CN117117516A - 一种有机/无机杂化型亚太赫兹吸波薄膜的制备方法 - Google Patents

一种有机/无机杂化型亚太赫兹吸波薄膜的制备方法 Download PDF

Info

Publication number
CN117117516A
CN117117516A CN202310644938.6A CN202310644938A CN117117516A CN 117117516 A CN117117516 A CN 117117516A CN 202310644938 A CN202310644938 A CN 202310644938A CN 117117516 A CN117117516 A CN 117117516A
Authority
CN
China
Prior art keywords
film
organic
inorganic hybrid
terahertz wave
basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310644938.6A
Other languages
English (en)
Other versions
CN117117516B (zh
Inventor
蓝碧健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taicang Biqi New Material Research Development Co Ltd
Original Assignee
Taicang Biqi New Material Research Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taicang Biqi New Material Research Development Co Ltd filed Critical Taicang Biqi New Material Research Development Co Ltd
Priority to CN202310644938.6A priority Critical patent/CN117117516B/zh
Publication of CN117117516A publication Critical patent/CN117117516A/zh
Application granted granted Critical
Publication of CN117117516B publication Critical patent/CN117117516B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于B5G技术领域,具体为一种有机/无机杂化型亚太赫兹吸波薄膜的制备方法。本发明提出的制备方法,是将碱式碳酸盐包覆在缓释膜中,再与酸性聚合物一起,分散到热熔胶中,搅拌,然后置于热转印机中,热压成膜,室温放置一段时间,得有机/无机杂化型亚太赫兹吸波薄膜。本发明具有以下优点:(1)在B5G技术亚太赫兹频段的吸收效能大于40dB,而反射效能小于0.01dB,避免了反射电磁波耦合干扰;(2)薄膜厚度可调,适合于B5G电路板有限空间的电磁兼容;(3)利用缓释膜控制酸碱反应速率,将水固定在薄膜中,在亚太赫兹波辐照下,产生共振或弛豫,达到强吸波、低反射的效果。

Description

一种有机/无机杂化型亚太赫兹吸波薄膜的制备方法
技术领域
本发明属于B5G技术领域,具体涉及一种有机/无机杂化型亚太赫兹吸波薄膜的制备方法。
背景技术
5G由移动互联网拓展到物联网领域,开启了产业互联网新时代,5G的成功商用将成为B5G(Beyond 5G)发展的基础,但部分应用场景的性能需求超过了5G能力。
美国国家标准研究院指出,B5G是指未来几代移动无线通信***,这些下一代***的愿景是实现开创性的移动应用,除了大容量(超过1000倍)和连接(数十亿用户和机器)外,还需要高质量的低延迟视觉、触觉和音频临场感。下一代移动通信已经开始利用毫米波(0.03–0.3THz)的可用频率,在这种频率下,高功率发射机可以使用数十到数百个天线(通常称为大规模MIMO天线)来恢复高传播损耗。天线的数量越大,通过组合每个天线的单独功率(也称为波束形成)可以实现的发射功率越高。业界已经在探索使用大规模MIMO天线阵列,以增加同时传输容量;毫米波频谱,以缓解当前频带中的频谱紧缩;以及超密集网络,以允许短距离、高速数据传输(https://www.nist.gov/programs-projects/5g-beyond)。
B5G研究主要集中在毫米波(0.03~0.3THz)频段,与亚太赫兹频段(0.1~0.3THz)及6G频段(0.1~3.0 THz )有重叠。
美国伍斯特理工学院的Titova LV等以溶液法制备了柔性MXene (Ti3C2Ty)薄膜[Nano Letters, 2020, 20, 636-643.],有极高的导电率和太赫兹电磁屏蔽效能,且屏蔽效能可以调制,Ti3C2Ty与各种衬底的兼容性,使得这类二维材料在太赫兹技术和电磁屏蔽中有广泛应用。波兰华沙工业大学的Zeranska-Chudek K等利用太赫兹时域光谱研究了0.7mm厚的PDMS、PDMS/石墨烯(1 wt%)、PDMS/MXene(1 wt%)的太赫兹屏蔽性能[Journal ofApplied Polymer Science, 2021,138: e49962],PDMS的屏蔽效能约6dB,PDMS/MXene约11dB,PDMS/石墨烯为21.9~54.9 dB,复合材料的介电损耗均较低。美国加州大学河边分校的Balandin AA 等研究了填充型石墨烯环氧树脂复合材料的电磁屏蔽性能[ACS AppliedMaterials&Interfaces, 2020, 12: 28635-28644],在0.22~0.30THz频段,石墨烯负载量为8wt%时,1mm厚的环氧树脂复合薄膜的电阻率为1.51×105Ω.cm,最大屏蔽效能为70dB,但对应的频带较窄,频率较低。湖南大学谭勇文教授等将MXene与氧化石墨烯混合,用离子扩散诱导凝胶化的方法制备85μm厚的MXene泡沫[ACS Nano, 2020, 14:2109-2117],其中MXene片被多价金属离子和氧化石墨烯交联以形成定向多孔结构,该泡沫导电率为5671.8S/m,在0.2~0.3THz频段的最大电磁屏蔽效能为51dB,为研制高性能太赫兹屏蔽材料提供了新的思路。电子科技大学文岐业教授、肖旭教授等将聚氨酯泡沫浸渍在Ti3C2Tx溶液中,制备10mm厚的MXene海绵泡沫(MSF)[Advanced Optical Materials, 2020, 8: 2001120],在0.3THz的吸收率超过99.99%(屏蔽效能>40dB),该泡沫在雷达隐身、电磁屏蔽和B5G通信等领域具有潜在应用。
总之,目前的亚太赫兹吸波材料大多是导电粒子填充型材料,而绝缘粒子填充型吸波材料比较少。绝缘型薄膜材料在B5G电子器件中可以实现 “封装-吸波”一体化,节约电路板上空间,提升电路板集成度,具有极大的应用价值。
发明内容
本发明目的是提出一种有机/无机杂化型亚太赫兹吸波薄膜的制备方法。
本发明提出有机/无机杂化型亚太赫兹吸波薄膜的制备方法,其特征在于,将1~3g碱式碳酸盐、10~15g取代甲基纤维素、50~100ml乙醇水溶液混合,搅拌30~45分钟,加热,蒸除溶剂,固体粉碎,过筛,得800~1000目的甲基纤维素包覆碱式碳酸盐粉末;将3~5g甲基纤维素包覆碱式碳酸盐粉末、1~3g酸性聚合物,分散到50~80g热熔胶中,搅拌,然后置于热转印机中,于120~150℃热压成膜,室温冷却6~12小时,得有机/无机杂化型亚太赫兹吸波薄膜。
其中,碱式碳酸盐为碱式碳酸铜、碱式碳酸钙、碱式碳酸锌、碱式碳酸镁或碱式碳酸铋中的任意一种。
其中,取代甲基纤维素为羟甲基纤维素或羟丙基甲基纤维素中的任意一种。
其中,乙醇水溶液的溶质为乙醇,溶剂为水,质量百分比浓度为20%~30%。
其中,酸性聚合物为聚丙烯酸或聚苯乙烯磺酸中的任意一种。
其中,热熔胶为乙烯-醋酸乙烯酯共聚物、聚氨基甲酸酯、聚己二酰己二胺或聚丁二酸乙二醇酯中的任意一种。
上述有机/无机杂化型亚太赫兹吸波薄膜样品吸波效能测试是通过太赫兹时域光谱***实现的,测试波长为0.1~0.3 THz;分别采用了透射模式和反射模式两种光路,对薄膜样品的总屏蔽效能和反射效能进行检测,吸收效能为总屏蔽效能减去反射效能。测得该薄膜在0.1~0.3THz频段的吸收效能为43.2~53.1dB,反射效能为0.007~0.01dB;用膜厚仪测得薄膜厚度为0.01~0.05mm。
因此,本发明具有以下优点:
(1)在B5G亚太赫兹频段(0.1~0.3THz)的吸收效能大于40dB,可用于民用电子元件及电路板电磁兼容(民用标准为≥30dB)。
(2)反射效能≤0.01dB,能极大降低反射电磁波耦合干扰,从源头上降低辐射源的自损伤。
(3)利用取代甲基纤维素为缓释膜,控制碱式碳酸盐与酸性聚合物的接触反应,保持吸波薄膜的水含量,在亚太赫兹波辐射下,类似微波炉效应,水产生共振弛豫,将电磁波能量转化为热能,极大提升吸收效能,降低反射效能。
附图说明
图1为有机/无机杂化型亚太赫兹吸波薄膜的扫描电镜照片图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细描述。
实施例1
将1g碱式碳酸铜、10g羟甲基纤维素、50ml质量百分比浓度为30%的乙醇水溶液混合,搅拌30分钟,加热,蒸除溶剂,固体粉碎,过筛,得800目的羟甲基纤维素包覆碱式碳酸铜粉末;将3g羟甲基纤维素包覆碱式碳酸铜粉末、1g聚丙烯酸,分散到50g乙烯-醋酸乙烯酯共聚物热熔胶中,搅拌,然后置于热转印机中,于120℃热压成膜,室温冷却6小时,得有机/无机杂化型亚太赫兹吸波薄膜。将薄膜样品被裁剪为1 cm ×1 cm平面大小,利用太赫兹时域光谱***测得薄膜样品在0.1~0.3THz频段的总屏蔽效能为43.21~51.32dB,反射效能为0.007~0.009dB,计算得到吸收效能为43.203~51.311dB;用膜厚仪测得薄膜厚度为0.01mm。
实施例2
将3g碱式碳酸钙、15g羟丙基甲基纤维素、100ml质量百分比浓度为20%的乙醇水溶液混合,搅拌45分钟,加热,蒸除溶剂,固体粉碎,过筛,得1000目的羟丙基甲基纤维素包覆碱式碳酸钙粉末;将5g羟丙基甲基纤维素包覆碱式碳酸钙粉末、3g聚苯乙烯磺酸,分散到80g聚氨基甲酸酯热熔胶中,搅拌,然后置于热转印机中,于150℃热压成膜,室温冷却12小时,得有机/无机杂化型亚太赫兹吸波薄膜。将薄膜样品被裁剪为1 cm × 1 cm平面大小,利用太赫兹时域光谱***测得薄膜样品在0.1~0.3THz频段的总屏蔽效能为45.63~53.10dB,反射效能为0.009~0.01dB,计算得到吸收效能为45.621~53.09dB;用膜厚仪测得薄膜厚度为0.05mm。
实施例3
将2g碱式碳酸锌、12g羟甲基纤维素、80ml质量百分比浓度为25%的乙醇水溶液混合,搅拌40分钟,加热,蒸除溶剂,固体粉碎,过筛,得900目的羟甲基纤维素包覆碱式碳酸锌粉末;将4g羟甲基纤维素包覆碱式碳酸锌粉末、2g聚丙烯酸,分散到60g聚己二酰己二胺热熔胶中,搅拌,然后置于热转印机中,于140℃热压成膜,室温冷却8小时,得有机/无机杂化型亚太赫兹吸波薄膜。将薄膜样品被裁剪为1 cm × 1 cm平面大小,利用太赫兹时域光谱***测得薄膜样品在0.1~0.3THz频段的总屏蔽效能为44.98~52.17dB,反射效能为0.007~0.008dB,计算得到吸收效能为44.973~51.162dB;用膜厚仪测得薄膜厚度为0.03mm。
实施例4
将2.5g碱式碳酸镁、13g羟丙基甲基纤维素、70ml质量百分比浓度为20%的乙醇水溶液混合,搅拌35分钟,加热,蒸除溶剂,固体粉碎,过筛,得800目的羟丙基甲基纤维素包覆碱式碳酸镁粉末;将4.5g羟丙基甲基纤维素包覆碱式碳酸镁粉末、2.5g聚苯乙烯磺酸,分散到65g聚丁二酸乙二醇酯热熔胶中,搅拌,然后置于热转印机中,于145℃热压成膜,室温冷却7小时,得有机/无机杂化型亚太赫兹吸波薄膜。将薄膜样品被裁剪为1 cm × 1 cm平面大小,利用太赫兹时域光谱***测得薄膜样品在0.1~0.3THz频段的总屏蔽效能为43.33~51.88dB,反射效能为0.008~0.009dB,计算得到吸收效能为43.322~51.871dB;用膜厚仪测得薄膜厚度为0.04mm。
实施例5
将1.5g碱式碳酸铋、14g羟甲基纤维素、60ml质量百分比浓度为25%的乙醇水溶液混合,搅拌35分钟,加热,蒸除溶剂,固体粉碎,过筛,得1000目的羟甲基纤维素包覆碱式碳酸铋粉末;将5g羟甲基纤维素包覆碱式碳酸铋粉末、1.5g聚苯乙烯磺酸,分散到70g乙烯-醋酸乙烯酯共聚物热熔胶中,搅拌,然后置于热转印机中,于130℃热压成膜,室温冷却8小时,得有机/无机杂化型亚太赫兹吸波薄膜。将薄膜样品被裁剪为1 cm × 1 cm平面大小,利用太赫兹时域光谱***测得薄膜样品在0.1~0.3THz频段的总屏蔽效能为44.45~51.96dB,反射效能为0.009~0.01dB,计算得到吸收效能为44.441~51.95dB;用膜厚仪测得薄膜厚度为0.02mm。

Claims (3)

1.一种有机/无机杂化型亚太赫兹吸波薄膜的制备方法,其特征在于,具体步骤如下:
(1)复合:将1~3g碱式碳酸盐、10~15g取代甲基纤维素、50~100ml乙醇水溶液混合,搅拌30~45分钟,加热,蒸除溶剂,固体粉碎,过筛,得800~1000目的甲基纤维素包覆碱式碳酸盐粉末;其中,碱式碳酸盐为碱式碳酸铜、碱式碳酸钙、碱式碳酸锌、碱式碳酸镁或碱式碳酸铋中的任意一种;其中,取代甲基纤维素为羟甲基纤维素或羟丙基甲基纤维素中的任意一种;其中,乙醇水溶液的溶质为乙醇,溶剂为水,质量百分比浓度为20%~30%;
(2)成膜:将3~5g 800~1000目的甲基纤维素包覆碱式碳酸盐粉末、1~3g酸性聚合物,分散到50~80g热熔胶中,搅拌,然后置于热转印机中,于120~150℃热压成膜,室温冷却6~12小时,得有机/无机杂化型亚太赫兹吸波薄膜;其中,酸性聚合物为聚丙烯酸或聚苯乙烯磺酸中的任意一种;其中,热熔胶为乙烯-醋酸乙烯酯共聚物、聚氨基甲酸酯、聚己二酰己二胺或聚丁二酸乙二醇酯中的任意一种。
2.根据权利要求1所述的有机/无机杂化型亚太赫兹吸波薄膜的制备方法,其特征在于,有机/无机杂化型亚太赫兹吸波薄膜的吸收效能测试是通过太赫兹时域光谱***实现的,测试波长为0.1~0.3 THz;分别采用了透射模式和反射模式两种光路,对总屏蔽效能和反射效能进行检测,吸收效能为总屏蔽效能减去反射效能。
3.根据权利要求1所述的有机/无机杂化型亚太赫兹吸波薄膜的制备方法,其特征在于,有机/无机杂化型亚太赫兹吸波薄膜在0.1~0.3THz频段的吸收效能为43.2~53.1dB,反射效能为0.007~0.01dB;用膜厚仪测得有机/无机杂化型亚太赫兹吸波薄膜的厚度为0.01~0.05mm。
CN202310644938.6A 2023-06-02 2023-06-02 一种有机/无机杂化型亚太赫兹吸波薄膜的制备方法 Active CN117117516B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310644938.6A CN117117516B (zh) 2023-06-02 2023-06-02 一种有机/无机杂化型亚太赫兹吸波薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310644938.6A CN117117516B (zh) 2023-06-02 2023-06-02 一种有机/无机杂化型亚太赫兹吸波薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN117117516A true CN117117516A (zh) 2023-11-24
CN117117516B CN117117516B (zh) 2024-02-20

Family

ID=88806237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310644938.6A Active CN117117516B (zh) 2023-06-02 2023-06-02 一种有机/无机杂化型亚太赫兹吸波薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN117117516B (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1185474A (en) * 1967-01-02 1970-03-25 British Insulated Callenders Improvements in Electrical Apparatus Incorporating a Laminated Dielectric.
US3951899A (en) * 1970-06-22 1976-04-20 Ppg Industries, Inc. Opaque, microcellular films from latex compositions, process and composition for preparing the same
EP0083723A2 (en) * 1981-11-24 1983-07-20 Showa Denko Kabushiki Kaisha Electromagnetic wave-shielding materials
JPH08253317A (ja) * 1994-12-13 1996-10-01 Nippon Shokubai Co Ltd 酸化亜鉛系微粒子、その製造方法及び用途
JP2001342021A (ja) * 2000-05-31 2001-12-11 Hakusui Tech Co Ltd 酸化亜鉛微粒子の製造法
JP2002309100A (ja) * 2001-04-12 2002-10-23 Hakusui Tech Co Ltd 紫外線遮蔽フィルム
WO2004058645A1 (ja) * 2002-12-25 2004-07-15 Cf High Tech Co., Ltd. 導電性酸化亜鉛粉末およびその製法、並びに導電性組成物
CN1946550A (zh) * 2004-04-28 2007-04-11 住友金属工业株式会社 散热性优异的涂装钢板
CN101545159A (zh) * 2009-05-04 2009-09-30 南京航空航天大学 一种稀土掺杂尖晶石铁氧体/掺铝氧化锌复合纤维及其制备方法
CN102020899A (zh) * 2010-11-26 2011-04-20 中国人民解放军第三军医大学 复合涂层电磁屏蔽涂料及其制备的复合涂层电磁屏蔽材料
JP2014215592A (ja) * 2013-04-30 2014-11-17 コニカミノルタ株式会社 偏光機能付きガラスおよびそれを備えた液晶表示装置
CN110429387A (zh) * 2019-07-31 2019-11-08 太仓碧奇新材料研发有限公司 一种太赫兹吸波薄膜的制备方法
CN111718636A (zh) * 2020-06-28 2020-09-29 广州集泰化工股份有限公司 一种水性环氧低锌底漆及其制备方法
CN112385326A (zh) * 2018-09-28 2021-02-19 株式会社Lg化学 复合材料
KR102409631B1 (ko) * 2021-12-30 2022-06-16 장정식 향상된 내열특성을 갖는 도전성 구리 분말 페이스트 및 그 제조방법
CN115121110A (zh) * 2021-03-24 2022-09-30 中国石油化工股份有限公司 一种催化一氧化二氮分解的方法
CN116004026A (zh) * 2023-01-10 2023-04-25 苏州三体二太新能源科技有限公司 一种辐射制冷材料及其应用

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1185474A (en) * 1967-01-02 1970-03-25 British Insulated Callenders Improvements in Electrical Apparatus Incorporating a Laminated Dielectric.
US3951899A (en) * 1970-06-22 1976-04-20 Ppg Industries, Inc. Opaque, microcellular films from latex compositions, process and composition for preparing the same
EP0083723A2 (en) * 1981-11-24 1983-07-20 Showa Denko Kabushiki Kaisha Electromagnetic wave-shielding materials
US4508640A (en) * 1981-11-24 1985-04-02 Showa Denko Kabushiki Kaisha Electromagnetic wave-shielding materials
JPH08253317A (ja) * 1994-12-13 1996-10-01 Nippon Shokubai Co Ltd 酸化亜鉛系微粒子、その製造方法及び用途
JP2001342021A (ja) * 2000-05-31 2001-12-11 Hakusui Tech Co Ltd 酸化亜鉛微粒子の製造法
JP2002309100A (ja) * 2001-04-12 2002-10-23 Hakusui Tech Co Ltd 紫外線遮蔽フィルム
WO2004058645A1 (ja) * 2002-12-25 2004-07-15 Cf High Tech Co., Ltd. 導電性酸化亜鉛粉末およびその製法、並びに導電性組成物
CN1946550A (zh) * 2004-04-28 2007-04-11 住友金属工业株式会社 散热性优异的涂装钢板
CN101545159A (zh) * 2009-05-04 2009-09-30 南京航空航天大学 一种稀土掺杂尖晶石铁氧体/掺铝氧化锌复合纤维及其制备方法
CN102020899A (zh) * 2010-11-26 2011-04-20 中国人民解放军第三军医大学 复合涂层电磁屏蔽涂料及其制备的复合涂层电磁屏蔽材料
JP2014215592A (ja) * 2013-04-30 2014-11-17 コニカミノルタ株式会社 偏光機能付きガラスおよびそれを備えた液晶表示装置
CN112385326A (zh) * 2018-09-28 2021-02-19 株式会社Lg化学 复合材料
CN110429387A (zh) * 2019-07-31 2019-11-08 太仓碧奇新材料研发有限公司 一种太赫兹吸波薄膜的制备方法
CN111718636A (zh) * 2020-06-28 2020-09-29 广州集泰化工股份有限公司 一种水性环氧低锌底漆及其制备方法
CN115121110A (zh) * 2021-03-24 2022-09-30 中国石油化工股份有限公司 一种催化一氧化二氮分解的方法
KR102409631B1 (ko) * 2021-12-30 2022-06-16 장정식 향상된 내열특성을 갖는 도전성 구리 분말 페이스트 및 그 제조방법
CN116004026A (zh) * 2023-01-10 2023-04-25 苏州三体二太新能源科技有限公司 一种辐射制冷材料及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
WEI LIU: "Carboxymethyl Cellulose/Graphene Oxide Composite Film-Coated Humidity Sensor Based on Thin-Core Fiber Mach-Zehnder Interferometer", 《IEEE ACCESS》 *
寇雨佳;周文英;龚莹;蔡会武;吴红菊;: "聚合物/导热金属复合材料的研究进展", 中国塑料, no. 03 *
董凯;赖伟恩;孙丹丹;文岐业;张怀武;: "基于金属孔阵列的聚酰亚胺薄膜太赫兹探测", 强激光与粒子束, no. 06 *
高海霞: "纳米氧化锌/聚合物复合材料的制备及其光催化性能研究", 《中国优秀硕士学位论文全文数据库》 *

Also Published As

Publication number Publication date
CN117117516B (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
Zhai et al. A low-profile dual-polarized high-isolation MIMO antenna arrays for wideband base-station applications
Bueno et al. Microwave-absorbing properties of Ni0. 50–xZn0. 50− xMe2xFe2O4 (Me= Cu, Mn, Mg) ferrite–wax composite in X-band frequencies
Zhu et al. A new method for achieving miniaturization and gain enhancement of Vivaldi antenna array based on anisotropic metasurface
Dixit et al. The enhanced gain and cost‐effective antipodal Vivaldi antenna for 5G communication applications
Huang et al. Low-RCS reflectarray with phase controllable absorptive frequency-selective reflector
Hansen et al. Antennas with magneto‐dielectrics
Shi et al. A novel multi-dimensional structure of graphene-decorated composite foam for excellent stealth performance in microwave and infrared frequency bands
Guan et al. Compact microstrip patch array antenna with parasitically coupled feed
Tan et al. Design of a dual‐beam cavity‐backed patch antenna for future fifth generation wireless networks
Wang et al. Enhanced microwave absorption performance of lightweight absorber based on reduced graphene oxide and Ag-coated hollow glass spheres/epoxy composite
Qu et al. An ultra-thin ultra-broadband microwave absorber for radar stealth
CN117117516B (zh) 一种有机/无机杂化型亚太赫兹吸波薄膜的制备方法
Duan et al. Layered metamaterials with Sierpinski triangular fractal metasurface: Compatible stealth for S-band radar and infrared
Locatelli et al. A planar, differential, and directive ultrawideband antenna
Malfajani et al. A 3D-printed encapsulated dual wide-band dielectric resonator antenna with beam switching capability
Rahman et al. High gain, low radar cross‐section, and left hand circularly polarized antenna array based on metamaterial inspired elements
Dixit et al. Antipodal Vivaldi Antenna with enhanced gain and improved radiation patterns for 5G-IoT applications using metamaterial and Substrate Integrated Waveguide
CN103646126A (zh) 微带阵列聚焦天线的设计方法及微带阵列聚焦天线
Priyadharshini et al. Novel ENG metamaterial for gain enhancement of an off-set fed CPW concentric circle shaped patch antenna
Sahu et al. Investigation on cylindrical dielectric resonator antenna with metamaterial superstrate
Naktong et al. Dipole antenna with horn waveguide for energy harvesting in DTV systems
Faeghi et al. Nanoparticle-coated Vivaldi antenna array for gain enhancement
Sahu et al. Polymer composites for flexible electromagnetic shields
CN109413978B (zh) 一种复合电磁波吸收材料及制备方法
CN113214655A (zh) 一种电磁屏蔽吸波导热膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant