CN1310285C - 处理装置 - Google Patents

处理装置 Download PDF

Info

Publication number
CN1310285C
CN1310285C CNB2004100380168A CN200410038016A CN1310285C CN 1310285 C CN1310285 C CN 1310285C CN B2004100380168 A CNB2004100380168 A CN B2004100380168A CN 200410038016 A CN200410038016 A CN 200410038016A CN 1310285 C CN1310285 C CN 1310285C
Authority
CN
China
Prior art keywords
layer
electrostatic chuck
support
processing unit
knitting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100380168A
Other languages
English (en)
Other versions
CN1551293A (zh
Inventor
西本伸也
樋熊政一
武藤慎司
藤原尚
中山博之
岛贯义纪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of CN1551293A publication Critical patent/CN1551293A/zh
Application granted granted Critical
Publication of CN1310285C publication Critical patent/CN1310285C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本发明提供一种处理装置,通过提高使静电夹头层和支承部粘接的接合层的热传导率,缩短基板稳定至规定温度所需的时间,还可抑制由等离子体产生的活性种引起的所述接合层的劣化。在利用由氧化铝制成的绝缘层覆盖钨制的夹头电极构成的烧结体形成的静电夹头层和用于支承所述静电夹头层的铝制支承部之间,设置用于使所述支承部和静电夹头层接合的接合层。通过将硅系粘接性树脂浸含至多孔陶瓷中,构成该接合层。另外,设置柔软的覆盖部件例如由PFA等氟树脂制成的热收缩管或橡胶等,以覆盖所述接合层的侧周面,使静电夹头层和支承部的侧周面与该覆盖部件密接。

Description

处理装置
技术领域
本发明涉及将基板吸附保持在静电夹头上,对上述基板进行真空处理的装置。
背景技术
在半导体器件制造工序中,例如如利用蚀刻或CVD(化学气相沉积)进行成膜处理那样,多数在真空气氛气体中进行基板的处理。如图17所示,进行这种处理的真空处理装置,在处理容器9内,配置兼作下部电极用的半导体晶片(以下称为晶片)W的载置台91;同时,在该载置台91的上方侧设置成为上部电极的气体供给室92。将产生等离子体用的高频从高频电源91a加在上述载置台91上,在该载置台91和气体供给室92之间产生等离子体,该等离子体,将从气体供给室92导入处理容器9内的处理气体激活,利用该气体,对安放在载置台91上的晶片W进行规定的处理。
另外,上述载置台91设有在支承部93的上面的静电夹头层94,和包围着该静电夹头层94的侧面的导电性环状体95。上述静电夹头层94,是将由钨制成的片状的夹头电极94a的表面和背面,夹在电介质例如氧化铝构成的绝缘层94b中构成的。将直流电压(夹头电压)从图中没有示出的直流电源施加在夹头电极94a上,利用这样产生的库仑力,吸附和夹持晶片W。另外,图17中的为96将处理容器9内的气氛气体排出室外部用的排气通路。
一般,该静电夹头层94是顺序地将构成下面侧的绝缘层94b的氧化铝、构成夹头电极94a的钨和构成上部侧的绝缘层94b的氧化铝喷镀在支承部93的上面上形成的。
然而,用上述方法作成的静电夹头层94,在停止向夹头电极94a加直流电压后,残留吸附力大。另外,当喷镀时,由于喷镀表面为突出的结构,从其前端膜会剥离,成为颗粒,该颗粒附着在晶片的背面侧。在进行等离子体处理的情况下,为了除去附着在载置台91附近区域等的处理容器9内部的沉积物,在静电夹头层94的上面没有放置任何东西的状态下,将氧气导入处理容器9内部的沉积物。利用该氧气的等离子体,可以进行清洗,但上述氧气的等离子体也会损伤静电夹头层94的表面。
从这点出发,提出了利用烧结板作为静电夹头层,在特许文献1中,说明了其具体结构。如图18所示,在使用烧结式的静电夹头层的载置台中,将由被绝缘层97b覆盖着钨制成的电极97a结构的烧结板97制成的静电夹头层97,与由铝等制成的支承部93,由硅系粘接剂树脂制成的接合层98接合。
另外,在上述载置台91中,在支承部93中形成有图中没有示出的冷却介质流路。利用调整至规定温度的冷却介质在该冷却介质流路中流动,将该支承部93的表面调整至规定的基准温度。这样,通过使由等离子体进入的热形成的高温的晶片的热,放出至支承部93,可将晶片温度控制至规定温度。
然而,在上述烧结式的静电夹头层97中,在静电夹头层97与支承部93之间设有接合层98,因为构成该接合层98的硅系粘接性树脂的热传导率低,晶片W的热难以传至支承部93。因此,在平衡温度高时,使晶片温度稳定至规定的处理温度的温度调整,需要时间。这样,当晶片的温度调整需要时间时,由于在处理开始后,不能直接转入处理中,结果,使生产率降低。
另外,在接合层98的侧周面周围,设有聚焦环95。由于二者之间有微小的间隙,在处理中,接合层98的侧面暴露在由激活处理气体产生的活性种之中。由于构成接合层98的硅系粘接性树脂,对氟(F)原子团的耐性小,因此在生成氟原子团的工艺例如利用含氟的处理气体的蚀刻中,硅系粘接性树脂的侧周面会被氟原子团侵蚀。被侵蚀的粘接性树脂的侧周部位,由于热传导性差,因此,晶片由等离子体加入的热,很难从粘接性树脂的侧周面放出。因此,随着接合层98的侵蚀,晶片W的外周的温度上升,结果,处理的均匀性例如蚀刻速度的面内均匀性差,必需早期更换静电夹头层97。
特许文献1:特开平7-335731号公报(发明方面1,段落0080、段落0081、段落0082)。
发明内容
发明要解决的问题
本发明是基于上述问题而提出的,其目的是要提供一种通过提高粘接静电夹头层和支承部的接合层的热传导率,缩短基板稳定至规定温度所需要的时间的技术。本发明的另一个目的是要提供一种可以抑制由等离子体产生的活性种引起的上述接合层的劣化的技术。
解决问题所用的方法
本发明的处理装置,为一种处理装置,其特征为,它具有:
用于对基板进行规定处理的处理容器;
设置在上述处理容器中,同时通过将电压加在夹头电极上,而利用静电吸附力夹持上述基板用的,用绝缘层覆盖夹头电极的静电夹头层;
支承该静电夹头层的支承部;和
为了在该支承部和静电夹头层之间接合支承部和静电夹头层而设置的、同时将粘接性树脂浸于多孔陶瓷中而形成的接合层。
利用这种结构,通过使用将粘接性树脂浸含在热传导率高的多孔陶瓷中作为接合层,可以确保粘接力,并可提高接合层的热传导率,可以在短时间内将基板稳定至规定温度。作为多孔陶瓷,可以使用氧化铝或氮化铝,或碳化硅。作为上述粘接性树脂,可以使用硅系粘接性树脂或丙烯酸酯粘接性树脂。
本发明的另一个实施方式为一种处理装置,其特征为,它具有:
用于对基板进行等离子体处理的处理容器;
设置在上述处理容器中,同时通过将电压加在夹头电极上,而利用静电吸附力夹持上述基板用的,用绝缘层覆盖夹头电极的静电夹头层;
支承该静电夹头层的支承部;和
为了在该支承部和静电夹头层之间接合支承部和静电夹头层而设置的、同时将粘接性树脂浸于多孔陶瓷中而形成的接合层;还具有:
在上述接合层的侧周面上形成的,用于保护接合层不受由等离子体产生的活性种的影响的保护层。
采用这种结构,在上述处理容器中对基板进行等离子体处理的情况下,通过在接合层的侧周面上设置对于上述活性种有耐性的保护层,可以使接合层的侧周面不暴露在上述活性种中,可以抑止由上述活性种引起的接合层的劣化。
另外,上述保护层是在上述接合层的侧周面中,通过使从上述接合层的侧周面表面至规定深度的区域浸于将由保护层的成分在溶剂中溶解而构成的保护层用溶液,接着,进行加热处理以除去在上述保护层用溶液中包含的溶剂成分,从而形成的。上述保护层的成分优选为不会被等离子体产生的活性种蚀刻的无机材料例如是氧化硅。
另外,在本发明中上述处理装置为对基板进行等离子体处理的装置,上述支承部可具有用于将该支承部的温度调整成规定温度的冷却装置。所述处理装置具有:将处理气体供给处理容器内部的处理气体供给部;和将发生等离子体用的高频加在上述支承部上用的高频电源部,在处理容器内产生等离子体,利用该等离子体激活上述处理气体。上述静电夹头层可利用由绝缘层覆盖夹头电极构成的烧结体构成。
本发明的另一种处理装置,其特征为,它具有:
用于对基板进行等离子体处理的处理容器;
设置在上述处理容器中,同时通过将电压加在夹头电极上,而利用静电吸附力夹持上述基板用的,用绝缘层覆盖夹头电极形成的静电夹头层;
与用于支承该静电夹头层的静电夹头层的材质不同的支承部;
在该支承部和静电夹头层之间,用于使支承部和静电夹头层接合而设置的接合层;和
柔软的覆盖部件,用于覆盖上述接合层的侧周面,以便保护上述接合层,不受由等离子体产生的活性种的损坏。
上述覆盖部件优选使用热收缩管。上述热收缩管优选由氟树脂、硅橡胶、聚烯烃制成。上述氟树脂例如可为PFA、FEP或PTFE等。上述覆盖部件例如可为橡胶或弹性体(elastomer)等。另外在使用氟树脂以外的材质作为覆盖部件的情况下,优选用氟对其表面进行涂层。
另外,在使用覆盖部件的发明中,使静电夹头层和支承部从接合层向外突出,这样形成凹部,覆盖部件在利用恢复力挤压凹部内的静电夹头层和支承部的表面的状态下,嵌入该凹部内。作为上述接合层可用硅系粘接性树脂或丙烯酸酯系粘接性树脂。
另外,为了产生等离子体,而作成将高频电力供给支承部的结构时;可在静电夹头层和支承部之间,放置比介电常数与接合层的比介电常数相等的垫片。此时,上述垫片例如为陶瓷片,上述接合层是使用以陶瓷粉末作为填充材料而与粘接性树脂混合得到的。作为上述粘接性树脂,例如可使用硅系粘接性树脂或丙烯酸酯系粘接性树脂,与此相同,意味着当取上述垫片的比介电常数为ε1时,接合层的比介电常数为ε2时,0.9ε2≤ε1≤1.1ε2成立。这样,如果垫片和接合层的比介电常数同等,则高频电压的阻抗在平面方向均匀,因而高频电力的效率在平面方向上均匀,因此可以进行面内均匀性高的等离子体处理。
采用本发明,由于通过在静电夹头层和支承部之间设置将粘接性树脂浸于多孔陶瓷中的接合层而将静电夹头层和支承部接合,因此,接合层的热传导率高,将基板调整至规定温度所需的时间缩短。另外,由多孔陶瓷确保高的热传导率,同时通过选择粘接力高的树脂作为粘接性树脂,可得出热传导率和粘接力二者都好的接合层。又由于在接合层的侧周面上形成保护层,可以抑制由等离子体产生的活性种引起的接合层的劣化。
另外,根据另一个发明,由于设置柔软的覆盖部件,以覆盖着接合层的侧周面,因此同样,可以抑制由等离子体生产生的活性种引起的接合层劣化。又由于该覆盖部件为柔软的材质,即使由于加热,在静电夹头层和支承部上产生热膨胀,因为可以吸收和追随该热膨胀,因此,不会脆性破坏,产生间隙,可以维持贴紧状态。
附图说明
图1为表示本发明的实施方式1的处理装置的一个例子的处理装置的全部结构的纵截面图。
图2为表示设在上述处理装置中的载置台的截面图。
图3为表示设在上述载置台上的接合层的制造方法的工序图。
图4为表示上述载置台的制造方法的工序图。
图5为用于说明本发明的实施方式1的效果的特性图。
图6为表示本发明的第实施方式2的载置台的截面图。
图7为表示设在上述载置台上的覆盖部件的设置方法的说明图。
图8为说明覆盖部件的具体形式的说明图。
图9为本发明的实施方式3的等离子体处理装置的纵截面图。
图10为示意性表示上述等离子体处理装置具有的载置台的说明图。
图11为表示支承部上的垫片的配置布局的一个例子的平面图。
图12为表示从晶片至支承部的高频通路的等价回路的说明图。
图13为表示支承部上的垫片配置布局的另一个例子的平面图。
图14为表示本发明的实施方式4的等离子体蚀刻装置的纵截面图。
图15为示意性地表示构成图14所示的等离子体蚀刻装置的载置台的电极本体的大致的截面图。
图16为示意性表示本发明的实施方式4的等离子体蚀刻装置的气体喷头的大致截面图。
图17为表示先前技术的处理装置的纵截面图。
图18为表示先前技术的处理装置的载置台的纵截面图。
符号说明:W晶片;1真空腔室;11上部电极;2载置台;25高频电源;3静电夹头层;31夹头电极;4接合层;5保护层;6环状部件;7载置台;70接合层;71覆盖部件;72喷镀膜;73空间;74槽部。
具体实施方式
(实施方式1)
参照图1和图2来说明本发明的处理装置的实施方式1。图1为表示作为本实施方式的处理装置的蚀刻装置的一个例子的全部结构的纵截面图。图中1为形成处理容器的真空腔室,它可形成由铝制成的密封结构。在该真空腔室1内,兼作气体喷头(处理气体供给部)的上部电极11和兼作下部电极的载置台2相对设置,在底面上形成有与图中没有示出的真空泵连通的排气口10。在真空腔室1的侧壁上形成有开口部12、13,用于搬入、搬出作为基板的半导体基板例如作为硅基板的晶片W。该开口部12、13可分别由闸阀G自由开闭,在该侧壁部的外侧,在上下夹住开口部12、13的位置上,设有分别作成环状的永久磁铁14、15。
上部电极11在其底面上形成有多个孔部16;同时,从图中没有示出的气体供给源延伸的气体供给管17与其上面连接。从该气体供给管17供给的处理气体,在上部电极11内形成有的处理气体流路18内扩散,通过孔部16,流向安装在载置台2表面上的晶片W的表面。上部电极11接地。
其次,详细说明构成本实施方式的主要部分的载置台2。载置台2作成圆柱形,构成为在导电性金属制的支承部的支承部21上面上具有静电夹头层3。上述支承部(载置台本体)21例如由铝制成,在内部形成有冷却介质流路22。由温度调控部23调整至规定温度的冷却介质,通过冷却介质供给装置24,在该冷却介质流路22中流动。这样,将支承部21的表面温度控制在规定的基准温度例如10-60℃。上述冷却介质流路22,冷却介质供给装置24和冷却介质的温度调控部23,相当于本发明的冷却装置。
上述静电夹头层3例如由利用钨制成的片状夹头电极31,和夹住该夹头电极31的表面和背面而设置的绝缘体例如由氧化铝构成的绝缘层32的烧结体构成,例如,由厚度为1-2mm的板状体制成。上述夹头电极31,通过电阻R1,与直流电源33连接。载置台2由静止夹头层3组合设置构成。利用该绝缘层32的表面部(上面)吸附夹持晶片W。
由上述烧结体构成的静电夹头层3是将例如氧化铝粉末和粘合剂混合加压烧结成的,分成上层和下层二层。在下层侧的上述加压烧固体的上面涂布混合了钨粉和粘合剂的混合物。其次,在该混合物上面,设置上层侧的上述加压烧固体,再通过加压烧固形成。
在上述支承部21和静电夹头层3之间,设置有用于接合支承部21和静电夹头层3的接合层4。该接合层4为在热传导率高的多孔陶瓷41中浸含粘接性树脂构成的厚度为0.3-0.8mm的板状体构成,设置成上述支承部21的上面和静电夹头层3的下面分别与上述多孔陶瓷41的背面和表面接触。上述多孔陶瓷41例如由热传导率为0.02W/m·K~280W/m·K左右的材质例如氮化铝(AlN)或碳化硅(SiC)、氧化铝(Al2O3)等构成。
现在下面说明这种多孔陶瓷的制造方法的例子。首先,将烧结辅助剂或杂质与原料粉末调和,利用CIP(冷等压压制:Cold IsostaticPress)法成形。其次,在常压或加压下烧固上述成形体,在以后进行表面研磨等机械加工后,通过洗净而制造出来。另外,作为上述粘接性树脂,可以使用热传导率为0.2W/m·K~2.0W/m·K左右的硅系粘接性树脂或丙烯酸酯系粘接性树脂。
接合层4通过将上述粘接性树脂浸含在用上述方法形成的多孔陶瓷41中而形成。现利用图3来说明接合层4的形成方法的一个例子。图3(a)表示多孔陶瓷41的状态,在上述多孔陶瓷41的表面上,涂布粘接性树脂(参见图3(b))。这样,当将上述粘接性树脂涂布在多孔陶瓷41上时,上述粘接性树脂进入多孔陶瓷41的表面附近区域的孔部42中,慢慢地浸透至多孔陶瓷41的内部。这样,成为粘接性树脂进入多孔陶瓷41的孔部42中的状态。在本发明中,将这种状态称为粘接性树脂浸含到多孔陶瓷41中的状态(参见图3(c))。在这个形成方法中,作为粘接性树脂,可以使用热可塑性树脂。
这样,在将上述粘接性树脂浸含在多孔陶瓷41中后,在该接合层4的侧周面的周围形成保护层5。该保护层5(为了图示的方便,图1中没有示出)可以抑制接合层4的侧周面和因处理气体的等离子体化产生的活性种(原子团)的接触,因此,可以防止接合层4由原子团造成的变质。由于这样,保护层5由不被原子团蚀刻的材质例如二氧化硅等无机材料制成。例如,如图3(d)所示,通过将由上述无机材料形成的保护层5的成分溶解在溶剂中的液体状的保护层用溶液,涂布在上述这样形成的接合层4的侧周面上,例如可将上述保护层用溶液浸含至从接合层4的侧周面至1mm左右的内侧的区域43中。
接着,如图3(f)所示,通过在80℃左右的温度下,对接合层4进行加热处理(固化处理),使上述保护层用溶液固化。这样,在形成上述接合层4的同时,形成该接合层4的浸含了保护层用溶液的区域,作为保护层5。
这样形成的接合层4,由于将粘接性树脂浸含在热传导率高的多孔陶瓷中,即使粘接性树脂的热传导率低,粘合层总的热传导率可达到20W/m·K~40W/m·K。
再回到图1进行说明。在上述载置台2的静电夹头3的周围,设置成为导电部件的环状部件6。上述环状部件6使在真空腔室1内产生的等离子体,比放置在载置台2上的晶片W扩宽,可起到提高晶片面内蚀刻速率的均匀性的作用。该环状部件6由导电体例如硅(Si)制成。另外,在上述载置台2的内部,设有用于交换晶片W的图中没有示出的升降部件。用于产生等离子体用的高频的高频电源25,通过电容器C1和线圈L1,与上述载置台2的例如支承部21连接。
现在,利用图4来说明上述载置台2的具体制造方法的一个例子。例如,如图4(a)所示,在支承部21上涂布粘接性树脂,将多孔陶瓷41安放在上面。其次,通过将粘接性树脂涂布在上述多孔陶瓷41的表面上,形成粘接性树脂浸含在多孔陶瓷41中的接合层4。接着,如图4(b)所示,将用上述方法形成的烧结体制成的静电夹头层3安放在上述接合层4上。接着,如图4(c)所示,在上述接合层4的周围,涂布用于形成保护层5的保护层用溶液。接着,又如图4(d)所示,在规定温度例如130℃下,进行规定时间的固化处理,在软化接合层4的粘接用树脂后,冷却再次使粘接性树脂固化,同时形成保护层5,这样来制造载置台2(参见图4(e))。如图3或图4所示,上述接合层可另外形成,或者形成在支承部上。
其次,说明本实施方式的作用。首先打开闸阀G,利用图中没有示出的输送臂,通过开口部12(或13),将晶片W放置在真空腔室1内的静电夹头层3的表面上。另外,在输送臂退出,关闭闸阀G后,通过排气口10,进行真空腔室1内的真空抽取,进行调节,使内部压力维持10-2~10-3Pa。这时,将直流电压加在夹头电极31上,利用库仑力,将晶片W保持在静电夹头层3的表面上。
在将处理气体例如C4F8系气体供给晶片W的同时,将高频电压从高频电源25加在构成下部电极的载置台2上,提高等离子体的密度。这样,激活处理气体,利用该活性种,对晶片W表面的例如硅氧化膜进行蚀刻。
这时,晶片W暴露在等离子体中,例如晶片W被加热至高温。由于利用冷却介质流路22,将支承体21的表面设定为基准温度例如60℃,上述晶片W的热,通过静电夹头层3和接合层4,迅速向支承部21转移。通过等离子体造成的晶片W加热,和支承部21的基准温度,可将处理中的晶片W的温度控制至规定的处理温度例如100℃。这样,在蚀刻结束时,按照与搬入的相反的顺序,将晶片W从真空腔室1中搬出。
在这个结构中,由于支承部21和静电夹头层3与将粘接必树脂浸含在热传导率高的多孔陶瓷41中构成的接合层4接合,在确保大的粘接力的同时,可以提高该接合层4的热传导率。总之,希望采用粘接力大的硅系粘接性树脂,作为静电夹头层3和支承部21的粘接剂,但该硅系粘接性树脂的热传导率低。由于这样,不是如此使用硅系粘接性树脂,而是通过将硅系粘接性树脂浸含在热传导率高的多孔陶瓷41中,通过利用多孔陶瓷41和粘接性树脂的组合而形成接合层4,可以同时确保大的粘接力和高的热传导率。
因此,通过使用上述的接合层4,在利用硅系粘接性树脂牢固地粘接支承部21和静电夹头层3的同时,在支承部21和静电夹头层3之间通过多孔陶瓷41,可以快速地进行热传导。这样,由于等离子体带来的热造成高温的晶片的热,可以通过静电夹头层3和接合层4快速地向支承部21放出,因此晶片W和支承部21之间的热可快速地交换,容易调整晶片W的温度,将由等离子体带来的热造成高温的晶片温度在短时间内冷却稳定至晶片W的规定温度。这样,由于从处理开始,在短时间内可使晶片W温度稳定,因此可以直接开始处理,缩短总的处理时间,提高产量。
在图5中,实线表示在使用本发明的接合层4的情况下,虚线表示只使用硅系粘接性树脂作为接合层的情况下的晶片温度和处理时间的关系。在使用本发明的接合层4的情况下,由于等离子体的加入热量,和通过接合层4的支承部21造成的冷却,晶片温度可瞬时地稳定至规定的处理温度。另一方面,在使用硅系粘接性树脂作为接合层的情况下,由于硅系粘接性树脂的热传导率低,由等离子体造成高温的晶片的热难以移向支承部21,因此,随着处理时间延长,晶片温度缓慢升高,成为不稳定于规定温度的状态。
这样,利用上述结构,由于接合层4的热传导率高,晶片W和支承部21之间可以快速进行热的交换,晶片W容易冷却,因此可以在短时间内缩小晶片W和支承部21的温度差。这样,在这种情况下,可将支承部21的基准温度设定得比先前高。由于可将支承部21的冷却装置的冷却能力设定得较低,因此可以减轻冷却***的负荷,更容易进行温度控制。
接合层4的粘接力和热传导率,与粘接性树脂浸含在多孔陶瓷41中的浸含程度有关。如果粘接性树脂浸含入多孔陶瓷41中的程度大,则粘接力大,热传导率降低。另外,如果粘接性树脂浸含入多孔陶瓷41中的程度小,则粘接力小,热传导率高。
另一方面,粘接性树脂在多孔陶瓷41中的浸含程度,与多孔陶瓷41的气孔率有关。如果上述气孔率大,则浸含程度大;如果上述气孔率小,则浸含程度小。因此,为了确保大的粘接力,提高热传导率,要求实现多孔陶瓷41的气孔率的优化。
由于晶片W的热,通过静电夹头层3和接合层4向支承部21移动,为了容易进行晶片W的温度控制,希望静电夹头层3和接合层4的热传导率一致。因为由上述烧结体构成的静电夹头层3的热传导率为20W/m·K以上40W/m·K以下。因此希望接合层4的热传导率也为20W/m·K以上40W/m·K以下。
另外,利用上述的接合层4,由等离子体产生的处理气体的成分的原子团进入接合层4和环状体6之间,与接合层4的外周面接触,因此在该接合层4的外周面上,相对于原子团有耐性。由于利用原子团不能蚀刻的材质制造保护层5,因此可抑制接合层4本身与原子团接触。由于这样,接合层4的热传导率和粘接力不容易随时间变化,可以长时间地进行稳定的处理,延长载置台2的寿命。
其次,说明为了确认本发明的效果的实验,作为多孔陶瓷41,使用直径为300mm,厚度为0.5mm,孔部的平均大小为30μm,气孔率为50%的圆板形的氮化铝,利用图4所述的方法制造载置台2。这时,作为静电夹头层,使用厚度为1mm的、用氧化铝覆盖由钨制成的电极的烧结体。用于固化粘接性树脂或保护层5的加热处理,例如在130℃下进行15分钟。
测定这样形成的接合层4的热传导率为22W/m·K,与热传导率为2.0W/m·K的硅系粘接性树脂比较,可以确保热传导率提高10倍。
另外,在装入有本发明的载置台2的处理装置中,累积进行3000小时的上述的蚀刻处理,测定每一个处理中接合层4的热传导率,发现接层4的热传导率几乎不变化,因此,通过形成保护层5,可以抑制因原子团造成的接合层4的劣化,可以处长载置台2的寿命。
在以上的本发明中,静电夹头层3不是仅限于烧结体制成,用喷镀制成也可以。在这种情况下,将接合层4放置在支承部21上后,将静电夹头层3喷镀在接合层4的上面上。另外,本发明不仅为蚀刻处理,除成膜处理或离子注入处理以外,在灰化处理也可利用。
(实施方式2)
现在说明本发明的另一个实施方式。图6为表示本实施方式中所用的载置台7的图。本实施方式的处理装置(蚀刻装置)的其他部分与图1的结构相同。在图6中,与图2相同的符号表示同一个部分。接合层70是用于接合静电夹头层3和支承部21的,可由硅橡胶系粘接剂制成。另外,在接合层70的侧周面上,设有用于保护上述接合层70不受由等离子体产生的活性种例如氟原子团或氟离子的损害的柔软的覆盖部件71。又如将图6(a)的一部分放大的图6(b)所示,在支承台21的上面中央部,即作为与静电夹头层3接合的部位的凸部的周边边缘上形成喷镀膜72。由于要防止产生等离子的异常放电,该喷镀膜72作为绝缘部分形成。
作为上述覆盖部件71,可使用由氟树脂制成的热收缩管。当具体地列举该氟树脂时,可举出:四氟乙烯-全氟烷基乙烯基醚聚合物(PFA),四氟乙烯-六氟丙烯共聚物(FEP)和聚四氟乙烯(PTFE)等。使用氟树脂的优点是:氟树脂的耐热性高。例如,PFA可以耐260℃,FEP可以耐200℃的温度。另外,由于气体透过性低,使活性种不能透过至接合层70,氟树脂的表面即使与活性种反应,也难以消耗。另外,由于氟树脂含有的杂质少,在长时间使用氟树脂时,即使氟树脂的表面与活性种起反应消耗,杂质也不会飞散。热收缩管具有当加至规定温度热收缩,一次收缩不会回复至原来的大小的特性。例如,在例举载置台7为放置直径为200mm的晶片的尺寸的情况下,使用的热收缩管的特性的例子时,当将由FEP制成的直径为206mm的热收缩管,加热至150-200℃的温度,其直径从206mm收缩至160mm。或者,当在150-200℃的温度下加热PFA制成的直径为211mm的热收缩管时,其直径从211mm收缩至185mm。根据该收缩特性,例如即使载置台的外周不是完全的圆形,也可覆盖整个侧周面。
其次,参照图7说明将作为覆盖部件71的热收缩管安装在接合层70的侧周面上的具体方法。如图7(a)所示,将比静电夹头层3的直径稍大的、将热收缩管横切的环状的热收缩管设置在支承部21上,使它包围经接合层70而在其上设置有静电夹头层3的支承部21的中央的凸部和静电夹头层3的外周。在这种状态下,将载置台7放入恒温槽中,通过在例如130℃左右的温度下加热,如图7(b)所示,热收缩管因热而收缩,直径减小。利用其向内侧的收缩力,与静电夹头层3侧周面和用喷镀膜72覆盖的支承部21的凸部的侧周面密切接触。此时,即使与所载置的晶片的切口或平面部(オリフラ部)相对应,而在载置台7的一部分设置有D切分部3a(设置在静电夹头层3的侧周面的一部分处的直线部)的情况下,也可在紧密接触的情况下覆盖整个侧周面全体。然后,将载置台7从恒温槽中取出,设置在真空腔室1内。为了在载置台7上加热该载置台7,可安装加热器,提高加热器的温度使热收缩管的直径缩小,可以不需要使用上述的恒温槽。
一般,用PFA或FEP制成的热收缩管,在150-200℃的温度下加热时,急速地收缩,即使在100-150℃的温度下加热,也可收缩。因此,即使在耐热性为150℃左右,即使是施加有耐蚀铝被膜等的一般的静电夹头层3,也可以安装不会将热造成的损坏给与静电夹头层3的热收缩管。
为了这样设置的覆盖部件71,由于接合层70的侧周面不暴露在处理室内的气氛气体中,虽然静电夹头层3和支承部21密切接触,但相对于接合层70的侧周面贴紧也可以,有间隙也可以。
另外,上述的热收缩管不是仅限于氟树脂,使用硅橡胶、聚烯烃等也可以。在使用氟树脂以外的材质作为热收缩管的情况下,为了防止由活性种引起的材质的劣化例如树脂的劣化,希望对该热收缩管的表面进行氟涂层。
现在来说明对基本材料进行氟涂层的方法的一个例子。首先,作为基底处理,利用喷砂等使基本材料(这里为热收缩管)的表面***糙,在粗糙的表面上涂布底漆,在加热炉中烧固。最后,在表面上涂布氟涂层材料,在加热炉中加热,烧固。在这种情况下,通过反复多次进行最后的工序,可以在基本材料的表面上,形成所希望的氟涂层。
另外,在支承部21,接合层70和静电夹头层3的侧周面上涂布氟涂层材料,在加热炉中加热,烧结;而直接在支承部21、接合层70和静电夹头层3的侧周面上形成氟涂层也可以。
采用这个实施方式,有以下的作用效果。如实施方式1所述,在蚀刻处理时,处理气体例如C4F8气体、NF3气体、SF6气体等离子体化,生成含有氟原子团等的活性种。这时,等离子体中的活性种群进入晶片W和环状体6之间,但由于覆盖部件71是在收缩力作用的状态下安装的,即在紧固安装在内侧上的力作用的状态下,与静电夹头层3和支承部21相对而密接,因此可阻止活性种和接合层70的侧周面接触。由于这样,接合层70所用的粘接剂不被浸蚀,接合层70的热传导率不变化,因此,晶片外周部的温度难以随着时间变化而上升,可以长时间地进行稳定的处理,可以延长载置台7的寿命。特别在使用NF3气体、SF6气体的处理由于氟原子团浓度高,如是现有结构中接合层70为硅橡胶系的粘接剂,接合层的侵蚀剧烈,寿命极短,相对于此,根据本实施方式,载置台2的寿命可大幅度地改善。
另外,蚀刻处理时,静电夹头层3和支承台21由于等离子体的热作用而升温膨胀。但一般由于静电夹头层3所用的陶瓷板的线膨胀系数,比支承台21所用的金属基本材料的线膨胀系数小,因此,例如当用硬质的材质制造覆盖部件71时,不会追随静电夹头层3和支承台21的热膨胀而脆性破坏,或者形成间隙剥离。与此相对,由于该覆盖部件71柔软,它追随静电夹头3和支承台21的热膨胀,也不会脆性破坏或剥离,维持贴紧状态。
另外,上述覆盖部件71不是仅限于热收缩管,使用橡胶或弹性体等弹性体也可以。在将这种弹性体的环扩宽的状态下,跨过支承部21的凸部和静电夹头层3的各个侧周面安装时,由于在环的复原力作用在侧周面上的状态下贴紧,具有与上述同样的作用效果。在这种情况下,优选对弹性体进行上述的氟涂层处理。可以不用氟涂层处理,而进行DLC(类金钢石碳)涂层也可以。如果使用将由PFA制成的热收缩管的未端进行氟化处理而变得稳定的材料,则在与活性种等反应时,更难产生氟离子,因而优选。
其次,参照图8来简单地说明覆盖部件71的贴紧结构的另一个例子。图8(a)表示这样的结构:使静电夹头层3的周边边缘从接合层70向外突出,在随着该突出部分的下面向内方侧逐步降低而形成倾斜的倾斜面的同时,将截面形状为圆形的,称为O形圈等的弹性体制的环状体构成的覆盖部件71,嵌入由倾斜面和支承部21中比接合层70向外突出的部位的上面以及接合层70形成的凹部73内。当采用这种结构时,该覆盖部件71沿着静电夹头层3的上述倾斜面,向内收缩,由于相对凹部73的接触面而在由复原力压紧的状态下嵌入,因此,在静电夹头层3和支承部21与覆盖部件71之间得到了高的密接性。图8(b)表示将截面形状为方形的由例如弹性体制成的覆盖部件71嵌入由静电夹头层3的周边边缘的突出部分的下面和支承部21形成的截面形状为矩形的槽部74中,以保护上述接合层70的结构。
在实施方式2中所用的接合层70可以为硅系粘接性树脂,也可以为丙烯酸酯系粘接性树脂,另外,它们以外的粘接性树脂也可以。
实际上,使用由PFA制成的热收缩管,如上所述,在使热收缩管与用于载置具有定向平面的晶片的载置台,即以与具有定向平面的晶片形状的相似形状而作成的载置台的表面部(静电夹头层和支承部的表面)密接时,完全看不见也包含定向平面部位的载置台的表面部与热收缩管之间的间隙,可认为达到没有不均匀的贴紧。
(实施方式3)
现在说明本发明的处理装置的实施方式3。图9为在蚀刻装置中采用作为实施本发明的处理装置的等离子体装置,表示该装置的全部结构的纵截面图。图中,120为由铝等导电性材料制成的、气密地形成的处理容器,该处理容器120接地。在该处理容器120中,相对地设置有兼作作为用于导入规定处理气体的气体供给部的气体喷头的上部电极130,和兼作放置作为被处理基板的晶片W的下部电极的载置台140。排气管121与处理容器120的底部连接,真空排气装置例如涡轮分子泵或干式泵等真空泵122,与该排气管121连接。另外,在处理容器120的侧壁形成有具有可自由开闭的闸阀123a,设置有用于搬入或搬出晶片W的开口部123。
在上述上部电极130的下面上形成有与气体供给路131连通的多个气体扩散孔132,使处理气体可供给放置在上述载置台140上的晶片W。另外,上述气体供给路131,其基端通过流量调整部131a,与气体供给源131b连接。上部电极130还通过低通滤波器133,与用于供给频率为60MHz的高频电力的高频电源部134连接。另外,在上部电极130的周围,由环状石英制成的屏蔽环135嵌合在上部电极130的外周上。
上述载置台140具有由导电性材料例如铝等制成的圆柱形的支承部(载置台本体)150。在该支承部150的表面设有静电夹头层160。如图10所示,该静电夹头层160是将薄片状的夹头电极162埋入由电介质例如氧化铝(Al2O3)等陶瓷构成的作为电介质板的陶瓷板161内构成的。陶瓷板161的厚度为1-5mm,作为这里所用的陶瓷,除了氧化铝以外,还可使用氮化铝(AlN),氧化钇(Y2O3),氮化铅(PbN),碳化硅(SiC),钛的氮化物(TiN),氧化镁(MgO)等。
在支承部150的表面和静电夹头层160之间放入多个垫片171,在其间隙中形成接合层172。垫片171为作成例如厚度为0.01-0.1mm,直径为1-5mm的圆形的陶瓷片,如图11所示,在支承部150的中央部设置1个垫片,其他多个呈放射形设置。作为陶瓷片,可以使用作为静电夹头层160的材质所述的材质,例如,可以使用与静电夹头层160的陶瓷板161相同的材质,配置垫片171和接合层172的间隙高度(静电夹头层160和支承部150的分开距离)例如可作成0.01-0.1mm。将静电夹头层160粘接在支承部150上的工序是,首先在支承部150上涂布热硬化性粘接性树脂,将垫片埋入接合层172中,在将陶瓷板放置在上面紧压后,加热,使粘接性树脂硬化。然后,进行研削陶瓷板161的表面而形成平面度的工序。
另外,作为接合层172,例如可以使用将陶瓷粉末作为填料材料,与硅系粘接性树脂或丙烯酸酯系粘接性树脂混合的产物。选定垫片171和接合层172的构成材料,使其比介电常数相同。这里,所谓相同是指,当取上述垫片171的比介电常数为ε1,接合层172的比介电常数为ε2时,0.90ε2≤ε1≤1.10ε2成立。从本发明的来看,ε1=ε2是理想的,但实际上,由于调整填料材料的配合比,使两者的比介电常数一致,二者之间会产生大约10%的偏差。
作为填料材料的陶瓷粉末,例如可以使用与构成垫片171的陶瓷片相同的材料,也可使用不同的材料。例如,使用比介电常数比垫片171的比介电常数高的陶瓷粉末,将该陶瓷粉末和比介电常数比垫片171的比介电常数低的粘接性树脂混合,加以调整使得比介电常数与垫片171的比介电常数相等。另外,即使是同一种陶瓷例如氧化铝,比介电常数也可以各种各样,因此在使用比介电常数比垫片171的比介电常数高的陶瓷粉末的情况下,作为陶瓷粉末(填料),可以使用比介电常数高的氧化铝,而作为垫片171,使用比介电常数低的氧化铝也可以。
另外,作为垫片171,不是仅限于陶瓷片,使用比介电常数大的材料例如作为比介电常数9.0以上的材料的陶瓷片,在可以提高高频的效率,即,增大蚀刻速率这一点上是优选的。
直流电源部164通过开关163,与静电夹头层160的夹头电极162连接。通过将直流电压加在夹头电极162上,利用在陶瓷板161的夹头电极162的上层部产生的例如静电引力,可以静电吸附晶片W。在静电夹头层160的周围,设有聚焦环165,用于将被该静电夹头层160吸附夹持的晶片W的周围围住;另外还设有由石英制成的覆盖环166。
另外,加频率例如为2MHz的偏置用电压的高频电源部152,通过高通滤波器151,与上述支承部150连接。流入路153和流出路154与支承部150的内部连接,还设置有构成120℃的温度调节介质流通用的温度调节装置的温度调节流体流路155。该温度调节装置具有在晶片W接受从等离子体来的热时,吸收该热,将晶片W的温度调整至设定温度的作用。载置台140由设在处理容器120的下部的升降机构156自由地升降;同时,在载置台140内部具有升降销(图中没有示出)用于在图中没有示出的搬送臂上,交换晶片W。另外,157为波纹管,用于不使等离子体进入载置台140的下面。
接着,说明上述蚀刻处理装置的作用。首先,打开闸阀123a,将表面上形成有由抗蚀剂膜构成的掩模图形的晶片W,从图中没示出的负载锁定室,搬入处理容器120内,放置在载置台140的静电夹头层160上,然后,关闭闸阀123a,使处理容器120成为气密的状态。再利用真空泵122对处理容器120内进行真空排气;另一方面,将处理气体例如含有C4F6、C2F6等卤化碳气体、氧气体和氩气体的蚀刻气体以规定流量,通过气体供给管131导入,再通过气体扩散孔132,均匀地喷射到晶片W的表面上,将处理容器120内维持为数十个mTorr的真空度。供给处理容器120内的蚀刻气体,沿着晶片W的表面,向径向方向的外侧流动,再从载置台140周围均匀地排出。
再接着,在例如1800W下,将例如60MHz的高频电压从高频电源部134加在上部电板130上,另外,用例如1秒以下的时间,在例如1850-2250W下,将例如2MHz的偏置用的电压,从高频电源部152加在载置台140上。从高频电源部134上来的高频,到达晶片W,再经过静电夹头层160,通过垫片171或接合层172到达支承部150,在高通滤波器151中流入大地。另一方面,从偏置用的高频电源部152来的高频,从支承部150,通过垫片171或接合层172,到达静电夹头层160,再到达晶片W。结果,利用高频电源部134出来的高频,使作为处理气体的蚀刻气体变成等离子体,该等离子体的活性种,以高度的垂直性入射在加了高频偏压的晶片W的表面上,可按照规定的选择比例,蚀刻例如硅氧化膜和抗蚀剂膜。
图12表示在垫片171的投影区域的高频通路(包含垫片171的上下方向的区域)Pa,和接合层172中与垫片171的投影区域大小相同的投影区域的高频通路Pb中的等价回路,当取C1为垫片171的静电容量,C2为接合层172的静电容量,C3为静电夹头层160的静电容量时,上述通路Pa中,静电夹头层160和垫片171的合计静电容量Ca用(1)式表示:
Ca=C1·C3/(C1+C3)
  =(ε0·ε1/d)·(ε0·ε3/d3)·S/((ε0·ε1/d)+ε0·ε3/d3))……………(1)
另外,在通路Pb中,静电夹头层160和接合层172的合计静电容量Cb用(2)式表示:
Cb=C2·C3/(C2+C3)
  =(ε0·ε2/d)·(ε0·ε3/d3)·S/{(ε0·ε3/d)+(ε0·ε3/d3)}………………(2)
式中,ε0——真空中的比介电常数
      ε1——垫片171的比介电常数
      ε2——接合层172的比介电常数
      ε3——静电夹头层160的比介电常数
      d——垫片171的厚度(接合层172的厚度)
      d3——静电夹头层160的厚度;
      S——垫片171的横截面积。
由于高频通路Pa和Pb的阻抗分别用1/ω·Ca和1/ω·Cb表示,当垫片171的比介电常数ε1和接合层172的比介电常数ε2互不相同时,在两个通路Pa和Pb之间,由仅与上述(1)(2)式的值的倒数对应的部分的高频电源部134供给的高频电力的大小不同,等离子体的状态不同。当ε1,ε2的值一致时(相同的值),高频电力的大小实质上相同,等离子体的状态也相同。另外,由偏置用高频电源部152供给的偏置电压也相同。即:通过将离产生等离子体用的高频遥远的频率低的偏置电压加在晶片W上,等离子体中的离子进入晶片W的表面中,离子以高度的垂直性入射在晶片W表面上。在这种情况下,因为两个通路Pa和Pb之间,离子冲突的能量一致,因此蚀刻的表面内均匀性可以达到。
因此,采用上述的实施方式,在晶片W的表面上,在与垫片171的投影区域对应的区域,和与接合层172的投影区域对应的区域之间,蚀刻速率(蚀刻速度)一致。实际上,调整气体流量或压力等参数,可使晶片W的中央部和周边边缘之间的蚀刻速率一致,在这种情况下,如果上述二个区域之间高频电力的频率一致,则通过调整参数等,结果可以在蚀刻速率方面确保面内高度均匀性,是与器件的薄膜化和图形的微细化对应的有意义的技术。
作为垫片171,可以不作成如上述那样的小圆形,而是如图13所示,在中央部配置圆形的垫片171,在其外侧配置环状的垫片171,以包围该垫片171也可以。
另外,作为本发的对象的等离子体处理不是仅限于蚀刻处理,成膜处理、灰化处理等其他处理也可以。作为本发明的对象的装置也不是仅限于上述实施方式中所述的平行平板式等离子体处理装置,例如,可是通过天线将微波导入处理容器内而产生等离子体的装置;或利用回旋共振产生等离子体的装置,将高频偏压加在载置台上的装置中也可适用。
为了确认本发明的效果,由铝制成的支承部的表面上,经按图11所示的布局而由氧化铝片制成的垫片,利用硅系粘接性树脂,粘接将夹头电极埋入氧化铝板内构成的静电夹头层。该粘接性树脂中,混合作为填料的氧化铝粉末,使接合层和垫片的比介电常数相等,调整垫片的比介电常数为9.5,接合层的比介电常数为9.0。在这样构成的载置台140上放置形成氧化硅膜的晶片W,在上述实施方式所述的处理条件下,研究蚀刻速率,发现蚀刻速率的面内均匀性良好。
实施方式3也可与上述实施方式2组合构成。即,在图10中,可以是使实施方式2所述的覆盖部件71紧贴接合层172的侧周面的构成。
(实施方式4)
现说明本发明处理装置的实施方式4。图14为表示实施本发明的处理装置的等离子体蚀刻装置的全部结构的纵截面图。
图中210为构成处理装置的真空腔室,由铝等导电性材料制成密封的结构。真空腔室210成为保安接地。在真空腔室210的内表面上配置大致圆筒形的防护件212,防止内表面被等离子体损伤。另外,在真空腔室210内,相对地设置兼作上部电极用的气体喷头214,和兼作下部电极用的载置台216。在底面形成有与例如由涡轮分子泵或干式泵等组成的真空排气装置(图中没有示出)连通的真空排气通路218。
在真空腔室210的侧壁上形成有用于搬入搬出作为被处理基板的晶片W的开口部220。该开口部可由气缸等驱动升降的闸门222自由开闭。气体喷头214由高频板214a,冷却板214b和电极板214c构成。高频电源226通过匹配器224与高频板214a连接,施加例如13.56-100MHz的高频电力。
在高频板214a的内部形成有介质循环路228,通过使图中没有示出的温度调整装置工作,可以将与高频板214a接触配置的冷却板214b和电极板214c设定至所希望的温度。温度调整装置具有使冷却介质通过介质循环路228循环的导入管230,调整至适当温度的冷却介质,由该导入管230供给介质循环路228内。热交换后的冷却介质由排出管(图中没有示出),排出至外部。介质循环路228也可以作在冷却板214b上,这样,可以更积极地冷却电极板214c。
气体供给装置232与气体喷头214连接,通过与图中没有示出的气体源连接的气体供给管234,经流量控制或压力控制的处理气体,供给至真空腔室210内,在冷却板214b和电极板214c上,与载置台216上的晶片W的尺寸对应,贯通形成有多个气体供给的路径和气体孔236,使从气体供给装置232出来的处理气体,通过该气体供给路径和气体孔236,均匀地供给至晶片W的表面。
载置台216以大约5-150mm的间隔隔开设置在气体喷头214的下方。载置台216具有由例如表面经过阳极氧化处理的铝等制成的电极本体244,和使电极本体244与真空腔室210绝缘用的绝缘体238。电极本体244具有吸附夹持晶片W的静电吸附机构,同时,通过匹配器240,与高频电源242连接。另外,从高频电源242,将例如800KHz-3.2MHz的高频电力加在电极本体244上。
在电极本体244的周围,配置环形的聚焦环246。该聚焦环246,与处理相适应,可以选择绝缘性或导电性材料,用以封闭或扩散反应性离子。另外,在聚焦环246的外侧设有全部由绝缘材料制成或在导电性材料的表面上覆盖绝缘膜构成的绝缘体248。
另外,在载置台216和真空腔室210的侧壁之间的比载置台216表面(放置面)靠下方的位置上配置穿透设置有多个排气孔的排气环250,以包围载置台216。利用该排气环250整理排气流的流动,同时,将等离子体最优地封闭在载置台216和气体喷头214之间。另外,在载置台216的内部,可自由突出和缩回地设置多根例如3根(图中只表示二根)用于在与外部的图中没有示出的搬运臂之间进行晶片W的传递的作为升降部件的升降销252。该升降销252可利用图中没有示出的驱动机构升降。
其次,参照示意地表示图15所示的电极本体244的大致截面图,详细说明本实施方式的主要部分。
如图15所示,电极本体244由静电吸附部(静电吸附装置)254,和高频板256构成。如上所述,高频电源242通过匹配器240与高频板256连接,施加800KHz-3.2MHz的高频电力。在该实施方式中,在高频板256上形成有介质循环路258,从图中没有示出的介质供给装置,通过供给路260,将经过温度调整的介质供给该介质循环路258。
设置在高频板256上部的静电吸附部254,由介电体254a,它内部包含的吸附电极254b,和设在吸附电极254b的背面侧的强磁性体254c构成。即:在本实施方式中,静电吸附部分254和强磁性体254c构成一体。介电体254a由烧结或喷镀成形的陶瓷等制成,例如可从氧化铝(Al2O3),氮化铝(AlN)等材料中选择。另外,在这些材料中添加二氧化钛(TiO2)、碳化硅(SiC)等,通过调整体积固有电阻值或介电常数,可以得到所希望的吸附力。
吸附电极254b配置在电极本体244的表层附近,由钨等作成箔状。该吸附电极254b,通过开关部SW1,可以在直流电源262和接地之间切换连接,通过将直流电压加在吸附电极254b上,可在介电体254a和晶片W之间产生静电吸附力。
上述强磁性体254c与吸附电极254b的背面接触或邻近而设置。强磁性体254c的材料,根据在真空腔室210内实施方式处理选择,具体地说是,选择在要控制的温度具有居里点的材料。例如,在将晶片W加热至110-120℃的情况下,可选择Mn-Zn铁氧体或Ni-Zn铁氧体等。
该强磁性体254c,可以在将强磁性体在溶剂中熔化后,利用众所周知的涂布方法或喷镀法,在吸附电极254b或介电体254a上形成。另外,可以利用烧结方法,将强磁性体作成板状,再利用粘接剂等与介电体254a接合。也可以将强磁性体作成粒子状,添加至介电体254a中。另外,在介电体254a由多孔材质构成的情况下,可以将在溶剂中熔化的强磁性体254c,充填至介电体254a的气孔中。这样,优选根据强磁性体的材料或使用环境等,来选择强磁性体254c的形成方法。
下面,说明这样构成的等离子体蚀刻装置的处理动作。
首先,通过开口部220和闸门222,将晶片W搬入真空腔室210内,将晶片W放置在载置台216上,在关闭闸门222后,利用真空排气装置,通过排气通路218,对真空腔室210内部排气至规定的真空度。另外,在将处理气体供给真空腔室210内的同时,将直流电压从直流电源262加在吸附电极254b上,将晶片W静电吸附在载置台216的表面上。
其次,在这个状态下,分别施加从高频电源226和242来的规定频率的高频电力。这样,在气体喷头214和载置台216之间产生高频电场,将处理气体变成等离子体,在载置台216上的晶片W上进行蚀刻处理。由于将在要控制的温度具有居里点的强磁性体254c设在载置台216内部,则通过将高频电力加在高频板214a和256上,由介电作用产生的涡电流损失,使强磁性体254c发热。
即:当高频电流在强磁性体254c内部通过时,会在强磁性体254c的表面上产生由高频电流产生的磁力线(磁场),产生涡电流,以消灭该磁力线。该涡电流产生的电阻热,使强磁性体254c的表面附近发热。
发热使强磁性体254c的温度升高。当该温度超过居里点时,变成常磁性体,不发热,而维持至一定温度。根据需要,通过控制在介质循环路258中循环的冷却介质流量或冷却介质温度,可以高精度地控制载置台216上的晶片W的温度。
优选将强磁性体254c的厚度设定为比透入深度(skin depth)二倍稍大,所谓透入深度是以电流流动的深度作为标准使用的,可用以下的(3)式表示。
透入深度δ=(2ρ/ωμ)1/2………………………………(3)
式中,ρ——电阻率
ω——2πf(f——频率)
μ=μ0(1+x)
(μ0——真空的透过率,x——磁化率)。
如上所述,采用本实施方式,由于将加上高频电力的电极作成具有强磁性体254c的电极,因此,可以将强磁性体254c的温度控制在材料的居里点。这样,不需要设置先前那样的加热机构,可以用极简单的结构,加热控制真空腔室210内的电极。另外,由于强磁性体254c可在该材料的固有的居里点温度,正确地停止发热,因此,掌握加入的热量,可以高精度地对晶片W进行温度控制。
其次,说明将以上温度控制用的结构应用在起上部电极而发挥功能的气体喷头中的实施方式。图16为示意性表示在这个实施方式中采用的气体喷头214的大致截面图。与图15的实施方式同样,将具有某一居里点的强磁性体配置在电极内即气体喷头214’内,加热气体喷头214’。
如图16所示,气体喷头214’与图14的气体喷头214相同,从上面开始,除了具有高频板214a、冷却板214b、电极板214c以外,还具有与电极板214c的下面接触或邻近的强磁性体264。在该强磁性体264上,形成有气体供给路径和与气体孔236连通的孔。与图15的实施方式同样,强磁性体264可以利用众所周知的涂布方法或喷镀法,在电极板214c下面上形成膜状,还可以利用烧结法,作成板状,与电极板214c的表面粘接;还可以将强磁性体材料作成粉末,添加至电极214c中。另外,至少是强磁性体264的表面,用陶瓷或树脂等绝缘膜266覆盖。
当将高频电力加在高频板214a上时,强磁性体264发热至居里点。如上所述,当温度超过居里点时,变成常磁性体,不发热,因此,强磁性体264维持在居里点的温度。另外,监视气体喷头214’的温度,通过使温度调整过的冷却介质在介质循环路228中循环,可以高精度地控制气体喷头214’至所希望的温度。
在图15的实施方式中说明了将强磁性体254c配置在静电吸附层254内的装置,然而用强磁性体构成施加了高频电力的高频板256也可以。同样,在图16的实施方式中,使强磁性体264与电极板214c接触或邻近而设置,但也可以利用强磁性体材料构成高频板214a本身。
另外,在上述实施方式中,是以保持晶片W的下部电极,和与它对应的上部电极上下方向平行配置的情况作为例子进行说明的,但不是仅限于此,本发明也可使用在二个电极在水平方向分开配置的处理装置中。在将高频电力只加在上部电极或只加在下部电极上的处理装置中;或将高频电力加在上部电极和下部电极二个电极上的处理装置也可适用。
另外,在上述实施方式中,以平行平板型的等离子体蚀刻装置作为例子进行说明,但本发明不是仅限于这种结构。本发明在磁控管型或感应结合型等的各种等离子体处理装置中也可适用。本发明不仅适用于等离子体蚀刻处理装置,在灰化处理和成膜处理等的各种处理装置中也可适用;本发明还可用在对LCD用玻璃基板进行处理的装置中。
采用这种实施方式,由于将具有施加高频电力的高频板的电极,作为具有由强磁性体构成的发热体的部件,因此可以将发热体的温度控制在该材质的居里点上,不需要设置先前的加热机构,可以用极简单的结构,加热控制电极。另外,由于构成发热体的强磁性体,可以在该材料固有的居里点温度,正确地停止发热,因此可以掌握加入的热量,高精度地对被处理体进行温度控制。

Claims (18)

1.一种处理装置,其特征为,具有:
用于对基板进行规定处理的处理容器;
设置在所述处理容器中,同时通过将电压加在夹头电极上,而利用静电吸附力保持所述基板用的、用绝缘层覆盖夹头电极的静电夹头层;
支承该静电夹头层的支承部;和
为了在该支承部和静电夹头层之间接合支承部和静电夹头层而设置的、同时将粘接性树脂浸含至多孔陶瓷中构成的接合层。
2.如权利要求1所述的处理装置,其特征为,所述多孔陶瓷为氧化铝或氮化铝或者碳化硅。
3.如权利要求1所述的处理装置,其特征为,
所述处理装置为对基板进行等离子体处理的装置,所述支承部具有用于将该支承部的温度调整成规定温度的冷却装置。
4.如权利要求1所述的处理装置,其特征为,具有:
将处理气体供给处理容器内部用的处理气体供给部;和
将等离子体产生用的高频加在所述支承部用的高频电源部,
在处理容器内产生等离子体,利用该等离子体激活所述处理气体。
5.如权利要求1所述的处理装置,其特征为,
所述静电夹头层利用由绝缘层覆盖夹头电极构成的烧结体构成。
6.一种处理装置,其特征为,具有:
用于对基板进行等离子体处理的处理容器;
设置在所述处理容器中,同时通过将电压加在夹头电极上,而利用静电吸附力保持所述基板用的,用绝缘层覆盖夹头电极的静电夹头层;
支承该静电夹头层的支承部;和
为了在该支承部和静电夹头层之间接合支承部和静电夹头层而设置的、同时将粘接性树脂浸含至多孔陶瓷中构成的接合层,还具有:
在所述接合层的侧周面上形成的、用于保护接合层不受由等离子体产生的活性种的影响的保护层。
7.如权利要求6所述的处理装置,其特征为,
所述保护层是在所述接合层的侧周面中,将由保护层的成分在溶剂中溶解构成的保护层用溶液,浸含在从所述接合层的侧周面表面至规定深度的区域,然后通过进行加热处理,除去在所述保护层用溶液中包含的溶剂成分而形成的。
8.如权利要求7所述的处理装置,其特征为,
所述保护层的成分为不会被等离子体产生的活性种蚀刻的无机材料。
9.如权利要求8所述的处理装置,其特征为,
所述无机材料为二氧化硅。
10.一种处理装置,其特征为,它具有:
用于对基板进行等离子体处理的处理容器;
设置在所述处理容器中,同时通过将电压加在夹头电极上,而利用静电吸附力保持所述基板用的、用绝缘层覆盖夹头电极的静电夹头层;
用于支承该静电夹头层的与静电夹头层的材质不同的支承部;
为了在该支承部和静电夹头层之间使支承部和静电夹头层接合而设置的接合层;和
柔软的覆盖部件,用于覆盖所述接合层的侧周面,以便保护所述接合层不受由等离子体产生的活性种的损坏。
11.如权利要求10所述的处理装置,其特征为,
所述覆盖部件为热收缩管。
12.如权利要求11所述的处理装置,其特征为,
所述热收缩管由氟树脂、硅橡胶或者聚烯烃制成。
13.如权利要求12所述的处理装置,其特征为,
所述氟树脂为PFA、FEP或PTFE。
14.如权利要求10所述的处理装置,其特征为,
所述覆盖部件为弹性体。
15.如权利要求14所述的处理装置,其特征为,
使静电夹头层和支承部从接合层向外突出而形成凹部,覆盖部件在利用其复原力挤压凹部内的静电夹头层和支承部的表面的状态下,嵌入该凹部内。
16.如权利要求10所述的处理装置,其特征为,
为了产生等离子体,将高频电力供给支承部;
在静电夹头层和支承部之间,放置比介电常数与接合层的比介电常数相等的垫片。
17.如权利要求16所述的处理装置,其特征为,
所述垫片为陶瓷片,所述接合层是以陶瓷粉末作为填充材料而与粘接性树脂混合后的层。
18.如权利要求1~17所述的处理装置,其特征为,
所述接合层为硅系粘接性树脂或丙烯酸酯系粘接性树脂。
CNB2004100380168A 2003-05-12 2004-05-12 处理装置 Expired - Fee Related CN1310285C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003133531 2003-05-12
JP2003133531 2003-05-12
JP2003166822 2003-06-11
JP2003166822 2003-06-11
JP2003173787 2003-06-18
JP2003173787 2003-06-18

Publications (2)

Publication Number Publication Date
CN1551293A CN1551293A (zh) 2004-12-01
CN1310285C true CN1310285C (zh) 2007-04-11

Family

ID=34198728

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100380168A Expired - Fee Related CN1310285C (zh) 2003-05-12 2004-05-12 处理装置

Country Status (2)

Country Link
US (1) US20050042881A1 (zh)
CN (1) CN1310285C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101315877B (zh) * 2007-05-29 2010-06-02 东京毅力科创株式会社 基板处理***以及基板处理装置

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7648914B2 (en) * 2004-10-07 2010-01-19 Applied Materials, Inc. Method for etching having a controlled distribution of process results
US7544251B2 (en) * 2004-10-07 2009-06-09 Applied Materials, Inc. Method and apparatus for controlling temperature of a substrate
US7436645B2 (en) * 2004-10-07 2008-10-14 Applied Materials, Inc. Method and apparatus for controlling temperature of a substrate
KR100587191B1 (ko) 2004-12-28 2006-06-08 주식회사 코미코 세라믹 정전척의 접합구조체 및 그 제조방법
JP2006253183A (ja) * 2005-03-08 2006-09-21 Hitachi Ltd 半導体パワーモジュール
JP4844086B2 (ja) * 2005-10-28 2011-12-21 三菱電機株式会社 半導体製造方法及びサテライト
US20070283891A1 (en) * 2006-03-29 2007-12-13 Nobuyuki Okayama Table for supporting substrate, and vacuum-processing equipment
US8226769B2 (en) * 2006-04-27 2012-07-24 Applied Materials, Inc. Substrate support with electrostatic chuck having dual temperature zones
JP5069452B2 (ja) * 2006-04-27 2012-11-07 アプライド マテリアルズ インコーポレイテッド 二重温度帯を有する静電チャックをもつ基板支持体
TWI431681B (zh) * 2006-05-15 2014-03-21 Ulvac Inc 洗淨方法及真空處理裝置
JP4609669B2 (ja) * 2006-06-27 2011-01-12 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 静電チャックモジュール
US9275887B2 (en) 2006-07-20 2016-03-01 Applied Materials, Inc. Substrate processing with rapid temperature gradient control
KR100809957B1 (ko) * 2006-09-20 2008-03-07 삼성전자주식회사 반도체 식각장치
US20080194113A1 (en) * 2006-09-20 2008-08-14 Samsung Electronics Co., Ltd. Methods and apparatus for semiconductor etching including an electro static chuck
US8430965B2 (en) * 2007-02-16 2013-04-30 Pronomic Industry Ab Epitaxial growth system for fast heating and cooling
JP5090789B2 (ja) * 2007-05-30 2012-12-05 東京応化工業株式会社 貼り合わせ装置、接着剤の溶解を防ぐ方法、及び貼り合わせ方法
KR100952671B1 (ko) * 2007-12-27 2010-04-13 세메스 주식회사 척킹부재, 이를 갖는 기판 처리 장치 및 이를 이용한 기판 처리 방법
KR101577474B1 (ko) * 2008-02-08 2015-12-14 램 리써치 코포레이션 플라즈마 프로세싱 장치용 rf 리턴 스트랩
US8609545B2 (en) * 2008-02-14 2013-12-17 Taiwan Semiconductor Manufacturing Company, Ltd. Method to improve mask critical dimension uniformity (CDU)
US8194384B2 (en) * 2008-07-23 2012-06-05 Tokyo Electron Limited High temperature electrostatic chuck and method of using
US9543181B2 (en) * 2008-07-30 2017-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Replaceable electrostatic chuck sidewall shield
JP2010114362A (ja) * 2008-11-10 2010-05-20 Tokyo Electron Ltd パーティクル付着抑制方法及び基板処理装置
US9520314B2 (en) * 2008-12-19 2016-12-13 Applied Materials, Inc. High temperature electrostatic chuck bonding adhesive
WO2010101191A1 (ja) * 2009-03-03 2010-09-10 東京エレクトロン株式会社 載置台構造、成膜装置、及び、原料回収方法
US8859424B2 (en) * 2009-08-14 2014-10-14 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor wafer carrier and method of manufacturing
JP2011086920A (ja) * 2009-10-14 2011-04-28 Greene Tweed Of Delaware Inc プラズマ耐性に優れた処理装置
JP5390445B2 (ja) * 2010-03-23 2014-01-15 富士フイルム株式会社 光学繊維ユニット及び内視鏡
JP5635378B2 (ja) * 2010-11-30 2014-12-03 日東電工株式会社 半導体ウエハ搬送方法および半導体ウエハ搬送装置
KR101897012B1 (ko) * 2010-12-27 2018-09-10 가부시키가이샤 크리에이티브 테크놀러지 워크처리장치
EP2525389A1 (en) * 2011-05-18 2012-11-21 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Electrostatic clamp and method of making said electrostatic clamp
US9869392B2 (en) * 2011-10-20 2018-01-16 Lam Research Corporation Edge seal for lower electrode assembly
US9859142B2 (en) 2011-10-20 2018-01-02 Lam Research Corporation Edge seal for lower electrode assembly
US9153463B2 (en) * 2011-11-25 2015-10-06 Nhk Spring Co., Ltd. Substrate support device
US10276410B2 (en) * 2011-11-25 2019-04-30 Nhk Spring Co., Ltd. Substrate support device
FR2985087B1 (fr) * 2011-12-21 2014-03-07 Ion Beam Services Support comportant un porte-substrat electrostatique
CN103187348A (zh) * 2011-12-31 2013-07-03 北京北方微电子基地设备工艺研究中心有限责任公司 晶片固定装置、半导体设备和晶片固定方法
KR101652782B1 (ko) * 2012-02-03 2016-08-31 에이에스엠엘 네델란즈 비.브이. 기판 홀더 및 리소그래피 장치
US9281226B2 (en) * 2012-04-26 2016-03-08 Applied Materials, Inc. Electrostatic chuck having reduced power loss
JP2013258270A (ja) 2012-06-12 2013-12-26 Tokyo Electron Ltd 基板載置台及び基板処理装置
JP5975755B2 (ja) 2012-06-28 2016-08-23 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法
CN103594315B (zh) * 2012-08-14 2016-04-20 北京北方微电子基地设备工艺研究中心有限责任公司 一种等离子体加工设备
JP6013113B2 (ja) * 2012-09-27 2016-10-25 東京エレクトロン株式会社 発熱体の製造方法
US10727092B2 (en) * 2012-10-17 2020-07-28 Applied Materials, Inc. Heated substrate support ring
KR101986547B1 (ko) * 2012-12-17 2019-06-07 삼성전자주식회사 정전척 및 이를 포함하는 기판 처리 장치
US9142438B2 (en) * 2013-02-28 2015-09-22 Varian Semiconductor Equipment Associates, Inc. Techniques for clamping and declamping a substrate
JP5633766B2 (ja) * 2013-03-29 2014-12-03 Toto株式会社 静電チャック
JP6037914B2 (ja) * 2013-03-29 2016-12-07 富士フイルム株式会社 保護膜のエッチング方法およびテンプレートの製造方法
JP6110284B2 (ja) * 2013-11-21 2017-04-05 日本特殊陶業株式会社 静電チャック
US10090211B2 (en) 2013-12-26 2018-10-02 Lam Research Corporation Edge seal for lower electrode assembly
US10832931B2 (en) * 2014-05-30 2020-11-10 Applied Materials, Inc. Electrostatic chuck with embossed top plate and cooling channels
US10002782B2 (en) * 2014-10-17 2018-06-19 Lam Research Corporation ESC assembly including an electrically conductive gasket for uniform RF power delivery therethrough
CN104531956A (zh) * 2014-11-20 2015-04-22 安徽省新方尊铸造科技有限公司 一种通过风速调节温度的ptc陶瓷加热的电烘箱
TWI613753B (zh) 2015-02-16 2018-02-01 靜電吸附承盤側壁之改良密封件
KR101950897B1 (ko) * 2015-09-25 2019-02-21 스미토모 오사카 세멘토 가부시키가이샤 정전 척 장치
JP6584286B2 (ja) * 2015-10-26 2019-10-02 日本発條株式会社 ヒータユニット
US10570257B2 (en) 2015-11-16 2020-02-25 Applied Materials, Inc. Copolymerized high temperature bonding component
JP6937753B2 (ja) * 2015-12-07 2021-09-22 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 融合されたカバーリング
CN105575872B (zh) * 2016-02-26 2019-05-03 上海华力微电子有限公司 改善静电吸附盘树脂保护环损伤的结构及方法
JP6560150B2 (ja) * 2016-03-28 2019-08-14 日本碍子株式会社 ウエハ載置装置
US10340171B2 (en) * 2016-05-18 2019-07-02 Lam Research Corporation Permanent secondary erosion containment for electrostatic chuck bonds
US11532497B2 (en) 2016-06-07 2022-12-20 Applied Materials, Inc. High power electrostatic chuck design with radio frequency coupling
US11127619B2 (en) * 2016-06-07 2021-09-21 Applied Materials, Inc. Workpiece carrier for high power with enhanced edge sealing
US20180019104A1 (en) * 2016-07-14 2018-01-18 Applied Materials, Inc. Substrate processing chamber component assembly with plasma resistant seal
JP6238097B1 (ja) * 2016-07-20 2017-11-29 Toto株式会社 静電チャック
US10910195B2 (en) 2017-01-05 2021-02-02 Lam Research Corporation Substrate support with improved process uniformity
JP6882623B2 (ja) * 2017-03-21 2021-06-02 株式会社島津製作所 センターリングおよび真空ポンプ
US11289355B2 (en) 2017-06-02 2022-03-29 Lam Research Corporation Electrostatic chuck for use in semiconductor processing
JP7224096B2 (ja) * 2017-07-13 2023-02-17 東京エレクトロン株式会社 プラズマ処理装置用部品の溶射方法及びプラズマ処理装置用部品
TWM566398U (zh) * 2018-06-21 2018-09-01 麥豐密封科技股份有限公司 半導體製程設備
KR20240050466A (ko) 2018-01-31 2024-04-18 램 리써치 코포레이션 정전 척 (electrostatic chuck, ESC) 페데스탈 전압 분리
JP6489277B1 (ja) * 2018-03-14 2019-03-27 Toto株式会社 静電チャック
US11086233B2 (en) * 2018-03-20 2021-08-10 Lam Research Corporation Protective coating for electrostatic chucks
JP6971183B2 (ja) * 2018-03-23 2021-11-24 新光電気工業株式会社 基板固定装置
JP7090481B2 (ja) * 2018-06-15 2022-06-24 新光電気工業株式会社 静電チャック及びその製造方法
CN110890305B (zh) * 2018-09-10 2022-06-14 北京华卓精科科技股份有限公司 静电卡盘
JP7199200B2 (ja) * 2018-11-01 2023-01-05 東京エレクトロン株式会社 基板載置台、基板処理装置及び基板処理方法
JP7083923B2 (ja) 2019-01-24 2022-06-13 京セラ株式会社 静電チャック
US11450545B2 (en) * 2019-04-17 2022-09-20 Samsung Electronics Co., Ltd. Capacitively-coupled plasma substrate processing apparatus including a focus ring and a substrate processing method using the same
JP7333712B2 (ja) * 2019-06-05 2023-08-25 東京エレクトロン株式会社 静電チャック、支持台及びプラズマ処理装置
JP7339062B2 (ja) * 2019-08-09 2023-09-05 東京エレクトロン株式会社 載置台及び基板処理装置
US11515190B2 (en) * 2019-08-27 2022-11-29 Watlow Electric Manufacturing Company Thermal diffuser for a semiconductor wafer holder
JP7308767B2 (ja) * 2020-01-08 2023-07-14 東京エレクトロン株式会社 載置台およびプラズマ処理装置
KR102644585B1 (ko) * 2020-08-21 2024-03-06 세메스 주식회사 기판 처리 장치 및 이의 제조 방법
JP2023027640A (ja) * 2021-08-17 2023-03-02 日本碍子株式会社 ウエハ載置台
CN116825685B (zh) * 2023-08-31 2023-11-07 常州铭赛机器人科技股份有限公司 晶圆扩晶机构用自动开闭结构、自动开闭方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335731A (ja) * 1994-06-07 1995-12-22 Fujitsu Ltd 吸着装置およびその製造方法
WO2001037314A1 (en) * 1999-11-15 2001-05-25 Lam Research Corporation Materials and gas chemistries for processing systems
CN1312954A (zh) * 1998-06-30 2001-09-12 兰姆研究公司 用于等离子加工的弹性接合部件及其制造方法和其应用
JP2003045952A (ja) * 2001-05-25 2003-02-14 Tokyo Electron Ltd 載置装置及びその製造方法並びにプラズマ処理装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639388A (en) * 1985-02-12 1987-01-27 Chromalloy American Corporation Ceramic-metal composites
JP3238925B2 (ja) * 1990-11-17 2001-12-17 株式会社東芝 静電チャック
US5280156A (en) * 1990-12-25 1994-01-18 Ngk Insulators, Ltd. Wafer heating apparatus and with ceramic substrate and dielectric layer having electrostatic chucking means
US5155652A (en) * 1991-05-02 1992-10-13 International Business Machines Corporation Temperature cycling ceramic electrostatic chuck
US5191506A (en) * 1991-05-02 1993-03-02 International Business Machines Corporation Ceramic electrostatic chuck
US5800618A (en) * 1992-11-12 1998-09-01 Ngk Insulators, Ltd. Plasma-generating electrode device, an electrode-embedded article, and a method of manufacturing thereof
US5460684A (en) * 1992-12-04 1995-10-24 Tokyo Electron Limited Stage having electrostatic chuck and plasma processing apparatus using same
JPH08507196A (ja) * 1994-01-31 1996-07-30 アプライド マテリアルズ インコーポレイテッド 共形な絶縁体フィルムを有する静電チャック
US5885469B1 (en) * 1996-11-05 2000-08-08 Applied Materials Inc Topographical structure of an electrostatic chuck and method of fabricating same
US6278600B1 (en) * 1994-01-31 2001-08-21 Applied Materials, Inc. Electrostatic chuck with improved temperature control and puncture resistance
US5606485A (en) * 1994-07-18 1997-02-25 Applied Materials, Inc. Electrostatic chuck having improved erosion resistance
US5686172A (en) * 1994-11-30 1997-11-11 Mitsubishi Gas Chemical Company, Inc. Metal-foil-clad composite ceramic board and process for the production thereof
US5886863A (en) * 1995-05-09 1999-03-23 Kyocera Corporation Wafer support member
JPH09157578A (ja) * 1995-12-08 1997-06-17 Daikin Ind Ltd 含フッ素塗料用材料およびそれを用いた被覆方法
US5676745A (en) * 1995-06-07 1997-10-14 The United States Of America, As Represented By The Secretary Of Commerce Pre-ceramic polymers in fabrication of ceramic composites
JP3208044B2 (ja) * 1995-06-07 2001-09-10 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
EP0811457B1 (en) * 1995-08-17 2002-05-02 Yoshitaka Tarumizu Freeze chuck type machining method
JPH09213781A (ja) * 1996-02-01 1997-08-15 Tokyo Electron Ltd 載置台構造及びそれを用いた処理装置
US6108189A (en) * 1996-04-26 2000-08-22 Applied Materials, Inc. Electrostatic chuck having improved gas conduits
KR100290264B1 (ko) * 1997-01-22 2001-09-22 호소이 쇼지로 정전처크장치 및 그 제조방법
JP3612168B2 (ja) * 1997-03-25 2005-01-19 本田技研工業株式会社 部材の常温接合方法
US5937541A (en) * 1997-09-15 1999-08-17 Siemens Aktiengesellschaft Semiconductor wafer temperature measurement and control thereof using gas temperature measurement
US6280584B1 (en) * 1998-07-29 2001-08-28 Applied Materials, Inc. Compliant bond structure for joining ceramic to metal
US6256187B1 (en) * 1998-08-03 2001-07-03 Tomoegawa Paper Co., Ltd. Electrostatic chuck device
JP3805134B2 (ja) * 1999-05-25 2006-08-02 東陶機器株式会社 絶縁性基板吸着用静電チャック
JP2002057207A (ja) * 2000-01-20 2002-02-22 Sumitomo Electric Ind Ltd 半導体製造装置用ウェハ保持体およびその製造方法ならびに半導体製造装置
US6503368B1 (en) * 2000-06-29 2003-01-07 Applied Materials Inc. Substrate support having bonded sections and method
JP2002270680A (ja) * 2001-02-28 2002-09-20 Applied Materials Inc 基板支持方法及び基板支持装置
US6554954B2 (en) * 2001-04-03 2003-04-29 Applied Materials Inc. Conductive collar surrounding semiconductor workpiece in plasma chamber
US6693790B2 (en) * 2001-04-12 2004-02-17 Komatsu, Ltd. Static electricity chuck apparatus and semiconductor producing apparatus provided with the static electricity chuck apparatus
JP4034096B2 (ja) * 2002-03-19 2008-01-16 日本碍子株式会社 半導体支持装置
US7780786B2 (en) * 2002-11-28 2010-08-24 Tokyo Electron Limited Internal member of a plasma processing vessel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335731A (ja) * 1994-06-07 1995-12-22 Fujitsu Ltd 吸着装置およびその製造方法
CN1312954A (zh) * 1998-06-30 2001-09-12 兰姆研究公司 用于等离子加工的弹性接合部件及其制造方法和其应用
WO2001037314A1 (en) * 1999-11-15 2001-05-25 Lam Research Corporation Materials and gas chemistries for processing systems
JP2003045952A (ja) * 2001-05-25 2003-02-14 Tokyo Electron Ltd 載置装置及びその製造方法並びにプラズマ処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101315877B (zh) * 2007-05-29 2010-06-02 东京毅力科创株式会社 基板处理***以及基板处理装置

Also Published As

Publication number Publication date
US20050042881A1 (en) 2005-02-24
CN1551293A (zh) 2004-12-01

Similar Documents

Publication Publication Date Title
CN1310285C (zh) 处理装置
KR102335248B1 (ko) 플라즈마 프로세싱 챔버 내의 엘라스토머 시일의 수명을 연장시키는 크기로 형성된 에지 링
JP7292060B2 (ja) プラズマ環境にあるチャンバ構成要素のためのY2O3-ZrO2耐エロージョン性材料
CN1271701C (zh) 有孔内部部件的涂覆方法及有孔内部部件
US9466518B2 (en) Electrostatic chuck device
JP2022105059A (ja) 静電チャック接合のための永久二次浸食封じ込め
JP4397271B2 (ja) 処理装置
CN1261995C (zh) 被处理体的保持装置
US7718559B2 (en) Erosion resistance enhanced quartz used in plasma etch chamber
CN1314834C (zh) 处理装置、处理方法及载置部件
CN1591793A (zh) 聚焦环和等离子体处理装置
US20140203526A1 (en) Temperature management of aluminium nitride electrostatic chuck
JP2023030013A (ja) V字型シールバンドを有するセラミック静電チャック
CN100343956C (zh) 等离子加工方法和设备及用于等离子加工的托架
CN1881555A (zh) 基板载置台、基板处理装置和基板载置台的制造方法
CN1759473A (zh) 半导体处理用的基板保持结构和等离子体处理装置
US20080099148A1 (en) Method for fabricating plasma reactor parts
CN1849697A (zh) 具有动态温度控制的基片支架
JP2006049352A (ja) サセプタ装置
CN1521805A (zh) 等离子体处理装置、环形部件和等离子体处理方法
JP5011736B2 (ja) 静電チャック装置
CN1240107C (zh) 晶片处理装置和晶片平台以及晶片处理方法
CN113544837A (zh) 用于等离子体处理室的卡盘
CN101053066A (zh) 等离子体处理方法和等离子体处理设备
CN1747145A (zh) 薄基片支持器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070411

Termination date: 20160512

CF01 Termination of patent right due to non-payment of annual fee