CN1291240C - 获取多相介质中物理特性的优化模型的方法 - Google Patents

获取多相介质中物理特性的优化模型的方法 Download PDF

Info

Publication number
CN1291240C
CN1291240C CNB001068210A CN00106821A CN1291240C CN 1291240 C CN1291240 C CN 1291240C CN B001068210 A CNB001068210 A CN B001068210A CN 00106821 A CN00106821 A CN 00106821A CN 1291240 C CN1291240 C CN 1291240C
Authority
CN
China
Prior art keywords
model
covariance
medium
kriging
physical quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB001068210A
Other languages
English (en)
Other versions
CN1271863A (zh
Inventor
F.富尼耶
J.-J鲁瓦耶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of CN1271863A publication Critical patent/CN1271863A/zh
Application granted granted Critical
Publication of CN1291240C publication Critical patent/CN1291240C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/282Application of seismic models, synthetic seismograms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/66Subsurface modeling

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明的方法可以通过变换,借助与介质中观测或测量的数据结构一致的更为定量的变换参数特性(例如标准偏差和相关长度)获得物理量的优化模型,该物理量代表了分层多相介质(该介质的阻抗与例如在其中传播的波有关)。通过定义这些参数的内在依赖性,有利于指导解释者选择用于参数所考虑的数值。最终的模型相对借助于纯粹经验选择而言得到了改进。

Description

获取多相介质中物理特性的优化模型的方法
技术领域
本发明涉及获取多相介质中物理特性的优化模型的方法。按照本发明的方法可以对波传播涉及的地下区域的阻抗建模,并且由此获取底土图像,从而更加精确地对产生这些阻抗变化的非连续性进行定位。本发明适于对碳氢化合物储层定位。
背景技术
现在众所周知的是,储层模型的精度和可靠性很大程度上取决于具有不同性质的兼容数据的综合作用,这或多或少地与所研究储层的性质相关。许多调查表明,地震数据能用于把储层的图象约束在钻井之间的空间中。
将地震数据整合到储层模型中的一般方法是,根据地震振幅估计声波或弹性波的阻抗,并将它们转换为储层性质。
在各种变换算法中,利用先验模型的技术要求选择对数据和先验模型在优化中的各种影响的进行加权的参数。
本申请人提交的专利EP-354,112(US-4,972,383)和EP-889,331描述了一种称为Interwell方法的方法,它可以获取代表地下区域声波阻抗变化的至少二维模型,它与观测或测量得到的数据(地质数据、堆积后地震数据或其他通过钻井获得的数据)匹配最好。它包括通过将钻井数据与已知结构或地层数据结合构造先验阻抗模型。特别是沿着地层单元内的相关表面沿着钻井Kriging已知的阻抗。地震层给出了地层单元的几何结构,并且通过根据沉积模式跟随限定的表面完成相关性(平行于顶层或地面的协调)。随后,通过考虑测得的地震振幅,更新钻井间的初始阻抗分布。为此,这可以用迭代的方式,通过使下述两项代价函数最小来完成:
F=Fs+Fg,这里
Fs为地震项,该指标代表从模型获得的合成轨迹与实际地震轨迹(堆积前轨迹、堆积后轨迹)之振幅的差值;而
Fg为地理项,它测量了先验模型与标准模型的差值。
优化阻抗模型是根据相应权重在这两项之间进行折衷的结果。这些权重与变换参数有关,即Fs与信噪比有关,而Fg与相关长度λ和关于先验模型的误差的方差σ2有关,这里假定所述误差是随机变量,其平稳指数协方差为σ2,相关长度为λ。
Fs的权重通常根据实际振幅估计。相反,相关长度为λ和标准偏差σ由用户根据他对先验模型的置信度而定义。但是由于对先验模型的置信度取决于数据的质量、钻井的数量和位置以及阻抗场的空间性态,所以不应太过于由经验估计。
发明内容
依照本发明提供了一种用于获得代表一分层多相介质的物理量的优化模型的方法。该方法包含以下步骤:
通过在所述介质的一定数量的参考点上进行测量、记录或观测,获得已知数据,用kriging方法从所述获得已知数据中构造一先验模型,其中在沿分层方向的所有点上,所述先验模型中物理量值的不确定性与所述介质中的相应值有关,它由一平稳协方差模型Cz描述,所述平稳协方差模型Cz依赖于各点之间的距离矢量
Figure C0010682100041
通过考虑所述先验模型,以迭代方式使一代价函数最小化,来构造一个通过变换优化的模型,所述代价函数依赖于当前模型与已知数据之间的偏差,
所述方法的特征在于,根据一误差协方差模型确定变换参数(λ,σ),所述误差协方差模型是:
Cϵ ( x , y ) = Cz ( h → ) - t β ( x ) Kβ ( x + h → ) ,
这里x和y为介质距离为
Figure C0010682100043
的任意两点,K为所述kriging矩阵,β(x)和 分别为点x和点y上的所述kring权重,所述误差协方差模型包括对应于所述平稳协方差模型
Figure C0010682100045
的第一项,以及依赖于kriging矩阵和kriging权重的非平稳协方差项。
本发明的方法可以通过变换,借助与介质中观测或测量的数据结构一致的更为定量的变换参数特性(例如标准偏差和相关长度)获得物理量的优化模型,该物理量代表了分层多相介质(该介质的阻抗与例如在其中传播的波有关)。通过定义这些参数的内在依赖性,有利于指导解释者选择用于参数所考虑的数值。最终的模型相对借助纯粹靠经验选择而言得到了改进。
它包含:从一定数量介质点测量、记录或观测获得的已知数据构造先验模型;以及通过考虑先验模型,根据要寻求的模型与已知数据之间的差值使代价函数最小化而构造优化模型。
本方法的特征在于先验模型的构造包括通过用krging方法处理沿不连续性(分层方向)方向不同介质点物理量已知值之间的协方差(Cz)得到相关性,先验模型中物理量值的不确定性与介质中沿这些方向的各点相应的值有关,按照控制变换参数的协方差模型(Cε),所述模型包括平稳协方差项(Cz),它仅仅依赖于该点与非平稳协方差项之间的距离矢量 非平稳协方差项取决于点的位置和分别与其他点之间的距离。
按照第一实施例,为了比普通先验模型更为精确地定义变换参数,平均协方差(Cε)被确定和调整至(已知类型的)平稳指数协方差模型。
按照第二实施例,为了获得变换参数的局部值(λx,σx),在所有点上将协方差项( Cε)调整至平稳指数模型。
附图说明
通过以下结合附图对本发明的描述,可以理解本发明的其他特征和优点,其中:
图1A、1B示出了三口钻井W1、W2和W3附近相关平面内kriging误差的两个协方差栅格,分别对应两种不同的距离矢量 表示不确定协方差的非平稳性质;
图2示出了用介质标准变换参数获得的阻抗模型的实例;以及
图3示出了借助本发明方法获得的阻抗模型实例,其变换参数被更好调整至不确定协方差的性态。
具体实施方式
由于通过kriging法构造了先验模型,所以我们研究了用于主要控制地质项Fg之权重的kriging误差的理论协方差。在普通kriging法中,如果Z为阻抗场,而Z先验为kriging化的阻抗场Z*,则所述误差可以表示如下:
ε(x)=Z(x)-Z*(x)
如果x和y表示介质内距离为h的两个点,则误差ε(x)的协方差Cε(x,y)表示如下:
Cϵ ( x , y ) = Cz ( h → ) - t β ( x ) Kβ ( x + h → )
这里K为kriging矩阵,β(x)和
Figure C0010682100062
分别为点x和点 上的kriging权重,而 为x至y的距离矢量,而tβ为权重β的转置。
两点x与y之间的理论误差协方差Cε(x,y)以允许构造所述先验模型的初始kriging协方差
Figure C0010682100065
的形式出现,该协方差通常是各向同性的,并且依赖于距离 再由依赖于距离 和所考虑点x位置的非平稳项 来修正。在远离钻井处,以初始协方差
Figure C0010682100069
为主,而随着靠近某一钻井时,第二项变得越来越重要。
以下以三口竖井的实际场为例子,描述这种性态。对于储层的分层单元,沿基部的平行表面,借助一普通的指数模型(相关长度为750米,阻抗标准偏差为1122g/cm3.m/s),对阻抗作kriging化处理。如图1A和1B所示,为两个距离矢量计算了相关误差的协方差。
本方法包括选择与包含变换过程中的可用数据定量兼容的变换参数。最简单的途径无需进行变换算法修正,而是计算用于调整一平稳指数协方差(其具有专家已知的类型)的平均误差协方差 C ‾ ϵ = ∫ ∫ xy Cϵ , 以自动获取平均变换参数 λ = λ ^ σ = σ ^ .
另一种方式是通过对位置x计算合适的校正项 (该校正项必需加入所述平稳项
Figure C00106821000614
),来完成对该点的局部调整,并且借助平稳指数协方差来逼近所述局部协方差,从而确定局部变换参数λ=λx和σ=σx
因此,本方法容易使解释者采用kriging误差的空间性态,来调整分配给地质项Fg的权重。
在上述实例中,本方法用于建模与传播的波(弹性波、电磁波等)有关的阻抗形式。显然本方法也可以用于建模其他形式的物理量,例如孔隙度、渗透率、饱和度等或与钻井测试有关的量。广义而言,本方法可以用于专家熟知的贝叶斯型变换模型。

Claims (3)

1.一种用于获得代表一分层多相介质的物理量的优化模型的方法,所述方法包含以下步骤:
通过在所述介质的一定数量的参考点上进行测量、记录或观测,获得已知数据,用kriging方法从所述获得已知数据中构造一先验模型,其中在沿分层方向的所有点上,所述先验模型中物理量值的不确定性与所述介质中的相应值有关,它由一平稳协方差模型Cz描述,所述平稳协方差模型Cz依赖于各点之间的距离矢量
Figure C001068210002C1
通过考虑所述先验模型,以迭代方式使一代价函数最小化,来构造一个通过变换优化的模型,所述代价函数依赖于当前模型与已知数据之间的偏差,
所述方法的特征在于,根据一误差协方差模型确定变换参数(λ,σ),所述误差协方差模型是:
Cϵ ( x , y ) = Cz ( h → ) - β t ( x ) Kβ ( x + h → ) ,
这里x和y为介质距离为
Figure C001068210002C3
的任意两点,K为所述kriging矩阵,β(x)和 分别为点x和点y上的所述kriging权重,所述误差协方差模型包括对应于所述平稳协方差模型 的第一项,以及依赖于kriging矩阵和kriging权重的非平稳协方差项。
2.如权利要求1所述的方法,其特征在于,还包括下述步骤:确定平均协方差 以便定义所述变换参数(λ,σ),其中所述平均协方差
Figure C001068210002C7
是在一平稳指数协方差中调整的。
3.如权利要求1所述的方法,其特征在于,在所有点上,在一平稳指数模型中调整协方差项(Cε),以便定义所述变换参数的局部值(λx,σx)。
CNB001068210A 1999-04-16 2000-04-13 获取多相介质中物理特性的优化模型的方法 Expired - Fee Related CN1291240C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9905288A FR2792419B1 (fr) 1999-04-16 1999-04-16 Methode pour obtenir un modele optimal d'une caracteristique physique dans un milieu heterogene, tel que le sous-sol
FR99/05.288 1999-04-16

Publications (2)

Publication Number Publication Date
CN1271863A CN1271863A (zh) 2000-11-01
CN1291240C true CN1291240C (zh) 2006-12-20

Family

ID=9544886

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB001068210A Expired - Fee Related CN1291240C (zh) 1999-04-16 2000-04-13 获取多相介质中物理特性的优化模型的方法

Country Status (6)

Country Link
US (1) US6662147B1 (zh)
EP (1) EP1045259B1 (zh)
CN (1) CN1291240C (zh)
CA (1) CA2305029C (zh)
DK (1) DK1045259T3 (zh)
FR (1) FR2792419B1 (zh)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0125713D0 (en) * 2001-10-26 2001-12-19 Statoil Asa Method of combining spatial models
GB2409900B (en) 2004-01-09 2006-05-24 Statoil Asa Processing seismic data representing a physical system
WO2006016942A1 (en) * 2004-07-07 2006-02-16 Exxonmobil Upstream Research Company Predicting sand-grain composition and sand texture
BRPI0513047A (pt) * 2004-07-07 2008-04-22 Exxonmobil Upstream Res Co aplicações de rede bayesiana à geologia e à geografia
FR2873823B1 (fr) * 2004-08-02 2006-09-15 Inst Francais Du Petrole Methode pour construire un modele d'un milieu heterogene decrit par plusieurs parametres a partir de donnees exprimees dans des echelles de temps differentes
GB2435693A (en) 2006-02-09 2007-09-05 Electromagnetic Geoservices As Seabed electromagnetic surveying
GB2439378B (en) 2006-06-09 2011-03-16 Electromagnetic Geoservices As Instrument for measuring electromagnetic signals
KR101409010B1 (ko) 2006-09-28 2014-06-18 엑손모빌 업스트림 리서치 캄파니 표면 아래 영역에 대한 물리적 특성 모델을 결정하기 위해 측정된 지구물리학 데이터의 반전을 컴퓨터로 수행하는 방법 및 표면 아래 영역으로부터 탄화 수소를 생성하는 방법
GB2442749B (en) 2006-10-12 2010-05-19 Electromagnetic Geoservices As Positioning system
GB2445582A (en) 2007-01-09 2008-07-16 Statoil Asa Method for analysing data from an electromagnetic survey
CA2703588C (en) 2007-12-12 2015-12-01 Exxonmobil Upstream Research Company Method and apparatus for evaluating submarine formations
US20090164186A1 (en) * 2007-12-20 2009-06-25 Bhp Billiton Innovation Pty Ltd. Method for determining improved estimates of properties of a model
EP2260331B1 (en) 2008-03-21 2017-10-11 Exxonmobil Upstream Research Company An efficient method for inversion of geophysical data
FR2930350B1 (fr) * 2008-04-17 2011-07-15 Inst Francais Du Petrole Procede pour rechercher des hydrocarbures dans un bassin geologiquement complexe,au moyen d'une modelisation de bassin
US20100017132A1 (en) * 2008-07-18 2010-01-21 Bhp Billiton Innovation Pty Ltd Method for evaluating measured electromagnetic data relating to a subsurface region
US20100017131A1 (en) * 2008-07-18 2010-01-21 Bhp Billiton Innovation Pty Ltd Method for evaluating measured electromagnetic data relating to a subsurface region
CN102112894B (zh) 2008-08-11 2015-03-25 埃克森美孚上游研究公司 用地震表面波的波形评估土壤性质
EA201270252A1 (ru) * 2009-08-07 2012-07-30 Эксонмобил Апстрим Рисерч Компани Консультативные системы и способы бурения с использованием целевых функций
US8537638B2 (en) 2010-02-10 2013-09-17 Exxonmobil Upstream Research Company Methods for subsurface parameter estimation in full wavefield inversion and reverse-time migration
US8223587B2 (en) 2010-03-29 2012-07-17 Exxonmobil Upstream Research Company Full wavefield inversion using time varying filters
US8694299B2 (en) 2010-05-07 2014-04-08 Exxonmobil Upstream Research Company Artifact reduction in iterative inversion of geophysical data
US8775142B2 (en) * 2010-05-14 2014-07-08 Conocophillips Company Stochastic downscaling algorithm and applications to geological model downscaling
US8756042B2 (en) 2010-05-19 2014-06-17 Exxonmobile Upstream Research Company Method and system for checkpointing during simulations
US8767508B2 (en) 2010-08-18 2014-07-01 Exxonmobil Upstream Research Company Using seismic P and S arrivals to determine shallow velocity structure
US8437998B2 (en) 2010-09-27 2013-05-07 Exxonmobil Upstream Research Company Hybrid method for full waveform inversion using simultaneous and sequential source method
CN103119552B (zh) 2010-09-27 2016-06-08 埃克森美孚上游研究公司 同时源编码和源分离作为全波场反演的实际解决方案
AU2011337143B2 (en) 2010-12-01 2016-09-29 Exxonmobil Upstream Research Company Simultaneous source inversion for marine streamer data with cross-correlation objective function
EP2691795A4 (en) * 2011-03-30 2015-12-09 CONVERGENCE SPEED OF COMPLETE WAVELENGTH INVERSION USING SPECTRAL SHAPING
EP2691794A4 (en) 2011-03-31 2015-12-23 Exxonmobil Upstream Res Co METHOD FOR WAVELET DETERMINATION AND MULTIPLE PRECODION IN A COMPLETE WAVY-FIELD INVERT
EP2707827B1 (en) * 2011-05-10 2020-03-11 Chevron U.S.A., Inc. System and method for characterizing reservoir formation evaluation uncertainty
ES2640824T3 (es) 2011-09-02 2017-11-06 Exxonmobil Upstream Research Company Utilización de la proyección sobre conjuntos convexos para limitar la inversión del campo de onda completa
US9176930B2 (en) 2011-11-29 2015-11-03 Exxonmobil Upstream Research Company Methods for approximating hessian times vector operation in full wavefield inversion
NO345221B1 (no) * 2012-01-13 2020-11-09 Cggveritas Services Sa Fremgangsmåte for fjerning av multipler fra gamle seismiske data
MY170622A (en) 2012-03-08 2019-08-21 Exxonmobil Upstream Res Co Orthogonal source and receiver encoding
EP2926170A4 (en) 2012-11-28 2016-07-13 Exxonmobil Upstream Res Co Q-Tomography with Seismic Reflection Data
RU2615591C1 (ru) 2013-05-24 2017-04-05 Эксонмобил Апстрим Рисерч Компани Многопараметрическая инверсия через зависящую от сдвига упругую полноволновую инверсию (fwi)
US10459117B2 (en) 2013-06-03 2019-10-29 Exxonmobil Upstream Research Company Extended subspace method for cross-talk mitigation in multi-parameter inversion
US9702998B2 (en) 2013-07-08 2017-07-11 Exxonmobil Upstream Research Company Full-wavefield inversion of primaries and multiples in marine environment
AU2014309376B2 (en) 2013-08-23 2016-11-17 Exxonmobil Upstream Research Company Simultaneous sourcing during both seismic acquisition and seismic inversion
US10036818B2 (en) 2013-09-06 2018-07-31 Exxonmobil Upstream Research Company Accelerating full wavefield inversion with nonstationary point-spread functions
US9910189B2 (en) 2014-04-09 2018-03-06 Exxonmobil Upstream Research Company Method for fast line search in frequency domain FWI
WO2015171215A1 (en) 2014-05-09 2015-11-12 Exxonmobil Upstream Research Company Efficient line search methods for multi-parameter full wavefield inversion
US10185046B2 (en) 2014-06-09 2019-01-22 Exxonmobil Upstream Research Company Method for temporal dispersion correction for seismic simulation, RTM and FWI
CA2947410A1 (en) 2014-06-17 2015-12-30 Exxonmobil Upstream Research Company Fast viscoacoustic and viscoelastic full-wavefield inversion
US10838092B2 (en) 2014-07-24 2020-11-17 Exxonmobil Upstream Research Company Estimating multiple subsurface parameters by cascaded inversion of wavefield components
US10422899B2 (en) 2014-07-30 2019-09-24 Exxonmobil Upstream Research Company Harmonic encoding for FWI
US10386511B2 (en) 2014-10-03 2019-08-20 Exxonmobil Upstream Research Company Seismic survey design using full wavefield inversion
MY182815A (en) 2014-10-20 2021-02-05 Exxonmobil Upstream Res Co Velocity tomography using property scans
EP3234659A1 (en) 2014-12-18 2017-10-25 Exxonmobil Upstream Research Company Scalable scheduling of parallel iterative seismic jobs
US10520618B2 (en) 2015-02-04 2019-12-31 ExxohnMobil Upstream Research Company Poynting vector minimal reflection boundary conditions
FR3032532B1 (fr) 2015-02-05 2020-02-28 Services Petroliers Schlumberger Derivation d'attributs sismiques a partir d'une propriete d'age geologique relatif d'un modele base sur le volume
AU2015382333B2 (en) 2015-02-13 2018-01-04 Exxonmobil Upstream Research Company Efficient and stable absorbing boundary condition in finite-difference calculations
MX2017007988A (es) 2015-02-17 2017-09-29 Exxonmobil Upstream Res Co Proceso de inversion de campo ondulatorio completo de multifase que genera un conjunto de datos libres de multiples.
SG11201708665VA (en) 2015-06-04 2017-12-28 Exxonmobil Upstream Res Co Method for generating multiple free seismic images
US10838093B2 (en) 2015-07-02 2020-11-17 Exxonmobil Upstream Research Company Krylov-space-based quasi-newton preconditioner for full-wavefield inversion
CA2998522A1 (en) 2015-10-02 2017-04-06 Exxonmobil Upstream Research Company Q-compensated full wavefield inversion
CN108139498B (zh) 2015-10-15 2019-12-03 埃克森美孚上游研究公司 具有振幅保持的fwi模型域角度叠加
US10768324B2 (en) 2016-05-19 2020-09-08 Exxonmobil Upstream Research Company Method to predict pore pressure and seal integrity using full wavefield inversion
GB2556621B (en) * 2016-09-30 2020-03-25 Equinor Energy As Improved structural modelling
CN107194054B (zh) * 2017-05-16 2019-10-11 武汉大学 一种顾及socd空间异质性的克里格插值模型构建方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2635197B1 (fr) * 1988-08-05 1990-09-28 Inst Francais Du Petrole Methode pour obtenir un modele representatif d'un milieu heterogene et notamment du sous-sol
US5321613A (en) * 1992-11-12 1994-06-14 Coleman Research Corporation Data fusion workstation
US5416750A (en) * 1994-03-25 1995-05-16 Western Atlas International, Inc. Bayesian sequential indicator simulation of lithology from seismic data
US5838634A (en) * 1996-04-04 1998-11-17 Exxon Production Research Company Method of generating 3-D geologic models incorporating geologic and geophysical constraints
FR2765692B1 (fr) * 1997-07-04 1999-09-10 Inst Francais Du Petrole Methode pour modeliser en 3d l'impedance d'un milieu heterogene
US5995906A (en) * 1997-10-03 1999-11-30 Western Atlas International, Inc. Method for reconciling data at seismic and well-log scales in 3-D earth modeling
FR2772138B1 (fr) * 1997-12-10 1999-12-31 Inst Francais Du Petrole Methode statistique multivariable pour caracteriser des images que l'on a formees d'un milieu complexe tel que le sous-sol
US6302221B1 (en) * 2000-05-31 2001-10-16 Marathon Oil Company Method for predicting quantitative values of a rock or fluid property in a reservoir using seismic data

Also Published As

Publication number Publication date
FR2792419B1 (fr) 2001-09-07
DK1045259T3 (da) 2003-10-20
FR2792419A1 (fr) 2000-10-20
US6662147B1 (en) 2003-12-09
CA2305029A1 (fr) 2000-10-16
CN1271863A (zh) 2000-11-01
CA2305029C (fr) 2008-10-21
EP1045259A1 (fr) 2000-10-18
EP1045259B1 (fr) 2003-09-17

Similar Documents

Publication Publication Date Title
CN1291240C (zh) 获取多相介质中物理特性的优化模型的方法
EP0911652B1 (en) A method for reconciling data at seismic and well-log scales in 3-D earth modelling
Shaw et al. Waveform inversion of seismic refraction data and applications to young Pacific crust
US7337069B2 (en) Method of simulating the sedimentary deposition in a basin respecting the thicknesses of the sedimentary sequences
AU782432B2 (en) Method for predicting quantitative values of a rock or fluid property in a reservoir using seismic data
US6374185B1 (en) Method for generating an estimate of lithological characteristics of a region of the earth's subsurface
US6473696B1 (en) Method and process for prediction of subsurface fluid and rock pressures in the earth
US7840394B2 (en) Method for generating a 3D earth model
RU2489735C2 (ru) Описание подземной структуры с помощью итеративного выполнения инверсии на основе функции
US5838634A (en) Method of generating 3-D geologic models incorporating geologic and geophysical constraints
CA2375495C (en) Method and apparatus for doppler smear correction in marine seismology measurements
US7400978B2 (en) Method for updating a geologic model by seismic data
EP1746443B1 (en) Method of estimating elastic parameters and rock composition of underground formations using seismic data
US7117091B2 (en) Method for simulating the deposition of a sedimentary sequence in a basin
EP2810101B1 (en) Improving efficiency of pixel-based inversion algorithms
US7280952B2 (en) Well planning using seismic coherence
WO1998036292A2 (en) Method for determining barriers to reservoir flow
CN105074505A (zh) 真岩层电阻率的确定
US7433784B2 (en) Method to determine properties of a sedimentary body from thickness and grain size distribution at a point within the body
US6073079A (en) Method of maintaining a borehole within a multidimensional target zone during drilling
MX2010006060A (es) Estimacion de parametros elasticos sub-superficiales.
EP1654565A2 (en) Seismic p-wave velocity derived from vibrator control system
Herzfeld et al. On the influence of kriging parameters on the cartographic output—a study in mapping subglacial topography
Jennings Jr How much core-sample variance should a well-log model reproduce?
CN113514904B (zh) 地层参数模型建立方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee