CN1200785C - 精密熔模铸造中使用的型芯 - Google Patents

精密熔模铸造中使用的型芯 Download PDF

Info

Publication number
CN1200785C
CN1200785C CNB021463492A CN02146349A CN1200785C CN 1200785 C CN1200785 C CN 1200785C CN B021463492 A CNB021463492 A CN B021463492A CN 02146349 A CN02146349 A CN 02146349A CN 1200785 C CN1200785 C CN 1200785C
Authority
CN
China
Prior art keywords
core
refractory metal
ceramic member
metal spare
composite core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB021463492A
Other languages
English (en)
Other versions
CN1419979A (zh
Inventor
D·M·沙阿
J·T·比尔斯
J·J·小马尔桑
S·D·穆拉伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of CN1419979A publication Critical patent/CN1419979A/zh
Application granted granted Critical
Publication of CN1200785C publication Critical patent/CN1200785C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • B22D29/001Removing cores
    • B22D29/002Removing cores by leaching, washing or dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C21/00Flasks; Accessories therefor
    • B22C21/12Accessories
    • B22C21/14Accessories for reinforcing or securing moulding materials or cores, e.g. gaggers, chaplets, pins, bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/103Multipart cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • F05D2230/211Manufacture essentially without removing material by casting by precision casting, e.g. microfusing or investment casting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明描述了一种用于熔模铸造的改进的型芯。该型芯是包括难熔金属件(200)和陶瓷件(120)的复合物。本发明提供了难熔金属件以增强型芯的机械特性,和/或使得制造的型芯具有使用其它方法不能达到的形状和几何图形。在一实施方案中,整个型芯可用难熔金属件制成。型芯也可被用于熔模铸造气轮机的超耐热合金部件。

Description

精密熔模铸造中使用的型芯
技术领域
本发明涉及一种熔模铸造型芯,更具体地说是至少部分由难熔金属制造的熔模铸造型芯。
背景技术
通常,熔模铸造是一种用于制造复杂几何形状的金属部件,特别是中空的部件,和用于制造超耐热合金气轮发动机部件。虽然本发明的是关于超耐热合金铸造的,但可以理解,本发明并没有被限制于此。
气轮发动机广泛用于飞机推进、发电和轮船推进上。在气轮发动机的所有应用中,功率是主要考虑的问题。
气轮发动机通过在较高温度工作能够获得增加的功率,然而,现有的工作温度在涡轮部分所用的超耐热合金材料已限制了机械特性。因此,通常的做法是在气轮发动机的最热部分,尤其是在涡轮部分提供空气冷却。通过较冷的空气从发动机的压缩机部分流过要冷却的涡轮部分的通道来进行冷却。可以理解的是,冷却会使相关的发动机功率损耗,因此,非常希望提供增强的特别冷却,而使从定量的冷空气中获得的冷却效果最大。
参照图1,气轮发动机10包括压缩机12、燃烧室14和涡轮16。空气18轴向地通过发动机10的12、14和16部分流过。如在现有技术中已知的,在压缩机12中压缩的空气18与在燃烧室中燃烧的燃料混合,并在涡轮16中膨胀,因此,旋转涡轮16并驱动压缩机12。
压缩机12和涡轮16分别包括旋转翼20和固定翼22。这些翼,特别是放在涡轮16中的翼,受到较大范围的温度和压力的重复热循环。为避免翼的热损坏,每个翼20都包括内冷却。
参照图2,翼20包括前缘26和从其根部30伸展到顶32的后缘28和平台34。前缘冷却通道40在翼20前缘26中形成,该翼20具有径向伸展的连接通路42-44和形成在平台34中并与通路42流体相通的前缘进口46。在将通路4与前缘排气通道52隔开的前缘通道壁50上形成的多个前缘交换孔48,使得来自通路44的冷空气能够流进前缘排气通道52。后缘冷却通道56形成在翼20的后缘28中,翼20具有径向伸展的连接通路58-60和形成在平台34中并与通路58流体相通的后缘进口62。第一组后缘交换孔66形成在第一后缘壁68,第二组后缘交换孔72形成在第二后缘壁74,以使来自通路58的冷空气能够通过中间通道78流到多个后缘槽80中。
如图3和4所示的陶瓷型芯120用在翼20的制造过程中,并定义出其中的空腔。陶瓷型芯前缘126和陶瓷型芯后缘128分别与翼20的前缘26和后缘28相对应。陶瓷型芯根部130和陶瓷型芯顶部132分别与翼20的根部30和顶部32相对应。具有通路142-144、158-160和进口146、162的陶瓷型芯通道140、156分别与翼的具有通路42-44、58-60和进口46,62的通道40、56相对应。翼的通道52和78对应陶瓷型芯中的通路152和178。型芯120的多个指状物148、166、172分别与翼20的交换孔48、66、72相对应。型芯顶部190通过指状物182-185连接到型芯通道140、156,以将型芯120稳定在顶部190。外部的陶瓷把手194装在型芯后缘128,以用于操作。型芯的延长部分196定义出翼20根部的冷却通道。中心线197-199分别径向伸展通过各排指状物148、166、172。
涡轮叶片和叶轮是需冷却的最重要部件,其它部件,如燃烧室和叶片外的空气密封也需要冷却,并且,本发明已应用在所有的冷却涡轮件,和事实上应用在所有的复杂铸件体。
现有的型芯,如图3和4所示,是用陶瓷材料制成,但该陶瓷型芯是易碎的,尤其是先前的用于制造硬件中小而复杂冷却通道的型芯。现有的型芯在制造和铸造过程中易于变形和破裂。在某些先前经验的叶片设计中,主要是因为型芯的损坏,铸件的成品率小于10%。
传统的陶瓷型芯由使用陶瓷浆料和成形模的模制工艺制造,注模法和移模法都可应用。虽然塑料,低熔点金属,和有机化合物(如尿素)也可以使用,但所使用的模型材料最普遍的还是蜡。壳模的制造是使用硅胶粘合剂将氧化铝,硅土,氧化锆和水合硅酸铝的陶瓷颗粒粘合在一起。
现简要介绍使用陶瓷型芯制造涡轮叶片的熔模铸造工艺。具有内冷却通道所需几何形状的陶瓷型芯放置金属模具中,该模具壁围绕型芯但与型芯间隔开来。该模具填满可任意使用的模型材料,如蜡。拆掉该模具,留下埋在蜡模型中的陶瓷型芯。然后,通过将模型浸入陶瓷浆料中,形成包围蜡模型的外壳模,然后在浆料上粘上较大的干陶瓷颗粒。该工序称作涂浆。之后,涂浆的蜡模型(包括型芯)被干燥,并且涂浆工序反复进行,从而提供所要求的壳模壁厚度。这样,模型被彻底干燥,并且被高温加热,从而去除蜡材料,并加固陶瓷材料。
结果是陶瓷模陶瓷型芯结合在一起定义出型腔。可以理解的是,型芯的外部定义出形成在铸件中的过道,壳模的内部定义出所制造的超耐热合金铸件的外部尺寸。型芯和壳模还定义出铸选工序所必须的但不是完工铸件一部分的铸造浇口和冒口。
在去除蜡之后,熔化的超耐热合金材料被倒进壳模和型芯组件所定义出的空腔中,并且凝固。然后,通过机械和化学方法的结合,将壳模和型芯从超耐热合金铸件中去除。
如前所述,目前使用的陶瓷型芯限制了铸件的设计,是因为它们易脆性,及因为目前不能以可接受的铸件批量生产尺寸小于约0.012-0.015英寸的型芯。
发明内容
因此,本发明的目的是一种提供熔模铸造的型芯,其具有改进的机械性能。
本发明的另一目的是提供一种型芯,其能以小于现有陶瓷型芯的厚度制造。
本发明的另一目的是提供一种耐铸造工艺过程热冲击的型芯。
本发明的另一目的是提供一种型芯,其具有陶瓷型芯不能达到的几何形状和特性。
本发明的另一目的是提供一种型芯,其使得能够快速改变复杂的设计,而无需使用昂贵的工具和工艺。
为实现上述目的和提供其它益处,根据本发明,将对型芯,包括难熔材料进行说明。
难熔材料包括钼、钽、铌、钨、及其合金。对于本发明之目的,“耐热合金”也可被理解为包括基于上述难熔金属的金属间化合物。根据本发明的实施方案,这些难熔金属丝埋在陶瓷型芯中,以改进机械性能。
根据本发明另一实施方案,陶瓷型芯可绕已先被切好并有至少与所要型芯几何形状相符的难熔材料板材制成。
根据本发明另一实施方案,金属丝和金属片可形成型芯的一部分,并在铸造过程中暴露于熔化的金属中。
根据本发明另一实施方案,耐热金属型芯部件可涂上一层或多层保护材料,以防止在铸造过程中耐热组分与熔化金属互相影响。
根据本发明另一实施方案,熔模铸造型芯可以用多个陶瓷和耐热金属部件制造。
本发明可以结合下述附图及下述详细说明加以理解。
附图说明
图1是气轮发动机的简化分离图;
图2是图1气轮发动机翼的放大剖面图;
图3是陶瓷型芯的视图,陶瓷型芯定义出根据本发明制造图2的翼的冷却通道;
图4是图3中沿4-4方向剖开的陶瓷型芯的剖面图;
图5示出沿4-4方向剖开的陶瓷型芯的剖面图,示出本发明的实施方案;
图6示出机械连接示意图;
图7示出形成回旋冷却通道的耐热金属型芯的具体结构。
具体实施方式
如前所述,目前传统的陶瓷型芯是在先进复杂的超耐热合金设计件方面的限制因素,因为它们对铸造设计在尺寸上加以限制。图4示出本发明不同的实施方案。图5如图4中带有不同示例性的难熔金属件的剖面图。
现参照示出本发明实施方案的图5,一个或多个难熔金属线200可被埋在陶瓷型芯中,以提供强度,以及抗破裂性和抗弯曲性。虽然示出横截面为圆形,但也可使用其它横截面的线。
线202也可相邻于型芯120的表面陶瓷,并构成型芯表面的轮廓。
也可利用难熔金属片件。难熔金属片件204可位于型芯件的表面,或者可将成形难熔板材件206成形,以形成件型芯件的倒角和角部;类似地,难熔金属件208可形成陶瓷件型芯件的三个边和两个角。难熔板材金属件210可大部分位于件型芯件中,从一个表面伸展到另一表面,或者难熔件型芯件212可完全位于型芯件中。
后缘128或型芯120中的任何一个或多个型芯件,可完全由难熔金属片制造,以提供较薄的型芯件,其具有比用陶瓷生产更可用的特性。
型芯件或整个型芯也可用多种形状的难熔金属片216构成,该金属片216用包括电阻焊接、TIG焊接、铜焊和扩散粘结的各种方法连接。
上述实施方案仅是示例性的。型芯设计者在型芯的设计中可使用这些实施方案中的任何一个或多个,在考虑具体的型芯设计时使用它们。
图6示出如何用难熔金属薄片后缘芯部件制造全部熔模铸造型芯的一部分。通过带有突起的区域224或凹入的槽226的难熔金属部分,其中该槽226将浆料注入该突起部分周围,和/或将浆料注入到槽中,而将薄的难熔金属件220加装到陶瓷部分222上,从而在陶瓷件和难熔金属件之间提供机械锁。
图7示出如何使用难熔金属型芯件230在翼壁中制造小直径冷却孔。图7中,难熔件230在型芯232和壳234之间延伸。难熔件220在涡轮部分的壁上形成弯曲的冷却通道,该冷却通道的形成是使用传统型芯技术不能制造。
可从市场购得的Mo、Cb、Ta和W难熔合金具有标准形状,如线材和片材,它们按需要被切割以制造型芯,使用的工艺如激光切割、剪切、钻孔和照相刻蚀。切割的材料能通过弯曲或扭曲变形。标准形状能被起皱纹或起波纹,从而产生促使气流涡旋的通道。在片材上可冲出孔,从而在通道中产生柱或转动叶片。
难熔金属一般在高温下易于氧化,并且还会有些溶解在熔化的超耐热合金中。因此,难熔金属型芯需要有保护涂层,以防止氧化和被熔化金属侵蚀。难熔金属型芯件可被涂上一层或多层薄的连续附着的陶瓷层用于保护。适合的陶瓷材料包括硅土、氧化铝、氧化锆、氧化铬、多铝红柱石和二氧化铪材料。优选地,难熔金属和陶瓷的热膨胀系数(CTE)相同。陶瓷层可通过CVD、PVD、电离子透入法和溶解凝胶技术涂覆。
可以使用多层不同陶瓷层。单层一般为0.1到1密耳(mil)厚。
Pt,其它贵金属,Cr和Al的金属层可用在难熔金属件上以防止氧化,并与陶瓷涂层一起防止熔化金属的侵蚀。
可优选难熔金属合金与金属间化合物如Mo合金和MoSi2,其分别形成保护SiO2层。这些材料使非活性氧化物,如氧化铝,能够很好地附着。可以理解的是,硅土虽然是氧化物但在镍基合金存在的情况下却非常活跃,并且必须涂有其它非活性氧化物薄层。然而,同时被涂的硅土容易与其它氧化物如氧化铝扩散结合,形成多铝红柱石。
根据本发明之目的,将包括固溶增强剂,沉淀强化剂和分散强化剂的金属归类为合金。
Mo合金包括TZM(0.5%Ti,0.08%Zr,0.04%C,其余为Mo),和包括含有按重量百分比为38%的Re(W-38%Re)的W镧钼合金。
上述合金仅是举例,并不打算用来限制其范围。
进行完铸造工序之后,壳和型芯被去除。壳是在外部,并且可用机械方法去除,以从铸件上清除型芯,必要时随后可以采用通常是是沉浸在苛性碱溶液中的化学方法。
现有技术中,陶瓷型芯通常是使用苛性碱溶液进行清除,经常在高温和高压锅的压力下进行。
对于本发明型芯部分是陶瓷的陶瓷型芯来说,可以使用相同的苛性碱溶液型芯去除技术。
本发明型芯的难熔金属部分可用酸处理从超耐热合金铸件去除。例如,为从镍超耐热合金去除Mo型芯,可使用温度60-100℃的40份HNO330份H2SO4,其余为H2O。
对于截面尺寸较大的难熔金属型芯,可以使用热氧化去除形成不稳定氧化物的Mo。在小截面的Mo型芯中,我们发现热氧化法无效。
如前所述,基于金属Mo,Nb,W和Te及其合金的型芯,以及基于这些金属的金属间的化合物是优选的。

Claims (15)

1.一种复合型芯,其使用在熔模铸造过程中以在熔模铸件中产生内部通道,其特征在于,包括:
陶瓷件(120),和
附于所述陶瓷件的难熔金属件(200)。
2.如权利要求1所述的复合型芯,其特征在于,所述陶瓷件(120)是氧化物陶瓷。
3.如权利要求1所述的复合型芯,其特征在于,所述难熔金属件(200)涂有至少一层的防氧化涂层。
4.如权利要求1所述的复合型芯,其特征在于,所述难熔金属件至少包括一根线(200)。
5.如权利要求1所述的复合型芯,其特征在于,所述难熔金属件至少包括一片材(204)。
6.如权利要求1所述的复合型芯,其特征在于,所述难熔金属件被嵌在所述陶瓷件(120)中。
7.如权利要求1所述的复合型芯,其特征在于,所述难熔金属件(200)固定到所述陶瓷件(120)的表面。
8.如权利要求7所述的复合型芯,其特征在于,所述固定是机械固定。
9.如权利要求7所述的复合型芯,其特征在于,所述固定是化学粘接。
10.一种在熔模铸造生产中使用的铸模-型芯组件,其带有内通道,其特征在于,包括:
a)复合型芯组件,包括
    a)陶瓷件(120);
    b)难熔金属件(200),固定到所述陶瓷件的表面,陶瓷件和难熔金属件结合的外轮廓基本对应于所需要的预定内通道及浇口和进料件的轮廓;
    c)陶瓷壳模,其围绕所述型芯并且与所述型芯隔开以定义出一空腔;和
    d)在所述壳模中用于将熔化的金属填满所述空腔的装置。
11.一种铸件,由铸造超耐热合金体构成,该合金体包含置于其内的复合型芯,所述复合型芯包括:
a)陶瓷件;和
b)难熔金属件,固定到所述陶瓷件,结合的陶瓷件的外轮廓基本对应于所要求的预定内通道及浇口和冒口的轮廓。
12.一种复合型芯,用于使用在超耐热合金的熔模铸造中,包括至少一个陶瓷件(120),和至少一个难熔金属件(200),所述型芯至少有一个件的尺寸小于约0.15英寸。
13.一种铸造的超耐热合金制品,带有尺寸小于约0.012英寸的内通道,该内通道是由难熔金属件形成。
14.一种生产超耐热合金熔模铸造的型芯,包括形成所述型芯的后缘(128)的难熔金属件。
15、一种型芯和壳组件,用于使用在生产超耐热合金熔模铸造中,包括至少一个固定到所述型芯(232)的陶瓷件表面和所述壳组件(234)上的难熔金属件(230)。
CNB021463492A 2001-10-24 2002-10-24 精密熔模铸造中使用的型芯 Expired - Fee Related CN1200785C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/001,780 US6637500B2 (en) 2001-10-24 2001-10-24 Cores for use in precision investment casting
US10/001,780 2001-10-24

Publications (2)

Publication Number Publication Date
CN1419979A CN1419979A (zh) 2003-05-28
CN1200785C true CN1200785C (zh) 2005-05-11

Family

ID=21697804

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021463492A Expired - Fee Related CN1200785C (zh) 2001-10-24 2002-10-24 精密熔模铸造中使用的型芯

Country Status (11)

Country Link
US (2) US6637500B2 (zh)
EP (2) EP1834717B1 (zh)
JP (2) JP4137593B2 (zh)
KR (1) KR100558799B1 (zh)
CN (1) CN1200785C (zh)
AT (1) ATE383918T1 (zh)
CA (1) CA2408815C (zh)
DE (2) DE60224631T2 (zh)
MX (1) MXPA02010501A (zh)
RU (1) RU2240203C2 (zh)
SG (1) SG111971A1 (zh)

Families Citing this family (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040115059A1 (en) * 2002-12-12 2004-06-17 Kehl Richard Eugene Cored steam turbine bucket
US7014424B2 (en) * 2003-04-08 2006-03-21 United Technologies Corporation Turbine element
US6913064B2 (en) 2003-10-15 2005-07-05 United Technologies Corporation Refractory metal core
US6893210B2 (en) * 2003-10-15 2005-05-17 General Electric Company Internal core profile for the airfoil of a turbine bucket
US7575039B2 (en) 2003-10-15 2009-08-18 United Technologies Corporation Refractory metal core coatings
US20050087319A1 (en) * 2003-10-16 2005-04-28 Beals James T. Refractory metal core wall thickness control
US6929054B2 (en) 2003-12-19 2005-08-16 United Technologies Corporation Investment casting cores
US6966756B2 (en) * 2004-01-09 2005-11-22 General Electric Company Turbine bucket cooling passages and internal core for producing the passages
US7216694B2 (en) 2004-01-23 2007-05-15 United Technologies Corporation Apparatus and method for reducing operating stress in a turbine blade and the like
US6951239B1 (en) * 2004-04-15 2005-10-04 United Technologies Corporation Methods for manufacturing investment casting shells
US7302990B2 (en) * 2004-05-06 2007-12-04 General Electric Company Method of forming concavities in the surface of a metal component, and related processes and articles
US7216689B2 (en) * 2004-06-14 2007-05-15 United Technologies Corporation Investment casting
US7172012B1 (en) 2004-07-14 2007-02-06 United Technologies Corporation Investment casting
US7144220B2 (en) * 2004-07-30 2006-12-05 United Technologies Corporation Investment casting
US7278826B2 (en) * 2004-08-18 2007-10-09 Pratt & Whitney Canada Corp. Airfoil cooling passage trailing edge flow restriction
US7108045B2 (en) * 2004-09-09 2006-09-19 United Technologies Corporation Composite core for use in precision investment casting
US7207373B2 (en) * 2004-10-26 2007-04-24 United Technologies Corporation Non-oxidizable coating
US7207374B2 (en) * 2004-10-26 2007-04-24 United Technologies Corporation Non-oxidizable coating
US7134475B2 (en) * 2004-10-29 2006-11-14 United Technologies Corporation Investment casting cores and methods
EP1674174B1 (de) * 2004-12-27 2009-02-11 Siemens Aktiengesellschaft Verfahren zur Herstellung einer Gussform
US8137611B2 (en) * 2005-03-17 2012-03-20 Siemens Energy, Inc. Processing method for solid core ceramic matrix composite airfoil
US7438527B2 (en) 2005-04-22 2008-10-21 United Technologies Corporation Airfoil trailing edge cooling
US7393183B2 (en) * 2005-06-17 2008-07-01 Siemens Power Generation, Inc. Trailing edge attachment for composite airfoil
FR2889088B1 (fr) * 2005-07-29 2008-08-22 Snecma Noyau pour aubes de turbomachine
US7306026B2 (en) * 2005-09-01 2007-12-11 United Technologies Corporation Cooled turbine airfoils and methods of manufacture
US7185695B1 (en) * 2005-09-01 2007-03-06 United Technologies Corporation Investment casting pattern manufacture
US7240718B2 (en) * 2005-09-13 2007-07-10 United Technologies Corporation Method for casting core removal
US7334625B2 (en) * 2005-09-19 2008-02-26 United Technologies Corporation Manufacture of casting cores
US20070068649A1 (en) * 2005-09-28 2007-03-29 Verner Carl R Methods and materials for attaching ceramic and refractory metal casting cores
US7243700B2 (en) * 2005-10-27 2007-07-17 United Technologies Corporation Method for casting core removal
US7744347B2 (en) * 2005-11-08 2010-06-29 United Technologies Corporation Peripheral microcircuit serpentine cooling for turbine airfoils
US20070116972A1 (en) * 2005-11-21 2007-05-24 United Technologies Corporation Barrier coating system for refractory metal core
US7413403B2 (en) * 2005-12-22 2008-08-19 United Technologies Corporation Turbine blade tip cooling
US8177506B2 (en) * 2006-01-25 2012-05-15 United Technologies Corporation Microcircuit cooling with an aspect ratio of unity
US7802613B2 (en) * 2006-01-30 2010-09-28 United Technologies Corporation Metallic coated cores to facilitate thin wall casting
US7413406B2 (en) 2006-02-15 2008-08-19 United Technologies Corporation Turbine blade with radial cooling channels
US20070221359A1 (en) 2006-03-21 2007-09-27 United Technologies Corporation Methods and materials for attaching casting cores
US7861766B2 (en) * 2006-04-10 2011-01-04 United Technologies Corporation Method for firing a ceramic and refractory metal casting core
FR2900850B1 (fr) * 2006-05-10 2009-02-06 Snecma Sa Procede de fabrication de noyaux ceramiques de fonderie pour aubes de turbomachine
US7757745B2 (en) * 2006-05-12 2010-07-20 United Technologies Corporation Contoured metallic casting core
US7686065B2 (en) * 2006-05-15 2010-03-30 United Technologies Corporation Investment casting core assembly
US20080031739A1 (en) * 2006-08-01 2008-02-07 United Technologies Corporation Airfoil with customized convective cooling
US7690894B1 (en) 2006-09-25 2010-04-06 Florida Turbine Technologies, Inc. Ceramic core assembly for serpentine flow circuit in a turbine blade
US7753104B2 (en) 2006-10-18 2010-07-13 United Technologies Corporation Investment casting cores and methods
US20080110024A1 (en) * 2006-11-14 2008-05-15 Reilly P Brennan Airfoil casting methods
US7938168B2 (en) * 2006-12-06 2011-05-10 General Electric Company Ceramic cores, methods of manufacture thereof and articles manufactured from the same
US7610946B2 (en) * 2007-01-05 2009-11-03 Honeywell International Inc. Cooled turbine blade cast tip recess
US7780414B1 (en) 2007-01-17 2010-08-24 Florida Turbine Technologies, Inc. Turbine blade with multiple metering trailing edge cooling holes
US7866370B2 (en) * 2007-01-30 2011-01-11 United Technologies Corporation Blades, casting cores, and methods
US7980819B2 (en) * 2007-03-14 2011-07-19 United Technologies Corporation Cast features for a turbine engine airfoil
US7779892B2 (en) * 2007-05-09 2010-08-24 United Technologies Corporation Investment casting cores and methods
US8066052B2 (en) * 2007-06-07 2011-11-29 United Technologies Corporation Cooled wall thickness control
US20090000754A1 (en) 2007-06-27 2009-01-01 United Technologies Corporation Investment casting cores and methods
US7845907B2 (en) * 2007-07-23 2010-12-07 United Technologies Corporation Blade cooling passage for a turbine engine
US7905273B2 (en) * 2007-09-05 2011-03-15 Pcc Airfoils, Inc. Method of forming a cast metal article
US8083511B2 (en) * 2007-12-05 2011-12-27 United Technologies Corp. Systems and methods involving pattern molds
US20090197075A1 (en) * 2008-02-01 2009-08-06 United Technologies Corporation Coatings and coating processes for molybdenum substrates
US7882885B2 (en) * 2008-02-18 2011-02-08 United Technologies Corporation Systems and methods for reducing the potential for riser backfilling during investment casting
US7942188B2 (en) * 2008-03-12 2011-05-17 Vent-Tek Designs, Llc Refractory metal core
JP5254675B2 (ja) * 2008-06-16 2013-08-07 三菱重工業株式会社 タービン翼製造用中子およびタービン翼の製造方法
US9174271B2 (en) * 2008-07-02 2015-11-03 United Technologies Corporation Casting system for investment casting process
US8317461B2 (en) * 2008-08-27 2012-11-27 United Technologies Corporation Gas turbine engine component having dual flow passage cooling chamber formed by single core
US8100165B2 (en) * 2008-11-17 2012-01-24 United Technologies Corporation Investment casting cores and methods
US8137068B2 (en) 2008-11-21 2012-03-20 United Technologies Corporation Castings, casting cores, and methods
US8113780B2 (en) * 2008-11-21 2012-02-14 United Technologies Corporation Castings, casting cores, and methods
US8171978B2 (en) 2008-11-21 2012-05-08 United Technologies Corporation Castings, casting cores, and methods
US8313301B2 (en) * 2009-01-30 2012-11-20 United Technologies Corporation Cooled turbine blade shroud
EP2216112A1 (de) * 2009-02-10 2010-08-11 Siemens Aktiengesellschaft Nickel-Basis-Gussbauteil mit einem Ausgleichskörper und Verfahren zum Herstellen des Nickel-Basis-Gussbauteils
US8240999B2 (en) * 2009-03-31 2012-08-14 United Technologies Corporation Internally supported airfoil and method for internally supporting a hollow airfoil during manufacturing
US20110135446A1 (en) * 2009-12-04 2011-06-09 United Technologies Corporation Castings, Casting Cores, and Methods
US20110132562A1 (en) * 2009-12-08 2011-06-09 Merrill Gary B Waxless precision casting process
GB0921818D0 (en) * 2009-12-15 2010-01-27 Rolls Royce Plc Casting of internal features within a product (
US20110182726A1 (en) * 2010-01-25 2011-07-28 United Technologies Corporation As-cast shroud slots with pre-swirled leakage
US20110204205A1 (en) * 2010-02-25 2011-08-25 Ahmed Kamel Casting core for turbine engine components and method of making the same
US20110315336A1 (en) 2010-06-25 2011-12-29 United Technologies Corporation Contoured Metallic Casting Core
US8807198B2 (en) 2010-11-05 2014-08-19 United Technologies Corporation Die casting system and method utilizing sacrificial core
EP2463044A1 (de) * 2010-12-09 2012-06-13 Siemens Aktiengesellschaft Modularer keramischer Gusskern und Gussverfahren
KR101251475B1 (ko) 2010-12-16 2013-04-05 한국생산기술연구원 세라믹 재질의 인서트를 사용한 주조용 쉘 중자 및 그 제작 방법
US8251123B2 (en) 2010-12-30 2012-08-28 United Technologies Corporation Casting core assembly methods
US8302668B1 (en) 2011-06-08 2012-11-06 United Technologies Corporation Hybrid core assembly for a casting process
CN102489668A (zh) * 2011-12-06 2012-06-13 辽宁速航特铸材料有限公司 一种通过预埋耐火绳解决陶瓷型芯开裂的方法
FR2984880B1 (fr) * 2011-12-23 2014-11-21 Snecma Procede de fabrication d'un noyau ceramique pour aube mobile, noyau ceramique, aube mobile
US9079803B2 (en) 2012-04-05 2015-07-14 United Technologies Corporation Additive manufacturing hybrid core
FR2990367B1 (fr) * 2012-05-11 2014-05-16 Snecma Outillage de fabrication d'un noyau de fonderie pour une aube de turbomachine
US20130340966A1 (en) 2012-06-21 2013-12-26 United Technologies Corporation Blade outer air seal hybrid casting core
US9777582B2 (en) 2012-07-03 2017-10-03 United Technologies Corporation Tip leakage flow directionality control
US9957817B2 (en) 2012-07-03 2018-05-01 United Technologies Corporation Tip leakage flow directionality control
US9314838B2 (en) * 2012-09-28 2016-04-19 Solar Turbines Incorporated Method of manufacturing a cooled turbine blade with dense cooling fin array
US20140102656A1 (en) 2012-10-12 2014-04-17 United Technologies Corporation Casting Cores and Manufacture Methods
US20140166229A1 (en) * 2012-12-19 2014-06-19 United Technologies Corporation Minimization of Re-Crystallization in Single Crystal Castings
US20140182809A1 (en) * 2012-12-28 2014-07-03 United Technologies Corporation Mullite-containing investment casting core
CN103056313A (zh) * 2013-01-05 2013-04-24 沈阳黎明航空发动机(集团)有限责任公司 一种用金属芯撑增加单晶叶片型芯强度的方法
US9551228B2 (en) 2013-01-09 2017-01-24 United Technologies Corporation Airfoil and method of making
US9835035B2 (en) * 2013-03-12 2017-12-05 Howmet Corporation Cast-in cooling features especially for turbine airfoils
CN103240391B (zh) * 2013-04-25 2015-05-27 西安西工大超晶科技发展有限责任公司 熔模铸造用金属芯的制备方法和基于该金属芯的铝合金铸件的熔模精密铸造方法
CN105873694B (zh) * 2013-08-23 2018-05-15 西门子能源公司 带有高分解度区域的涡轮机部件铸造芯
US9987679B2 (en) 2013-10-07 2018-06-05 United Technologies Corporation Rapid tooling insert manufacture
EP3071350B1 (en) 2013-11-18 2018-12-05 United Technologies Corporation Coated casting cores and manufacture methods
CN104647586B (zh) * 2013-11-19 2017-09-22 中国科学院金属研究所 一种复杂结构单晶空心叶片用复合陶瓷型芯的制备方法
WO2015094531A1 (en) * 2013-12-20 2015-06-25 United Technologies Corporation Gas turbine engine component cooling cavity with vortex promoting features
US10329916B2 (en) 2014-05-01 2019-06-25 United Technologies Corporation Splayed tip features for gas turbine engine airfoil
CN104014737B (zh) * 2014-05-19 2016-11-02 沈阳工业大学 一种复杂内嵌空腔结构陶瓷型芯的制备工艺
GB201411332D0 (en) * 2014-06-26 2014-08-13 Rolls Royce Plc Core positioning
FR3030333B1 (fr) * 2014-12-17 2017-01-20 Snecma Procede de fabrication d'une aube de turbomachine comportant un sommet pourvu d'une baignoire de type complexe
CN104475684A (zh) * 2015-01-08 2015-04-01 广西玉柴机器股份有限公司 复杂壳体零件的铸造工艺
FR3034128B1 (fr) * 2015-03-23 2017-04-14 Snecma Noyau ceramique pour aube de turbine multi-cavites
CN105127373B (zh) * 2015-09-10 2017-06-23 上海大学 一种双层壁空心叶片用空心陶瓷型芯的制备方法
US9845728B2 (en) 2015-10-15 2017-12-19 Rohr, Inc. Forming a nacelle inlet for a turbine engine propulsion system
US9968991B2 (en) 2015-12-17 2018-05-15 General Electric Company Method and assembly for forming components having internal passages using a lattice structure
US10137499B2 (en) 2015-12-17 2018-11-27 General Electric Company Method and assembly for forming components having an internal passage defined therein
US10046389B2 (en) 2015-12-17 2018-08-14 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US9579714B1 (en) 2015-12-17 2017-02-28 General Electric Company Method and assembly for forming components having internal passages using a lattice structure
US10099284B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having a catalyzed internal passage defined therein
US10099276B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having an internal passage defined therein
US10118217B2 (en) 2015-12-17 2018-11-06 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10099283B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having an internal passage defined therein
US9987677B2 (en) 2015-12-17 2018-06-05 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10150158B2 (en) 2015-12-17 2018-12-11 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
FR3047767B1 (fr) * 2016-02-12 2019-05-31 Safran Procede de formation de trous de depoussierage pour aube de turbine et noyau ceramique associe
US20170246678A1 (en) * 2016-02-29 2017-08-31 General Electric Company Casting with first metal components and second metal components
US20170246679A1 (en) 2016-02-29 2017-08-31 General Electric Company Casting with graded core components
US20170246677A1 (en) * 2016-02-29 2017-08-31 General Electric Company Casting with metal components and metal skin layers
US10335853B2 (en) 2016-04-27 2019-07-02 General Electric Company Method and assembly for forming components using a jacketed core
US10286450B2 (en) 2016-04-27 2019-05-14 General Electric Company Method and assembly for forming components using a jacketed core
US10458259B2 (en) 2016-05-12 2019-10-29 General Electric Company Engine component wall with a cooling circuit
KR102209771B1 (ko) * 2016-05-20 2021-01-29 한화에어로스페이스 주식회사 터빈 블레이드 주조용 코어, 그 제조방법 및 이를 이용한 터빈 블레이드
US10508551B2 (en) 2016-08-16 2019-12-17 General Electric Company Engine component with porous trench
US10612389B2 (en) 2016-08-16 2020-04-07 General Electric Company Engine component with porous section
US10767489B2 (en) 2016-08-16 2020-09-08 General Electric Company Component for a turbine engine with a hole
US10766065B2 (en) 2016-08-18 2020-09-08 General Electric Company Method and assembly for a multiple component core assembly
US20180161852A1 (en) * 2016-12-13 2018-06-14 General Electric Company Integrated casting core-shell structure with printed tubes for making cast component
GB201701365D0 (en) * 2017-01-27 2017-03-15 Rolls Royce Plc A ceramic core for an investment casting process
US10556269B1 (en) 2017-03-29 2020-02-11 United Technologies Corporation Apparatus for and method of making multi-walled passages in components
US10596621B1 (en) 2017-03-29 2020-03-24 United Technologies Corporation Method of making complex internal passages in turbine airfoils
US10695826B2 (en) * 2017-07-17 2020-06-30 Raytheon Technologies Corporation Apparatus and method for investment casting core manufacture
FR3072415B1 (fr) 2017-10-17 2020-11-06 Safran Aircraft Engines Aube de turbine creuse a prelevement d'air de refroidissement reduit
FR3080051B1 (fr) * 2018-04-13 2022-04-08 Safran Noyau pour la fonderie d'une piece aeronautique
WO2019245563A1 (en) * 2018-06-21 2019-12-26 Florida Turbine Technologies, Inc. Process for refining features in an additive manufactured part and manufactured part with refined features
US11433990B2 (en) 2018-07-09 2022-09-06 Rohr, Inc. Active laminar flow control system with composite panel
US11015457B2 (en) 2018-10-01 2021-05-25 Raytheon Technologies Corporation Multi-walled airfoil core
NL2022372B1 (en) 2018-12-17 2020-07-03 What The Future Venture Capital Wtfvc B V Process for producing a cured 3d product
US11813665B2 (en) * 2020-09-14 2023-11-14 General Electric Company Methods for casting a component having a readily removable casting core
US11220914B1 (en) * 2020-09-23 2022-01-11 General Electric Company Cast component including passage having surface anti-freckling element in turn portion thereof, and related removable core and method
CN112676534A (zh) * 2020-12-09 2021-04-20 航天海鹰(哈尔滨)钛业有限公司 一种利用金属型芯生产小尺寸复杂内腔钛合金铸件的工艺方法
CN112916811B (zh) * 2021-01-22 2023-05-16 成都航宇超合金技术有限公司 带气膜孔的空心涡轮叶片的铸造方法
US11440146B1 (en) * 2021-04-22 2022-09-13 Raytheon Technologies Corporation Mini-core surface bonding
CN115108818B (zh) * 2022-07-21 2024-03-19 中国联合重型燃气轮机技术有限公司 一种低收缩低挠度硅基陶瓷型芯的原料及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3957104A (en) * 1974-02-27 1976-05-18 The United States Of America As Represented By The Administrator Of The United States National Aeronautics And Space Administration Method of making an apertured casting
IT1096996B (it) * 1977-07-22 1985-08-26 Rolls Royce Metodo per la fabbricazione di una pala o lama per motori a turbina a gas
CH640441A5 (de) * 1979-09-10 1984-01-13 Hans Schneider Verfahren zur herstellung von gussstuecken durch praezisionsgiessen.
US4487246A (en) * 1982-04-12 1984-12-11 Howmet Turbine Components Corporation System for locating cores in casting molds
US4596281A (en) * 1982-09-02 1986-06-24 Trw Inc. Mold core and method of forming internal passages in an airfoil
JPS62173053A (ja) * 1986-01-27 1987-07-29 M C L:Kk 中空鋳物の製造方法
JPH0698459B2 (ja) 1986-08-06 1994-12-07 マツダ株式会社 圧力鋳造用中子およびその製造法
GB2205261B (en) * 1987-06-03 1990-11-14 Rolls Royce Plc Method of manufacture and article manufactured thereby
GB9120161D0 (en) 1991-09-20 1991-11-06 Johnson Matthey Plc New pinning wire products
US5394932A (en) 1992-01-17 1995-03-07 Howmet Corporation Multiple part cores for investment casting
US5295530A (en) * 1992-02-18 1994-03-22 General Motors Corporation Single-cast, high-temperature, thin wall structures and methods of making the same
US5599166A (en) 1994-11-01 1997-02-04 United Technologies Corporation Core for fabrication of gas turbine engine airfoils
US5947181A (en) * 1996-07-10 1999-09-07 General Electric Co. Composite, internal reinforced ceramic cores and related methods
JPH1052736A (ja) * 1996-08-09 1998-02-24 Honda Motor Co Ltd ロストワックス法による中空鋳物の製造方法
DE19821770C1 (de) * 1998-05-14 1999-04-15 Siemens Ag Verfahren und Vorrichtung zur Herstellung eines metallischen Hohlkörpers

Also Published As

Publication number Publication date
DE60239112D1 (de) 2011-03-17
EP1306147B1 (en) 2008-01-16
JP4137593B2 (ja) 2008-08-20
DE60224631D1 (de) 2008-03-06
EP1834717A2 (en) 2007-09-19
US6637500B2 (en) 2003-10-28
US20030075300A1 (en) 2003-04-24
JP2003181599A (ja) 2003-07-02
ATE383918T1 (de) 2008-02-15
CA2408815C (en) 2008-02-12
EP1834717B1 (en) 2011-02-02
CN1419979A (zh) 2003-05-28
KR20030033942A (ko) 2003-05-01
RU2240203C2 (ru) 2004-11-20
EP1306147A1 (en) 2003-05-02
SG111971A1 (en) 2005-06-29
KR100558799B1 (ko) 2006-03-14
MXPA02010501A (es) 2004-07-30
US20040020629A1 (en) 2004-02-05
JP2006247750A (ja) 2006-09-21
DE60224631T2 (de) 2008-12-24
EP1834717A3 (en) 2008-10-01
CA2408815A1 (en) 2003-04-24

Similar Documents

Publication Publication Date Title
CN1200785C (zh) 精密熔模铸造中使用的型芯
US5599166A (en) Core for fabrication of gas turbine engine airfoils
EP1634665B1 (en) Composite core for use in precision investment casting
US7270170B2 (en) Investment casting core methods
US11014151B2 (en) Method of making airfoils
US6648596B1 (en) Turbine blade or turbine vane made of a ceramic foam joined to a metallic nonfoam, and preparation thereof
US4501053A (en) Method of making rotor blade for a rotary machine
US11014152B1 (en) Method of making complex internal passages in turbine airfoils
US6544003B1 (en) Gas turbine blisk with ceramic foam blades and its preparation
US6582812B1 (en) Article made of a ceramic foam joined to a metallic nonfoam, and its preparation
EP3693098B1 (en) Investment casting pin and method of using same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee