CN1171505C - 磁控管驱动电源 - Google Patents

磁控管驱动电源 Download PDF

Info

Publication number
CN1171505C
CN1171505C CNB018029264A CN01802926A CN1171505C CN 1171505 C CN1171505 C CN 1171505C CN B018029264 A CNB018029264 A CN B018029264A CN 01802926 A CN01802926 A CN 01802926A CN 1171505 C CN1171505 C CN 1171505C
Authority
CN
China
Prior art keywords
voltage
thyristor
polarity
commercial power
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018029264A
Other languages
English (en)
Other versions
CN1394459A (zh
Inventor
安井健治
北泉武
石尾嘉朗
大森英树
坂本和穗
三原诚
末永治雄
守屋英明
石崎惠美子
森川久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000293835A external-priority patent/JP3216643B1/ja
Priority claimed from JP2000293824A external-priority patent/JP4240791B2/ja
Priority claimed from JP2001068955A external-priority patent/JP3468222B2/ja
Priority claimed from JP2001069964A external-priority patent/JP3501133B2/ja
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1394459A publication Critical patent/CN1394459A/zh
Application granted granted Critical
Publication of CN1171505C publication Critical patent/CN1171505C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/681Circuits comprising an inverter, a boost transformer and a magnetron
    • H05B6/682Circuits comprising an inverter, a boost transformer and a magnetron wherein the switching control is based on measurements of electrical values of the circuit
    • H05B6/685Circuits comprising an inverter, a boost transformer and a magnetron wherein the switching control is based on measurements of electrical values of the circuit the measurements being made at the low voltage side of the circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

本发明涉及一种磁控管驱动电流,其中将可以反向导通的第一和第二半导体开关元件的串联体并联,将第一和第二电容器并联到第一和第二二极管上,将商用电流和高压变压器初级线圈的串联电路连接在第一和第二半导体开关元件的前点与第一和第二二极管的前点之间,高压变压器次级线圈的输出通过一个高压整流电路激励一个磁控管。

Description

磁控管驱动电源
[技术领域]
本发明涉及一种微波炉磁控管等为负载的磁控管的驱动电源。
[背景技术]
下面参考附图讨论相关技术的磁控管的驱动电源。图29是某一相关技术中的磁控管的驱动电源电路图。在相关技术中,磁控管的驱动电源通过二极管电桥2将商业交流电源1转换为直流电压,反向电路5通过接通和断开半导体开关元件3和4,在高压变压器6的初级线圈中产生高频电压,高压变压器6在次级线圈上激励出高频高压。该高频高压通过一个高压整流电路7被整流为直流高压,直流高压被施加到磁控管8上。磁控管8由直流高压驱动并产生2.45GHz的无线电波。
图30是相关技术中的磁控管的驱动电源的工作波形。商业电源1的AC电压V1通过二极管电桥2被整流为DC电压。电感器9和电容器10构成滤波电路;电容器10的电容值的大小使电容器能够控制反向电路5的DC电压,使反向电路5在20KHz到50KHz的范围内工作,从而使反向电路5小型化,而且对商业电源1(50Hz或60Hz)没有滤波特性。这样,电容器10的电压V10显示出简单的对商业电源1整流的全波波形,并表现出从商业电源1的0电压到最大电压的震荡脉冲波形。由于反向电路5根据电容器10的脉冲电压V10工作,因此高压变压器6初级线圈中产生的高频电压的包络波形变成V6(Lp)所示的波形,在电容器10的电压V10较低期间,同样只能产生低压。
另一方面,磁控管8的工作特性表现为非线形电压电流特性,以至于如果不在正极和负极之间施加一个预定或更高的电压,就没有正电流流动,如图31所示。因此,高压变压器6的初级线圈上产生的电压为低压期间,在次级线圈上激励的电压也同时变低,因此在施加于磁控管8上的电压V8的波形中,出现电压达不到VAK(TH)的时间周期,如图所示。在该时间周期内,磁控管8停止震荡,从而负载的磁控管8上不消耗电能,从而没有商业电源1的电流I1流过。因此,商业电源1的电流I1的波形变得更失真,该失真波形有电流为零的时间周期,如图30所示,从而引起磁控管的驱动电源的功率因数降低并且在输入电流中产生谐波电流。
为了解决上述问题,提出如图32所示的电路结构,其中为了提高输入电流的功率因数并抑制谐波,在反向电路5之前设置有源滤波电路13。有源滤波电路13形成称为递升断路器(step-up chopper)的电路并且可以基于半导体开关元件17的接通时间比控制递升电压。
下面参考附图33讨论工作原理。商业电源1的电压是如V1所示的AC电压波形。只要通过接通/断开半导体元件17,由一个二极管电桥2全波整流AC电压V1,则有源滤波电路13就可以控制电压,由此在电容器15中产生递升电压。递升电压V15根据电容器15的电容量改变脉动因数,但是可以防止完全降低到0,如图29结构中的V10。因此,如果商业电源1的电压接近0,则高压变压器6初级线圈中产生的电压V6(Lp)可以达到一个预定值或更高值。因此,可以一直维持施加到磁控管8上的电压为可以震荡的电压或更高。结果,输入电流I1波形基本类似正弦波,没有电流变为0的时间周期,如图所示,而且可能提高输入功率因数和抑制谐波电流。
但是,在这种结构中,有源滤波电路13加在反向电路5上,整流电源转换过程,促使谐波产生(反向电路)到高压整流。这样,电源转换过程变长,出现转换效率降低和电路规模变大的问题。
因此,JP10271846A公开了一种旨在共享部件和电路功能的结构。图34是表示JP10271846A中电路结构的电路图。根据该电路结构,为了提高输入功率因数和简化电路结构,同时进行升压功能运行和反向功能运行。图35和36描述了该电路运行。图35(a)到(d)描述了当半导体开关元件Q1和Q2被接通和断开时的激励通路,图36是与之对应的工作波形图表。下面将参考图35和36讨论电路的运行。为了下面描述的方便,商业电源1的电压极性是图中所示方向,开始时半导体开关元件Q2是接通的。当接通半导体元件Q2时,电流流过电容器C2到商业电源1再到感应负载电路19再到半导体开关元件Q2,如图35(a)所示,半单体开关元件Q2的电流IQ2如图36(a)所示单调增加。如果半导体开关元件Q2在一个预定时间断开,那么电流通路转换到图35(b)所示的状态,当电流流过二极管D2到商业电源1再到电感负载电路19再到二极管D3再到电容器C1时,电容器C1被充电。当储存在电感负载电路19中的所有能量散发完后,电流流过电容器C1到半导体元开关元件Q1再到感应负载电路19再到商业电源1再到电容器C2,这时电容器C1作为电源,如图35(C)所示。如果半导体开关元件Q1在一个预定时间断开,那么感应负载电路19能够允许在同样方向上有电流流过,从而电流流过如图35(d)所示的通路(商业电源1到电容器C2到二极管D4到电感负载电路19),并且电容器C1被储存在电感负载电路19中的能量充电。当储存在电感负载电路19中的所有能量散发完后,电流再次流过图35(a)中的通路并且继续进行电路运行。虽然JP10271846A中没有公开,但是为了完成运行,要求电容器C1和C2之间的关系如表达式1中的电容关系所示:
(表达式1)  C1>>C2
为了满足该关系,需要一个能够容纳大电容量的电容器比如电解电容器用做电容器C1。
执行这种运行后,由此为了提高输入电流的功率因数,抑制谐波和简化电路,一般允许来自商业电源1的电流流过供电期间的所有区域。
电感器9和电容器10组成平滑电路;电容器10具有的电容量能够维持当前环境下的与运行频率(20KHz到50KHz)有关的DC电压,促进了反向电路5的小型化,却不能平滑商业电源1的频率。这样,如图30所示,电容器10的电压V10显示一个仅为全波整流商业电源1的波形,并且显示出商业电源1从0电压到最大电压波动的脉动波形。由于反向电路5根据电容器10的脉动电压V10工作,因此高压变压器6的初级线圈中产生的高频电压的包络波形变成如V6(Lp)所示的波形,并且在电容器10的电压V10是低压期间,同样只产生低压。也就是电压未达到在磁控管8中震荡的阈值VAK(TH)期间,该磁控管8是非线形特性。在该期间,磁控管8停止震荡,因此负载的磁控管8上不消耗电能,从而商业电源1的电流I1不流过并且变成非常失真的波形,该波形有电流变为0的时间间隔,结果降低了功率因数并在输入电流中产生谐波电流。
为此提出了许多方法,其中,增压滤波电路用做补偿商业电源脉动波形波谷附近电压的电路结构,从减小元件和小型化的观点来看,部件和电路结构被共享,增压功能运行和反向功能运行同时进行;JP10271846A公开了代表性的一种结构。图34是表示JP10271846A中电路结构的电路图。但是,JP10271846A中的负载电路19是象放电灯一样的消耗小功率的部件,在处理大功率的电源装置中如在微波炉中,用来控制增压运行和反向运行的接通/断开半导体开关元件Q1和Q2的驱动信号不需要一个时间间隔,该时间间隔是为增压而给电容器充电和放电的时间间隔,也叫做空载时间。还有,不需要调节加热装置中的加热功率(耗电)比如微波炉中的强、中、弱,因此不需要特别注意控制驱动信号,该控制信号是半导体开关元件Q1和Q2在0电压部分和商业电源1的最大电压部分或者商业电源1的极性改变瞬间的控制信号。
但是,现有技术中的上述结构存在下列问题,并且不能充分提供高的电路效率:
在图36的工作波形图表中,流过二极管D2的电流由电流ID2表示。加在二极管D2的电压如VD2变化。从图36(b)的时间间隔转换到(c)的时间间隔的时间内,二极管D2的电流理论上变为0,但是实际二极管在断开时间产生复原电流。当复原电流出现时,当产品上有应用电压时,在二极管上产生开关损耗。因此,对于二极管D1,D2需要高的开关速度Trr特性。但是,前面的接通电压VF,即具有高开关速度Trr特性的二极管的另一个二极管特性趋于变高,在这种情况下,激励时间内的接通损耗变大。结果,二极管D1,D2的损耗变大而且使得电路的总效率不够高。
但是,JP10271846A中公开的相关技术所示的结构是用于照明装置,照明装置的转换功率最大是100W到200W。因此,当电流流过电路时,只有约几安培的微小电流流过,因此,如果使用着重考虑开关速度的二极管以便正向接通电压VF变高,则可以设计出不过多增加损耗的二极管。
另一方面,用于微波炉等的磁控管驱动电源,控制1000W到1500W的大功率作为转换功率,因此以40A到50A的最大值的大电流流过电路。因此,如果使用着重于开关速度的二极管,则正向接通电压VF变高,因此二极管传导时的损失(传导损失)变大,降低了通过增加开关速度减小损失的效果。由于家用微波炉的冷却能力因尺寸和成本因素而自然受到限制,为了增加开关速度和抑制正向接通电压VF的升高,所以需要加大二极管或者用大尺寸的散热风扇来散有限冷却条件下的热量。因此,在磁控管的驱动电源中,提高转换效率和减小每个电路损失变为绝对必要的条件。因此,从减小损耗的角度来看,采用相关技术示例所示的结构会带来极大的困难。因此,为了将该结构用在磁控管驱动的电源上,需要构成这样的能抑制二极管开关损耗的增加和接通损耗的增加的电路。因为转换功率的大小,如果电解电容器用在磁控管的驱动电源上,则需要高容量和高电介质强度的电解电容器,以便抑制电解电容器的脉动电流。这将导致电源本身变大,从而导致因安装磁控管的驱动电源而使微波炉尺寸变大,削弱了通过高频开关运行减小磁控管的驱动电源尺寸和重量的效果。
[发明内容]
因此,本发明的第一个目的是提供一种磁控管的驱动电源,可以抑制输入电流的失真,抑制谐波的出现,提高输入功率因数,简化电路,以及如果转换1KW以上的大功率则提高了电路效率。
上述结构包括下列问题:在控制实际功率较大的装置中,比如微波炉,如果使用电路结构,其中需要根据电源电压的极性转换半导体开关元件的开/关时限,那么控制极性改变点的驱动信号变得尤为重要,极性在该极性改变点变化,因为如果充电电容器的充电和放电不能很好地根据负荷比进行切换,或者半导体开关元件的开关时限在极性变化点转换,那么针状失真发生在输入电流中的极变化点附近,该开关时限是控制递增充电功能和反向功能的一个半导体开关元件和另一个只控制反向功能的半导体开关元件的开关时限。以前,在这样的电路结构中,即在一个耗能小的负载电路,比如放电灯中,电流值很小,充电电容器的容量也小,因此很少看到输入电流失真。但是,对于耗能大的负载电路,比如微波炉,恐怕输入电流波形会变得非常失真,功率因数降低,谐波成分增长。
还有,可以抑制输入电流失真、抑制谐波的出现和提高输入功率因数的磁控管的驱动电源需要两个包含半导体开关的续流二极管和两个整流二极管。如果将整流二极管装在一个组件中作为一个廉价的结构,通常这样一种结构的元件不频繁使用,因此不期望降低成本。那么,可能使用一种方法,使用一般目的的整流桥二极管,如图53所示;尽管可以使该方法比上述方法便宜,但是增加了元件数量而且认为该方法不是最佳方法。
因此本发明的第二个目的是提供一种廉价的磁控管的驱动电源,其简单结构,而且冷却能力好。
为了解决上述问题,根据本发明,提供一种磁控管的驱动电源,其中,可以进行逆向传导的第一和第二半导体开关元件的串联连接体与第一和第二二极管的串联连接体并联,第一和第二电容器与第一和第二二极管并联,商业电源电路和高压变压器的串联电路连接在第一和第二二极管的连接点与第一和第二半导体开关元件连接点之间,第一和第二半导体开关元件可以逆反传导,高压变压器的高压输出通过高压整流电路为磁控管提供电源。
因此,第一和第二半导体开关元件互补地接通和断开,由此如果商业电源的电压极性为正,则增大商业电源电压所提供的电压施加到第二电容器上,如果商业电源电压极性为负,则增大商业电源电压所提供的电压施加到第一电容器上。由于施加到高压变压器的初级线圈的电压依赖于该被增大的电压,所以磁控管震荡需要的电压可以一直加到高压变压器的初级线圈上,甚至在商业电源电压较低时也可以,并且允许输入电流流过商业电源的几乎所有区域,这样可以提供失真较小的输入电流。由于第一和第二半导体开关元件可以进行这样的反向运行,即允许高频电流流进高压变压器的初级线圈以及同时将升高的电压施加到第一和第二电容器上,因此反向器可以由最小量的部件组成,反向电路可以小型化。在电路运行中,第一和第二二极管由半导体开关元件断开,并且电路模式被转换,因此可以使用着重于正向通电电压而开关速度不受限制的二极管,二极管的损失可以大大减小,使反向电路的效率很高。
在本发明的所述结构中,设置第一和第二半导体开关元件的通/断额定比在极性变化点附近为50%,极性在该点改变,在极性变化点附近转换一个控制递升充电功能和反向功能的半导体开关元件,以及另一个只控制反向功能的半导体开关元件。根据这种装置,在极性改变的极性变化点附近,充电电容器的充电和放电一完成,控制递升充电功能和反向功能的该半导体开关元件就转换,因此可以提供在稳定的高功率因数下谐波被削弱的输入电流。
还有,为了解决上述问题,根据本发明,提供一种磁控管的驱动电源,它包括第一和第二半导体开关的串联体,反向并联到第一和第二半导体开关上的第一和第二续流二极管,并联到第一和第二半导体开关上的第一和第二整流二极管的串联体,并联到第一和第二整流二极管上的第一和第二电容器,彼此串联的商业电源和高压变压器的初级线圈连接在第一和第二半导体开关的节点与第一和第二整流二极管的节点之间,以及连接到高压变压器次级线圈的输出的一个高压整流电路和一个磁控管,其特征在于该第一和第二续流二极管以及该第一和第二整流二极管设置在一个组件里。
因此,可以不浪费地使用二极管,还有半导体开关中不需要包含二极管,因此可以提供一种廉价的磁控管驱动电源。
[附图说明]
[图1]
图1是本发明第一个实施例中的磁控管的驱动电源的电路图;
[图2]
图2(a)到2(e)是在本发明第一个实施例中的磁控管的驱动电源运行模式中的电流流路图;
[图3]
图3是本发明第一个实施例中的反向电路运行波形图表;
[图4]
图4是本发明第一个实施例中的磁控管的驱动电源的运行波形图表;
[图5]
图5是表示本发明第一个实施例的一个变形中的磁控管的驱动电源结构的电路图;
[图6]
图6是本发明第二个实施例的磁控管的驱动电源结构的电路图;
[图7]
图7是本发明第二个实施例中的反向电路的运行波形图表;
[图8]
图8(a)到8(g)是在本发明第二个实施例中的磁控管的驱动电源运行模式中的电流流路图;
[图9]
图9是在本发明第二个实施例中将一个电容器并联连接到一个半导体开关元件上的电路图;
[图10]
图10是在本发明第二个实施例中将电容器连接到半导体开关元件上的电路图;
[图11]
图11是在本发明第二个实施例中将一个电容器并联连接到一个高压变压器上的电路图;
[图12]
图12是本发明第三个实施例的磁控管的驱动电源的电路图;
[图13]
图13(a)和13(b)是本发明第三个实施例中的半导体开关元件的驱动信号波形图表;
[图14]
图14是本发明第三个实施例中的半导体开关元件的通电信号宽度Don21和转换功率P的特性图表;
[图15]
图15(a)和15(b)是本发明第三个实施例中的商业电源的电流波形图表;
[图16]
图16是本发明第四个实施例中的磁控管的驱动电源的电流图表;
[图17]
图17(a)和17(b)是本发明第四个实施例中的电源极性确定装置的输出波形图表;
[图18]
图18(a)和18(b)是本发明第四个实施例中的半导体开关元件的驱动信号波形图表;
[图19]
图19是表示本发明第四个实施例中电源极性确定装置的另一个结构示例的电路图;
[图20]
图20是本发明第四个实施例中的电源极性确定装置的输出波形图表;
[图21]
图21是本发明第五个实施例中磁控管的驱动电源的电路图;
[图22]
图22是在本发明第五个实施例中,当半导体开关元件的接通时间比被瞬间置换时,商业电源的电压和半导体开关元件的接通时间比的波形图表;
[图23]
图23是本发明第五个实施例中的商业电源电压极性变化时的半导体开关元件的驱动信号波形图表;
[图24]
图24(a)和24(b)是本发明第五个实施例中的商业电源的电流波形图表;
[图25]
图25是本发明第五个实施例中的商业电源电压和半导体开关元件的接通时间比的波形图表;
[图26]
图26是本发明第六个实施例的磁控管的驱动电源的电流图;
[图27]
图27是本发明第六个实施例中的商业电源电压和半导体开关元件的接通时间比的波形图表;
[图28]
图28(a)和28(b)是本发明第六个实施例中的半导体开关元件的运行波形图;图28(a)是该实施例中的在接通时间比响应商业电源电压改变时的最大电压时刻的运行波形图,图28(b)是该实施例中的在接通时间比响应商业电源电压不改变时的最大电压时刻的运行波形图;
[图29]
图29是表示相关技术中的磁控管的驱动电源的电路图;
[图30]
图30是图29中的相关技术的磁控管的驱动电源的运行波形图表;
[图31]
图31是表示磁控管运行特性的图;
[图32]
图32是表示相关技术中添加一个有源滤波器电路的磁控管的驱动电源的电路图;
[图33]
图33是图32中的磁控管的驱动电源的运行图;
[图34]
图34是在JP10271846A中公开的电源装置的电路图;
[图35]
图35A到35D是表示在图34中的电源装置运行模式下的电流流路的电路图;
[图36]
图36是图34中的电源装置的运行波形图;
[图37]
图37是本发明第七个实施例中的磁控管驱动电源中的商业电源和半导体开关元件接通时间比的关系图;
[图38]
图38是本发明第七个实施例中的磁控管的驱动电源中,在极性变化点附近的半导体开关元件的驱动信号波形图;图39是本发明第八个实施例中的磁控管的驱动电源的电路图;
[图40]
图40是本发明第八个实施例的磁控管的驱动电源中的电源极性确定装置的输出波形图;
[图41]
图41是在本发明第八个实施例的磁控管的驱动电源中半导体开关元件在极性变化点附近的驱动信号波形图;
[图42]
图42是本发明第九个实施例的磁控管的驱动电源的电路图;
[图43]
图43是本发明第九个实施例中的磁控管的驱动电源的半导体的连接图;
[图44]
图44是本发明第十个实施例中的磁控管的驱动电源的电路图;
[图45]
图45是本发明第十个实施例中的磁控管的驱动电源的半导体的连接图;
[图46]
图46是在本发明第十一个实施例的磁控管的驱动电源中采用高速产品作为续流二极管的电流和电压波形图;
[图47]
图47是本发明第十一个实施例中的磁控管的驱动电源中采用低速产品作为续流二极管的电流和电压波形图;
[图48]
图48是在本发明第十一个实施例的磁控管的驱动电源中利用一个整流二极管的电流和电压波形图;
[图49]
图49是在本发明第十一个实施例的磁控管的驱动电源中,就商业频率而言所看到的整流二极管的电流和电压波形图;
[图50]
图50是本发明第十一个实施例的磁控管的驱动电源的二极管的特性图;
[图51]
图51是本发明第十二个实施例的磁控管的驱动电源的半导体的连接图;
[图52]
图52是本发明第十三个实施例的磁控管的驱动电源的半导体的连接图;
[图53]
图53是另一个相关技术中的磁控管的驱动电源的电路结构图。
[本发明的实施方式]
在本发明的第一到第三发明中,在磁控管的驱动电源中,可以反向导通的第一和第二半导体开关元件的串联体与第一和第二二极管的串联体并联,第一和第二电容器并联到第一和第二二极管上,商业电源和高压变压器的初级线圈的串联电路连接在第一和第二半导体开关元件的节点与第一和第二二极管的节点之间,该第一和第二半导体开关元件可以反向导通,以及高压变压器次级线圈的输出通过一个高压整流电路激励一个磁控管,从而即使在商业电源电压较低期间也可以将使磁控管震荡的电压施加在高压变压器的初级线圈上,因此输入电流一直可以流动,这样可以提供失真较小的输入电流,可以提高磁控管驱动电源的功率因数。这两个半导体开关元件互补地接通和断开,由此允许高频电流流进高压变压器初级线圈的反向运行以及在第一和第二电容器中产生升高电压的运行可以同时进行,从而电路部件的数量可以最小化,功率转换步骤数可以减少,从而功率转换效率得以提高。由于第一和第二二极管由半导体开关元件断开,因此可以使用特性着重在于正向通电电压的二极管,提高反向电路的效率。
在本发明的第四发明中,尤其是在第一发明和第二发明所述的磁控管驱动电源中,一个第三电容器并联到第一和第二半导体开关元件与高压变压器的初级线圈的至少一个点上。这样,当每个第一和第二半导体开关元件断开时,施加到半导体开关元件上的电压按照预定梯度逐渐上升或下降,从而减小半导体开关元件的开关损失,提高了反向电路的功率转换效率。
在本发明的第五发明中,在磁控管的驱动电源中,其中可以反向导通的第一和第二半导体开关元件的串联体与第一和第二二极管的串联体并联,第一和第二电容器并联到第一和第二二极管上,商业电源和高压变压器初级线圈的串联电路连接在第一和第二半导体开关元件的节点与第一和第二二极管的节点之间,该第一和第二半导体开关元件可以反向导通,高压变压器次级线圈的输出通过一个高压整流电路激励一个磁控管,并且提供一个驱动第一和第二半导体开关元件的驱动电路,互补地驱动该第一和第二半导体开关元件,根据商业电源是正还是负极性置换驱动信号,即使在商业电源电压较低期间也可以使磁控管震荡的电压施加在高压变压器初级线圈上,输入电流一直可以流动,这样可以提供失真较小的输入电流,可以提高磁控管的驱动电源的功率因数。两个半导体开关元件互补地接通和断开,由此允许高频电流流进高压变压器初级线圈的反向运行以及在第一和第二电容器中产生升高电压的运行可以同时进行,从而电路部件的数量可以最小化,功率转换步骤数可以减少,从而功率转换效率得以提高。由于第一和第二二极管被半导体开关元件断开,因此可以使用特性着重在于正向通电电压的二极管,并提高反向电路的效率。虽然半导体开关元件通电信号宽度和反向电路的转换功率之间的关系显示依赖于商业电源电压极性的不同特性,但是可以一直提供关于极性对称的输入电流。如果控制半导体开关元件接通时间比以增加或减小反向电路的转换功率,那么可以一直维持基本类似正弦波的输入功率。
在本发明第六到第八发明中,如第五发明所述的磁控管驱动电源包括确定商业电源极性的电源极性确定装置,其中驱动电路根据电源极性确定装置的确定信息置换第一和第二半导体开关元件的驱动信号。因此,电源极性确定装置确定商业电源的电压极性,而且半导体开关元件的信号被置换,从而可以提供在正极和负极下都相等的输入电流,提高了磁控管的驱动电源的功率因数,抑制了谐波。
在本发明的第九发明中,如第五到第八发明所述的磁控管驱动电源,在商业电源零交叉点附近以预定变化率改变驱动信号,由此减小了半导体开关元件在商业电源零交叉点附近的通电时间变化量。因此,如果在半导体开关元件接通时间比从50%变化的状态下执行运行,那么可以抑制输入电流中出现的针状电流,而且可以提供高功率因数的磁控管驱动电源。
在本发明的第十发明中,在如第五到第九发明所述的磁控管的驱动电源中,改变第二半导体开关元件的导通时间,以便缩短响应商业电源电压在正方向上为高压的时间周期内的商业电源电压,相反,改变第一半导体开关元件的传导时间,以便缩短响应商业电源电压在负方向上为高压的时间周期内的商业电源电压,由此当商业电源的正负电压是最大时,抑制了流过半导体开关元件和反向电路的电流的最大值,从而抑制了半导体开关元件的电流和高压变压器的电流的有效值,降低了存在于反向电路的损失。
在本发明的第十一发明中,在高频加热元件的电源装置中,可以反向导通的第一和第二半导体开关元件的串联体与第一和第二二极管的串联体并联,第一和第二电容器并联到第一和第二二极管上,商业电源和高压变压器初级线圈的串联电路连接在第一和第二半导体开关元件的节点与第一和第二二极管的节点之间,该第一和第二半导体开关元件可以反向导通,高压变压器次级线圈的输出通过一个高压整流电路驱动一个磁控管,在极性变化点附近将可以反向导通的第一和第二半导体开关元件的两个通/断额定比设置为约50%,商业电源在该极性变化点改变极性。
在本发明的第十二发明中,在高频加热元件的电源装置中,可以反向导通的第一和第二半导体开关元件的串联体与第一和第二二极管的串联体并联,第一和第二电容器并联到第一和第二二极管上,商业电源和高压变压器初级线圈的串联电路连接在第一和第二半导体开关元件的节点与第一和第二二极管的节点之间,该第一和第二半导体开关元件可以反向导通,高压变压器次级线圈的输出通过一个高压整流电路驱动一个磁控管,当在商业电源极性变化点附近的控制中设置一个极性确定装置,则检测该极性变化点,由此,可以反向导通的第一和第二半导体开关元件执行递升充电功能和反向器功能的作用与只起补充反向功能的作用可以同时置换。
根据第十一和第十二发明所述的结构,即使在消耗大功率的负载电路比如微波炉中,也可以抑制极性变化点处的输入电流的针状失真波形,这里商业电源的极性在该点改变,而且可以抑制功率因数的降低以及谐波的放大。
在本发明的第十三发明中,一种磁控管驱动电源包括第一和第二半导体开关的串联体,反向并联到第一和第二半导体开关的第一和第二续流二极管,并联到第一和第二半导体开关的第一和第二整流二极管的串联体,并联到第一和第二整流二极管的第一和第二电容器,连接在第一和第二半导体开关的节点与第一和第二整流二极管的节点之间的彼此串联的商业电源和高压变压器初级线圈,以及连接到高压变压器次级线圈的输出的一个高压整流电路和一个磁控管,其特征在于,第一和第二续流二极管以及第一和第二整流二极管被设置在一个组件里。
因此,可以不浪费地使用二极管,而且不需要在半导体开关元件中包含二极管,从而提供廉价的磁控管的驱动电源。
在本发明的第十四发明中,尤其在第十三发明所述的磁控管的驱动电源中,第一和第二半导体开关被设置在一个组件里。
因此,可以减少更多的零件,可以提供具有简单结构的小型化的磁控管的驱动电源。
在本发明的第十五发明中,尤其在如第十三或十四所述的磁控管的驱动电源,具有低通电压的二极管用做第一和第二整流二极管,高速二极管被用做第一和第二续流二极管。
因此,可以使每个二极管的损失最小化并且减小散热风扇的尺寸,同时可以提供廉价的冷却性能优良的磁控管的驱动电源。
在本发明的第十六发明中,尤其在如第十三到第十五发明所述的磁控管的驱动电源中,第一和第二半导体开关,第一和第二续流二极管,以及第一和第二整流二极管设置在一个组件中。
因此,反向器初级电路的所有半导体开关元件设置在一个组件中,而且可以提供更小型化的磁控管的驱动电源。
在本发明的第十七发明中,尤其是如第十六发明所述的磁控管的驱动电源,它包括驱动第一和第二半导体开关的驱动电路。
因此,在半导体模块中设立一个驱动器,并且能够提供一个更小型化的磁控管的驱动电源。
[实施例]
现在参考附图描述本发明的最佳实施例。
(实施例1)
下面参考图1-3描述本发明第一实施例。图1是表示本发明第一实施例的磁控管的驱动电源的电路图。第一和第二半导体开关元件20和21的串联连接体与第一和第二二极管22和23的串联连接体并联连接,第一和第二电容器24和25并联连接到第一和第二二极管22和23上,商业电源1和高压变压器26的串联回路连接在半导体开关元件20和21的接点与二极管22和23的接点之间。高压变压器26的次级线圈输出连接到高压整流电路7上,用来给磁控管8提供DC高电压。磁控管8被DC高电压激励并产生2.45GHz的无线电波。在该实施例中,第一和第二半导体开关元件被描述成一个正向导通的IGBT(绝缘栅双极晶体管)和一个逆向地并连在IGBT上的二极管,毋庸直言,也可以采用像MOSFET这样的其中带二极管的这种元件。
图2(a)到2(e)是表示反向电路流动时间段内电流流过的通路,图3是与之对应的工作波形表。描述从以下状态开始:半导体开关元件21接通,商业电源1的极性如图所示。在该状态下,电流流过商业电源1的通路,到高压变压器26的初级线圈再到半导体开关元件21再到二极管23,如图2(a)所示,用I21表示的电流在图3(a)的时间段内流进半导体开关元件21和高压变压器26的初级线圈中,从而在高压变压器26的初级线圈中储存了能量。如果半导体开关元件21在预定时刻断开,高压变压器26的初级线圈电流企图继续在相同方向流动,而此刻电容器被储存在高压变压器26初级线圈中的能量沿一个通路充电,该通路是商业电源1到高压变压器26的初级线圈再到与半导体开关元件20并列的二极管再到电容器24,如图2(b)所示。进行该运行后,由增压商业电源1电压所提供的电压被储存在电容器24中。当储存在高压变压器26的初级线圈中的所有能量被释放时,形成图2(c)中的通路,这时电容器24中所充能量沿它的一个通路被取出,该通路经过半导体开关元件20再到高压变压器26的初级线圈再到商业电源1。如果在一个预定时刻断开半导体开关元件20,高压变压器的初级线圈企图继续使电流在相同方向流动,而该电流流过一个通路,该通路是从高压变压器26的初级线圈到商业电源1再到电容器25再到与半导体开关元件21并列的二极管,如图2(d)所示。如果商业电源1的电压极性与图中所示的极性相反,那么在工作中只能置换半导体开关元件20和21、二极管22和23、以及电容器24和25,完成同样的工作。
在所述工作过程中,电容器24、25具有这样的容量:可以进行两个工作过程,即半导体开关元件20、21接通/断开时在高压交压器26的初级线圈中产生高频电流的反转运行,和通过增大商业电源1的电压在电容器24、25中产生电压的过程,电容器24的容量等于电容器25的容量。因此,如果商业电源1有图中所示的极性,增加商业电源1中的电压引起的电压被储存在电容器24中,相反地,如果商业电源极性与图所示的极性相反,增加商业电源1中的电压引起的电压被储存在电容器25中。因此,电容器24中产生的电压等于电容器25中的电压,不受商业电源1电压极性的控制,从而可以使商业电源1的电流相对电压极性有对称波形。继续这种工作过程,由此电容器24、25的电压波形根据图4所示的商业电源1的周期产生一个电压,该电压响应商业电源1的电压极性而增大。这样,流进高压变压器26的初级线圈的电流的包络波形变成V26(Lp)所示的波形。由于高压变压器26增大电压并且将该增大的电压施加到磁控管8上,因此施加到磁控管8上的电压表现出V8所示的波形,而且可能一直使电压等于或大于震荡电压AK(TH)。因此,可以允许输入电流在商业电源1的任何周期内流动,而且可以提高功率因数,抑制谐波。
当从图3的周期(a)转换到(b)时,进行切断二极管23的操作;作为电流通路的串联连接的半导体开关元件21切断电流,不要求二极管23的开关速度。由于断开时刻施加在二极管23上的电压为0,所以断开时刻不会产生开关损耗。因此,可以这样设计二极管22,23,以便在使用着重于正向通电电压VF的二极管中,将注意力集中在抑制传导时间的损耗上,简化冷却二极管22,23的结构,同时使二极管22、23最小化也是有利的。特别地,用在微波炉上的这种磁控管的驱动电源运用1000W或更高的功率,因此在使用着重于正向通电电压VF的二极管22,23时,反向电路的电流变成40A到50A的非常大的电流值,这在提高反向电路的效率、降低传导损耗方面是有利的。因此,可以使总功率损失减小到最小,并且提供高效率的磁控管的驱动电源。
因此,在该实施例的磁控管的驱动电源中,可以使用着重于正向通电电压VF的二极管22、23,可以进行与相关技术示例所示的电路完全不同的电路工作,二极管22、23的损耗减小到最小,提高磁控管的驱动电源的总能量转换效率。该优点是本发明的特有的通过电容器24、25发挥出来的优点,电容器24、25用到反向运行和正向运行中,该运行是将增加商业电源1的电压引起的电压施加到电容器24、25上,并且提供电容器回路功能并且与在背景技术示例中描述的JP10271846A中的电路运行不同。
图5示出本实施例的磁控管的驱动电源的更详细的电路结构图,其中商业电源1的输出设置有低通滤波器29,滤波器由电感器27和电容器28组成,由此不允许反向电流的高频电流进入商业电源中。因此低通滤波器29插在商业电源1和反向电路之间,以便高频电流或反向电路的电压不会传递到商业电源侧,由此可能减小端子噪音。如果应用该结构,则上述运行不变。
(实施例2)
图6是本发明第二个实施例的磁控管的驱动电源的电路图。在该电路结构中,除了上面描述的实施例1的电路结构外,电容器30并联到半导体开关元件21上。
图7是该实施例的工作波形图,图8(a)到8(g)表示该实施例中的时间周期中的电流通路。描述从以下状态开始:半导体开关元件21接通,商业电源1的极性如图所示。在该状态下,半导体开关元件21是接通状态,电流从商业电源1流过高压变压器26的初级线圈,形成图8(a)所示的通路。同时,流进半导体开关元件21的电流如图7所示线性增加。如果半导体开关元件21在给定时间内断开,高压变压器26的初级线圈电流企图继续在相同方向流动,而此刻电流通路变成图8(b)所示的状态,并联到半导体开关元件21上的电容器30被充电。这时,半导体开关元件21的电压V21以电容器30的充电速度升高。当电容器30的电压等于电容器24的电压时,半导体开关元件20的并联二极管导通,形成电容器24充电的电流通路,转换到图8(c)的时间周期。直到完成电容器24的充电,半导体开关元件20接通,电容器24上的电荷沿电容器24的通路释放到半导体开关元件20再到高压变压器26的初级线圈上再到商业电源1,如图8(d)所示。这时,流过半导体开关元件20的电流波形变为图7(d)所示的波形。如果在预定时间内断开半导体开关元件20,那么在如图8(e)中通路上形成释放电容器30的电荷的通路,该电容器并联连接在半导体开关元件21上,电容器30被放电。这时,施加在半导体开关元件21上的电压V21逐渐降低,相反地,施加在半导体开关元件20上的电压V20逐渐升高。当电容器30完成放电并且施加到半导体开关元件21上的电压变为0时,形成图8(f)中的电流通路并且并联到半导体开关元件21上的二极管开始导通。接下来,如果接通半导体开关元件21,就形成图8(g)中的电流通路,储存在电容器25中的电荷被放出。电容器25一结束放电,就转换到图8(a)中的状态。
如果商业电源1的极性与图中所示的极性相反,半导体开关元件20和21、电容器24和25,以及二极管22和23的操作被置换而且可以完成相同的工作。
在该实施例中,二极管22、23的开关损耗不会出现在上述实施例中,使用着重于正向通电电压VF的二极管22、23,可以将二极管22、23的损耗降到最小。另外,当半导体开关元件20、21接通/断开时,利用电容器30的充电、放电,施加在半导体开关元件20、21上的电压逐渐升高,由此降低了开关时刻出现的损耗。即,一个实际的半导体开关元件在进行接通到断开状态转换或者断开到接通状态的转换时,总是有一个转换周期,在该转换周期产生开关损耗,此时电压和电流在同一时刻出现。特别地,在半导体开关元件中,通过进行双极运行获得半导体开关元件的电流密度,比如一个IGBT(绝缘栅双极晶体管)或一个适于处理大电流的BJT(双极接点晶体管),如果一个门信号被断开,那么元件中的其余孔不会很快消失,因此集电极电流不能立刻断开,出现100ns到几μs的转换周期。但是,在该实施例中,施加在半导体开关元件上的电压在该时段逐渐改变,并且在该时期逐渐升高直到断开电流为止,从而可能大大减少半导体开关元件20、21接通/断开时的开关损耗,进一步可能增加电路效率。
图9示出电容器30并联到半导体开关元件20上的结构。在该情况下,充电和放电时期,电容器30与上述情况相反,但是逐渐改变施加在半单体开关元件20电压的功能与前述的相同。因此,在使用着重于正向通电电压的二极管22、23时,使二极管22、23的损耗最小化的同时,可以减小半导体开关元件20、21出现的损耗,与上述图6中的情况一样,可能提高磁控管的驱动电源的功率转换效率。
图10示出电容器31和32与半导体开关元件20和21连接的结构。在该情况下,为了提供与上述示例相同的电压梯度,可以连接一个容量是上述电容器30一半的电容器。在该情况下,电容器31、32给磁控管的驱动电源提供的功能等于上述图6或9中的功能;当电容器31充电时,电容器32放电,相反地,当电容器31放电时,电容器32充电,由此具有同样的优点。
图11示出电容器30并联到高压变压器26的初级线圈上的结构。在该情况下,高压变压器26的初级线圈的电压因电容器30的作用而逐渐增加,因此半导体开关元件20、21的电压逐渐变化,因此具有与上述示例相同的优点。
(实施例3)
下面参考图12到15描述本发明的第三实施例。
图12是本发明第三实施例的磁控管的驱动电源的电路图。图12中与上述实施例中相同的部件用相同的参考数字表示,并且不再详细描述。为了进行反向电路,驱动电路33驱动半导体开关元件20和21。驱动电路33向半导体开关元件20和21发出的驱动信号有这样的波形:每个波形有一个空载时间,并且彼此互补地接通和断开,如图13(a)所示。半导体开关元件20和21因此彼此互补地接通和断开,由此反向电路将电能传送给磁控管8。
图14示出半导体开关元件21的接通时间比Don21和反向电路的转换功率P之间的关系。在该图中,实线代表的曲线表示商业电源1具有图12所示的电压极性时的转换功率P的变化,虚线代表的曲线表示商业电源1的电压极性与图12相反时转换功率P的变化。这样,半导体开关元件21的接通时间比Don21和反向电路的转换功率P之间的关系根据商业电源1的电压极性而变化。因此,在半导体开关元件21的接通时间比Don21大概为50%的状态下,可以进行相同功率转换,而不考虑商业电源1的正负极性,这样商业电源1的电流相对电压极性为对称波形,如图15(b)所示。但是,如果企图使商业电源1的电流为相对电压极性对称的正弦波,那么转换功率只能限制在这一点上。对于家用微波炉等,加热功率是从对应于食物的加热时间的各种档中进行选择。例如可以将加热功率调节为“强”、“中”、“弱”等等。为了满足这一点,需要根据任何要求的输出功率改变半导体开关元件21的接通时间比Don21。但是,如果打算不依赖于商业电源1的电压极性,在恒定接通时间比Don21下调节到要求的输出功率,那么从图14所示的半导体开关元件21的接通时间比Don21与转换功率P之间的关系中,设置接通时间比Don21从50%变化,不同的波形示于商业电源1的电压的正负时间周期内;例如,产生如图15(a)所示的偏离正负极性的电流波形。在此情况下,电流波形不能变成对称的形式,因此出现针状(even’th-order)谐波,而且最终能够提高功率因数。
那么,在该实施例中,驱动电路33运行以便根据商业电源1的电压极性置换半导体开关元件20和21的驱动信号。即,如果商业电源1的电压极性是正的,那么半导体开关元件20和21在图13(a)所示的接通时间段T1和T2被断开和接通以及被接通和断开,相反地,如果商业电源1的电压极性是负的,那么图13(a)中的半导体开关元件20和21的接通时间段被置换,如图13(b)所示。驱动电路33以这样方式工作:由此当电路中的磁控管的驱动电源发生的损失下降时,磁控管的驱动电源的转换功率改变,而且如果半导体开关元件21的接通时间比Don21从50%的状态向两个方向之一转换,转换功率增加或减小,可以一直保持商业电源1的电流波形为相对电压极性对称的正弦波。因此,如果改变转换功率,那么可以在高功率因数下完成工作而没有电流失真,从而维持高的功率转换效率。
[实施例4]
下面将参考图16到18描述本发明的第四个实施例。图16是本发明第四实施例中磁控管的驱动电源的电路图。图16中与上述实施例中相同的部件用相同数字标记表示,而且不再详细描述。电源极性确定装置34确定商业电源1的电压极性;例如在该实施例中利用一个光电耦合器来实现。如果商业电源1的电压如图17中的V1变化,那么当电压极性为图中所述极性时,光电耦合器35的一个发光二极管发射光,由此光接收侧上的晶体管开始导电。这时,电源极性确定装置34的输出降低。驱动电路33确定该状态是正电源极性,而且输出半导体开关元件20和21的通电时间为图18(a)中所示的T1和T2。当商业电源1的电压极性变为负的时,则光电耦合器35的发光二极管停止发光,断开光接收侧上的晶体管,由此电源极性确定装置34的输出变高。驱动电路33确定该状态是负的商业电源电压极性,并且输驱动信号以便半导体开关元件20和21的通电时间变成与商业电源电压极性为正时的相反,如图18(b)。这样的运行是可以完成的,由此如果磁控管的驱动电源的转换功率增加或减小,可以一直维持商业电源1的电流波形为相对电压极性的正弦波形。因此,如果改变转换功率,那么可以在高功率因数下完成工作而没有电流失真,从而维持高的功率转换效率。
图19示出实现该电源极性确定装置34的一个例子,比如一个与电容器25并联的检测电压电阻。它利用了存在于电容器25中的电压变化的事实,该电压比如是在前面实施例1中描述的图20中的V25。即,当商业电源1的电压表现为图20中所示的AC波形时,如果电源极性是正的,那么电容器25的电压V25几乎为零。另一方面,当表现为负极性时,根据转换电路的运行,产生给商业电源1电压增压的电压,如图中所示。该电压被如该实施例中的电阻或者用一个比较器分配,电源极性确定装置34确定:在商业电压值等于或大于某一参考值的时间周期内,商业电源1的电压极性为负,并将一个信号传递给驱动电路33。驱动电路33运行以便根据该确定信号置换半导体开关元件20和21的驱动信号。可以进行这样的运行,由此如果磁控管的驱动电源的转换功率增加或降低,可以一直维持商业电源的电流波形为相对电压极性的正弦波形。因此,如果改变转换功率,那么可以在高功率因数下完成工作而没有电流失真,从而维持高的功率转换效率。
(实施例5)
下面将参考图21到25描述本发明的第五个实施例。图21是本发明第五实施例中磁控管的驱动电源的电路图。驱动电路33运行以便当商业电源1的电压极性改变时置换半导体开关元件20和21的驱动信号,同时,运行该电路以便在该置换时刻以恒定变化率改变驱动信号。
图22是商业电源1的电压波形V1和半导体开关元件20和21的接通时间比Don20和Don21的变化图。该图中,当商业电源电压极性改变时,接通时间比的变化被立刻置换,变化宽度是变化量ΔD。图23表示当商业电源电压极性改变时,半导体开关元件20和21的驱动信号如何变化。该图中,时间点ZIP是商业电源电压极性改变的时间点,如果将该点作为边界,那么半导体开关元件20的通电时间从通电时间T1变到下一周期的T2。另一方面,半导体开关元件21的通电时间从通电时间T2变到T1。如果可以执行这种运行,那么当半导体开关元件20和21的通电时间接近相等时,则通电时间变化宽度ΔD较小,因此反向电路工作的变化量在商业电源1电压极性变化的时间点较小。因此,如图24(a)所示,甚至在商业电源1电压极性改变的时间点,商业电源1的电流也表现出光滑变化。但是,如果调节半导体开关元件20和21的通电时间以便从该状态点增加或降低反向电路的转换功率,那么半导体开关元件20和21的通电时间变得相等。这种情况下,商业电源1电压极性改变的时间点处的通电时间变化量变大,因此在商业电源1电压极性改变的时间点处的反向电路运行变化量较大时,可能出现瞬间针状电流波形,如图24(b)所示。特别地,如果在商业电源1电压极性改变的时间点与驱动电路置换半导体开关元件20和21的通电时间之间出现时滞时,这一现象尤为明显。
但是,在该实施例的结构中,当商业电源1的电压极性改变时,半导体开关元件20和21的接通时间比以恒定变化率被置换,如图25所示,因此该时间点的半导体开关元件20和21的接通时间比Don20和Don21的变化量受到限制。因此,如果改变反向电路的转换功率,而且半导体开关元件20和21的接通时间比之差较大,则商业电源1的电流波形可以一直平滑变化,而且可以一直维持正弦波状的电流波形,而不会表现出任何瞬间电流波形。如果在商业电源1电压极性改变的时间点与驱动电路置换半导体开关元件20和和21的通电时间之间因某种原因而出现时滞时,则在置换时间中可以按照恒定变化率执行开关,因此有可能保证在一定程度上抵消时滞。
因此,在该实施例的磁控管的驱动电源中,如果增加或减小反向电路的转换功率,而且半导体开关元件20和21之间的接通时间比之差变大,则商业电源1的电流波形可以一直维持正弦波状,而不显示任何瞬间电流。
如图25所示,如果半导体开关元件20和21的接通时间比Don20和Don21改变,以便二者在商业电源电压极性改变的时间点处均为50%,从实施例3所示的接通时间比Don和反向电路的转换功率P之间的关系,商业电源1的电流波形可以更平滑地变化。
(实施例6)
下面参考图26到28描述本发明的第六实施例。图26是本发明第六实施例中的磁控管的驱动电源的电路图。电源极性确定装置34确定商业电源1的电压极性,并将象征商业电源1有正负电压极性的信号传送给驱动电路33。驱动电路33工作,以便根据该确定信号置换半导体开关元件20和21的接通时间比,同时响应商业电源1电压在正方向上较大的时间周期中的电压值减小半导体开关元件21的接通时间比Don21,以及如果商业电源1的电压在负方向上较大,则响应商业电源1的电压减小半导体开关元件20的接通时间比Don20。图27表示该状态,半导体开关元件20和21的接通时间比Don20和Don21响应商业电源1的电压而变化。由此控制半导体开关元件20和21的接通时间比,从而商业电源1的电流波形I1如梯形波变化,这样与近似的正弦波相比,最大值部分被压平,如图所示。为了处理相同的转换功率,如果将电流波形控制得像梯形波而不是正弦波的话,则可以减小最大电流值。图28(a)和(b)示出,在响应商业电源1电压来控制接通时间比时,以及在使输入电流大体像有恒定时间比的正弦波时,最大电流时刻的半导体开关元件20和21的电流和电压波形。图28(a)示出当响应商业电源1的电压来控制接通时间比Don20和Don21时的波形示例,图28(b)示出当使输入电流大体像正弦波时的波形示例。比较这些图形,在图28(a)的波形中,半导体开关元件21的最大电流值I21(max)与图28(b)中的最大值相比变低。因此,半导体开关元件电流的有效值变低,因此可以减小负载或印刷电路板上的导线损失,减小反向电路的损失。由于随着半导体开关元件20和21的接通,同时电流也流进高压变压器26的初级线圈,半导体开关元件电流有效值的减小导致高压变压器26初级线圈的电流有效值同时减小。高压变压器26中存在的损失大体分为铜损和铁损,铜损因电流流过线圈而产生,铁损发生在磁路中,比如铁芯中。特别地,铜损部分大体可以用线圈的等效串联电阻Rs与经过的电流的有效值I的平方的积来表示。因此,为了降低如本实施例中的电流有效值,半导体开关元件的接通时间比响应商业电源1的电压而变化,由此可以急剧降低高压变压器26初级线圈的铜损。因此,可以更多地减小反向电路的损失以及提高电路效率。
(实施例7)
图1示出本发明第七实施例采用的电路结构。第一和第二半导体开关元件20和21的串联体与第一和第二二极管22和23的串联体并联连接,第一和第二电容器24和25并联到第一和第二二极管22和23上,商业电源1和高压变压器26的串联电路连接在半导体开关元件20和21的接点与二极管22和23的接点之间。高压变压器26的次级线圈输出与高压整流电路7连接,给磁控管8提供DC高压。磁控管8由DC高压驱动并产生2.45GHz的无线电波。在该实施例中,第一和第二半导体开关元件均被描述为正向导通的IGBT(绝缘栅双极晶体管),一个二极管反向地并联在IGBT上,但是不用说,也可以采用其中有二极管的这样一种元件比如MOSFET。
图2(a)到2(e)是表示在反向电路工作的时间周期内的电流通路图,图3是与之对应的工作波形图。下面的说明从以下状态开始:半导体开关元件21接通,商业电源1的电压极性如图所示。在该状态下,电流的通路是经过商业电源1到达高压变压器26的初级线圈再到半导体开关元件21再到二极管23,如图2(a)所示,在图3(a)中的时间周期内的用I21表示的电流流进半导体开关元件21和高压变压器26的初级线圈中,由此在高压变压器的初级线圈中储存能量。如果在一个预定时刻断开半导体开关元件21,高压变压器26的初级线圈电流企图沿同样方向继续流动,因此在该时刻,电容器沿商业电源1到高压变压器26的初级线圈到并联于半导体开关元件20上的二极管到电容器24的通路,被储存在高压变压器26的初级线圈中的能量充电,如图2(b)所示。执行该过程,由此通过增加商业电源1的电压所提供的电压被储存在电容器24中。储存在高压变压器26的初级线圈中能量释放完时,便形成图2(c)中的通路,这时,电容器24中所充能量沿电容器24到半导体开关元件20到高压变压器26的初级线圈到商业电源1的通路被取出。如果在预定时刻断开半导体开关元件20,高压变压器26的初级线圈电流企图沿同样方向继续流动,因此电流流过高压变压器26的初级线圈到商业电源1到电容器25到并联于半导体开关元件21上的二极管的通路,如图2(d)所示。如果商业电源1的电压极性与图中所示极性相反,则半导体开关元件20和21、二极管22和23以及电容器24和25仅仅互换工作而已,并且进行相同的运行。
在已描述的运行中,设计电容器24和25具有这样的容量:不但能够在半导体开关元件20、21接通/断开时,进行使高压变压器26初级线圈产生高频电流的反向运行,而且能够在电容器24、25中产生电压,该电压是给商业电源1电压提供增压,而且使电容器24的电容等于电容器25的电容。从而,如果商业电源1的电压极性如图所示,则用来增加商业电源1电压的电压被储存在电容器24中,反之,如果商业电源1的电压极性与图中相反,则用来增加商业电源1电压的电压被储存在电容器25中。因此,可以使电容器24产生的电压等于电容器25产生的电压,而不取决于商业电源1的电压极性,从而可以使商业电源1的电流为对称波形,而不考虑电压极性。继续该过程,由此电容器24、25的电压波形产生一个响应商业电源1的电压极性的增压,而不考虑商业电源1的周期,如图4所示。这样,流进高压变压器26初级线圈的电流的包络波形变为如V26(Lp)所示的波形。由于给高压变压器26增压并且将该增加的电压施加到磁控管8上,作用到磁控管8上的电压波形如V8所示,而且可以一直使该电压等于或大于失真电压VAK(TH)。因此,在商业电源1的任何周期内都有输入电流I1的流动,并且可以提高功率因数、抑制谐波。
当从图3中的时间期间(a)转换到(b)时,使二极管23停止工作;串联连接到电流通路上的半导体开关元件21切断该电流,不限制二极管23的开关速度。由于断开时刻作用到二极管23上的电压为0,因此在断开时刻没有开关损失。因此,可以使用着重于正向通电电压VF的二极管22、23,集中在抑制导通时刻的损失上,简化冷却二极管22和23的结构,同时容易使二极管小型化。尤其是,用于微波炉的这种磁控管的驱动电源提供1000W或更高的大功率,因此反向器电路的电流值变得非常大,约40A到50A,这有利于提高反向电路的效率、减小着重于正向通电电压VF的二极管22和23中的导电损失。因此,可以使反向电路的总功率损失最小,提供高效的磁控管的驱动电源。
因此,在本实施例采用的磁控管的驱动电源中,可以使用着重于正向通电电压VF的二极管22,23,减小二极管22,23的损失,提高磁控管驱动电源的总功率转换效率。当电容器24,25用作反向运行和给商业电源1电压增压时,本发明的这一优点犹为明显,该优点还由不同于相关技术JP10271846A示例的电容器电路功能和电路运行体现出来。
图12是本实施例的磁控管的驱动电源的更实际的电路结构,其中,商业电源1的输出配置有低通滤波器29,该滤波器由电感器27和电容器28组成,因此不允许反向器电路的高频电流流进商业电源。因此低通滤波器29设在商业电源1和反向电路之间,以便反向电路的高频电流或电压不经过商业电源侧,因此可以减小端子噪音。如果不采用该结构,则上述运行不会变化。下面的说明主要围绕驱动电路33,该电路控制半导体开关元件20和21的驱动信号。
驱动电路33驱动半导体开关元件20和21使反向电路工作。驱动电路33发送给半导体开关元件20和21的驱动信号Vg20和Vg21的波形都有一个空载时间,并且相互补充地接通和断开,如图13(a)所示。这样半导体开关元件20和21相互补充地接通和断开,由此反向电路将电能传递给磁控管8。
图14示出半导体开关元件21的接通时间比Don21与反向电路的转换功率P之间的关系。在该图中,实线表示的曲线示出当商业电源1具有图12所示的电压极性时的转换功率P的变化,反之,虚线表示的曲线示出当商业电源1具有与图12所示相反的电压极性时的转换功率P的变化。因此,半导体开关元件21的接通时间比Don21与反向电路的转换功率P之间的关系依赖商业电源1电压极性而改变。因此,在半导体开关元件21的接通时间比Don21大概为50%的状态下,可以进行同样的功率转换,而不考虑商业电源1电压极性的正负,这样可以使商业电源1的电流波形关于电压极性对称,如图15(b)所示。但是,如果希望商业电源1的电流波形是关于电压极性对称的正弦波形,那么转换功率仅被限制在一个点上。家用微波炉中,可以根据食物加热时间从不同档中选择加热功率。例如,在设置为“强”、“中”、“弱”等档时,需要调节加热功率。为了满足这一点,需要根据任何要求的输出功率改变半导体开关元件21的接通时间比Don21。但是,如果希望在恒定的接通时间比Don21下调节到需要的输出功率,而不依赖于商业电源1的电压极性,那么将接通时间比Don21设置到半导体开关元件21的接通时间比Don21与转换功率P之间关系的50%左右,如图14所示,该图还示出商业电源1电压的正和负时间段中的不同波形。如果错误地执行该控制方法,将导致电流波形偏离正负极性的平衡,如图15(a)所示。在这种情况下,电流波形变为不对称波形,因此出现针状(even’th-over)谐波,最终不可能提高功率因数。
因而,在该实施例中,驱动电路33运行,以便响应商业电源1的电压极性来置换半导体开关元件20和21的驱动信号。即,如图37所示,如果商业电源1的电压波形V1(虚线)的电压极性为正,那么为了控制递升地充电运行和反向运行,半导体开关元件21的接通时间比(实线)Don21升高,当极性相反时,半导体开关元件21的接通时间比Don21降低。当商业电源电压V1的极性为正时,在0伏到最大电压的波谷处设置能够递升充电到最大值的接通时间比Don21,相反地,接通时间比Don21在最大电压(峰点)附近稍微降低。半导体开关元件21的接通时间比Don21因此被充电,由此可以提供失真较小的输入电流,而且可以容易地调节加热的“强”、“中”、“弱”功率。不用说,当电压极性为负时,另一个控制递升充电功能和反向功能的半导体开关元件20跟随所述半导体开关元件21进行补充运行。
这时,在极性变化点,接通时间比Don21为50%,图37中的商业电源电压V1的极性在该点改变,Vg21和Vg20的通电时间T1和T2相等,在图38中详细地示出了极性变化点部分。在该控制下,在极性变化点,两个半导体开关元件的作用可以互换,这两个半导体开关元件中的一个控制递升充电功能和反向功能,另一个仅控制反向功能。因此,可以抑制输入电流极性变化点附近出现的针状失真,以及可以提供稳定的输入电流。
作为一个整体,当电路中磁控管的驱动电源出现的损失减小时,磁控管的驱动电源的转换功率改变,并且如果半导体开关元件21的通电时间Don21从基本50%的状态向任一个方向变化以及转换功率增加或减小,则可以一直允许保持商业电源1的波形类似对应于电压极性的正弦波形。因此,可以在高功率因数下完成小电流失真的运行,如果转换功率改变还可以一直保持高的功率转换效率。
(实施例8)
图39是本发明第八个实施例采用的电路图。图39所示的电源极性确定装置23确定商业电源1的电压极性,并将表示商业电源1是正还是负电压极性(图40中为V23)的信号传送给驱动电路33。作为一个示例,当商业电源1电压V1的极性为正时,将所传递的信号设为低值,当极性为负时,信号V23设为高值,如图40中所示。运行驱动电路33以便根据确定的信号置换半导体开关元件20和21的接通时间比,同时控制驱动电路33以便改变对应于商业电源1极性的每个接通时间比,在商业电源1的波谷提高控制递升充电功能的半导体开关元件的接通时间比,反之,在波峰降低接通时间比,如图37所示,以提供失真小的输入电流。
这时,商业电源的极性可以由电源极性确定装置23确定,因此在检测极性变化点的ZVP之后,同时提供一个切断的脉冲时间段,该时间段与反向运行的一个周期相同,电容器充分放电,半导体开关元件的作用可以置换,如图41所示。在该结构中,如果使Vg21和Vg20的通电时间T1和T2彼此不相等,如图13所示,与极性改变点的每个半导体开关元件的通电/断开额定比一样,可以抑制极性变换点处的输入电流的针状失真。
(实施例9)
参考图42和43描述本发明的第九实施例。图42是本发明的第九个实施例的磁控管的驱动电源的电路结构。第一和第二半导体开关7和8的串联连接体并联连接到第一和第二续流二极管5和6的串联连接体上。串联连接的第一和第二半导体开关7和8并联到第一和第二整流二极管3和4的串联连接体上。第一和第二电容器9和10连接到第一整流二极管3和第二整流二极管4上,商业电源1、滤波器2、高压变压器11连接在第一和第二整流二极管3和4的接点与半导体开关7和8的接点之间。高压变压器11的次级线圈输出连接到高压整流电路12上,以给磁控管13提供DC高压。磁控管13根据DC高压产生2.45GHz的无线电波。本实施例的磁控管的驱动电源的运行与相关技术示例中的一样,因此不再描述。
第一和第二整流二极管3和4以及第一和第二续流二极管5和6放在一个组件内成为一个整流二极管桥14,与第一和第二半导体开关7和8一样,不含续流二极管的半导体开关也放置在该组件内。由于这种结构不需要在半导体开关7、8中包含续流二极管,因此可以采用廉价的配置。图43是采用该配置时的连接图。由于二极管的特性,以高速二极管桥运行的二极管(trr:5微秒以下)是合适的。
如果采用该配置,半导体的损失趋于一致,这样可以很好地均匀冷却,可以防止某一个具体元件的温度升得过高。
如上所述,根据本实施例,整流二极管3和4以及续流二极管5和6构成整流二极管桥14,因此可以不浪费地使用整流二极管桥14的二极管,而且可以排除在半导体开关7、8中包含二极管的需要,因此可以提供廉价的磁控管的驱动电源。
(实施例10)
下面参考图44和45描述本发明的磁控管的驱动电源的第十个实施例。图44是本发明第十个实施例的磁控管的驱动电源的电路结构图。第十个实施例的磁控管的驱动电源的结构与第九个实施例不同的是半导体开关7和8装在一个组件中。
这样的结构使整流二极管桥14中的两个元件以及第一模块元件20能够组成一个反向器的一个初级半导体元件。图45是采用这种结构时的半导体连接图。该结构可以减小安装的组件数量,使反向器最小化,不需要半导体开关7和8彼此绝缘,从而不需要隔离散热风扇和使用绝缘罩。
如上所述,根据本发明,半导体开关7和8被作成一个模块,由此可以使反向器最小化,并且可以提供一种小型化为简单结构的磁控管的驱动电源。
(实施例11)
下面参考图46到49描述本发明的磁控管的驱动电源的第十一个实施例。第十一个实施例的磁控管的驱动电源的结构与前面参考图42,44所描述的一样,因此不再详细描述。
运行如下:图46到49是表示该实施例中部件的波形图表。图46是将高速产品用做续流二极管5、6时的续流二极管5、6的电流和电压波形。可以从该图中看出二极管接通时的损失和二极管断开时的损失,即当使用高速产品时,波形的电流和电压的积减小。从图47可以看出,如果缓慢接通二极管,反相电压都施加到半导体开关7、8上,二极管通电时的开关损失增加。如果缓慢断开,尤其是如果电流继续流动直到半导体开关7、8断开之后为止,断开时期的损失增加。因此,需要将着重于开关速度的元件用作续流二极管5和6。
另一方面,图48示出整流二极管3、4的电流和电压波形。图49示出相对于商业频率来看的整流二极管3、4的电流和电压波形。正如从图48中所看到的,在整流二极管3、4的电流波形中,开关损失较小,而通电损失,即稳定状态流动时的电流和电压的积是显著的,因为。如图49所示,在电流流进整流二极管3、4期间,甚至当整流二极管3、4断开时,整流二极管3、4中的电压很小,这时的电流和电压的积也很小。因此,整流二极管3和4要求使用着重于低通电电压即VF的二极管元件。
图50是普通二极管的速度(trr)和通电电压(VF)特性图。由于trr和VF通常具有对立关系,为了形成具有一种特性的整流二极管桥14,这里采用了一种表现出最佳特性的元件。反之,不能使用最佳元件。利用两种特性不同的元件,则可以大大减小元件损失。也就是说,将着重于VF的元件用作整流二极管3和4,着重于trr的元件用作续流二极管5和6,由此可以提供低损失的整流二极管14。
如上所述,根据该实施例,低VF的二极管用作整流二极管3和4,高速二极管用作续流二极管5和6,以组成整流二极管桥14,这样可以使每个二极管的损失最小,而且可以提供一种冷却能力很好的廉价磁控管的驱动电源,它可以缩小散热风扇的外形尺寸。
(实施例12)
下面参考图51描述本发明磁控管的驱动电源的第十二个实施例。
图51示出本发明该实施例的磁控管的驱动电源的结构。第十二个实施例与第九、第十或第十一个实施例的区别在于,半导体开关7和8、整流二极管3和4、以及续流二极管5和6设在一个组件内。
这种结构可以将用在磁控管的驱动电源初级侧的半导体设置在一个组件内,各元件之间不需要离散元件必须的绝缘,而且使装置紧凑。加热部件集中在一个点上时,它还可以使冷却结构更小型化。
如上所述,根据该实施例,半导体开关7和8、续流二极管5和6、以及整流二极管3和4设置在一个组件内,由此反向器的初级电路的所有半导体元件都设置在一个组件内,可以提供一种小型化的磁控管的驱动电源。
(实施例13)
下面参考图52描述本发明磁控管的驱动电源的第十三个实施例。
图52示出本发明的该实施例的磁控管的驱动电源的结构。第十三个实施例与第十二个实施例的区别在于,半导体开关驱动器23和24包含在一个半导体模块中,该模块包含设在一个组件内的半导体开关7和8、整流二极管3和4、以及续流二极管5和6。
这种结构只是将一个驱动信号和一个驱动电源连接到一个驱动电路(未示出)的半导体模块上,就可以驱动一个开关元件。因此,仍然可以使磁控管的驱动电源更小型化。驱动器23和24设置在半导体开关7和8附近,因此还可以更好地阻挡外部噪音。
如上所述,根据该实施例,驱动器23和24装在半导体模块中,因此可以提供更小型化的磁控管的驱动电源。
[工业实用性]
如上所述,根据本发明的第一到第六发明,允许输入电流流过商业电源的几乎所有区域,甚至通过一个有非线性特性的如磁控管的负载,在一个运用高转换功率的装置比如微波炉中还可以抑制反向电路存在的损失,可以提供一种高效磁控管的驱动电源。
本发明的高频加热功率电源可以抑制在极性变化点处的针状输入电流失真,该失真发生在一种电路结构中,在该结构中,只要商业AC电源被切换,控制递升充电功能和反向器功能的半导体开关元件的作用和另一个只控制反向器功能的半导体开关元件需要被置换,而且可以提供稳定的输入电流。
可以从所述实施例看出,根据本发明,整流二极管和续流二极管被作成一个整流二极管桥,由此可以不浪费地利用整流二极管桥的二极管,还可以消除在半导体开关中包含二极管的需要,因此可以提供一种廉价的磁控管的驱动电源。

Claims (17)

1.一种磁控管驱动电源,其特征在于,可以反向导通的第一和第二半导体开关元件的串联体与第一和第二二极管的串联体并联,第一和第二电容器并联到第一和第二二极管上,商业电源和高压变压器初级线圈的串联电路连接在第一和第二半导体开关元件的节点与第一和第二二极管的节点之间,该第一和第二半导体开关元件可以反向导通,以及高压变压器次级线圈的输出通过一个高压整流电路激励一个磁控管。
2.如权利要求1所述的磁控管驱动电源,其特征在于,可以反向导通的第一和第二半导体开关包括一个正向导通的半导体开关元件和一个反向地并联到该半导体开关元件上的二极管。
3.如权利要求1或2所述的磁控管驱动电源,其特征在于,使第一和第二二极管的容量相等。
4.如权利要求1或2所述的磁控管驱动电源,其特征在于,一个第三电容器并联到第一和第二半导体开关元件与高压变压器初级线圈的至少一个点上。
5.如权利要求1所述的磁控管驱动电源,其特征在于,提供一个驱动第一和第二半导体开关元件的驱动电路并且补充地驱动该第一和第二半导体开关元件,根据商业电源的正负极性置换驱动信号。
6.如权利要求5所述的磁控管驱动电源,其特征在于,它包括用来确定商业电源极性的电源极性确定装置,其中该驱动电路根据电源极性确定装置确定的信息置换第一和第二半导体开关元件的驱动信号。
7.如权利要求6所述的磁控管驱动电源,其特征在于,电源极性确定装置是光耦合器的形式,用来确定商业电源的极性。
8.如权利要求6所述的磁控管驱动电源,其特征在于,电源极性确定装置检测第二电容器的电压并且确定商业电源的极性。
9.如权利要求5或6所述的磁控管驱动电源,其特征在于,在商业电源的零交叉点附近,以一个预定变化率改变驱动信号。
10.如权利要求5到8的任意权利要求所述的磁控管驱动电源,其特征在于,改变第二半导体开关元件的导通时间,以便缩短响应商业电源电压在正方向上为高压的时间周期内的商业电源电压,相反,改变第一半导体开关元件的传导时间,以便缩短响应商业电源电压在负方向上为高压的时间周期内的商业电源电压。
11.一种高频加热元件的电源装置,其特征在于,可以反向导通的第一和第二半导体开关元件的串联体与第一和第二二极管的串联体并联,第一和第二电容器并联到第一和第二二极管上,商业电源和高压变压器初级线圈的串联电路连接在第一和第二半导体开关元件的节点与第一和第二二极管的节点之间,该第一和第二半导体开关元件可以反向导通,高压变压器次级线圈的输出通过一个高压整流电路驱动一个磁控管,在极性变化点附近将可以反向导通的第一和第二半导体开关元件的两个通/断额定比设置为约50%,商业电源在该极性变化点改变极性。
12.一种高频率加热元件的电源装置,其特征在于,可以反向导通的第一和第二半导体开关元件的串联体与第一和第二二极管的串联体并联,第一和第二电容器并联到第一和第二二极管上,商业电源和高压变压器初级线圈的串联电路连接在第一和第二半导体开关元件的节点与第一和第二二极管的节点之间,该第一和第二半导体开关元件可以反向导通,高压变压器次级线圈的输出通过一个高压整流电路驱动一个磁控管,当在商业电源极性变化点附近的控制中设置一个极性确定装置时,检测该极性变化点,由此,可以反向导通的第一和第二半导体开关元件执行递升充电功能和反向器功能的作用与只是反向功能的作用可以同时相互补充地置换。
13.一种磁控管驱动电源,其特征在于,它包括第一和第二半导体开关的串联体,反向并联到第一和第二半导体开关的第一和第二续流二极管,并联到第一和第二半导体开关的第一和第二整流二极管的串联体,并联到第一和第二整流二极管的第一和第二电容器,连接在第一和第二半导体开关的节点与第一和第二整流二极管的节点之间的彼此串联的商业电源和高压变压器初级线圈,以及连接到高压变压器次级线圈的输出的一个高压整流电路和一个磁控管,其特征在于,第一和第二续流二极管以及第一和第二整流二极管被设置在一个组件里。
14.如权利要求13所述的磁控管驱动电源,其特征在于,第一和第二半导体开关被设置在一个组件里。
15.如权利要求13或14所述的磁控管驱动电源,其特征在于,高速二极管被用做第一和第二续流二极管,具有低正向电压的二极管用做第一和第二整流二极管。
16.如权利要求13或14所述的磁控管驱动电源,其特征在于,第一和第二半导体开关,第一和第二续流二极管,以及第一和第二整流二极管设置在一个组件中。
17.如权利要求16所述的磁控管驱动电源,其特征在于,它包括驱动第一和第二半导体开关的驱动电路。
CNB018029264A 2000-09-27 2001-09-26 磁控管驱动电源 Expired - Fee Related CN1171505C (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2000293835A JP3216643B1 (ja) 2000-09-27 2000-09-27 マグネトロン駆動用電源
JP293824/2000 2000-09-27
JP2000293824A JP4240791B2 (ja) 2000-09-27 2000-09-27 マグネトロン駆動用電源
JP293835/2000 2000-09-27
JP2001068955A JP3468222B2 (ja) 2001-03-12 2001-03-12 マグネトロン駆動用電源
JP068955/2001 2001-03-12
JP069964/2001 2001-03-13
JP2001069964A JP3501133B2 (ja) 2001-03-13 2001-03-13 高周波加熱電源装置

Publications (2)

Publication Number Publication Date
CN1394459A CN1394459A (zh) 2003-01-29
CN1171505C true CN1171505C (zh) 2004-10-13

Family

ID=27481650

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB018029264A Expired - Fee Related CN1171505C (zh) 2000-09-27 2001-09-26 磁控管驱动电源
CN01269659U Expired - Fee Related CN2562101Y (zh) 2000-09-27 2001-09-26 磁控管驱动电源

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN01269659U Expired - Fee Related CN2562101Y (zh) 2000-09-27 2001-09-26 磁控管驱动电源

Country Status (6)

Country Link
US (1) US6624579B2 (zh)
EP (1) EP1254590B8 (zh)
KR (1) KR100766534B1 (zh)
CN (2) CN1171505C (zh)
DE (1) DE60104981T2 (zh)
WO (1) WO2002028149A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100454744C (zh) * 2006-07-22 2009-01-21 梁伟国 微波炉

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1171505C (zh) 2000-09-27 2004-10-13 松下电器产业株式会社 磁控管驱动电源
JP4391314B2 (ja) * 2004-05-10 2009-12-24 パナソニック株式会社 高周波加熱装置
US20080116198A1 (en) * 2006-11-21 2008-05-22 The Frank Group, Llc Microwave oven with multiple power supply paths
JP2011060566A (ja) * 2009-09-10 2011-03-24 Panasonic Corp 高周波加熱装置
JP5585045B2 (ja) * 2009-10-22 2014-09-10 セイコーエプソン株式会社 放電灯点灯装置、プロジェクター、及び放電灯の駆動方法
GB201011789D0 (en) * 2010-07-13 2010-08-25 Ceravision Ltd Magnetron power supply
CN102064722B (zh) * 2010-08-13 2013-03-13 南京博兰得电子科技有限公司 单级交流/直流变换器
KR20120032204A (ko) * 2010-09-28 2012-04-05 (주)트리플코어스코리아 마이크로웨이브 발생 장치, 이 장치의 구동 방법 및 폐가스 제거 시스템
CN103558783B (zh) * 2013-10-21 2017-02-15 金华大维电子科技(大连)有限公司 电除尘用高频高压电源及控制方法
KR101485349B1 (ko) 2013-10-31 2015-01-26 한국전기연구원 반도체 스위치 소자와 보호 회로를 이용한 마그네트론 전원 공급 장치
KR101485342B1 (ko) * 2013-10-31 2015-01-26 한국전기연구원 보호 회로를 포함하는 마그네트론 전원 공급 장치
KR101485344B1 (ko) * 2013-11-07 2015-01-26 한국전기연구원 반도체 스위치 소자와 잡음 제거 회로를 이용하는 마그네트론 전원 공급 장치
KR101533632B1 (ko) * 2013-11-07 2015-07-06 한국전기연구원 잡음 제거 회로를 포함하는 마그네트론 전원 공급 장치
WO2017147419A1 (en) * 2016-02-26 2017-08-31 Newton Scientific, Inc. Bipolar x-ray module
JP7002052B2 (ja) 2017-03-03 2022-02-04 パナソニックIpマネジメント株式会社 電力伝送システム
DE112017007770T5 (de) * 2017-07-21 2020-04-09 Mitsubishi Electric Corporation Stationsgebäude-energieversorgung
US10622994B2 (en) * 2018-06-07 2020-04-14 Vishay-Siliconix, LLC Devices and methods for driving a semiconductor switching device
US10608630B1 (en) * 2018-06-26 2020-03-31 Xilinx, Inc. Method of increased supply rejection on single-ended complementary metal-oxide-semiconductor (CMOS) switches
CN111211029B (zh) * 2018-11-21 2023-09-01 中微半导体设备(上海)股份有限公司 一种多区控温等离子反应器
EP3696829B1 (en) * 2019-02-15 2021-08-11 Centre national de la recherche scientifique Method for generating a pulsed magnetic field and associated device
CN110153535B (zh) * 2019-07-03 2024-01-02 彭智民 一种高频逆变焊机功率变换电路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111918B2 (ja) * 1987-07-28 1995-11-29 三菱電機株式会社 マイクロ波放電光源装置
FR2679075B1 (fr) * 1991-07-09 1993-10-22 Moulinex Sa Dispositif de detection du dysfonctionnement d'une charge telle qu'un magnetron.
US5909086A (en) * 1996-09-24 1999-06-01 Jump Technologies Limited Plasma generator for generating unipolar plasma
EP0963685B1 (en) * 1997-02-25 2002-06-05 Matsushita Electric Industrial Co., Ltd. High frequency heating equipment
JPH10271846A (ja) 1997-03-26 1998-10-09 Matsushita Electric Works Ltd 電源装置
KR100387943B1 (ko) 1998-08-06 2003-06-18 마쯔시다덴기산교 가부시키가이샤 고주파 가열장치
CN1171505C (zh) 2000-09-27 2004-10-13 松下电器产业株式会社 磁控管驱动电源

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100454744C (zh) * 2006-07-22 2009-01-21 梁伟国 微波炉

Also Published As

Publication number Publication date
EP1254590B8 (en) 2005-03-02
EP1254590A2 (en) 2002-11-06
US6624579B2 (en) 2003-09-23
WO2002028149A3 (en) 2002-08-01
DE60104981T2 (de) 2005-01-20
KR20020071870A (ko) 2002-09-13
CN2562101Y (zh) 2003-07-23
KR100766534B1 (ko) 2007-10-15
US20020171374A1 (en) 2002-11-21
DE60104981D1 (de) 2004-09-23
EP1254590B1 (en) 2004-08-18
CN1394459A (zh) 2003-01-29
WO2002028149A2 (en) 2002-04-04

Similar Documents

Publication Publication Date Title
CN1171505C (zh) 磁控管驱动电源
CN1241317C (zh) 开关电源装置
CN1280976C (zh) 开关电源装置
CN1961612A (zh) 高频加热装置
CN1224161C (zh) 开关电源装置
CN1249904C (zh) 开关电源
CN1138332C (zh) 功率转换装置以及使用它的空调机
CN1178371C (zh) 高频加热设备
CN1040272C (zh) 逆变装置
CN101051789A (zh) 单向dc-dc变换器
CN1266821C (zh) 开关电源电路
CN1375123A (zh) 用于控制对直流计算机部件的电力输送的***
CN1701496A (zh) 功率因数改善电路
CN1346535A (zh) Dc-dc变换器
CN1360750A (zh) 开关电源电路
CN1296330A (zh) 电源装置
CN1318896A (zh) 开关电源电路
CN1860671A (zh) 开关电源装置
CN1706089A (zh) 具有高输入功率因数和低谐波失真的交-直流电源转换器
CN1324141A (zh) 具有有源箝位电路的开关电源装置
CN1819428A (zh) 开关电源电路
CN1119572A (zh) 用于电阻焊机的控制装置
CN101039080A (zh) 开关电源电路
CN1926752A (zh) 多输出电流谐振型dc-dc变换器
CN1197231C (zh) 开关电源电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20041013

Termination date: 20110926