需要转动数圈,但是如果使用凸轮或连杆,因为一个开关运动时期只需要传动部分的一个转动输出来完成,可能仅仅通过电动机转动将旋转运动输入到运动转换部分,就能够以预定量开关进气门或排气门。因此,有效地驱动进气门或者排气门成为可能。
气门驱动***利用凸轮将电动机产生的旋转运动转换为进气门或排气门的开关运动,该气门驱动***可以包括以下几种方式。
当考虑到作用在旋转的凸轮上的摩擦转矩变化的时候,电动机控制装置可以设定一个电动机控制量。当不考虑凸轮摩擦转矩而对电动机的运行进行控制时,在凸轮摩擦转矩的影响下,电动机的转速将会偏离目标控制值。从而,进气门或排气门的运行特性也将偏离控制的目标,并且内燃机的运行状态将会受到影响。例如,不利的是,燃料消耗、性能、尾气排放或者类似的情况可能将会恶化。对电动机的控制将会变得不稳定。当考虑凸轮摩擦转矩的时候,则可以通过调整电动机控制量来解决这些麻烦的问题。本发明中所提到的摩擦转矩,是指基于从电动机到进气门或排气门之间机械结构而作用在凸轮驱动源上的转动阻力。产生于电动机驱动源与进气门或排气门之间的机械结构的摩擦力沿正方向增大了摩擦转矩。弹簧装置(气门弹簧)产生的斥力,沿着进气门或排气门关闭的方向推动气门,并使它们返回原位,这加大了负方向上的摩擦转矩。对电动机进行控制时,必需输出一个可以克服摩擦转矩的力矩以转动凸轮轴,可以通过增大或者减小与电动机输出转矩有关的控制变量(参数),来实现对电动机的控制。本发明对电动机控制量的设置和调整,是指设置和调整上述的控制变量。
当考虑与内燃机的进气或排气特性有关的控制状态时,电动机控制装置可以对电动机的控制量进行设置。如果进气门或排气门的运动偏离了控制目标,就无法依照目标对内燃机的进气特性和排气特性进行控制,并燃油消耗量、内燃机性能、尾气排放或类似的情况将会发生恶化。当考虑与进气或排气特性有关的控制状态,并且控制状态偏离预定目标的时候,可以通过调整电动机的控制量以减少这种偏离,从而解决这些麻烦问题。
与进气门或排气门的运行特性相关的各种状态可以被考虑作为进气或排气特性。例如,气缸的空气进气量,缸内压力,内部EGR量,尾气温度,空燃比,以及类似的量都可以看作是进气或排气特性。当考虑空燃比的控制状态时,希望电动机控制装置修正电动机控制量,从而把空燃比控制为一个预定的目标值。如果进行这样的控制,通过修正进气门或排气门的运行特性,就可以消除空燃比的偏差,从而提高燃油的燃烧效率、增加输出功率以及改善尾气排放成为可能。
此外,气门驱动***还包括一个异常状态判断装置,该装置基于一个与电动机控制量相关的修正量判断气门驱动***是否处于异常状态。这个修正量是由考虑到与内燃机进气和排气特性有关的控制状态而得到的。当气门驱动***中出现异常情况时,电动机控制量的绝对值将会变得过大或过小,或者控制量的变化量会变得过大。因此,如果对与电动机控制量相关的修正量进行监控,就可能判断气门驱动***是否异常,而不需要使用异常状态检测传感器。
基于内燃机运行状态的变化,电动机控制装置可以对内燃机转数的变化进行估计,并且在考虑估计的结果的时候,该装置可以设置一个电动机控制量。在这种情况下,当内燃机的转数发生迅速变化,并且考虑这种变化时,如果电动机的控制量增加或者减少,则与内燃机的转数变化相关的凸轮转速的响应也会加快。
当作用在凸轮轴上的摩擦转矩为负值时,电动机可以在凸轮的旋转运动的驱动下发电。在这种情况下,气门驱动***的效能得以提高,对用于驱动凸轮的电池容量的要求也可以降低,汽车里给该***提供电力的交流发电机的发电能力也可以相应地设置得更低一些。
电动机上可以安装一个电动机转动位置检测装置,用于检测电动机的转动位置,并且电动机控制装置里可以包括一个凸轮位置确定装置,该装置基于电动机转动位置的检测结果,来确定凸轮的转动位置。从电动机的转动位置来对凸轮的位置进行估计,就不必再单独安装一个用于检测凸轮位置的传感器。
所希望的是,当电动机与凸轮之间的减速比定义为N∶M时(其中,N>M,并且N和M均为整数,它们没有除1以外的其他公因数),N最好设为6或更小的值。这样,很容易检测到凸轮的初始位置,并且可以减少检测的误差。
电动机控制装置可以包括一个初始化装置,当内燃机在预定的状态下工作时,该装置可以依照预定的条件令电动机旋转,并且该装置基于电动机驱动状态的变化掌握凸轮的转动位置,而电动机驱动状态的变化与凸轮旋转时摩擦转矩的变化是相关联的。通常,在进气门或排气门的升程假定为最大值的凸轮位置附近,摩擦转矩方向发生反转。另一方面,摩擦转矩影响着电动机的驱动状态。例如,如果电动机的输出转矩保持在一个恒定的值,则电动机的转速随摩擦转矩的增加而下降,随摩擦转矩的减小而上升。如果电动机的转速保持在一个恒定值,则电动机的输出转矩随摩擦转矩的增加而增加,随摩擦转矩的减小而减小。如果利用这种关系,只需要监测电动机的驱动状态就可以确定凸轮的位置。当进气门或排气门开始打开或者完全关闭时,电动机转数的变化或者电动机输出转矩的变化,假定为一个预定状态。当这样的变化产生的时候,就可以确定凸轮的位置。在这种情况下,可以减小用以确定凸轮位置的驱动电力。当内燃机停机的时候,利用这种关系,能够避免活塞与进气门或排气门之间的运动干涉。
当内燃机停机的时候,初始化装置可以转动电动机,以掌握凸轮的转动位置,并且可以设置一个存储装置,用来存储包括内燃机停机期间的信息,存储表示所掌握凸轮转动位置的信息。当内燃机再次发动时,基于存储装置里的这些信息,电动机控制装置就可以确定凸轮的转动位置,并且开始控制电动机。这样,当内燃机发动的时候,就不再需要通过初始化装置来确定凸轮的转动位置这样的处理过程。因此,就能够迅速发动内燃机。
电动机控制装置可以包括一个气门旋转执行装置,用来驱动电动机,以便在内燃机停机期间的一段预定时间内,使气门沿着自身的轴向旋转。在这种情况下,通过转动气门就可能刮掉粘附在气门或气门座上的碳。气门和如摇臂的驱动部件之间的接触位置,可以在气门轴向附近相对移动,以避免因位置偏差而对气门造成的磨损。
电动机控制装置还包括一个升程控制装置,该装置能够正向和反向驱动电动机,这样,气门的升程就被限制在一个小于其最大升程量的预定值以内,这个最大升程量可以通过将凸轮旋转一圈而得到。在这种情况下,如果凸轮正向和反向旋转,气门的升程就能够被限制在一个小于最大升程量的值之内,该最大升程量是凸轮带动进气门或排气门开关时所能允许的最大行程值。因而,即使凸轮是按照适合内燃机高转速、大负荷运行条件下进气量的要求来设计的,凸轮也同样能够满足低转速、小负荷运行状态的要求,在后者的情况下,较小的进气量就已经足够。依照应用于进气门或排气门的升程,凸轮正向和反向旋转时的转角可以增大或减小。
电动机控制装置还可以包括一个模式转换装置,该装置用来在电动机的两种驱动模式之间进行转换。电动机的两种驱动模式,一种是正向转动模式,这种模式下,电动机被驱动只能在正向旋转,另一种是正向一反向转动模式,该模式下,依照内燃机的运行状态,电动机正向或反向转动。这样,就可以适当选择凸轮的驱动状态。例如,当内燃机处于低转速、低负荷运行状态时,凸轮可以正向反向转动以限制气门的行程,而当内燃机高速、大负荷运行时,凸轮可以正向旋转,从而通过凸轮轴或其他部件的转动惯量所产生的低转矩使凸轮在高速下转动。
本发明的一种气门驱动装置包括:一个作为用来产生转动的驱动源的电动机;一个动力传动机构,设有传动部分用以传递电动机所产生的旋转运动,而运动转换部分则将由传动部分所传递来的旋转运动转换为待驱动气门的开关运动;一个电动机控制装置,该装置对电动机的运行进行控制,以便依照内燃机的运行状态,改变所要驱动的气门的至少一个运行特性,如运行角度,升程特性和最大升程量。利用这种结构,上述问题都可以得到解决。根据这种气门驱动装置,就可以通过控制电动机的运行,改变所要驱动的气门的至少一个运行特性,如运行角度,升程特性和最大升程量。因此,本发明的气门驱动装置能够更加灵活地改变进气门或排气门的运动,而不像传统气门驱动装置那样,只能改变气门打开和关闭的时间。,本发明的气门驱动装置能够包括利用上述凸轮的各种优选的气门驱动***模式。
附图说明
图1是一幅透视图,示出了根据本发明的第一实施例的气门驱动***的主要部分。
图2是一幅透视图,示出了相应地设置在一个气缸内的气门驱动装置的结构。
图3是从另一个方向观察而得到的气门驱动装置的透视图。
图4是进一步从另外一个方向观察而得到的气门驱动装置的透视图。
图5是一幅气门特性调节机构的透视图。
图6是气门特性调节机构的一个部分剖视透视图。
图7是电动机驱动控制程序的流程图,该程序由图2所示的控制装置执行。
图8示出了曲轴转角、气门升程、凸轮摩擦转矩和电动机驱动电流之间关系的一个例子。
图9示出了气门最大升程量,曲轴转角与凸轮摩擦转矩之间相应关系的一个例子。
图10示出了凸轮角度与电动机角度之间相应关系的一个例子。
图11是凸轮位置初始化的程序的流程图,该程序由图2所示的控制装置执行。
图12A和12B示出了电动机转速、凸轮摩擦转矩与电动机输出转矩之间相应关系的一个例子。
图13示出了凸轮摩擦转矩为负值时的一个例子。
图14示出了在驱动凸轮的电动机中以能量再生方式用来发电的结构。
图15是一个控制***的方框图,该控制***用来估计内燃机转数的变化,并控制本发明的第二实施例中电动机的输出转矩。
图16示出了由图15所示的控制***实现控制的一个例子。
图17示出了由图15所示的控制***实现控制的另一个例子。
图18示出了本发明的第三实施例中电动机两种驱动模式之间转换的条件,这两种驱动模式是正向转动模式和正向—反向转动模式。
图19示出了,电动机在正向转动模式和正向—反向转动模式下,曲轴转角、气门升程和电动机转数之间相应的关系。
图20示出了一个驱动模式判断程序,该程序由设置驱动模式的控制装置来执行。
图21是一个清洁控制的程序的流程图,该程序由对进气门或排气门进行清洁操作的控制装置来执行。
图22示出了当进气门以高速运动时的清洁操作。
图23A和23B以对比的方式示出了气门杆上端的摩擦磨损状态,其中图23A对应的情况是对清洁操作进行了控制,而图23B对应的情况则是没有对清洁操作进行控制。
具体实施方式
[第一实施例]
图1所给出的内燃机1包括了依照本发明第一实施例的气门驱动***。内燃机1是一台多缸直列式汽油机。在该内燃机中,多个(在图1中是4个)气缸2...2沿一个方向排列,活塞3分别安装在每个气缸2中,这样活塞3就能够垂直地运动。每个气缸2顶部设置有两个进气门4和两个排气门5。这些进气门4和排气门5在气门驱动***10的带动下,协同活塞3的垂直运动而打开和关闭,从而将空气吸入气缸2和将气体从气缸2中排出。
气门驱动***10包括一对一地设置在每个气缸2进气侧的气门驱动装置11A...11A,以及一对一地设置在每个气缸2排气侧的气门驱动装置11B...11B。气门驱动装置11A和11B利用凸轮驱动进气门4或排气门5。气门驱动装置11A...11A有着相同的结构,气门驱动装置11B...11B也同样有着相同的结构。图2示出了进气和排气的气门驱动装置11A和11B,它们相应地设置在每个气缸2上。因为气门驱动装置11A和11B有着相似的结构,所以将首先解释进气侧的气门驱动装置11A。
进气侧的气门驱动装置11A包括一台电力电动机12(在后面的某些情况下称为电动机)作为驱动源,以及动力传动机构13,用来将电动机12的旋转运动转换为直线的开启和关闭运动。电动机12采用的是能够控制转速的无刷直流电动机或者类似功能的电动机。电动机12上装有转动位置检测装置12a,例如分解器、旋转译码器或者其他类似的装置,用来检测电动机12的转动位置。
动力传动机构13包括一根单一的凸轮轴14A;传动齿轮组15,用来将电动机12的旋转运动传递给凸轮轴14A;一根用来驱动进气门4的摇臂16;以及气门特性调节机构17,该调节机构置于凸轮轴14A和摇臂16之间。每个气缸2都独立地设置有凸轮轴14A。也就是说,凸轮轴14A被分成对应于每个气缸2的数段。传动齿轮组15通过一个中间齿轮19,将设置在电动机12的输出轴(没有在图中表出)上的电动机齿轮18的转动,传递给凸轮驱动齿轮20,该齿轮20与凸轮轴14A形成一个整体,从而可以与电动机12同步地转动凸轮轴14A。因此,传动齿轮组15包括齿轮18、19和20,作为动力传动机构13的传动部分13a。传动齿轮组15能够以恒定的速度将电动机12的转动传递给凸轮轴14A,或者在传递旋转运动的时候,也可以改变(减小或增大)转速。
如图3和图4所示,凸轮轴14A上可转动地装有一个单一的凸轮21A。凸轮21A成型为一种盘式凸轮,它的基圆与凸轮轴14A同轴,基圆的一部分***。所有气门驱动装置11A中的凸轮21A的轮廓(***的轮廓线)都是相同的。凸轮21A的轮廓是这样设计的:凸轮21A的整个***轮廓线并不都是负曲率,也就是,其轮廓上有一段沿径向向外突出的弯曲表面。
摇臂16能够绕着转轴22摆动。进气门4在气门弹簧23的作用下向摇臂16偏置,从而使进气门4能够和进气口处的气门座(未在图中表出)紧密地接触以关闭进气口。摇臂16的另一端与一个调节装置24相接触。如果调节装置24向上推动摇臂16的另一端,则摇臂16的这一端将保持与进气门4的上端相接触。所以,从凸轮轴14A(或14B)到摇臂16的部分,能够将电动机12所产生的旋转运动转换为进气门4(或者排气门5)的开关运动,从而构成动力传动机构13的运动转换部分13b。
气门特性调节机构17的作用是,作为中间装置将凸轮21A如摆动的旋转运动传递给摇臂16,同时,它也是用来改变升程和运行角度的装置,通过改变凸轮21A的转动与摇臂16的摆动之间的相互关系,可以改变进气门4的升程和运行角度。
如图5所示,气门特性调节机构17包括一根支撑轴30,一根穿过支撑轴30的轴心的操作轴31,安装在支撑轴30上的一段第一圆环32,和安装在第一圆环32相对两边的两段第二圆环33,33。支撑轴30固定在内燃机1的气缸盖或者类似的部位。操作轴31在执行器(未在图中表出)的作用下,沿着支撑轴30的轴向(图6中的R和F方向)作往复运动。第一圆环32和第二圆环33是这样支撑的:它们能够绕着支撑轴30摆动,并且可以沿支撑轴30的轴向的滑动。在第一圆环32的外圆上安装有一个可以转动的从动滚轮34,而第二圆环33的外圆上则分别形成有一个凸起35。
如图6所示,支撑轴30的外圆上装有滑座36。滑座36上有一个沿周向延伸的长槽36c。如果安装在操作轴31上的销37嵌入长槽36c,则滑座36就能够随操作轴31一起相对支撑轴30沿轴向滑动。支撑轴30上形成有一个沿轴向的长槽(未在图中表出)。该长槽使得销37能够沿着轴向运动。滑座36是一个整体结构,在它的外圆周上有一段第一螺旋形花键36a和两段第二螺旋形花键36b和36b,第一螺旋形花键36a夹在两段第二螺旋形花键36b中间。第二螺旋形花键36b的螺旋方向与第一螺旋形花键36a的相反。第一圆环32的内圆周上,相应地形成有螺旋形花键32a与第一螺旋形花键36a相啮合。第二圆环33的内圆周上,相应地也形成有螺旋形花键33a与第二螺旋形花键36b相啮合。
如图4所示,气门特性调节机构17是以这种方式安装在内燃机1上的:它的从动滚轮34正对着凸轮21A,而凸起35则分别正对着各进气门4所对应的摇臂16的末端。如果从动滚轮34与凸起部分21a开始接触,并随凸轮21A的转动而被向下推动,则支撑着从动滚轮34的第一圆环32绕支撑轴30转动,它的转动通过滑座36传递给了第二圆环33,使第二圆环33沿着和第一圆环32相同的方向旋转。通过旋转第二圆环33,凸起35将压下摇臂16的一端,进气门4克服气门弹簧23的阻力向下移动使进气口打开。如果凸起部分21a越过从动滚轮34,则在气门弹簧23的弹力作用下,进气门4被向上推起以关闭进气口。通过这种方式,凸轮轴14A的旋转运动被转换为进气门4的开关运动。
在气门特性调节机构17中,如果沿轴向移动操作轴31,并且滑座36就能够沿图6中箭头R和F所示的方向,相对支撑轴30滑动,第一圆环32和第二圆环33则会以相反的方向沿周向转动。当滑座36沿着箭头F所示的方向移动时,第一圆环32就会沿着箭头P所示的方向转动,而第二圆环33则会沿着箭头Q所示的方向转动,并且从动滚轮34和凸起35在周向的距离也随之增大。另一方面,如果滑座36沿着箭头R所示的方向移动时,第一圆环32就会沿着箭头Q所示的方向转动,而第二圆环33则会沿着箭头P所示的方向转动,并且从动滚轮34和凸起35在周向的距离也随之减小。当从动滚轮34和凸起35之间的距离增大的时候,凸起35将摇臂16压下的量也随之增大。由此,进气门4的升程和运行角度也增大。因此,当沿着图6中箭头F所示的方向移动操作轴31时,进气门4的升程和运行角度都随之增大。
依照上述所设置的气门驱动装置11A,如果沿着一个方向连续地驱动凸轮轴14A,并且速度是内燃机1曲轴转速的一半(在下文中称为基本速度),进气门4就能随曲轴的旋转而同步地打开和关闭,这和用曲轴驱动气门的传统机械式气门驱动装置一样。此外,通过气门特性调节机构17,还能改变进气门4的升程和运行角度。此外,依据气门驱动装置11A,通过由电动机12从基本速度改变凸轮轴14A转速,就有可能改变曲轴的相位和凸轮轴14A的相位之间的相互关系,从而不同地改变进气门4运行特性(气门打开时间,气门关闭时间,升程特性,运行角度,最大升程量)。
如图2所示,排气门5的气门驱动装置11B中,和气门驱动装置11A不同的是,凸轮轴14B上装有两个凸轮21B,并且没有设置气门特性调节装置17,而是用两个凸轮21B分别直接地驱动摇臂16。气门驱动装置11B的其他部分与气门驱动装置11A的相应部分相同,因此这里就不再对相同的部分进行说明。如同凸轮21A一样,凸轮21B轮廓的整个***部分也是由一段突出的曲面组成的。利用气门驱动装置11B的电动机12来改变凸轮轴14B驱动的转速,可以不同地改变排气门5的运行特性。
如图2所示,气门驱动***10中装有一个电动机控制装置40,用来控制气门驱动装置11A和11B的电动机12的运行特性。电动机控制装置40是一部计算机,它有一个微处理器,和作为主要存储设备的RAM和ROM。电动机控制装置40依照存储在ROM中的气门控制程序,对每台电动机12进行控制。尽管图2给出的是一个气缸2的气门驱动装置11A和11B,但是电动机控制装置40通常还可以同时控制另一个气缸2的气门驱动装置11A和11B。
作为控制电动机12所需的信号的输入设备,电动机控制装置40上连接有如下传感器:一个A/F传感器41,输出与废气中空气燃油比相对应的信号;一个节气门开启传感42,输出与节气门的开度相对应的信号,以调整进气量;一个油门开度传感器43,输出一个对应于油门开度的信号;一个空气流量计44,输出一个对应于进气量的信号;和一个曲轴转角传感45,用来输出一个对应于曲轴转角的信号。从预定的函数方程或图中得到的值,也可以用来替代用这些传感器实际测量值。从安装在电动机12上的位置检测传感器里输出的信号,也将输入给电动机控制装置40。
下面,将说明电动机控制装置40是如何对电动机12进行控制的。在下面的介绍中将会说明对电动机12驱动一个气缸2的进气门4的控制;电动机12驱动其他气缸2的进气门4,也可以同样的方式控制。用来驱动排气门5的电动机12也可以用相同的方式控制。
图7示出了一个电动机驱动控制程序,该程序由电动机控制装置40周期性地重复执行,将依照内燃机1的运行状态改变电动机12的输出转矩。通过执行如图7所示的电动机驱动控制程序,电动机控制装置40能起到电动机控制设备的作用。在该电动机驱动控制程序中,比如,基于步骤S1中电动机12的位置检测传感器和传动齿轮组15的减速比,电动机控制装置40将检测凸轮21A的转动位置。在这一步骤S1中,电动机控制装置40起到凸轮位置确定装置的作用。
接下来,在步骤S2中,将检测内燃机1的运行状态,其运行状态用于确定进气门4的具体运行情况。比如,基于前述的传感器41到45所输出的信号,可以检测到内燃机1的转数(旋转速度)、负荷率等。在接下来的步骤S3中,基于内燃机1运行状态的检测结果,决定进气门4的运行特性。比如,决定与当前运行状态相关的进气门4的升程、凸轮轴14A的相位、转数等。
在步骤4中,利用如下方程(1)可以得到凸轮摩擦转矩的估计值TF。这里,基于从电动机齿轮18到进气门4或排气门5之间的机械结构而施加在电动机12上的转动阻力,被称为凸轮摩擦转矩。
TF(θ+θ3)=Tf+f1(Tf1,θmax-θ1,θ+θ3)+f2(Tf2,θmax+θ2,θ+θ3)......(1)
其中,Tf代表基本摩擦转矩,f1代表一个多项式近似函数,该函数给出了在气门弹簧23作用下,凸轮21A的推进和返回作用所产生的凸轮摩擦转矩的变化分量;f2也代表一个多项式近似函数,给出了在气门弹簧23作用下,凸轮21A的推出作用所产生的凸轮摩擦转矩的变化分量;θ表示执行控制过程时曲轴转角,θ3表示由电动机12所决定的时间常数。参考图8和9对方程(1)进行说明。
图8示出了曲轴转角θ,气门升程(进气门4的升程),凸轮摩擦转矩TF(θ)和电动机12的驱动电流I(θ)之间相应的关系。凸轮摩擦转矩TF的正方向,也就是,阻碍凸轮21A转动的阻力方向,在图8中是向下的。图8也示出了,当气门升程按两种不同行程改变时的凸轮摩擦转矩和电动机12驱动电流I,所谓的两种行程,即一个大行程和一个小行程。换句话说,大的气门升程对应的情况用粗线来表示,而小的气门行程所对应的情况用细线来表示。
由图8显然可见,方程(1)中的第一项基本摩擦转矩Tf,作用的方向是正方向,并且它的值是常数,与曲轴转角θ无关。换句话说,基本摩擦转矩Tf给出了,当凸轮21A转动时作用在电动机12上的基本转动阻力。接下来,当在图8的横轴上选取适当位置定义为参考位置,并且气门升程在曲轴转角θ比参考位置提前θmax的位置处有最大值(在下文中称为最大升程位置)时,打开进气门4的过程中,在凸轮摩擦转矩TF(θ)达到最大升程位置θmax之前,凸轮摩擦转矩TF(θ)在正方向增大,大于基本摩擦转矩Tf并会达到一个峰值;在关闭进气门4的过程中,凸轮摩擦转矩TF(θ)沿负方向减小,并小于基本摩擦转矩Tf。摩擦转矩TF(θ)这样变化是因为,当凸轮21A克服气门弹簧23的作用力打开进气门4时,气门弹簧23的反作用力沿凸轮21A转动的相反方向推动并使凸轮21A返回,在气门弹簧23的反作用力越过峰值后,气门弹簧23的反作用力转而沿着凸轮21A旋转的方向推出凸轮21A。
严格地讲,能够根据力学或机械学原理,从气门驱动装置11A的结构计算出在任意曲轴转角θ处,凸轮摩擦转矩TF相对于基本摩擦转矩的变化量。不过,利用函数关系,也能够以近似的方法说明曲轴转角θ和凸轮摩擦转矩TF的变化量之间的相互关系,所用的函数包含以下变量:凸轮摩擦转矩相对于基本摩擦力Tf的变化量的峰值Tf1、Tf2,以及从最大升程位置θmax到峰值Tf1、Tf2所对应曲轴转角θ的偏离量θ1、θ2。方程(1)中的后二项f1、f2就是以这种思路得到的近似函数。用来确定这些近似函数的信息就存储在电动机控制装置40的ROM中。
如图7所示的步骤S3确定了最大升程位置θmax。如图9所示,在进气门4的最大升程量,基本摩擦转矩Tf,峰值Tf1、Tf2,和曲轴转角偏离量θ1,θ2之间,存在有一定的相互关系。这种关系预先以图形的形式存储在电动机控制这种40的ROM中。因此,在步骤S4的处理过程中,电动机控制装置40参照ROM中的图形,首先得到基本摩擦转矩Tf,对应于当前最大升程量的峰值Tf1,Tf2和曲轴转角偏离量θ1,θ2;进而将这些值,以及基于曲轴转角传感器45所确定的当前曲轴转角θ,代入方程(1),从而求得凸轮摩擦转矩TF。在步骤S10或S11对这些值进行修正后,将修正结果返回,进而得到凸轮摩擦转矩TF。
然而,电动机12的响应存在延迟,当这种响应的延迟用根据曲轴转角θ确定的时间常数θ3指示时,需要得到当曲轴转角θ超前于当前曲轴转角θ一个时间常数θ3时的当前时刻的凸轮摩擦转矩TF。正是由于这个原因,在方程(1)的第二和第三项里的曲轴转角θ上加上了一个时间常数θ3。可以通过一个物理模型求得凸轮摩擦转矩的变化分量,而不用多项式近似函数f1、f2。
下面继续对图7进行说明。计算得到凸轮摩擦转矩TF后,程序进行到步骤S5,这一步中,凸轮摩擦转矩TF(θ+θ3)将被乘以一个预定的增益系数α,从而求得电动机12当前所需要的驱动电流I(θ)。在步骤S6中,电流被设置为用来驱动电动机12的驱动电流I(θ)。由图8显然可见,步骤S6所给出的电动机驱动电流I(θ)可以通过超前一个电动机时间常数θ3的凸轮摩擦转矩TF(θ)的变化反映出来。因此,当凸轮摩擦转矩TF(θ)变得比基本摩擦转矩Tf大时(此时变化到位于图8的下半部),电动机12的输出转矩也相应增加,当凸轮摩擦转矩TF(θ)变得比基本摩擦转矩Tf小时(此时变化到位于图8的上半部),电动机12的输出转矩也相应减小。由此,电动机12的输出转矩能够得到适当的控制。
在电动机12被驱动后,程序进行步骤S7,这一步将要判断,当前驱动电流I(θ)和标准驱动电流I(θ)之间的差别是否在预定的极限值λ范围内。标准驱动电流I(θ)是可以直接得到的,而不用考虑步骤S10或S11中所作的修正。如果步骤S7判断的结果是,电流的差别在极限值λ范围内,则程序进行步骤S8,这一步中将要判断,用A/F传感器41检测到的空气燃油比(测定A/F)减去目标空气燃油比(目标A/F),所得的值是否等于或小于预定极限值β。其中,目标A/F是依照内燃机的运行状态所设置的空气燃油比的目标值。既然依照内燃机1的运行状态适当地设置了进气门4的气门运行特性(参见步骤S3),那么,如果能适当地控制进气门4的运行状态,就能够使空气燃油比与目标A/F相一致。
当测定A/F增加到大于目标A/F并且超过极限值β时,步骤S8要求的条件不成立,也就是说,这时实际的空气燃油比相对于目标空气燃油比,已经向浓稠一边很大地偏离了极限值β,程序将进行步骤S10,需要修改以下这些参数中的至少一个:即曲轴转角偏离量θ1、θ2和凸轮摩擦转矩变化量的峰值Tf1、Tf2中将要代入方程(1)的至少一个参数,从用图9的图表所确定的参数值减去一个和空气燃油比的差别相对应的量。减小峰值Tf1,Tf2的目的是使它们更接近于基本摩擦转矩Tf。通过这种改变,对进气门4向着一个相对更接近关闭的方向进行控制,也就是说,控制是向使升程减小的方向进行的。因此,在步骤S10中,进气门的升程减小而相对地减小了进气量,因而试图消除测定A/F和目标A/F之间的偏差。
当步骤S8的条件满足时,程序进行步骤S9,这一步中将要判断,目标A/F减去测定A/F所得的值是否等于或小于预定的极限值γ。如果步骤S9中的条件满足,这一循环的电动机驱动控制过程就完成了。当测定A/F减小到低于目标A/F、并且超过极限值γ时,从而步骤S9中的条件不满足,也就是说,这时实际的空气燃油比相对于目标空气燃油比,已经向稀薄一边很大地偏离了极限值γ,程序将进行步骤S11,需要修改以下这些参数中的至少一个:即将要代入方程(1)的曲轴转角偏离量θ1、θ2和凸轮摩擦转矩变化量的峰值Tf1、Tf2中的至少一个参数从在用图9的图表所确定的参数值增加一个和空气燃油比的差别相对应的量。增大峰值Tf1、Tf2的目的是使它们离基本摩擦转矩Tf更远。通过这种改变,对进气门4向着一个相对更接近打开的方向进行控制,也就是说,控制是向使升程增加的方向进行的。因此,在步骤S11中,进气门4的升程增加而相对地增大了进气量,因而试图消除测定A/F和目标A/F之间的偏差。
在步骤S10或S11中对变量θ1,θ2,Tf1或Tf2进行修正后,程序执行步骤S12。步骤S12将判断参数的波动量是否大于一个极限值Ψ。如果参数的波动量等于或者小于极限值Ψ,程序将返回步骤S4,进行凸轮摩擦转矩Tf的计算。在那时,如果变量θ1,θ2,Tf1或Tf2已经在步骤S10或S11中进行了修正,则计算将使用修正后的结果值。
如果步骤S12判断的结果是波动量大于极限值Ψ,则判定气门驱动装置11A处于不正常的状态,并且程序将执行步骤S13,发出预定的报警信号,告诉驾驶员气门驱动装置11A处于异常状态。例如,汽车仪表面板上的报警灯亮起来或者闪烁。接着,程序将执行步骤S15,启动预定的退避行驶操作,并且完成电动机控制过程。当步骤S7中驱动电流I(θ)的差值超过极限值λ时,判定电动机12处于不正常状态,并且程序将执行步骤S14,发出预定的报警信号,告诉驾驶员电动机12处于异常状态。例如,汽车仪表面板上的报警灯亮起来或者闪烁。接着,程序将执行步骤S15。
依照本实施例,能够根据凸轮摩擦转矩的增大或减少,来对电动机12的输出转矩进行适当的控制,从而可能抑制由于受到凸轮摩擦转矩波动的影响而引起的凸轮轴14A转速的偏离,并精确地控制凸轮21A关于目标值的运行特性。因而,内燃机1的燃油消耗和动力性能将得到提高,并且可以避免尾气排放情况的恶化。
确定空气燃油比的偏离并通过控制电动机12的输出转矩修正这种偏离。因此,可能根据气门驱动装置11A的实际状态,对电动机12的输出转矩进行适当地控制,而不必仅依靠控制的目标值。例如,由于气门驱动装置11A物理结构上的不同或者永久变形,气门驱动装置11A的状态与图8中设定的近似函数f1、f2和图9中所示图表时的状态有所区别时,这种区别就体现为空气燃油比的变化。因此,如果控制电动机12的驱动电流以修正空气燃油比的偏差,就能够适当地控制进气门4的运行特性,同时也能够适当地反映气门驱动装置11A的状态。因为以这种方式修正过的电动机12的驱动电流,能够恰当地反映进气门4的升程和相位,所以基于电动机12修正后的驱动电流,能够精确地计算出气缸2的进气量。
依照本实施例,当电动机12的驱动电流被设置为比标准驱动电流过大或者过小时,将判定电动机12处于非正常状态(步骤S7→S14);当对应于空气燃油比偏差的参数修正量(波动量)过大并且超过一个允许的水平时,将判定气门驱动装置处于非正常状态(步骤S12→S13)。由此,电动机控制装置40用作一个异常状态判断装置。如果电动机12的驱动电流相对于标准驱动电流过大或过小,则电动机运行状态异常的可能性就会很大。当用来消除空气燃油比偏差所需的修正量在正方向或负方向过大时,即使驱动电流正常,气门驱动装置11A的任意部件出现异常以及进气门4没有被适当地驱动的可能性都很高。因此,依照本实施例,可能适当地判断气门驱动***10的异常状态。由于对电动机12和气门驱动装置11A的异常状态的判断是基于对电动机12驱动电流的修正量,因此不必单独设置一个用来监测气门驱动装置11A以检测故障的传感器,从而能够节约成本。
在步骤S8到S11中对电动机输出转矩的修正以及步骤S7或S12中是否存在异常状态的判定,在根据摩擦转矩的估计对电动机输出转矩的前馈控制中不是固有的,它们能够与同电动机12有关的各种控制相结合来进行。例如,可能像图7中给出的例子那样修正或判断输出转矩的异常,用于基于曲轴的转数对电动机12的输出转矩进行反馈控制。
在本实施例中,在步骤S10或S11中所得到的波动量希望储存在电动机控制装置40的存储设备中,作为对摩擦转矩TF的修正量。这里的存储设备希望是用汽车蓄电池供电的备用RAM,或者是稳定可靠的存储器,比如无需供电就能够保存数据的具有刷新ROM(flushROM)的可写闪存。如果使用这样的存储设备,即使当关闭点火开关、内燃机1停机时,修正量也可以被保存在存储器中,当内燃机1再次起动时,就能够根据存储的修正量恰当地计算凸轮摩擦转矩TF。
基于对凸轮摩擦转矩进行估计的电动机输出转矩的前馈控制,可以和同电动机输出转矩有关的另一个控制同时进行,也可以单独进行。例如,可能同时进行基于用曲轴转角传感器45所检测到的曲轴转角的对凸轮角度进行的反馈控制以及凸轮摩擦转矩的前馈控制。
除上述的用于依照内燃机1的运行状态对进气门4和排气门5的运行进行控制的基本结构外,本实施例的气门驱动***10还有其他一些特点。下面将对这些特点进行介绍。进气侧的气门驱动装置11A的各种机械装置和结构,也都相应地设置在排气侧的气门驱动装置11B里,并且除特殊说明外,气门驱动装置11A和11B中这些相同的装置也都起着相同的作用。
(关于凸轮位置的检测)
在本实施例的气门驱动***10中,利用电动机12上的一个转动位置检测装置确定凸轮21A的位置(参见图7中的步骤S1)。优选地,在转动位置检测装置中使用了一对磁极传感器。在磁极传感器输出轴的周围布置有相同数目的S极和N极,当输出轴以如下顺序——S极→N极→S极,或N极→S极→N极——旋转时,传感器将会输出从0°到360°的转动信号。在正常的电动机中,磁极传感器的磁极的数目和电动机12的磁极数目是相同的。例如,如果电动机12有四对磁极(一个S极和一个N极组成一对磁极),则磁极传感器也有四对磁极;如果电动机12有八对磁极,则磁极传感器也有八对磁极。然而,在本实施例中,只有一对磁极的磁极传感器被用作电动机12的位置检测传感器,而不考虑电动机12的磁极数目。依照这种结构,由于电动机12输出轴的转动位置和位置检测传感器的输出信号之间,有着1∶1的相互对应关系,所以优点是能够很容易地得到电动机12的转动位置。此时,电动机12和凸轮轴14A之间的速度比为1∶1,由于电动机12的转动位置和凸轮21A的转动位置之间也有着1∶1的相互对应关系,所以电动机12的转动位置就是凸轮21A的转动位置,这也同样是非常方便的。
当由于传动齿轮组15等的原因从电动机12到凸轮轴14A的减速比不能被设为1∶1时,因为不能确定电动机12的转动位置和凸轮21A转动位置之间的对应关系,因此也就不能对凸轮21A的转动位置进行控制,除非先进行初始化运行以确定它们之间的相应转动。初始化运行可以这样进行:驱动凸轮21A,以检测预定的凸轮角度对应于电动机12的哪个转动位置。当从电动机12到凸轮21A的减速比为N∶M(其中N>M,并且N和M是除了1以外没有别的公因数的整数),对应于在0°到360°之间某个特定凸轮角度的电动机12的转动位置(电动机角度),在凸轮角度从0°到360°之间一共有N个位置,也就是说,每360/N°就有一个。例如,当减速比设为N∶M=5∶3时,如图10所示,由于在电动机12旋转5次的时间里凸轮21A转动3次,所以当凸轮21A转动一次时,五个位置中的一个(如图10中用黑色圆圈所示)对应着凸轮角度0°。因此,N越小,就越容易检测到凸轮的位置。如果考虑到误差检测的余量,将对应于某个特定凸轮角度的电动机角度设为60°/每转或更大时,则N的优选范围是等于或小于5。
(关于凸轮的初始化运行)
下面将说明与凸轮位置有关的初始化运行。图11给出了一个凸轮位置初始化的程序,该程序由电动机控制装置40执行,对凸轮的位置进行初始化。通过执行如图11所示的凸轮位置初始化程序,电动机控制装置40就起到了初始化装置的作用。在这个程序的步骤S21中,电动机控制装置40首先起动电动机12,令凸轮21旋转。这时,利用来自转动位置传感器的位置信号或者类似的量,可以反馈电动机12转速,从而对电动机12的输出转矩进行控制以使其转速保持恒定。通过增大或减小驱动电流来对输出转矩进行控制。在步骤S22中,利用在反馈控制下的驱动电流来检测凸轮摩擦转矩。在步骤S23中,将判断电动机12是否以对应于凸轮21A的一转的量旋转。如果步骤S23中的结果是否定的,程序将返回到步骤S22。如果凸轮21A转动一次,则凸轮在步骤S24中停止,并且程序执行步骤S25。
在步骤S25中,基于对凸轮摩擦转矩检测的结果,确定凸轮21A的位置和电动机12的转动位置之间的相互关系。就是说,如果电动机转速如图12A所示保持恒定,在凸轮摩擦转矩和电动机输出转矩之间就有一定的相互关系,并且,如果凸轮摩擦转矩从位置Pa开始增加时,凸轮21A从位置Pa开始打开进气门4,则输出转矩也随之增加;在位置Pb,凸轮21A的凸起部分21a达到了进气门4的延伸部分,凸轮摩擦转矩和电动机输出转矩都变为相反的方向;在位置Pc,进气门4完全关闭并且凸轮21A分离,凸轮摩擦转矩和电动机输出转矩都收敛于各自的基本值。在实际情况中,有如图8所示的电动机时间常数的影响,但是在图12A和12B中,忽略了电动机12的时间常数的影响。
如果利用凸轮摩擦转矩和电动机输出转矩之间的这种关系,就可能辨别出凸轮位置Pa,Pb和Pc这三个当中的至少一个,从而得到辨别出来的位置和电动机12的转动位置之间的对应关系。利用对应关系,如图11所示在步骤S25中能够确定当前的凸轮位置(凸轮角度)。在步骤S26中,存储关于通过初始化运行所确定的凸轮位置的信息,然后,初始化运行程序结束。
依照这个处理过程,由于能够从电动机输出转矩的变化确定凸轮的位置,好处就是不必单独设置一个用来检测凸轮位置的传感器。然而,本发明不只限于基于电动机的输出转矩来确定凸轮的运行位置。例如,如图12B所示,当电动机的输出转矩保持恒定并且凸轮21A转动起来时,电动机12的转速将依照凸轮摩擦转矩而改变。因此,利用从电动机12的转动位置传感器所输出的信号,可能得到电动机转速或者加速度,并且从转速或加速度的变化可能确定凸轮位置。在任意情况下,如果对与凸轮摩擦转矩相关的各种物理量进行监控,就能够确定凸轮的位置。
当内燃机1起动或是停机的时候,可以进行上述的凸轮位置初始化程序。更具体地说,当点火开关被打开时,凸轮位置初始化程序将在曲柄运转之前被执行,或者,当关上点火开关并且内燃机1确认已经停机时,在停止向电动机控制装置40供给能量之前,执行凸轮位置初始化程序。当打开点火开关时执行初始化程序时,如果电动机控制装置40能够参考所获得的凸轮位置信息,该信息就能够被储存在各种存储装置中。另一方面,当关闭点火开关时执行初始化程序时,所获得的凸轮位置信息将被储存在用汽车蓄电池供电的备用RAM中,或者储存在稳定存储器中,比如无需供电就能够保存数据的具有刷新ROM(flush ROM)的可写闪存。如果使用这种存储装置,当内燃机1起动的时候就不必进行初始化,并利用所储存的凸轮位置就可能立即开始控制凸轮21A。
凸轮位置初始化程序并不限定在打开或关闭点火开关后就要立即执行,只要不影响内燃机1的运行,如果需要的话可以在任何时候执行程序。例如,可以在怠速运行的时候执行凸轮位置初始化程序,并且,在减速或者类似工况下一个或几个气缸中燃烧停止时,即运转气缸数目减小的运行工况时,对相应于停止气缸(缸内已经停止燃烧)的凸轮21A执行凸轮位置初始化程序。
(关于利用凸轮转动发电)
在图8中,凸轮摩擦转矩TF(θ)总是大于0,并且,通过凸轮21A转动一转,驱动电流被提供给电动机12。然而,在图13中,凸轮摩擦转矩TF是负的,并且依靠气门弹簧23推动凸轮21A的作用力和基本摩擦转矩Tf之间的数量关系,电动机12的输出轴在气门弹簧23反作用力的作用下转动。如果在这种状态下,也如图14所示,利用电动机12(有时称为发电机)可以发电,得到的电力可以通过一个变换电路50充到电池51中,从而给凸轮21A的转动加上了适当的载荷。
[第二实施例]
以下将要说明本发明的第二实施例。在第一实施例中,可以估计出凸轮摩擦转矩,并且能够控制电动机12的输出转矩。在第二实施例中,可以依照内燃机1的运行状态估计出内燃机1转数(转速)的变化,并且根据估计的结果来控制电动机12的输出转矩。气门驱动装置11A和11B的机械机构和第一实施例中的相同。
图15是本发明第二实施例的电动机控制装置40的控制***框图。可以通过CPU和软件相结合或者通过硬件电路来实现该结构。在本实施例中,根据曲轴转角传感45测出的曲轴转角,以及由内燃机1的运行状态所需的配气正时(必需的配气正时),计算出所需要的凸轮角度,作为一个控制目标值。得到所需要的凸轮角度和作为输入信息的实际凸轮角度之间的偏差,并且根据这个偏差,对电动机12的输出转矩进行PID控制。
从如图15所示的控制***可知,对与内燃机1转数变化相关的一些参量进行监控(此处,这些被监控的参量是油门开度,进气量,燃油注入量),利用预定的图线可以得到与这些参量相对应的输出转矩的修正量。当车辆中装有自动变速器时,可以将挡位作为参量而加以监控。档位可以参照变速档位图线而得到。通过试验台适应性测试或者计算机仿真可以得到每个参量与修正量之间的相应关系。
用通过PID控制所得到的输出转矩加上基于图线所得到的输出转矩的修正量,将所得的值作为所需转矩的修正值输出。根据这个所需转矩,电动机控制装置40对电动机12的驱动电流进行控制。
在本实施例中,通过油门开度或类似的参量,间接地估计出内燃机1转数的变化,根据估计结果,可以从图线中得到电动机输出转矩的修正量,同时对电动机12的输出转矩进行前馈控制。因此,与内燃机1转数变化相关的凸轮驱动速度的响应也会加快。
当根据油门开度来估计转数变化时,对凸轮输出转矩进行前馈控制的例子如图16所示。在图中,前馈转矩表示,从图15所示控制***的图线中所确定的输出转矩的修正量,而不表示所需要的转矩的本身。在图16给出的例子中,相应于油门开度迅速增大,在一段恒定时期A内,前馈转矩按照预定量增加。如果增大油门开度,内燃机1的转数也随之增加,但是如果不设置前馈转矩的话,那么如图中双点划线所示的实际凸轮角度,将滞后于如图中实线所示的所需的凸轮角度。例如,如果基于内燃机1转数仅靠反馈控制电动机12的输出转矩,就很可能出现凸轮角度滞后的情况。然而,如果设置了前馈转矩,就可能使所需凸轮角度和实际凸轮角度基本上相一致,并且凸轮的响应也会加快。
图17给出的例子是,根据挡位来对转数变化进行估计时,对凸轮输出转矩的前馈控制。在该例子中,当需要根据变速档位表请求减速换挡时,相应于该请求,前馈转矩只在一段恒定的时期B内按照需要以预定量增加。当进行减速换挡时,内燃机1的转数增加,但是如果不设置前馈转矩,那么实际凸轮角度,如图中双点划线所示,就会相对于所需凸轮角度,如图中实线所示,产生响应延迟。如果设置前馈转矩,就可能使所需凸轮角度和实际凸轮角度基本上相一致,即使在执行减速换挡时也一样,并且使凸轮的响应加快。
除了上述的例子外,转数的变化还可以通过参考与内燃机1转数变化有关的不同的参数来估计。基于对转数变化的估计,可以对电动机的输出转矩进行前馈控制,该前馈控制可以和其它与电动机输出转矩相关的控制并行执行,或者也可以单独地执行。例如,可以同第二实施例中的前馈控制一起执行,第一实施例中基于曲轴转角传感器45所测得的曲轴转角的凸轮角度的反馈控制和基于对凸轮摩擦转矩的估计的前馈控制中的至少一个。
[第三实施例]
接下来将要介绍本发明的第三实施例。在该实施例中,气门驱动装置11A和11B的电动机12的驱动模式根据内燃机1的运行状态,在正向转动模式和正向—反向转动模式之间切换。正向转动模式是指电动机12绕一个恒定方向(正向)连续旋转,而在正向—反向转动模式下,电动机12则会在正向旋转方向和反向旋转方向之间适当地切换。气门驱动装置11A和11B的机械结构和第一实施例中的相同。
图18给出了电动机12驱动模式切换条件的一个例子。在这个例子中,依照电动机的转数和内燃机1的负载来切换电动机驱动模式。在高转速、大负荷的情况下,驱动模式切换到正向转动模式;在低转速、小负荷的情况下,驱动模式切换到正向—反向转动模式。在正向—反向转动模式下,电动机12在进气门4或排气门5打开的过程中,能够在任意位置上进行旋转方向的切换,从而能够在凸轮21A和21B到达最大升程位置之前,即进气门4或者排气门5到达最大升程量的位置之前,关闭进气门4或者排气门5。
也就是说,如图19所示,当电动机12在正向转动模式下旋转时最大升程量是La,如果在正向-反向转动模式下,电动机12在凸轮21A和21B到达最大升程位置θmax之前停止运行一次,然后电动机12反向转动,那么可能将进气门4和排气门5的最大升程量限制在一个较小量Lb的范围内。由此,可能防止进气量过分地增加。也可能在内燃机1开始运行时选择正向—反向转动模式,以实现减压功能(通过打开进气门4或者排气门5来减小压缩行程压力的功能),使之具有极好的响应速度。另一方面,如果在高转速、大载荷时采用正向转动模式,由于利用了凸轮21A、21B和传动齿轮组15等的转动惯量,可能会使凸轮21A和21B在较小的转矩作用下高速旋转。
升程Lb在正向—反向转动模式下,依照内燃机1运行状态的不同而适当地变化。为了改变升程Lb,可以通过电动机控制装置40,依照升程Lb增加或者减小凸轮21A的转动角度。
图20给出了一个驱动模式判断程序,在内燃机1驱动以切换电动机12驱动模式的过程中,该程序通过电动机控制装置40被周期性地重复执行。在电动机控制装置40执行驱动模式判断程序时,电动机控制装置40起到了升程控制装置和模式切换装置的功能。
在如图20所示的驱动模式判断程序中,电动机控制装置40在步骤S31中得到内燃机1的转数和负载。在步骤S32中,电动机控制装置40判断内燃机1当前的运行状态是否处于依照图18所示的条件所选择的正向转动模式的区域。根据判断的结果来确定要选择正向转动模式还是正向—反向转动模式(步骤S33和S34),然后驱动模式判断程序便执行完毕。
在驱动模式的判断中,用来判断驱动模式的参数并不仅限于内燃机1的转数和负载,各种与内燃机1运行状态相关的各种参数都可以作为参考。正向转动模式和正向—反向转动模式的切换条件也不局限于图18所示的范围中,切换条件可以适当地变化。第一实施例和第二实施例中的前馈控制都可以被用于在正向转动模式下控制电动机12的输出转矩。
[第四实施例]
下面将要说明本发明的第四实施例。在该实施例中,电动机控制装置40将在内燃机1停机期间的一个预定的时间内,执行一个清洁控制流程,如图21所示。从而,电动机控制装置40起到了气门转动执行装置的功能。气门驱动装置11A和11B的机械结构与第一实施例给出的相同。
在如图21所示的清洁控制流程中,电动机控制装置40在步骤S41中使电动机12开始高速旋转,并且在步骤S42中判断,电动机12在开始旋转后是否经历一个预定的时间。如果已经历预定的时间,则执行步骤S43,使电动机12停止转动。
如果电动机12以这种方式在内燃机1停机时高速旋转,则进气门4将以高速开启和关闭,如图22所示,由于气门弹簧23的振荡现象而减小了气门弹簧23所施加在进气门4上的负荷,并且进气门4将绕着气门杆4a的轴旋转。由此,除去了附着在进气门4和气门座60之间的碳。当进气门4旋转时,气门杆上端4b和摇臂16的接触部分在圆周方向会发生偏移。因此,气门杆上端4b基本上沿圆周方向均匀地被磨损,如图23A阴影所示。如果气门杆4a不转动,只有气门杆上端4b的特定部位同摇臂16发生接触,那么在气门杆上端4b上将会产生偏移磨损,如图23B阴影部分所示。尽管以上讲述的是进气门4的清洁控制流程,但如图21所示的清洁控制流程同样适用于排气门5。
图21所示的清洁控制流程优选地在点火开关钥匙拔出时进行,并希望内燃机1停机很长一段时间。并非内燃机1每次停机时都需要执行清洁控制流程,可依照在进气门4和排气门5上碳的附着状况、或进气门4或排气门5的气门杆的磨损状态决定该程序的执行时间。
综上所述,依照本发明的气门驱动***,由于设置有多个气门驱动装置,因此可能根据内燃机的运行状态、为多个气缸的进气门或排气门提供合适的运行特性。尤其是当通过控制电动机的运行,改变进气门或者排气门的运行角度、升程特性以及最大升程量中的至少一项时,使更加灵活地改变进气门或者排气门的运行成为可能,而不像传统的气门驱动装置那样仅能改变开启和关闭的时间。

Claims (14)

1.一种气门驱动***,将应用在多缸内燃机中用来驱动设在每个气缸的进气门或排气门,所述气门驱动***包括:
多个气门驱动装置(11A,11B),每个装置用于进气门(4)和排气门(5)中的至少一个,每个气门驱动装置包括一个电动机(12),作为产生旋转运动的驱动源;以及一个动力传动机构(13),该动力传动机构设有传动部分(13a)用来传递电动机所产生的旋转运动,和运动转换部分(13b)用于将由传动部分所传递的旋转运动转换为所要驱动的气门的开启和关闭运动;以及
一个电动机控制装置(40),该装置根据内燃机的运行状态,对各自气门驱动装置的电动机的运行进行控制,
其特征在于,
所述动力传动机构的运动转换部分利用凸轮(21A,21B),将电动机所产生的旋转运动转换为开启和关闭运动,和
电动机控制装置包括一个升程控制装置(40),该升程控制装置能够正向和反向驱动电动机,从而气门升程被限制在一个小于最大升程量的预定值内,该最大升程量可以通过凸轮转动一圈而得到。
2.如权利要求1所述的气门驱动***,其中,电动机控制装置依照内燃机的运行状态来控制电动机的运行,以便改变所要驱动的气门的运行角度,升程特性和最大升程量中的至少一个运行特性。
3.如权利要求1或2所述的气门驱动***,其中,当考虑作用在旋转凸轮上的摩擦转矩的变化时,电动机控制装置设置一个电动机控制量。
4.如权利要求1所述的气门驱动***,其中,当考虑关于内燃机的进气或排气特性的控制状态时,电动机控制装置设置一个电动机控制量。
5.如权利要求4所述的气门驱动***,其中,当考虑关于作为内燃机特性的空气燃油比的控制状态时,电动机控制装置修正电动机的控制量,从而把空气燃油比控制为一个预定的目标值。
6.如权利要求4或5所述的气门驱动***,还包括一个异常状态判断装置(40),该装置基于一个与电动机控制量有关的修正量,判断气门驱动***是否异常,该修正量考虑到关于内燃机进气或排气特性的控制状态而设置。
7.如权利要求1或2所述的气门驱动***,其中,电动机控制装置根据内燃机运行状态的变化来估计内燃机转数的变化,并考虑该估计的结果来设置电动机控制量。
8.如权利要求1所述的气门驱动***,其中,当作用在凸轮的转动上的摩擦转矩为负值时,电动机能够被凸轮的旋转运动而驱动以发电。
9.如权利要求1所述的气门驱动***,其中,电动机上可以安装一个电动机转动位置检测装置(12a),用于检测电动机的转动位置,并且,电动机控制装置包括一个凸轮位置确定装置(40),该确定装置根据电动机转动位置的检测结果来确定凸轮的转动位置。
10.如权利要求9所述的气门驱动***,其中,当电动机和凸轮之间的减速比定义为N∶M时,其中,N>M并且N和M为除了1以外没有其它公约数的整数,N被设为等于或小于6的整数。
11.如权利要求1所述的气门驱动***,其中,电动机控制装置包括一个初始化装置(40),当内燃机在预定的状态下工作时,该初始化装置依据预定条件使电动机旋转;并且该初始化装置基于电动机驱动状态的变化掌握凸轮的转动位置,在转动时该电动机驱动状态的变化与凸轮摩擦转矩的变化相关。
12.如权利要求11所述的气门驱动***,其中,初始化装置当内燃机停机时转动电动机,以掌握凸轮的转动位置;并且设置一个存储装置,该存储装置可以储存包括内燃机停机期间的信息,存储表示所掌握的凸轮转动位置的信息;当内燃机再次发动时,电动机控制装置基于存储装置中所储存的信息,确定凸轮的转动位置,并且开始控制电动机。
13.如权利要求1或2所述的气门驱动***,其中,电动机控制装置包括一个气门旋转执行装置(40),用来驱动电动机,从而在内燃机停机时的一段预定时间内,使气门绕自身的轴线方向旋转。
14.如权利要求1或2所述的气门驱动***,其中,电动机控制装置包括一个模式转换装置(40),该装置在正向转动模式和正向-反向转动模式之间转换电动机的驱动模式,其中在正向转动模式下电动机只沿正向被驱动,而在正向-反向转动模式下,电动机依照内燃机的运行状态正向或反向转动。
CNB2003101197945A 2002-12-05 2003-12-05 内燃机的气门驱动*** Expired - Fee Related CN1317495C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002354235A JP4082197B2 (ja) 2002-12-05 2002-12-05 内燃機関の弁駆動システム
JP354235/2002 2002-12-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN200710091420A Division CN100577992C (zh) 2002-12-05 2003-12-05 内燃机的气门驱动***

Publications (2)

Publication Number Publication Date
CN1508415A CN1508415A (zh) 2004-06-30
CN1317495C true CN1317495C (zh) 2007-05-23

Family

ID=32310746

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200710091420A Expired - Fee Related CN100577992C (zh) 2002-12-05 2003-12-05 内燃机的气门驱动***
CNB2003101197945A Expired - Fee Related CN1317495C (zh) 2002-12-05 2003-12-05 内燃机的气门驱动***

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN200710091420A Expired - Fee Related CN100577992C (zh) 2002-12-05 2003-12-05 内燃机的气门驱动***

Country Status (6)

Country Link
US (2) US7047922B2 (zh)
EP (2) EP1925787B1 (zh)
JP (1) JP4082197B2 (zh)
KR (1) KR100682775B1 (zh)
CN (2) CN100577992C (zh)
DE (2) DE60319495T2 (zh)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3571014B2 (ja) * 2001-08-30 2004-09-29 本田技研工業株式会社 内燃機関の自動停止始動制御装置
JP4049092B2 (ja) * 2003-12-12 2008-02-20 トヨタ自動車株式会社 動弁装置
JP4241412B2 (ja) * 2004-02-03 2009-03-18 株式会社日立製作所 運動機構の駆動制御装置
EP1605140B1 (de) * 2004-06-09 2016-11-02 Schaeffler Technologies AG & Co. KG Verstellvorrichtung für eine Nockenwelle
KR101158926B1 (ko) * 2004-06-09 2012-07-03 섀플러 카게 캠축 조정 장치
FR2875536A1 (fr) * 2004-09-23 2006-03-24 Jean Pierre Christian Choplet Distribution innovee d'un moteur, commande individuelle electromecanique de soupape regulee par calculateur- orientation perpendiculaire de came a vitesse accrue- controle opto-electronique de rotation
JP4537817B2 (ja) * 2004-09-29 2010-09-08 株式会社ケーヒン 可変動弁機構
JP2007023814A (ja) * 2005-07-13 2007-02-01 Toyota Motor Corp 内燃機関の可変動弁装置
JP4659583B2 (ja) * 2005-10-18 2011-03-30 株式会社オティックス 可変動弁機構
JP4412318B2 (ja) 2006-03-20 2010-02-10 トヨタ自動車株式会社 弁駆動装置
DE102006023652B4 (de) * 2006-05-18 2008-10-30 Esa Patentverwertungsagentur Sachsen-Anhalt Gmbh Elektromotorische Einrichtung zur Betätigung von Gaswechselventilen
JP4910482B2 (ja) * 2006-05-25 2012-04-04 トヨタ自動車株式会社 可変動弁装置、その制御方法及びこれを搭載した車両
JP4923757B2 (ja) 2006-06-06 2012-04-25 トヨタ自動車株式会社 可変バルブタイミング装置
JP4797885B2 (ja) * 2006-08-25 2011-10-19 株式会社デンソー バルブタイミング調整装置
JP4649386B2 (ja) * 2006-08-29 2011-03-09 トヨタ自動車株式会社 可変バルブタイミング装置
GB2447034A (en) * 2007-02-28 2008-09-03 Dakota Ltd Gibraltar Camshaft Drive
JP4840613B2 (ja) * 2008-09-15 2011-12-21 株式会社デンソー 内燃機関の回転状態検出装置
JP2010138738A (ja) * 2008-12-10 2010-06-24 Honda Motor Co Ltd 内燃機関の制御装置
US8150605B2 (en) * 2009-02-17 2012-04-03 Ford Global Technologies, Llc Coordination of variable cam timing and variable displacement engine systems
JP4901949B2 (ja) * 2009-03-18 2012-03-21 日立オートモティブシステムズ株式会社 回転検出装置
US7835848B1 (en) * 2009-05-01 2010-11-16 Ford Global Technologies, Llc Coordination of variable cam timing and variable displacement engine systems
GB0920152D0 (en) * 2009-11-18 2009-12-30 Camcon Ltd Rotary electromagnetic actuator
US8567359B2 (en) * 2010-08-06 2013-10-29 Ford Global Technologies, Llc Feed forward control for electric variable valve operation
JP2013067465A (ja) * 2011-09-21 2013-04-18 Murata Machinery Ltd 糸処理装置及び糸巻取装置
CN103148255B (zh) * 2011-12-07 2015-04-15 无锡华瑛微电子技术有限公司 阀门控制***及其方法
JP5708474B2 (ja) * 2011-12-23 2015-04-30 株式会社デンソー 電動バルブタイミング制御装置
US9243569B2 (en) * 2012-04-04 2016-01-26 Ford Global Technologies, Llc Variable cam timing control during engine shut-down and start-up
CN104603406B (zh) * 2012-04-20 2016-09-28 伊顿公司 具有提高的耐久性的摇臂组件
JP5825432B2 (ja) * 2012-10-30 2015-12-02 トヨタ自動車株式会社 内燃機関の制御装置
JP6042233B2 (ja) * 2013-03-01 2016-12-14 日立オートモティブシステムズ株式会社 内燃機関のバルブタイミング制御システム
JP6203614B2 (ja) * 2013-12-02 2017-09-27 日立オートモティブシステムズ株式会社 多気筒内燃機関の可変動弁装置及び該可変動弁装置のコントローラ
DE102014114396A1 (de) * 2014-10-02 2016-04-07 Pierburg Gmbh Mechanisch steuerbarer Ventiltrieb sowie mechanisch steuerbare Ventiltriebanordnung
JP2016109103A (ja) * 2014-12-10 2016-06-20 トヨタ自動車株式会社 内燃機関の制御装置
GB201520766D0 (en) * 2015-11-24 2016-01-06 Camcon Auto Ltd Stator assembly
JP6872160B2 (ja) * 2016-12-09 2021-05-19 株式会社リコー カム駆動装置及び画像形成装置
US10557282B1 (en) 2017-01-07 2020-02-11 Regalo International, Llc Stickless exteriorly operated umbrella canopy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957074A (en) * 1989-11-27 1990-09-18 Siemens Automotive L.P. Closed loop electric valve control for I. C. engine
US5331931A (en) * 1986-09-02 1994-07-26 Blish Nelson A Variable intake valve
US5598814A (en) * 1992-12-22 1997-02-04 General Motors Corporation Method and apparatus for electrically driving engine valves
US5873335A (en) * 1998-01-09 1999-02-23 Siemens Automotive Corporation Engine valve actuation control system
US5983847A (en) * 1998-07-15 1999-11-16 Fuji Oozx Inc. Electric valve drive device in an internal combustion engine
US5988123A (en) * 1998-07-15 1999-11-23 Fuji Oozx, Inc. Method of controlling an electric valve drive device and a control system therefor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635832B2 (ja) * 1985-09-11 1994-05-11 本田技研工業株式会社 2サイクルエンジンの排気時期制御装置
US5016583A (en) * 1988-01-13 1991-05-21 Blish Nelson A Variable intake and exhaust engine
JP3035390B2 (ja) * 1991-08-30 2000-04-24 本田技研工業株式会社 内燃エンジンの空燃比制御装置
JPH06146829A (ja) * 1992-10-30 1994-05-27 Mitsubishi Motors Corp 弁可変駆動機構付きエンジンの切換え制御装置
JPH08177536A (ja) 1994-12-22 1996-07-09 Tokyo Gas Co Ltd バルブタイミング制御方法及び制御装置
DE19627743A1 (de) 1996-07-10 1998-01-15 Philips Patentverwaltung Vorrichtung zum linearen Verstellen eines Stellgliedes
JP3355997B2 (ja) * 1997-05-30 2002-12-09 株式会社日立製作所 内燃機関の制御方法
JP2001152820A (ja) 1999-11-30 2001-06-05 Nissan Motor Co Ltd エンジンの可変動弁装置
JP3803220B2 (ja) * 1999-12-16 2006-08-02 株式会社日立製作所 電磁駆動式吸排気バルブを備えたエンジンシステムの制御装置
FR2823529B1 (fr) 2001-04-11 2003-07-04 Sagem Dispositif de commande de soupape a point mort
DE10120449A1 (de) * 2001-04-26 2002-10-31 Ina Schaeffler Kg Elektromotorisch verdrehbare Welle
JP2003154861A (ja) * 2001-11-14 2003-05-27 Ind Technol Res Inst 並列式二動力ユニット複合動力システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331931A (en) * 1986-09-02 1994-07-26 Blish Nelson A Variable intake valve
US4957074A (en) * 1989-11-27 1990-09-18 Siemens Automotive L.P. Closed loop electric valve control for I. C. engine
US5598814A (en) * 1992-12-22 1997-02-04 General Motors Corporation Method and apparatus for electrically driving engine valves
US5873335A (en) * 1998-01-09 1999-02-23 Siemens Automotive Corporation Engine valve actuation control system
US5983847A (en) * 1998-07-15 1999-11-16 Fuji Oozx Inc. Electric valve drive device in an internal combustion engine
US5988123A (en) * 1998-07-15 1999-11-23 Fuji Oozx, Inc. Method of controlling an electric valve drive device and a control system therefor

Also Published As

Publication number Publication date
US7111599B2 (en) 2006-09-26
EP1925787A3 (en) 2008-06-11
JP2004183612A (ja) 2004-07-02
KR100682775B1 (ko) 2007-02-15
DE60319495T2 (de) 2009-03-12
EP1925787B1 (en) 2010-03-17
DE60331795D1 (de) 2010-04-29
JP4082197B2 (ja) 2008-04-30
EP1426568B1 (en) 2008-03-05
US20040107928A1 (en) 2004-06-10
CN101113679A (zh) 2008-01-30
EP1426568A1 (en) 2004-06-09
CN100577992C (zh) 2010-01-06
US7047922B2 (en) 2006-05-23
DE60319495D1 (de) 2008-04-17
EP1925787A2 (en) 2008-05-28
CN1508415A (zh) 2004-06-30
US20060112919A1 (en) 2006-06-01
KR20040049251A (ko) 2004-06-11

Similar Documents

Publication Publication Date Title
CN1317495C (zh) 内燃机的气门驱动***
EP3015683A1 (en) Controller for variable valve mechanism
US20180266347A1 (en) Dynamic valve control in a skip fire controlled engine
CN101031709A (zh) 用于控制内燃发动机的空转速度的设备和方法
JP2005256664A (ja) 内燃機関の出力制御装置
JP2007120464A (ja) 圧縮比とバルブ特性を変更可能な内燃機関
JP2008151059A (ja) 可変動弁機構を備える内燃機関の制御装置
CN1818364A (zh) 用于控制可变气门致动机构的装置和方法
JP2003232233A (ja) 内燃機関の制御装置
CN103573423B (zh) 用于连续可变气门升程发动机的控制方法
JP4834752B2 (ja) 内燃機関の吸気制御装置
US10563612B2 (en) Control device for internal combustion engine
CN104246183A (zh) 可变气门机构的控制装置
EP2540997B1 (en) Continuously variable valve timing system and method for controlling the same
JP4049092B2 (ja) 動弁装置
CN1768196A (zh) 内燃机怠速转速控制器、内燃机控制器和内燃机
JP2012031869A (ja) 内燃機関の制御システム
JP4802717B2 (ja) 内燃機関のバルブ特性制御装置
CN1807874A (zh) 内燃机起动***
JP5007656B2 (ja) 内燃機関の制御装置
JP2009154620A (ja) 内燃機関の電子制御装置及び速度制御方法
JP2005155549A (ja) エンジンの始動装置
JP2005502810A (ja) トルク制御方法
CN1676906A (zh) 内燃机的燃料供给控制装置
JP2001263108A (ja) 内燃機関の吸気弁駆動制御装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070523

Termination date: 20101205