WO2002013287A2 - Elektrochemische zelle mit polymerelektrolytmembran - Google Patents

Elektrochemische zelle mit polymerelektrolytmembran Download PDF

Info

Publication number
WO2002013287A2
WO2002013287A2 PCT/DE2001/002923 DE0102923W WO0213287A2 WO 2002013287 A2 WO2002013287 A2 WO 2002013287A2 DE 0102923 W DE0102923 W DE 0102923W WO 0213287 A2 WO0213287 A2 WO 0213287A2
Authority
WO
WIPO (PCT)
Prior art keywords
gas
diffusion electrode
gas diffusion
channels
channel
Prior art date
Application number
PCT/DE2001/002923
Other languages
English (en)
French (fr)
Other versions
WO2002013287A3 (de
Inventor
Stefan Höller
Uwe Küter
Original Assignee
Hoeller Stefan
Kueter Uwe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoeller Stefan, Kueter Uwe filed Critical Hoeller Stefan
Priority to AU2001289551A priority Critical patent/AU2001289551A1/en
Publication of WO2002013287A2 publication Critical patent/WO2002013287A2/de
Publication of WO2002013287A3 publication Critical patent/WO2002013287A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to an electrochemical cell, in particular a fuel cell according to the features specified in the preamble of claim 1.
  • Such electrochemical cells are used in particular as fuel cells, but also as electrolysis cells. They have a polymer electrolyte membrane that is gas-tight but ion-permeable. Gas diffusion electrodes are arranged on both sides of the polymer electrolyte membrane
  • Membrane are provided with a suitable metal, such as platinum, as a catalyst.
  • the gas diffusion electrodes are usually mats made of graphitized fabric that are electrically conductive and gas-permeable. These gas diffusion electrodes are closed on their side facing away from the membrane by a bipolar plate or an end plate, via which the
  • the bipolar plate or the end plate has a generally branched channel system, through which the gas in the fuel cell is guided along the gas diffusion electrode.
  • This channel is designed as an open groove and delimited on one side by the gas diffusion electrode, so that the gas can penetrate the gas diffusion electrode over a large area. It is customary to run the reaction gas in excess so that the electrode is always adequately supplied.
  • electrochemical cells are arranged in a plurality on top of one another and connected in series.
  • the object of the invention is to design an electrochemical cell, in particular a fuel cell, of the type described at the outset in such a way that it can be produced inexpensively and in particular that even gas distribution in the gas diffusion electrode takes place in fuel cell operation.
  • the basic idea of the present invention is to provide the channel arrangement in such a way that the gas to be supplied to the gas diffusion electrode is not only guided along this electrode, but rather through this electrode.
  • gas supply and gas discharge takes place via separate channels that have no direct channel connection to each other, that
  • the channels for the gas supply and gas discharge which are formed by corresponding grooves in the bipolar plate or the end plate, are advantageously arranged in such a way that a supply channel is adjacent to a discharge channel. If the channel system is then formed such that it is finely distributed over the entire available area, then an intensive flow through the gas diffusion electrode is achieved in the entire effective electrode area.
  • the channels according to the invention can have a substantially smaller cross section than channels according to the prior art, since the flow Resistance add up the cross sections of the individual channels and not, as in the prior art, where a meandering channel guidance takes place, the flow resistance is essentially determined by the smallest channel cross section. This has the further significant advantage that the ratio of the surface area to the channel area - in plan view of the bipolar plate or end plate from the
  • Electrode seen - can be significantly enlarged. While in the prior art this ratio is approximately 1: 1, the contact surface with which the bipolar plate or the end plate is in direct contact with the gas diffusion electrode can be 75% (preferably between 70 and 80%) due to the design according to the invention. of the total area or even more can be increased without reducing the gas supply or removal to or from the gas diffusion electrode. Due to the fact that this contact area can be significantly enlarged, the gas diffusion electrode can be made softer and more elastic, whereby the manufacturing costs are considerably reduced. In the case of fuel cells according to the prior art, it is customary, for example, to design the gas diffusion electrode in two layers, a softer, elastic layer lying against the membrane being provided, which is covered by a harder layer lying against the bipolar plate or the end plate.
  • the latter which is more expensive to produce, can be completely dispensed with by the present invention, since hard support is no longer required.
  • a comparatively soft and elastic material can be used for the gas diffusion electrode, which material is available inexpensively as roll goods. As a result, the manufacturing costs, particularly in series and mass production, can be reduced considerably.
  • a multiplicity of gas supply and gas discharge channels are preferably arranged next to one another, so that a distribution which is broader and more favorable in terms of the flow cross section is produced.
  • This microchannel structure enables the gas to be introduced over a large area and uniformly into the gas diffusion electrode or, when used as an electrolyzer, to be discharged from this electrode.
  • Fig. 1 shows an end plate of a fuel cell according to the invention in
  • FIG. 1 is an end view of the plate of FIG. 1,
  • Fig. 3 shows a section along the section line i ⁇ -ILT in Fig. 2 and
  • FIG. 4 shows an enlarged representation of a section along the section line rV-rV in FIG. 1.
  • the structure of the fuel cell which is not shown in detail here, corresponds to that described, for example, from DE 195 44 323 A1.
  • An electroconductive but gas-tight end plate 1 lies flat against a gas diffusion electrode 2, which consists of a carbonized carbon fiber fleece, is also electrically conductive and catalytically coats the side facing away from the end plate 1, i. H. is provided with platinum particles.
  • This gas diffusion electrode 2 rests on a polymer electrolyte membrane 3 which is gas-tight but permeable to ions.
  • To the other side of the Polymerelek ⁇ Olytmembran 3 is the other side of the Polymerelek ⁇ Olytmembran 3
  • the structure is corresponding, with two end plates of adjacent cells lying against one another or being designed as a common plate in the form of a bipolar plate.
  • Such an end plate 1 is shown with reference to the figures. 1 shows the side of the end plate 1 facing the gas diffusion electrode 2. As can be seen from FIG. 1, numerous rows 4, 5 of microchannels 6 arranged alternately and interlocking are provided in the side of the end plate 1 facing the electrode 2. These microchannels 6 have an essentially square cross section and are formed by corresponding groove-like recesses in the surface of the end plate 1. They are delimited on their free side by the adjacent gas diffusion electrode 2.
  • Each microchannel 6 is connected via a centrally arranged and perpendicular bore-like channel 7 to a main channel 8 or 9 located behind it and running in the direction of the respective row 4 or 5.
  • the rows 4 and 5 of microchannels are each connected via main channels 8, 9 arranged next to one another, the main channels 8 of the rows 4 on the end face 10 visible in FIG. 2 and that of the rows 5 on the other (in
  • Fig. 2 not visible) end face 11.
  • the rows 4 of microchannels 6 are connected to one another via the main channels 8 opening into the end face 10 and the rows 5 of microchannels 6, which are accessible via the end face 11, via the main channels 9.
  • the arrangement of the microchannels of adjacent rows 4 and 5 is interdigitated, so that adjacent microchannels 6 always have different channel systems. are ordered.
  • the main channels 8 and 9 are also arranged alternately, as can be seen in particular from FIG. 3.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Die Brennstoffzelle arbeitet mit einer Polymerelektrolytmembran (3), auf der beidseitig Gasdiffusionselektroden (2) angeordnet sind, die von einer Endplatte (1) oder Bipolarplatte überdeckt werden. Die End- bzw. Bipolarplatte (1) ist mit einem gaszuführenden und einem gasabführenden Kanalnetz (6) versehen, die durch die Gasdiffusionselektrode (2) begrenzt und voneinander getrennt sind. Das zugeführte Gas muss also durch die Gasdiffusionselektrode (2) wandern, um vom zuführenden in das abführende Kanalsystem zu gelangen.

Description

Elektrochemische Zelle
Die Erfindung betrifft eine elektrochemische Zelle, insbesondere eine Brenn- stoffzelle gemäß den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen.
Derartige elektrochemische Zellen werden insbesondere als Brennstoffzellen, aber auch als Elektrolysezellen eingesetzt. Sie weisen eine Polymerelektrolytmembran auf, die gasdicht, aber ionendurchlässig ist. Zu beiden Seiten der Polymerelektrolytmembran sind Gasdiffusionselektroden angeordnet, die zur
Membran hin mit einem geeigneten Metall, beispielsweise Platin, als Katalysator versehen sind. Die Gasdiffusionselektroden sind üblicherweise Matten aus grafitisiertem Gewebe, die elektrisch leitend und gasdurchlässig sind. Diese Gasdiffusionselektroden werden auf ihrer der Membran abgewandten Seite durch eine bipolare Platte oder eine Endplatte abgeschlossen, über welche das
Gas, das in der Brennstoffzelle katalytisch oxidiert wird bzw. im Elektrolyseur entsteht, geführt wird. Hierzu weist die bipolare Platte bzw. die Endplatte ein in der Regel verzweigtes Kanalsystem auf, durch welches bei der Brennstoffzelle das Gas entlang der Gasdiffusionselektrode geführt wird. Dieser Kanal ist als offene Nut ausgebildet und an einer Seite durch die Gasdiffusionselektrode begrenzt, so dass das Gas über eine große Fläche in die Gasdiffusionselektrode eindringen kann. Dabei ist es üblich, das Reaktionsgas im Überschuss zu fuhren, damit die Elektrode stets ausreichend versorgt ist. Solche elektrochemischen Zellen werden zu einer Vielzahl aufeinander angeordnet und in Reihe geschaltet. Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, eine elektrochemische Zelle, insbesondere Brennstoffzelle, der eingangs beschriebenen Art so auszubilden, dass sie kostengünstig herstellbar ist und dass insbesondere auch eine gleichmäßige Gasverteilung in der Gasdiffusionselektrode im Brennstoffzellenbetrieb erfolgt.
Diese Aufgabe wird gemäß der Erfindung durch die in Anspruch 1 angegebenen Merkmale gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen sowie der nachfolgenden Beschreibung angegeben.
Grundgedanke der vorliegenden Erfindung ist es, die Kanalanordnung so vorzusehen, dass das der Gasdiffusionselektrode zuzuführende Gas nicht ausschließlich längs dieser Elektrode, sondern durch diese Elektrode hindurch zwangsgeführt wird. Dadurch, dass Gaszufuhr und Gasabfuhr über gesonderte Kanäle erfolgt, die keine direkte Kanalverbindung zueinander haben, wird das
Gas durch die Gasdiffusionselektrode zwangsgeführt. Hierdurch wird das Reaktionsgas wesentlich intensiver in den Bereich der katalytisch wirkenden Metalle auf der Gasdiffusionselektrode gebracht, wodurch die katalytische Verbrennung intensiviert wird und bei geeigneter Druckbeaufschlagung der Zelle mit wesentlich weniger Gasüberschuss gearbeitet werden kann als bei
Zellen nach dem Stand der Technik.
Vorteilhaft werden die Kanäle für die Gaszufuhr und die Gasabfuhr, die durch entsprechende Nuten in der bipolaren Platte bzw. der Endplatte gebildet sind, so angeordnet, dass jeweils ein zuführender Kanal benachbart zu einem abführenden Kanal liegt. Wenn dann das Kanalsystem fein verteilt über die gesamte zur Verfügung stehende Fläche in dieser Weise ausgebildet wird, dann wird eine intensive Durchströmung der Gasdiffusionselektrode in dem gesamten wirksamen Elektrodenbereich erreicht. Die Kanäle gemäß der Erfindung (Mikroka- näle) können im Vergleich zu Kanälen nach dem Stand der Technik einen wesentlich kleineren Querschnitt aufweisen, da sich hinsichtlich des Strömungs- Widerstandes die Querschnitte der Einzelkanäle addieren und nicht wie beim Stand der Technik, wo eine mäanderförmige Kanalführung erfolgt, der Strömungswiderstand durch den kleinsten Kanalquerschnitt wesentlich bestimmt ist. Dies hat den weiteren wesentlichen Vorteil, dass das Verhältnis von Aufiageflä- ehe zu Kanalfläche - in Draufsicht auf die bipolare Platte bzw. Endplatte von der
Elektrode aus gesehen - wesentlich vergrößert werden kann. Während beim Stand der Technik dieses Verhältnis bei etwa 1:1 liegt, kann durch die erfin- dungsgemäße Ausgestaltung die Auflagefläche, mit der die bipolare Platte bzw. die Endplatte an der Gasdiffusionselektrode unmittelbar anliegt, auf 75 % (bevorzugt zwischen 70 und 80 %) der Gesamtfläche oder auch noch mehr gesteigert werden, ohne die Gaszu- bzw. -abfuhr zur bzw. aus der Gasdiffusionselektrode zu verringern. Dadurch, dass diese Auflagefläche wesentlich vergrößert werden kann, kann die Gasdiffusionselektrode weicher und elastischer ausgestaltet werden, wodurch die Herstellungskosten erheblich verringert werden. Bei Brennstoffzellen nach dem Stand der Technik ist es beispielsweise üblich, die Gasdiffusionselektrode zweischichtig auszubilden, wobei eine an der Membran anliegende weichere, elastische Schicht vorgesehen ist, die von einer härteren, an der Bipolarplatte bzw. der Endplatte anliegenden Schicht abgedeckt wird. Letztere, in der Herstellung teurere Schicht kann durch die vorliegende Erfindung völlig entfallen, da keine harte Abstützung mehr erforderlich ist. Es kann für die Gasdiffusionselektrode ein vergleichsweise weicher und elastischer Werkstoff verwendet werden, der kostengünstig als Rollenware verfügbar ist. Hierdurch können die Herstellungskosten insbesondere in der Serien- und Massenproduktion ganz erheblich gesenkt werden.
Bevorzugt wird eine Vielzahl von Gaszufuhr- und Gasabfuhrkanälen nebeneinander angeordnet, so dass eine breitfacherige und vom Strömungsquerschnitt günstigere Verteilung entsteht. Diese Mikrokanalstxuktur ermöglicht eine großflächige und gleichmäßige Einleitung des Gases in die Gasdiffusionselek- trode bzw. beim Einsatz als Elektrolyseur zur Abfuhr aus dieser Elektrode.
Insbesondere beim Brennstoffzellenbetrieb kann dadurch, dass nur noch eine vergleichsweise kleine Überschussmenge an Gas durchgesetzt wird, dem Austrocknen der Membran auf der Sauerstoffseite weiter entgegengewirkt werden.
Dabei kann es vorteilhaft sein, die Kanäle zur Gasdiffusionselektrode hin aufgeweitet auszubilden, so dass sich beispielsweise ein trapezförmiger Kanalquerschnitt ergibt. Darüber hinaus wird eine intensive Einleitung in die Gasdiffusionselektrode durch eine entsprechend fein verästelte Kanalführung gewährleistet.
Die Erfindung ist nachfolgend anhand eines in der Figur dargestellten Ausfuhrungsbeispiels näher erläutert. Es zeigen:
Fig. 1 eine Endplatte einer Brennstoffzelle gemäß der Erfindung in
Draufsicht,
Fig. 2 eine Stirnansicht der Platte gemäß Fig. 1,
Fig. 3 einen Schnitt längs der Schnittlinie iπ-ILT in Fig. 2 und
Fig. 4 in vergrößerter Darstellung einen Schnitt längs der Schnittlinie rV-rV in Fig. 1.
Die hier nicht im Einzelnen dargestellte Brennstoffzelle entspricht in ihrem Aufbau dem beispielsweise aus DE 195 44 323 AI beschriebenen. Eine elek- frisch leitende, jedoch gasdichte Endplatte 1 liegt flächig an einer Gasdiffusionselektrode 2 an, die aus einem karbonisierten Kohlefaservlies besteht, ebenfalls elektrisch leitend ist und die auf der der Endplatte 1 abgewandten Seite kataly- tisch beschichtet, d. h. mit Platinpartikeln versehen ist. Diese Gasdiffusionselektrode 2 liegt an einer Polymerelektrolytmembran 3 an, die gasdicht, jedoch ionendurchlässig ist. Zur anderen Seite der PolymerelekπOlytmembran 3 ist der
Aufbau entsprechend, wobei im Brennstoffzellenbetrieb seitlich durch die Endplatte 1 bzw. die zur anderen Seite der Polymerelektrolytmembran 3 angeordnete Endplatte Wasserstoff bzw. Sauerstoff zugeführt werden, die kataly- tisch zu Wasser oxidiert werden, wobei elektrische Energie frei wird, die an den Endplatten abgegriffen wird.
Wenn mehrere solcher Zellen zu einem Stack zusammengesetzt werden, dann ist der Aufbau entsprechend, wobei zwei Endplatten benachbarter Zellen aneinander liegen oder in Form einer Bipolarplatte als gemeinsame Platte ausgebildet sind.
Eine solche Endplatte 1 ist anhand der Figuren dargestellt. Die Fig. 1 zeigt dabei die zur Gasdiffusionselektrode 2 weisende Seite der Endplatte 1. Wie sich aus Fig. 1 ergibt, sind in der zur Elektrode 2 gerichteten Seite der Endplatte 1 zahlreiche alternierend und ineinandergreifend angeordnete Reihen 4, 5 von Mikrokanälen 6 vorgesehen. Diese Mikrokanäle 6 haben einen im Wesentlichen quadratischen Querschnitt und sind durch entsprechende nutartige Ausnehmungen in der Oberfläche der Endplatte 1 gebildet. Sie werden auf ihrer freien Seite durch die angrenzende Gasdiffusionselektrode 2 begrenzt.
Jeder Mikrokanal 6 ist über einen mittig angeordneten und senkrecht dazu verlaufenden bohrungsartigen Kanal 7 mit einem dahinter liegenden, in Richtung der jeweiligen Reihe 4 oder 5 verlaufenden Hauptkanal 8 bzw. 9 verbunden. Die Reihen 4 und 5 von Mikrokanälen sind jeweils über nebeneinander angeordnete Hauptkanäle 8, 9 verbunden, wobei die Hauptkanäle 8 der Reihen 4 an der in Fig. 2 sichtbaren Stirnseite 10 und die der Reihen 5 an der anderen (in
Fig. 2 nicht sichtbaren) Stirnseite 11 münden. Es sind also über die in der Stirnseite 10 mündenden Hauptkanäle 8 die Reihen 4 von Mikrokanälen 6 miteinander verbunden und über die Hauptkanäle 9 die Reihen 5 von Mikrokanälen 6, die über die Stirnseite 11 zugänglich sind. Dabei ist die Anordnung der Mikrokanäle benachbarter Reihen 4 und 5 kammartig ineinandergreifend, so dass benachbarte Mikrokanäle 6 stets unterschiedlichen Kanalsystemen zu- geordnet sind. Dabei sind auch die Hauptkanäle 8 und 9 alternierend angeordnet, wie sich dies insbesondere aus Fig. 3 ergibt.
Es sind also in der Endplatte 1 zwei durch die Gasdiffusionselektrode 2 bzw. die Endplatte selbst voneinander getrennte, jedoch in sich miteinander leitungs- verbundene Kanalsysteme vorhanden, von denen eins zur Gaszufuhr und das andere zur Gasabfuhr dient. Da die Endplatte 1 gasdicht ist, kann das Gas von einem zum anderen Kanalsystem nur über die Gasdiffusionselektrode 2 gelangen, wodurch sichergestellt ist, dass das Gas nicht nur, wie beim Stand der Technik üblich, an der Gasdiffusionselektrode 2 vorbeiströmt, sondern durch diese hindurchströmen muss. Dies verdeutlicht am besten Fig. 4, wo die Strömungsrichtung anhand von Pfeildarstellungen erkennbar ist. Die mit A gekennzeichneten Pfeile kennzeichnen dabei Mikrokanäle des zuführenden Kanalsystems und die mit B gekennzeichneten solche des abführenden Gassystems. Es wird also deutlich, dass, um von A nach B zu gelangen, die Gasdiffusionselektrode 2 durchdrungen werden muss, so wie das durch die Pfeile 12 in Fig. 4 kenntlich gemacht ist.
Bezugszeichenliste
1 Endplatte
2 Gasdiffusionselektrode
3 Polymerelektrolytmembran
4 Reihe
5 Reihe
6 Mikrokanäle
7 bohrungsartige Kanäle
8 Hauptkanäle zur Reihe 4
9 Hauptkanäle zur Reihe 5
10 Stirnseite
11 Stirnseite
12 Pfeil in Fig. 4

Claims

A N S P R U C H E
1. Elektrochemische Zelle, insbesondere Brennstoffzelle, mit Polymerelektrolytmembran (3), mit mindestens einer dazu benachbart angeordneten Gasdiffusionselektrode (2) und mit mindestens einem gasführenden Kanal (6), der zu einer Seite von der Gasdiffusionselektrode (2) begrenzt wird, dadurch gekennzeichnet, dass mindestens ein Kanal (6) für die Gaszufuhr (A) und ein weiterer Kanal (6) für die Gasabfuhr (B) vorgesehen sind, welche durch die Gasdiffusionselektrode (2) begrenzt und voneinander getrennt sind.
2. Elektrochemische Zelle nach Anspruch 1, dadurch gekennzeichnet, dass zahlreiche Kanäle (6) für die Gaszufuhr (A) und für die Gasabfuhr (B) gebildet sind, die flächig über die Gasdiffusionselektrode (2) verteilt und an diese angrenzend so angeordnet sind, dass ein Gas zuführender Kanal (6) benachbart zu einem Gas abführenden Kanal (6) liegt.
3. Elektrochemische Zelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kanäle (6) in einer gasdichten Endplatte (1) oder Bipolarplatte angeordnet sind, wobei die zur Gasdiffusionselektrode (2) offenen Kanäle in Reihen (4, 5) nebeneinander angeordnet und mit längs der Reihen (4, 5) verlaufenden Kanälen (8, 9) leitungsverbunden sind, die zu einer
Seite (10 oder 11) der End- oder Bipolarplatte (1) geführt sind.
4. Elektrochemische Zelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kanäle (6) zur Gasdiffusionselektrode (2) hin aufgeweitet ausgebildet sind.
5. Elektrochemische Zelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zur Gasdiffusionselektrode (2) hin angrenzende Fläche der Kanäle (6) 20 % bis 30 % der zur Gasdiffusionselektrode (2) hin wirksamen Fläche der Endplatte (1) oder Bipolarplatte bildet.
PCT/DE2001/002923 2000-08-08 2001-08-06 Elektrochemische zelle mit polymerelektrolytmembran WO2002013287A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001289551A AU2001289551A1 (en) 2000-08-08 2001-08-06 Electrochemical cell comprising a polymer electrolyte membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10038589.3 2000-08-08
DE10038589A DE10038589A1 (de) 2000-08-08 2000-08-08 Elektrochemische Zelle

Publications (2)

Publication Number Publication Date
WO2002013287A2 true WO2002013287A2 (de) 2002-02-14
WO2002013287A3 WO2002013287A3 (de) 2002-12-12

Family

ID=7651664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/002923 WO2002013287A2 (de) 2000-08-08 2001-08-06 Elektrochemische zelle mit polymerelektrolytmembran

Country Status (3)

Country Link
AU (1) AU2001289551A1 (de)
DE (1) DE10038589A1 (de)
WO (1) WO2002013287A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1447869A1 (de) * 2003-02-15 2004-08-18 Haldor Topsoe A/S Verbindungsvorrichtung, Brennstoffzelle und Brennstoffzellenstapel

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7067213B2 (en) 2001-02-12 2006-06-27 The Morgan Crucible Company Plc Flow field plate geometries
GB2387476B (en) 2002-06-24 2004-03-17 Morgan Crucible Co Flow field plate geometries
CN100397692C (zh) * 2003-06-18 2008-06-25 摩根坩埚有限公司 流场板几何结构
JP4682511B2 (ja) 2003-12-02 2011-05-11 日産自動車株式会社 固体酸化物型燃料電池
DE102007062033A1 (de) 2007-12-21 2009-06-25 Robert Bosch Gmbh Brennstoffzelle, Strömungsfeldplatte und Verfahren zur Herstellung einer Strömungsfeldplatte
DE102012221802A1 (de) * 2012-11-28 2014-05-28 Bayerische Motoren Werke Aktiengesellschaft Brennstoffzelle mit einer Gasdiffusionslage
DE102015211893A1 (de) 2015-06-26 2016-12-29 Bayerische Motoren Werke Aktiengesellschaft Strömungsfeld einer Brennstoffzelle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994011912A1 (en) * 1992-11-13 1994-05-26 Ballard Power Systems Inc. Fuel cell fluid flow field plate with discontinuous fluid flow channels
WO1995008851A1 (en) * 1993-09-24 1995-03-30 Ballard Power Systems Inc. Method and apparatus for oxidizing carbon monoxide in the reactant stream of an electrochemical fuel cell
US5846668A (en) * 1996-03-07 1998-12-08 Tanaka Kikinzoku Kogyo K. K. Fuel cell, electrolytic cell and process of cooling and/or dehumidifying same
WO2000017952A1 (en) * 1998-09-18 2000-03-30 Energy Partners, L.C. Self-humidifying fuel cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227361A (ja) * 1984-04-25 1985-11-12 Fuji Electric Corp Res & Dev Ltd 燃料電池の反応ガス給排内部構造
JPS61128470A (ja) * 1984-11-28 1986-06-16 Hitachi Ltd 燃料電池のセパレ−タ
JPH0729579A (ja) * 1993-03-25 1995-01-31 Tanaka Kikinzoku Kogyo Kk 燃料電池用セパレーター及び燃料電池用セルスタック
JPH1116591A (ja) * 1997-06-26 1999-01-22 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池、固体高分子型燃料電池システム及び電気機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994011912A1 (en) * 1992-11-13 1994-05-26 Ballard Power Systems Inc. Fuel cell fluid flow field plate with discontinuous fluid flow channels
WO1995008851A1 (en) * 1993-09-24 1995-03-30 Ballard Power Systems Inc. Method and apparatus for oxidizing carbon monoxide in the reactant stream of an electrochemical fuel cell
US5846668A (en) * 1996-03-07 1998-12-08 Tanaka Kikinzoku Kogyo K. K. Fuel cell, electrolytic cell and process of cooling and/or dehumidifying same
WO2000017952A1 (en) * 1998-09-18 2000-03-30 Energy Partners, L.C. Self-humidifying fuel cell

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 082 (E-392), 2. April 1986 (1986-04-02) -& JP 60 227361 A (FUJI DENKI SOUGOU KENKYUSHO:KK;OTHERS: 01), 12. November 1985 (1985-11-12) *
PATENT ABSTRACTS OF JAPAN vol. 010, no. 317 (E-449), 28. Oktober 1986 (1986-10-28) -& JP 61 128470 A (HITACHI LTD), 16. Juni 1986 (1986-06-16) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 04, 31. Mai 1995 (1995-05-31) -& JP 07 029579 A (TANAKA KIKINZOKU KOGYO KK), 31. Januar 1995 (1995-01-31) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 04, 30. April 1999 (1999-04-30) -& JP 11 016591 A (MATSUSHITA ELECTRIC IND CO LTD), 22. Januar 1999 (1999-01-22) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1447869A1 (de) * 2003-02-15 2004-08-18 Haldor Topsoe A/S Verbindungsvorrichtung, Brennstoffzelle und Brennstoffzellenstapel
JP2004247305A (ja) * 2003-02-15 2004-09-02 Haldor Topsoe As 通気装置、燃料電池及び燃料電池スタック
CN1316657C (zh) * 2003-02-15 2007-05-16 赫多特普索化工设备公司 互联装置、燃料电池和燃料电池组
US7297425B1 (en) 2003-02-15 2007-11-20 Topsoe Fuel Cell A/S Interconnect device, fuel cell and fuel cell stack

Also Published As

Publication number Publication date
WO2002013287A3 (de) 2002-12-12
DE10038589A1 (de) 2002-02-28
AU2001289551A1 (en) 2002-02-18

Similar Documents

Publication Publication Date Title
DE112009004263B4 (de) Brennstoffzellenseparator und Brennstoffzelle
EP3577708B1 (de) Bipolarplatte mit verbesserter strömungsverteilung für eine brennstoffzelle
DE102013216587B4 (de) Geometrie eines hocheffizienten Medienverteilers für eine Elektrolysezelle und einen Elektrolysestack
WO2010054744A1 (de) Bipolarplatte für eine brennstoffzellenanordnung, insbesondere zur anordnung zwischen zwei benachbarten membran-elektroden-anordnungen in einem brennstoffzellenstapel
DE102016111638A1 (de) Bipolarplatte mit variabler Breite der Reaktionsgaskanäle im Eintrittsbereich des aktiven Bereichs, Brennstoffzellenstapel und Brennstoffzellensystem mit solchen Bipolarplatten sowie Fahrzeug
WO2000031813A1 (de) Brennstoffzelle mit zuführung eines betriebsmittels über eine gelochte platte
DE3516766A1 (de) Brennstoffzelle
WO2019020284A1 (de) Verteilerstruktur zum bereitstellen mindestens eines reaktionsgases
DE102009009177B4 (de) Wiederholeinheit für einen Brennstoffzellenstapel, Brennstoffzellenstapel und deren Verwendung
DE102007033042B4 (de) Wiederholeinheit für einen Brennstoffzellenstapel und Brennstoffzellenstapel
WO2002013287A2 (de) Elektrochemische zelle mit polymerelektrolytmembran
WO2016206840A1 (de) Strömungsfeld einer brennstoffzelle
DE102005002924A1 (de) Gasverteilungsvorrichtung einer Brennstoffzelle und Brennstoffzelle
WO2002019453A1 (de) Bipolare platte für eine brennstoffzelle
WO1999044248A1 (de) Gasverteiler für eine brennstoffzelle
DE10233982B4 (de) Bipolare Platte für eine Brennstoffzelle und Brennstoffzellenstapel
EP4047696A1 (de) Soc-stack-interkonnektor sowie soc-stack-anordnung
DE102018200842B4 (de) Brennstoffzellenplatte, Bipolarplatten und Brennstoffzellenaufbau
DE102019210637A1 (de) Gasdiffusionslage, Brennstoffzelle mit Gasdiffusionslage sowie Brennstoffzellenstack mit Brennstoffzelle
DE102018114006A1 (de) Bipolarplatte und Brennstoffzelle aufweisend eine Bipolarplatte
DE102016205010A1 (de) Bipolarplatte, Brennstoffzelle und ein Kraftfahrzeug
EP2263279B1 (de) Gasverteilerfeldplatte mit verbesserter gasverteilung für eine brennstoffzelle und eine solche enthaltende brennstoffzelle
DE10158848B4 (de) Elektrochemische Elektrode, Elektroden-Membran-Einheit und Verfahren zur Herstellung einer elektrochemischen Elektrode sowie deren Verwendung
DE102005047118B4 (de) Verfahren zur Herstellung einer Brennstoffzelle mit einer Gasdiffusionslage mit verbesserter fluidischer Durchlässigkeit
DE102019220604A1 (de) Bipolarplatte für eine Brennstoffzelle und Verfahren zur Medienverteilung in einer Bipolarplatte

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: (EXCEPT EP (DE))

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP