CN1172194C - 用于数控减影血管造影术的设备 - Google Patents

用于数控减影血管造影术的设备 Download PDF

Info

Publication number
CN1172194C
CN1172194C CNB988134489A CN98813448A CN1172194C CN 1172194 C CN1172194 C CN 1172194C CN B988134489 A CNB988134489 A CN B988134489A CN 98813448 A CN98813448 A CN 98813448A CN 1172194 C CN1172194 C CN 1172194C
Authority
CN
China
Prior art keywords
resistance
operational amplifier
equipment
input end
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB988134489A
Other languages
English (en)
Other versions
CN1284171A (zh
Inventor
���ڶ���
汉斯·于尔根·贝施
米凯尔·勒曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Elektronen Synchrotron DESY
Original Assignee
Deutsches Elektronen Synchrotron DESY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Elektronen Synchrotron DESY filed Critical Deutsches Elektronen Synchrotron DESY
Publication of CN1284171A publication Critical patent/CN1284171A/zh
Application granted granted Critical
Publication of CN1172194C publication Critical patent/CN1172194C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4064Arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam
    • A61B6/4092Arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam for producing synchrotron radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Toxicology (AREA)
  • Vascular Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明涉及一种以能量相减模式进行数控减影血管造影术的设备,该设备包括一个高灵敏度放大器和高动态模拟数字转换器,利用该设备可以以线性形式显示碘充填体中的高吸附差异。本发明可以更好地改善现有设备所得到的图象的分辨率,以便更清楚地显示冠状动脉。

Description

用于数控减影血管造影术的设备
技术领域
本发明涉及以能量相减模式进行数控减影血管造影术的设备。
背景技术
从DE3517101 C1已经了解了这种设备。为了证实对冠状动脉是否被血凝块急性阻塞的担心而使用该设备来检查心脏。为此,将碘造影剂注射到病人的手臂静脉,同时用两条线性准直的X射线束逐行地照射病人,一条X射线束具有刚好低于33KeV的碘吸附边缘的能量E1。另一条X射线束具有刚好高于碘吸附边缘的能量E2。两束X射线聚焦在病人的心脏上并撞击到心脏后面的探测器上,该探测器有两个彼此隔开一定距离平行排列的计数池,通过电荷敏感的A/D转换器将探测器的信号转换成数字信号并传送到计算机,然后按每种情况组成能量E1的图象和能量E2的图象,并用对数算法相互减去另一个能量的图象。在监视器上显示所得到的图象。
DE3901837A1公开了一种辐射探测器,该探测器能够在较短的记录次数内以高精度、宽动态范围和高灵敏度测量高射束强度的局部分布。这些应用在于例如用于快速移动部分(冠状动脉)的瞬时记录的医疗诊断。脉动的辐射源用于该探测器,在比例计数池中将属于一束脉冲的各个量子的信号相加,由此获得的每个辐射源脉冲的这些单个信号,或是已表示所需强度的信号,或是对许多辐射源脉冲用电子学方法按每个图象点相加。此外,DE3901837A1提供了这种探测器的结构。然而,该探测器的缺点在于:与常规放大器和转换器电路一起使用不能得到所需的图象分辨率。
发明内容
本发明的目的是将上述类型的设备改善到使所得到图象的分辨率更好的程度,以便尤其是可更清楚地显示冠状动脉。
该设备包括一个高灵敏度放大器和具有很高动态的模拟数字转换器,利用该设备可以以线性形式显示碘充填体中的高吸附差异。这样,尽管被碘充填的心室覆盖,该设备能够显示所有三条冠状动脉。
就此而言,它指出,由于一方面心脏不停地跳动,而另一方面造影剂进入了心室和冠状动脉,因此很难使冠状动脉成像。
因此,为实现该目的,需要以电流或电荷数字转换器的形式开发使用适当部件的电子电路,该数字转换器具有至少18比特的动态范围,以便在颜色或对比度方面以差分形式得到足够好的分辨率。
为了实现上述发明目的,本发明提供了一种能量相减模式的数控减影血管造影术设备,具有:用于产生两个单色X射线束的单色仪;具有极快射束的挡板的安全***;由液压***驱动的线扫描设备,在液压***上安装有可上下移动以便定位病人的凳子;双线探测器;用于控制***,数据捕获和图象处理的计算机***;其特征在于,双线探测器由两个局部分解的电离室形成,电离室填充有电离气体并具有特定数量的板条的阳极带;共用漂移阴极用于两个电离室;每个电离室连接到一个单独的检测电路,每个检测电路具有用于每个板条的阳极带的电子电路,阳极带在0伏和175伏之间作为信号转换器线性地工作;每个电子电路在其输入端具有一个运算放大器,向运算放大器的负输入端施加来自板条的阳极带的输入信号,而其正输入端接地;运算放大器的输出端通过第一电阻连接到晶体管的发射极,晶体管的基极位于恒压源,晶体管的集电极通过一点和第四电阻连接到模拟/数字转换器的输入端;第四电阻大于20MΩ;通过第三电阻向所述点施加正向电压;把输入信号电流最终传送到模拟/数字转换器的第二电阻位于运算放大器的输入端与所述点之间;和所有电子电路的输出被作为比特字通过总线***传送到所述计算机***。
如本发明所述的设备,其特征在于第三电阻离所述点远的一侧处在约+145V的正向电压。
如本发明所述的设备,其特征还在于作为基极电路工作的晶体管是稳压高达约200V的晶体管。
如本发明所述的设备,其特征在于恒压源向晶体管的基极施加小于-1V的正向电压。
如本发明所述的设备,其特征在于运算放大器由difet电路构成。
如本发明所述的设备,其特征在于双线探测器对两个单色X射线束中每个的能量具有336个信号引线。
附图的简要说明
下面借助附图更详细地说明本发明;其中
图1以该设备在同步加速器的X辐射束路径中的形式示出该设备的示意图;
图2以在根据图1的设备中使用的探测器的形式示出侧视图;和
图3示出图1和2的探测器中使用的电子电路的电路图。
具体实施方式
图1示出X辐射源,例如存储环可由申请人提供(例如,DORIS厂家的产品)。这样,自旋的正电子束e+通过磁极对近似地以所示的方式在所谓的摆动磁体的磁极之间在一个平面中向后和向前偏离,该磁极对相互串联,但极性相反,导致同步加速器以剧烈形式辐射。该同步加速器辐射是多色或″白色″光束7,通过准直仪和光阑***(未示出)射到单色仪1上。在DORIS产品的情况下,单色仪1距摆动磁体2约15到36m,形成辐射的源点。在其源点附近,″白色″射束7具有近似椭圆的截面,其短轴约2mm长,位于水平的长轴的长度约4mm。由于射束光阑和自然发散,在单色仪1的位置,射束7的水平宽度约为100mm,高度约为2.5mm。利用双单色仪1,形成具有一定能量的两条单色X射线束E1和E2。在其工作期间,单色X射线束E1和E2通过其路线上病人的心脏到达探测器3的输入端。在探测器3的输入端,它们具有1.5mm的间隔和通常水平宽度为120mm,并且在所有情况中高度为1.0mm。
探测器3有两个与检测电路51、52连接的电离室31、32。从探测器3的检测电路51、52输出的信号经总线***511、512传送到计算机***6,计算机***6通过在所有情况下从能量E2的第二图象减去能量E1的图象并在监视器20上显示得到的图象以自身已知的方式,例如根据DE3517101 C1来控制图象的评估。
在根据本发明的设备的工作期间,病人坐在用液压***控制方式可上下移动的凳子9上。该运动由双箭头指示。在一个实施例中,凳子9进行约40cm的向上移动,前10cm用于凳子9的加速并且病人坐在上面,接下来的20cm以50cm/秒的恒定速度在其路径上移动,最后10cm用于减速。结果是,使病人待检查的器官,例如心脏10在250毫秒的周期内移过两个单色射束E1和E2。从而连续地用射束E1和射束E2对同一人和相同的检查位置迅速成像,以在计算机***6中可很容易地对两个射束的图象作减法运算。
根据图1,仍是在两个射束E1、E2的交叉点前,因此也是在待检查的心脏10之前,在单色仪1和探测器3之间的两束X射线的射束路径中设置安全***8,该安全***具有极快射束的挡板,能够阻挡低于10毫秒的X射线束E1和E2。这种安全***在我们的同步加速器工作过程中已经采用了许多年。
凳子9也是由计算机***6控制,在图中未被单独表示。然而,控制该液压***(未示出)以便通过计算机***6升高和降低凳子9对本领域技术人员来说并不困难。
图2表示图1的探测器3的完整垂直截面,该探测器由各带有板条311和312的两个电离室31、32和共用漂移阴极313构成。
由基本上为矩形并且在一侧上具有固定法兰的外壳33封闭两个电离室31、32。约10mm高、150mm宽和约30mm长的入口通道37通过外壳33的壁,并在其自由端上装有本身已知的准直仪34,两束射束E1、E2可通过该准直仪34进入。通道37的里端由碳纤维窗口(35)封闭。
外壳33的内部是填充有如氪或氙之类的电离气体,和压力在10至20巴以下的猝熄气体,例如二氧化碳的中空空间。电离气体与猝熄气体的分压力比为90∶10。
如已提到的,电离室31或32中的每个带有相互间隔约9mm排列的玻璃纤维强化板条311、312。在板条311、312相互面对的一侧上安装有镀金的铜带作为阳极带,阳极带在射束方向延伸并排列在400μm的格栅中。在图2的右手部分,放大表示以点划循环线突出的板条311、312的部分。从该图可以看出,在装有阳极带的板条311、312之间安装着共用漂移阴极313,在从漂移阴极313到第一和第二板条311、312的空间中安装位于更靠近板条311、312的所谓的″Frisch格栅″。在一个实施例中,漂移阴极313的厚度为1.0mm,漂移阴极313与每个板条311、312之间的距离是4.0mm。然后,在距离板条311、312为1.0mm的地方各安装两个Frisch格栅,因此,在所有情况下与漂移阴极313的表面间隔3.0mm。Frisch格栅由间隔0.5mm的特种导线制成,Frisch格栅为阳极带屏蔽了在电离室中所形成的离子。
第一和第二板条311、312在射束方向伸出探测器3的外壳33,并分别在其端部连接到检测电路51、52。很明显,必须靠近探测器3的外壳33,以便封闭电离气体和猝熄气体。为此,在板条311、312之间安装一个挡块38,以气密方式与两个板条311、312相互连接,例如粘结到板条311、312。两个板条311、312也以气密方式,例如也通过粘结连接到外壳33的壁。
如已提到的,在400μm的格栅中作为镀金铜带安装在相互面对的板条311、312侧面上的阳极伸出探测器3的外壳33,特别是以约0.3mm的间隔安装并各具有约0.4mm宽度的336个平行带的形式伸出探测器3的外壳33。每个板条311、312的长度约230mm,而电离室31、32的长度约等于60mm。
在电离室31、32内部,阳极带沿约56mm的长度平行延伸,而在电离室31、32的外部,特别是探测器3的外壳33的外部,阳极带展宽到一定间隔,以使根据图3的电子电路50可连接到检测电路51和52中的每个阳极带。在一个实施例中,两个检测电路51和52因此包括2×336=672个具有图3所示结构的电子电路50。
图3示出2×336个电子电路50中的一个,电子电路的输入端IN连接到板条311或312的2×336个阳极带中的一个。电子电路50的输入端IN连到运算放大器OPA的负输入端,其正输入端接地。运算放大器OPA是Burr-Brown生产的OPA 129 UB型号。它通常以±15V工作并且是噪声非常低的运算放大器。
运算放大器OPA的输出端与晶体管T的发射极连接,具体地是通过5.1KΩ的第一电阻R1连接到其发射极。晶体管T的基极位于提供-4V正向电压的恒压源。晶体管T的集电极位于点P,P点的电压在工作期间从0至约90V。为此,晶体管T是用作基极电路的稳压晶体管。晶体管T的集电极通过点P和150KΩ的第二电阻R2耦合回到运算放大器OPA的负输入端。
把100V或更高的高正向电压施加到电子电路50的点P,具体地是通过例如43KΩ的第三电阻R3
运算放大器OPA保持其输入端的差动电压实际上为零伏,以使输入信号的电流is经电阻R2流到点P,并由此经30MΩ的第四电阻R4流到模拟数字转换器ADC。模拟数字转换器是由Burr-Brown生产的具有20比特分辨率的DDC 101 U型部件。该芯片是专为从光电二极管读取而设计的,从中读出正电荷或空穴。因此,在其单极操作中,可仅用其将正电荷信号转换成20比特的信号。在双极操作中确实也可采用芯片DDC 101 U,但这样把输出减少到19比特。在该操作中,芯片的噪声非常高以致于不能将其用于现有的成像情况。
因此,对于本申请,仅可以进行芯片DDC 101 U的单极操作,不过这就存在一个难题:即该芯片仅能处理正电荷(空穴),而只有负电荷(即电子)能从电离室31、32经阳极传送。所以,对于本发明,必须由达到运算放大器OPA的输入端的负电荷来生成正电荷,后者可以用专用的DDC 101 U的模拟-数字转换器ADC处理。因此,使专用的DDC 101 U型模拟数字转换器ADC从到达运算放大器OPA输入端的负电荷中处理正电荷对本发明来说是必需的。为此,首先需要使位于模拟数字转换器输入端的电阻R4>20MΩ,因为用小于20MΩ的电阻将使芯片DDC 101 U产生比电阻噪声大的噪声,也称为奈奎斯特噪声。然而,如果已产生了4比特的噪声,仅有剩余的16比特用于成像,这对成像来说太少了,以致不能达到所要求的图象分辨率。
然而,如果选择电阻R4大于20MΩ,在点P需要对应的更高的驱动电压,以便在约0.2毫秒内将DDC 101 U充电到20比特。例如,如果选择电阻R4为30MΩ,点P的控制电压必须能升高到90伏或更高。这样高的驱动电压可能导致运算放大器OPA损坏,因为其最大可容许20至36伏的电压。
为此,稳压晶体管T位于运算放大器OPA和点P之间的基极电路中。正如所知道的,基极电路使电压放大,将晶体管T正好控制在使第二电阻R2上的电压降确保运算放大器OPA的输入端电压差为零或为虚零的范围。这样的结果在于到达运算放大器OPA输入端的电荷也到达模拟数字转换器的输入端,特别是由于选择电阻R2是电阻R4的五倍,电荷被放大五倍。实际上,在优选实施例中,R2=150MΩ,R4=30MΩ。
根据本发明的电子电路50的要件在于包括下列措施:
1.将负电荷转换成正电荷,以便能够由芯片DDC 101 U处理。
2.为ADC芯片选择的驱动电压高达90伏或更高。
3.由基极电路将ADC的高驱动电压与运算放大器隔开。
结果是,得到了300,000∶1的信号∶噪声比,使图象对诊断医生来说足够清晰。此外,从电离室31、32提供给阳极带的信号电流位于100fA或更低的区域,也就是说,imax100×10-16 A。这些电流低到使它们对应于单个的33keV的光子。

Claims (9)

1.能量相减模式的数控减影血管造影术设备,具有:
用于产生两个单色X射线束(E1、E2)的单色仪(1);
具有极快射束的挡板的安全***(8);
由液压***驱动的线扫描设备,在液压***上安装有可上下移动以便定位病人的凳子(9);
双线探测器(3);
用于控制***,数据捕获和图象处理的计算机***(6);
其特征在于
双线探测器(3)由两个局部分解的电离室(31、32)形成,电离室填充有电离气体并具有特定数量的板条(311、312)的阳极带;
共用漂移阴极(313)用于两个电离室(31、32);
每个电离室(31、32)连接到一个单独的检测电路(51、52),每个检测电路具有用于每个板条(311、312)的阳极带的电子电路(50),阳极带在0伏和175伏之间作为信号转换器线性地工作;
每个电子电路(50)在其输入端具有一个运算放大器(OPA),向运算放大器的负输入端施加来自板条(311、312)的阳极带的输入信号,而其正输入端接地;
运算放大器(OPA)的输出端通过第一电阻(R1)连接到晶体管(T)的发射极,晶体管的基极位于恒压源(S),晶体管的集电极通过点P和第四电阻(R4)连接到模拟/数字转换器(ADC)的输入端;
第四电阻(R4)大于20MΩ:
通过第三电阻(R3)向点P施加正向电压;
把输入信号电流(is)最终传送到模拟/数字转换器(ADC)的第二电阻(R2)位于运算放大器(OPA)的输入端与点 P之间;和
所有电子电路(50)的输出被作为比特字通过总线***(511、512)传送到计算机***(6)。
2.根据权利要求1所述的设备,其特征在于模拟/数字转换器(ADC)是20比特的电荷-数字转换器。
3.根据权利要求1或2所述的设备,其特征在于第四电阻(R4)为30兆欧,第二电阻(R2)为150兆欧。
4.根据权利要求1所述的设备,其特征在于第一电阻(R1)为5.1千欧,第三电阻(R3)为43千欧。
5.根据权利要求4所述的设备,其特征在于第三电阻(R3)离点P远的一侧处在约+145V的正向电压。
6.根据权利要求1、4和5中任何一个所述的设备,其特征在于作为基极电路工作的晶体管(T)是稳压高达约200V的晶体管。
7.根据权利要求6所述的设备,其特征在于恒压源(S)向晶体管(T)的基极施加小于-1V的正向电压。
8.根据权利要求1、4和5中任何一个所述的设备,其特征在于运算放大器(OPA)由difet电路构成。
9.根据权利要求1所述的设备,其特征在于双线探测器(3)对两个单色X射线束(E1、E2)中每个的能量具有336个信号引线。
CNB988134489A 1997-12-22 1998-12-14 用于数控减影血管造影术的设备 Expired - Fee Related CN1172194C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19758363.6 1997-12-22
DE19758363A DE19758363C2 (de) 1997-12-22 1997-12-22 Anordnung zur digitalen Subtraktionsangiographie

Publications (2)

Publication Number Publication Date
CN1284171A CN1284171A (zh) 2001-02-14
CN1172194C true CN1172194C (zh) 2004-10-20

Family

ID=7853665

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB988134489A Expired - Fee Related CN1172194C (zh) 1997-12-22 1998-12-14 用于数控减影血管造影术的设备

Country Status (8)

Country Link
US (1) US6356617B1 (zh)
EP (1) EP1042689B1 (zh)
JP (1) JP3679326B2 (zh)
CN (1) CN1172194C (zh)
AT (1) ATE261132T1 (zh)
DE (2) DE19758363C2 (zh)
DK (1) DK1042689T3 (zh)
WO (1) WO1999032901A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101484073B (zh) * 2006-07-28 2011-04-13 株式会社岛津制作所 X射线诊断装置

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6990368B2 (en) * 2002-04-04 2006-01-24 Surgical Navigation Technologies, Inc. Method and apparatus for virtual digital subtraction angiography
US6922462B2 (en) * 2002-07-31 2005-07-26 Ge Medical Systems Global Technology Company, Llc Method, system and computer product for plaque characterization
US6891918B2 (en) * 2002-11-27 2005-05-10 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for acquiring perfusion data
WO2005092187A1 (en) * 2004-03-29 2005-10-06 Cmt Medical Technologies Ltd. Apparatus and method of improved angiographic imaging
US7286640B2 (en) * 2004-04-09 2007-10-23 Xradia, Inc. Dual-band detector system for x-ray imaging of biological samples
US7412024B1 (en) 2004-04-09 2008-08-12 Xradia, Inc. X-ray mammography
JP2009022450A (ja) * 2007-07-18 2009-02-05 Ge Medical Systems Global Technology Co Llc X線ct装置および画像作成方法
JP5274812B2 (ja) * 2007-11-12 2013-08-28 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置及び画像処理装置
US7686511B2 (en) * 2008-03-06 2010-03-30 Moshe Ein-Gal Angular irradiation in an upright treatment system
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US7940894B2 (en) * 2008-05-22 2011-05-10 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US9981147B2 (en) 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
WO2009142550A2 (en) 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8624528B2 (en) * 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
US8178859B2 (en) * 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US8569717B2 (en) * 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
US8129694B2 (en) * 2008-05-22 2012-03-06 Vladimir Balakin Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system
EP2283709B1 (en) * 2008-05-22 2018-07-11 Vladimir Yegorovich Balakin Charged particle cancer therapy patient positioning apparatus
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
US10029122B2 (en) 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
US9044600B2 (en) * 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
EP2283713B1 (en) * 2008-05-22 2018-03-28 Vladimir Yegorovich Balakin Multi-axis charged particle cancer therapy apparatus
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
US8373143B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
US8188688B2 (en) 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US8093564B2 (en) * 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
US8598543B2 (en) * 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
US8373146B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US20090314960A1 (en) * 2008-05-22 2009-12-24 Vladimir Balakin Patient positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8144832B2 (en) * 2008-05-22 2012-03-27 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
US8436327B2 (en) * 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
CN102172106B (zh) 2008-05-22 2015-09-02 弗拉迪米尔·叶戈罗维奇·巴拉金 带电粒子癌症疗法束路径控制方法和装置
US8896239B2 (en) * 2008-05-22 2014-11-25 Vladimir Yegorovich Balakin Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system
WO2009142546A2 (en) * 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Multi-field charged particle cancer therapy method and apparatus
US8637833B2 (en) 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
US8288742B2 (en) * 2008-05-22 2012-10-16 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US8309941B2 (en) * 2008-05-22 2012-11-13 Vladimir Balakin Charged particle cancer therapy and patient breath monitoring method and apparatus
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
US8129699B2 (en) * 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US8378311B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Synchrotron power cycling apparatus and method of use thereof
US9155911B1 (en) 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8710462B2 (en) * 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
US7939809B2 (en) * 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8368038B2 (en) * 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
US8399866B2 (en) 2008-05-22 2013-03-19 Vladimir Balakin Charged particle extraction apparatus and method of use thereof
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
US8378321B2 (en) * 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US8373145B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
US8198607B2 (en) * 2008-05-22 2012-06-12 Vladimir Balakin Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8642978B2 (en) * 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
EP2283711B1 (en) 2008-05-22 2018-07-11 Vladimir Yegorovich Balakin Charged particle beam acceleration apparatus as part of a charged particle cancer therapy system
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US8519365B2 (en) * 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
MX2010012716A (es) * 2008-05-22 2011-07-01 Vladimir Yegorovich Balakin Metodo y aparato de rayos x usados en conjunto con un sistema de terapia contra el cancer mediante particulas cargadas.
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
US8627822B2 (en) * 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
SG173879A1 (en) 2009-03-04 2011-10-28 Protom Aozt Multi-field charged particle cancer therapy method and apparatus
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
WO2013058130A1 (ja) 2011-10-19 2013-04-25 ダイキン工業株式会社 積層体
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US10037863B2 (en) 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8006216A (nl) * 1980-11-13 1982-06-01 Philips Nv Golflengtegevoelig stralingsonderzoekapparaat.
DE3517101C1 (de) * 1985-05-11 1986-10-09 Deutsches Elektronen-Synchrotron Desy, 2000 Hamburg Vorrichtung zur digitalen Subtraktions-Angiographie im Energiesubstraktions-Modus
US4780897A (en) * 1986-05-06 1988-10-25 General Electric Company Dual energy imaging with kinestatic charge detector
US4888562A (en) * 1987-09-09 1989-12-19 National Semiconductor Corporation Low noise, high speed current or voltage amplifier
DE3901837A1 (de) * 1989-01-23 1990-07-26 H J Dr Besch Bildgebender strahlendetektor mit pulsintegration
US4973846A (en) * 1989-03-10 1990-11-27 Expert Image Systems, Inc. Linear radiation detector
US5508526A (en) * 1995-02-01 1996-04-16 Keithley Instruments, Inc. Dual entrance window ion chamber for measuring X-ray exposure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101484073B (zh) * 2006-07-28 2011-04-13 株式会社岛津制作所 X射线诊断装置

Also Published As

Publication number Publication date
DE59810932D1 (de) 2004-04-08
DK1042689T3 (da) 2004-05-10
DE19758363C2 (de) 2002-04-18
EP1042689B1 (de) 2004-03-03
WO1999032901A1 (de) 1999-07-01
US6356617B1 (en) 2002-03-12
ATE261132T1 (de) 2004-03-15
EP1042689A1 (de) 2000-10-11
JP2001526921A (ja) 2001-12-25
CN1284171A (zh) 2001-02-14
DE19758363A1 (de) 1999-07-01
JP3679326B2 (ja) 2005-08-03

Similar Documents

Publication Publication Date Title
CN1172194C (zh) 用于数控减影血管造影术的设备
US7792241B2 (en) System and method of fast KVP switching for dual energy CT
CN1046033C (zh) 一种扫描物体的方法和装置
US5335255A (en) X-ray scanner with a source emitting plurality of fan beams
JPH05502610A (ja) 画像装置のダイナミックレンジを改善するための方法
CA1219086A (en) Radiation imaging apparatus
JPS62290443A (ja) 動静電荷検出装置で2種エネルギ差像を求める装置及び方法
EP0061496A1 (en) X-RAY INTENSIFIER DETECTOR SYSTEM FOR X-RAY ELECTRONIC X-RAYS.
JP2009508616A (ja) Ct画像形成システム
CN1614443A (zh) 检测器模块
Bronskill et al. Pulse-radiolysis system for the observation of short-lived transients
CA1267445A (en) Device for detecting and localizing neutral particles, and application thereof
Wagenaar et al. A computer‐controlled x‐ray imaging scanner using a kinestatic charge detector
Bateman et al. The development of the Rutherford Laboratory MWPC positron camera
Alteholz et al. A Large acceptance detector system (LADS) for studies of pion absorption
AU5909996A (en) An apparatus for scintigraphic analysis, particularly a mamm ograph, with sub-millimetric spatial resolution
JPH0747839Y2 (ja) X線発生装置
US4665539A (en) Method and apparatus for forming tomographic images
Baru et al. X-ray detectors based on multiwire proportional chambers
Carter et al. New techniques in photon counting detectors
Sturm et al. Quantitative three-dimensional dynamic imaging of structure and function of the cardiopulmonary and circulatory systems in all regions of the body
JPS62110141A (ja) 透過率の小さい物体の密度等を測定する装置
Artuso The ring imaging detector for CLEO III
JP4142767B2 (ja) 核医学診断装置
Iacobaeus et al. A high position resolution X-ray detector: an" Edge on" illuminated capillary plate combined with a gas amplification structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee