CN1316657C - 互联装置、燃料电池和燃料电池组 - Google Patents

互联装置、燃料电池和燃料电池组 Download PDF

Info

Publication number
CN1316657C
CN1316657C CNB2004100050666A CN200410005066A CN1316657C CN 1316657 C CN1316657 C CN 1316657C CN B2004100050666 A CNB2004100050666 A CN B2004100050666A CN 200410005066 A CN200410005066 A CN 200410005066A CN 1316657 C CN1316657 C CN 1316657C
Authority
CN
China
Prior art keywords
passage
interconnect device
fuel cell
channel system
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100050666A
Other languages
English (en)
Other versions
CN1521879A (zh
Inventor
C·奥尔森
H·尤斯特鲁德
J·U·尼尔森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Publication of CN1521879A publication Critical patent/CN1521879A/zh
Application granted granted Critical
Publication of CN1316657C publication Critical patent/CN1316657C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00853Employing electrode arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00869Microreactors placed in parallel, on the same or on different supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0637Direct internal reforming at the anode of the fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

本发明提供用于包括电解质、阳极和阴极的燃料电池的互联装置,该互联装置包括一个具有多条通道的通道***,每条通道在一端封闭且在其开口端或是具有一个入口侧或具有一个出口侧。具有一个入口侧的各通道与具有一个出口侧的通道交替布置,各通道的入口侧按照连续的顺序布置在互联装置的一侧上,同时各通道的出口侧按照连续的顺序布置在互联装置的相对于入口侧的相对侧上,且通道第二层位于通道***的表面上。本发明还提供使用该互联装置的燃料电池和燃料电池组。

Description

互联装置、燃料电池和燃料电池组
技术领域
本发明涉及一种高温燃料电池,特别是一种固态氧化物燃料电池(SOFC)或者一种熔融碳酸盐燃料电池(MCFC),其中在阳极室中或在阳极内发生烃类的重整。特别是本发明涉及一种S0FC型或MCFC型燃料电池中的互联装置,其中燃料电池内的机械张力得到减轻。
背景技术
固态氧化物燃料电池包含一种氧气-离子导电的电解质、一个氧气在此被还原的阴极和一个氢在此被氧化的阳极。固态氧化物燃料电池中的总反应是:氢和氧进行电化学反应产生电流、热量和水。
该阳极还含有高催化活性,用于将烃类蒸汽重整成氢、二氧化碳和一氧化碳。蒸汽重整可通过燃料如天然气与蒸汽的反应进行描述,且发生的反应可由以下方程式表示:
CH4+H2O→CO+3H2
CH4+CO2→2CO+2H2
CO+H2O→CO2+H2
供给燃料电池的燃料气体在绝大多数情况下含有蒸汽,由此根据以上方程式在阳极表面可进行蒸汽重整过程。然后,生成的氢在以上电化学反应中进行反应。然而,该蒸汽重整反应是非常吸热的,因此要求输入大量的热。
由于快速吸热的重整反应导致在电池内产生显著的温度梯度,因此在使用烃类给料的燃料电池组中典型的温度分布显示出在燃料电池入口附近存在一个显著的温度降。
固态氧化物燃料电池是一种由三种不同材料形成的陶瓷复合材料。陶瓷固态氧化物燃料电池具有较低的机械强度,特别是较低的抗拉强度。固态氧化物燃料电池内部的抗拉强度与温度梯度紧密相关,因此使温度梯度最小化变得非常重要,并由此使固态氧化物燃料电池的抗拉强度最小化。当燃料电池中的抗拉强度超过一给定临界值时,电池将会产生裂纹,同时燃料电池将发生故障。
在某些程度上通过使用氢给料,有可能将抗拉强度调节到一个可接受的水平,但可以预见到在未来天然气和其它烃类给料将占据优势。这将显著使该问题加剧,由于烃类的吸热重整将在燃料入口区域显著降低燃料电池的温度,由此增大燃料电池内的温度梯度和抗拉强度至一个不可接受的水平。
已知有多种降低温度梯度的方法。这些方法中的绝大多数涉及燃料电池***操作参数的改变,例如更强的到阴极的气流。这种改变通常与电池***运行成本的增加相关。
发明内容
本发明的目的在于通过使用一种将燃料分割成若干微型燃料电池的互联装置,减小燃料电池的热梯度和抗拉强度。这一点可通过在电池的整个表面上分布燃料电池的燃料气体供给而实现。用这种方法,在一个燃料电池上形成许多小的电化学电池。由于需要热量的重整反应和产生热量的电化学反应之间具有较短的热程,因此大大降低了电池的抗拉强度。
根据本发明,因此提供一种用于包括电解质、阳极和阴极的燃料电池的互联装置,该互联装置包括一个具有多条通道的通道***,每条通道在一端封闭且在通道的开口端具有一个入口侧或具有一个出口侧。具有一个入口侧的各通道与具有一个出口侧的通道交替布置,各通道的入口侧按照连续的顺序布置在互联装置的一侧上,各通道的出口侧按照连续的顺序布置在互联装置的相对于入口侧的相对侧上,且通道第二层位于通道***的表面上。
本发明还提供一种包括有电解质、阳极、阴极和互联装置的燃料电池。
此外,本发明提供一种包括有至少两个燃料电池的燃料电池组。
附图说明
图1和1a示出了一个具有敞开式气体供给和收集通道的互联装置;
图2和2a示出了一个具有成直角的表面通道的敞开式气体供给和收集通道的互联装置;
图3和3a示出了一个具有封闭式气体供给和收集通道和在互联表面上的孔眼的互联装置;
图4和4a示出了一个具有成直角的表面通道的部分封闭式气体供给和收集通道的互联装置;
图5示出了一个互联装置的俯视图;以及
图6示出了装配好的燃料电池组的截面图。
具体实施方式
通过确保燃料气体分布在整个电池表面可实现减小燃料电池内的温度梯度,由此使得在电池表面上方均匀地发生吸热的重整反应和放热的电化学反应。压力梯度确保了在电池多数区域上方均匀的气流。
根据本发明所述的互联装置在燃料电池的燃料气体一侧,即阳极侧主要适用于高温用途。互联装置的氧一侧,即阴极侧可具有任何适于氧气输送的几何形状。例如可以是直的、平行的通道或现有技术中已知的任何其它类型的通道。
燃料流的准确通路可发生变化且给出了多条燃料通路。对根据本发明所述的互联装置的不同实施例的说明如下,每个实施例描述了互联装置的一个不同结构和由此具有的一条不同的燃料流通路。
下表给出了图中所示的互联装置的不同部分编号一览:
编号  互联装置部分
1    进料孔
2    进料通道
3    互联表面
4    收集通道
5    排出孔
6    通道第二层
7    分配孔
8    收集孔
图1示出了一个简单互联的几何形状,其中燃料从进料孔1流入并通过布置在互联装置表面3上的位于从进料通道2到收集通道4途中的多孔阳极。这一实施例具有包含敞开式供气和收集通道的通道***。敞开式通道的意思是该通道的上表面在其长度方向未被覆盖或未被封闭。封闭式通道的意思是该通道的上表面在其长度方向被覆盖。
穿过阳极侧的燃料气体通路的更加详细的解释说明如下:
燃料从一个或多个燃料进料孔1进入互联装置。燃料通过互联装置中的进料通道2穿过阳极分布。燃料被暴露给阳极材料。如果燃料是烃类,在与阳极材料接触后燃料与蒸汽发生吸热的反应。然后该燃料在放热的电化学反应中被消耗以发电。这两个反应相互间发生得很近并且由于该重整反应可吸收利用由电化学反应产生的热量,两个反应将互相受益。该被消耗的燃料废料由通道4收集在互联装置中并被导向电池周边的排出孔5。
图1a示出了一个燃料气体通过互联装置和阳极的所经通道的侧视图。该阳极被安置在互联表面3上,且气体传输发生是从进料通道2经该阳极到收集通道4。
在图1所示的实施例中,该进料和收集通道是直的、平行通道。该通道不受限于直的、平行通道,也可以具有别的几何形状,例如对角进行放置。
在第二实施例中,燃料流不受限于全部通过多孔阳极材料。它也可以部分流过在阳极表面与互联表面之间产生的间隙。这样就减小了压力降。这种间隙通过在互联表面3中作出通道第二层6而获得,该间隙与进料和收集通道2和4形成一角度即:它们与通道***中的通道相交,且位于如图1所示的通道***表面上。如图2所示,其中互联装置具有敞开式进料和收集通道,其上带有垂直于该进料和收集通道形成的表面通道6。可选择其它角度以使表面通道第二层6与进料和收集通道2和4间不形成直角。在两端都被封闭的表面通道第二层6可例如相对于进料和收集通道2和4对角进行放置。
图2a示出了一个燃料气体所经通道的侧视图。气体传输发生是从进料通道经通道的第二层6到收集通道。在气体传输过程中,气体接触放置在互联装置表面3上的阳极并被蒸汽重整。
在第三实施例中,进料通道是封闭的,且该被封闭的互联装置表面3在通道区域被穿孔。在这一实施例中,该封闭的、被穿孔的表面3与在其表面和两端被封闭且在通道区域被穿孔的通道第二层对应。第二层的通道被布置平行于通道***的那些通道且位于它们的正上方。这就确保通过孔眼的燃料仅在孔眼附近区域进行重整。图3示出了一个具有封闭的气体进料和收集通道的互联装置,其中燃料流过在进料通道上的互联装置表面3中的孔眼并流入多孔阳极材料。该经过重整的气体离开该阳极,通过布置在收集通道4上的孔眼进入收集通道。
图3a示出了一个在进料通道2中存在的小的燃料分配孔7和在收集通道4中的燃料废料收集孔8。
在第四实施例中,燃料流部分流过互联表面3中与进料和收集通道2和4成一定角度的表面通道的第二层6。这样就减小了压力降。如图4所示,其中表面通道的第二层6垂直于通道***的进料和收集通道2和4。该进料和收集通道2和4被部分封闭。表面通道的第二层6也可以与进料和收集通道2和4形成别的角度,例如对角进行放置。它们在两端都被封闭。
图4a示出了一个燃料气体所经通道的侧视图,示出在进料通道2中存在的燃料分配孔7和在收集通道4中的废料收集孔8。
在不同的实施例中,使用两个或多个中间层代替单一层构成互联装置的阳极侧可较为实用。例如可通过以下方法实施,即构成设置有通道***的一个中间层,并将设置有通道第二层的第二中间层放置在第一中间层表面上。
图5示出了互联装置阳极侧的俯视图。该图示出了图4中所描述的实施例,其中互联装置具有部分封闭的气体进料和收集通道。该图示出了在一个燃料电池上产生的许多小的电化学电池的结构。
燃料电池被放置在互联上表面3上,且其阳极侧朝向互联装置。该燃料电池应沿着互联装置的边缘被紧密密封,以防止全部燃料气体沿其它通路而非预定通路流动。
该种含烃类的燃料气体通过许多与封闭的燃料气体进料通道2相连的进料孔1供给互联装置。在进料通道2中的许多小的燃料供给分配孔7使得燃料从进料通道2流出,从而将其暴露给位于互联装置顶部的燃料电池阳极侧。该燃料将从分配孔7流出,经过通道第二层6的表面,流至连通气体与封闭的燃料废料收集通道4的燃料废料收集孔8。在其传输过程中,气体接触该阳极且被蒸汽重整。从收集通道4,经过重整的燃料气体经过燃料废料排出孔5排出该互联装置。该经过重整的燃料气体包括氢,其在总电化学反应中与氧反应生成电能、热量和水。排出该互联装置的阳极侧的废料产物因此主要是二氧化碳和水。该燃料气体流可通过燃料气体供气和燃料气体废料之间的压力差进行控制。
本发明中的互联装置如有需要可具有安置在进料和收集通道2和4中的分配孔7和收集孔8。这确保了在暴露于阳极之前新鲜燃料气体的供给分布在燃料电池的整个表面上。通过在燃料气体含有烃类的情况下在燃料电池中使用互联装置,使得吸热的重整反应分布在燃料电池表面上均匀进行。同时发生的电化学反应分布在燃料电池表面上均匀进行,从而使这一反应产生的废热用于重整反应。由于电化学反应产生的废热和重整反应的热消耗之间的差而产生的在燃料供给分配孔7和燃料废料收集孔8之间的温度差因热传输距离短而被最小化。该热传输将主要通过在互联装置和燃料电池中进行热传导的方式进行。
作为温度梯度最小化的结果,进一步得到在燃料电池中因温度梯度原因使得机械应力最小化,由此减小了燃料电池发生机械失效的几率。对于所使用的任何种类的燃料气体,该梯度将被最小化,但是在烃类给料接触阳极进行重整的情况下,通常优势最大。
图6示出了一个装配好的燃料电池组的截面图,显示出互联装置相对于燃料电池其它元件的位置。图中显示有五层,顶层示出了放置在阴极10上的互联装置。氧补给通道9为在阴极进行的反应提供氧气且其位于互联装置的阴极侧上。可选择氧补给通道9的几何形状以便于将所需量的氧气传输至阴极。氧补给通道可成形为例如直的、平行的通道。其它在现有技术中已知的几何形状也可应用。
阴极10被放置在互联装置和电解质层11之间。在其后是一个阳极层12,它的其它表面与互联表面3相接触。
互联装置的两个接触面可通过不同方式被提供,例如通过将两个中间层相互接触,一个中间层具有带有如本发明不同实施例所述的燃料气体供给***的阳极侧;另一个中间层具有带有传统技术中使用的氧供给***的阴极侧。这两个中间层一起提供了这样的互联装置。
本发明中的互联装置可被用于应用内部或外部集流腔的燃料电池中。

Claims (11)

1、一种互联装置,用于其中发生烃类蒸汽重整的高温燃料电池,其包括:
电解质;
阳极,其具有用于蒸汽重整的催化活性;和
阴极,
该互联装置包括一个具有多条通道的通道***,每条通道在一端封闭且在通道的开口端具有一个入口侧或具有一个出口侧,具有一个入口侧的各通道与具有一个出口侧的通道交替布置,各通道的入口侧按照连续的顺序布置在互联装置的一侧上,而各通道的出口侧按照连续的顺序布置在互联装置的相对于入口侧的相对侧上,且通道第二层位于通道***的表面上。
2、根据权利要求1所述的互联装置,其特征在于,该通道***具有多条直的、平行的通道。
3、根据权利要求1和2中任一项所述的互联装置,其特征在于,该通道第二层与通道***中的通道相交,该通道第二层在两端被封闭且通道***的通道在其整个长度上保持开放。
4、根据权利要求1和2中任一项所述的互联装置,其特征在于,该通道第二层在其表面和两端被封闭,并且该通道第二层平行于通道***中的通道安置并位于通道***中的通道的正上方,封闭的表面在通道区域被穿孔。
5、根据权利要求4所述的互联装置,其特征在于,通道***的该封闭的、被穿孔的表面包括放置在通道***表面上的独立中间层。
6、根据权利要求1和2中任一项所述的互联装置,其特征在于,通道第二层位于通道***表面上,该通道第二层与通道***中的通道相交,该通道第二层在两端被封闭,通道***的通道被部分封闭。
7、根据权利要求6所述的互联装置,其特征在于,该通道第二层包括放置在通道***表面上的独立中间层。
8、根据权利要求1或7所述的互联装置,其特征在于,通道***的通道设置有分配孔和收集孔。
9、一种高温燃料电池,其中发生烃类蒸汽重整,该高温燃料电池包括:
电解质;
阳极,其具有用于蒸汽重整的催化活性;
阴极;和
根据权利要求1-8中任一项所述的互联装置,
其中在阳极侧施加互联。
10、根据权利要求9所述的高温燃料电池,其特征在于,该燃料电池是固态氧化物燃料电池或者熔融碳酸盐燃料电池。
11、一种包括至少两个根据权利要求9或10所述的燃料电池的高温燃料电池组。
CNB2004100050666A 2003-02-15 2004-02-16 互联装置、燃料电池和燃料电池组 Expired - Fee Related CN1316657C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA200300232 2003-02-15
DKPA200300232 2003-02-15

Publications (2)

Publication Number Publication Date
CN1521879A CN1521879A (zh) 2004-08-18
CN1316657C true CN1316657C (zh) 2007-05-16

Family

ID=32668645

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100050666A Expired - Fee Related CN1316657C (zh) 2003-02-15 2004-02-16 互联装置、燃料电池和燃料电池组

Country Status (8)

Country Link
US (1) US7297425B1 (zh)
EP (1) EP1447869A1 (zh)
JP (1) JP2004247305A (zh)
CN (1) CN1316657C (zh)
AU (1) AU2004200582B2 (zh)
CA (1) CA2457180A1 (zh)
HK (1) HK1066922A1 (zh)
NO (1) NO20040649L (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4682511B2 (ja) 2003-12-02 2011-05-11 日産自動車株式会社 固体酸化物型燃料電池
US20060286431A1 (en) * 2005-06-15 2006-12-21 National Central University Flow channel on interconnect of planar solid oxide fuel cell
JP4981280B2 (ja) 2005-08-23 2012-07-18 本田技研工業株式会社 燃料電池
US20070172720A1 (en) * 2006-01-23 2007-07-26 Canon Kabushiki Kaisha Fuel cell unit
EP1830425B1 (en) * 2006-03-03 2015-09-02 Atomic Energy Council - Institute of Nuclear Energy Research Interconnect set of planar solid oxide fuel Cell having flow paths
US20070207363A1 (en) * 2006-03-06 2007-09-06 Atomic Energy Council - Institute Of Nuclear Energy Research Interconnect set of planar solid oxide fuel cell having flow paths
DE102006016814A1 (de) * 2006-04-10 2007-10-18 Staxera Gmbh Polarplatte, insbesondere Endplatte oder Bipolarplatte für eine Brennstoffzelle
CN101304094B (zh) * 2007-05-09 2010-09-29 富准精密工业(深圳)有限公司 燃料电池极板及使用该极板的燃料电池
TWI472090B (zh) * 2011-04-22 2015-02-01 Univ Nat Cheng Kung Fuel cell solid electrolyte structure
CN102856568A (zh) * 2012-10-09 2013-01-02 复旦大学 一种端口密封的双空心阳极支撑固体氧化物燃料电池装置
KR101432386B1 (ko) * 2012-12-18 2014-08-20 포스코에너지 주식회사 종채널과 횡채널을 갖는 고체산화물 연료전지
JP6228984B2 (ja) * 2013-08-27 2017-11-08 住友精密工業株式会社 燃料電池
KR102483895B1 (ko) * 2016-01-21 2022-12-30 삼성전자주식회사 전기 화학 소자, 전기 화학 소자를 포함하는 전지 모듈, 및 전지 모듈을 포함하는 전지 팩

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641586A (en) * 1995-12-06 1997-06-24 The Regents Of The University Of California Office Of Technology Transfer Fuel cell with interdigitated porous flow-field
US6207312B1 (en) * 1998-09-18 2001-03-27 Energy Partners, L.C. Self-humidifying fuel cell
WO2002013287A2 (de) * 2000-08-08 2002-02-14 Hoeller Stefan Elektrochemische zelle mit polymerelektrolytmembran

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927465A (ja) * 1982-08-06 1984-02-13 Tokyo Electric Power Co Inc:The 燃料電池
JPS60227361A (ja) * 1984-04-25 1985-11-12 Fuji Electric Corp Res & Dev Ltd 燃料電池の反応ガス給排内部構造
US5234776A (en) * 1990-08-03 1993-08-10 Fuji Electric Co., Ltd. Solid polymer electrolyte fuel cell system with ribbed configuration
US5300370A (en) * 1992-11-13 1994-04-05 Ballard Power Systems Inc. Laminated fluid flow field assembly for electrochemical fuel cells
JPH0729579A (ja) * 1993-03-25 1995-01-31 Tanaka Kikinzoku Kogyo Kk 燃料電池用セパレーター及び燃料電池用セルスタック
DE4443688C1 (de) * 1994-12-08 1996-03-28 Mtu Friedrichshafen Gmbh Bipolarplatte für Brennstoffzellen
JP3540491B2 (ja) * 1996-03-07 2004-07-07 政廣 渡辺 燃料電池及び電解セル並びにその冷却・除湿方法
US6146780A (en) * 1997-01-24 2000-11-14 Lynntech, Inc. Bipolar separator plates for electrochemical cell stacks
JPH1116591A (ja) * 1997-06-26 1999-01-22 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池、固体高分子型燃料電池システム及び電気機器
US6296963B1 (en) * 1997-11-14 2001-10-02 Mitsubishi Heavy Industries, Ltd. Solid oxide electrolyte fuel cell
US6780533B2 (en) * 1999-12-17 2004-08-24 Utc Fuel Cells, Llc Fuel cell having interdigitated flow channels and water transport plates
US6472095B2 (en) * 2000-12-29 2002-10-29 Utc Fuel Cells, Llc Hybrid fuel cell reactant flow fields
JP4617156B2 (ja) * 2002-05-09 2011-01-19 本田技研工業株式会社 改善された燃料電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641586A (en) * 1995-12-06 1997-06-24 The Regents Of The University Of California Office Of Technology Transfer Fuel cell with interdigitated porous flow-field
US6207312B1 (en) * 1998-09-18 2001-03-27 Energy Partners, L.C. Self-humidifying fuel cell
CN1332891A (zh) * 1998-09-18 2002-01-23 能量合伙公司 自加湿燃料电池
WO2002013287A2 (de) * 2000-08-08 2002-02-14 Hoeller Stefan Elektrochemische zelle mit polymerelektrolytmembran

Also Published As

Publication number Publication date
JP2004247305A (ja) 2004-09-02
NO20040649L (no) 2004-08-16
US7297425B1 (en) 2007-11-20
EP1447869A1 (en) 2004-08-18
AU2004200582B2 (en) 2009-09-03
CA2457180A1 (en) 2004-08-15
CN1521879A (zh) 2004-08-18
US20070269704A1 (en) 2007-11-22
HK1066922A1 (en) 2005-04-01
AU2004200582A1 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
KR100731330B1 (ko) 용융탄산염 연료전지의 분리판 및 그의 제조방법
EP2331246B1 (en) Desulfurizer
US8034496B2 (en) Fuel cell
KR102097434B1 (ko) 연료 전지를 위한 기체 분배 요소
CN1316657C (zh) 互联装置、燃料电池和燃料电池组
KR101740873B1 (ko) 반응물들을 연료 전지 또는 전해조 전지에 분배하는 방법과 장치
KR102107529B1 (ko) 고체 산화물 연료 전지
KR100731329B1 (ko) 연료개질실을 포함하는 용융탄산염 연료전지용 분리판 및그의 제조방법
US7972742B2 (en) Tube type fuel cell to decrease current path length
KR101778496B1 (ko) 고체 산화물 전지 스택들의 밀봉 배열체 및 방법
JP2013501319A (ja) 固体酸化物形燃料電池システム
KR101040107B1 (ko) 고체산화물 연료전지 스택의 분리판
US11196063B2 (en) System and method for solid oxide fuel cells with staged fuel supply
US8753784B2 (en) Separator for molten carbonate fuel cell
JP6993488B1 (ja) 燃料電池発電システム、及び、燃料電池発電システムの制御方法
WO2015097337A1 (en) Flow method and arrangement for fuel cell or electrolyzer cell stack
JPH06314570A (ja) 燃料電池のマニホールド構造
KR20070075041A (ko) 열공급판을 구비한 연료전지 시스템

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1066922

Country of ref document: HK

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070516

Termination date: 20110216