CN117069817B - 一种通过过表达SlNAC3基因预报低温胁迫提早番茄耐低温方法 - Google Patents

一种通过过表达SlNAC3基因预报低温胁迫提早番茄耐低温方法 Download PDF

Info

Publication number
CN117069817B
CN117069817B CN202311321402.7A CN202311321402A CN117069817B CN 117069817 B CN117069817 B CN 117069817B CN 202311321402 A CN202311321402 A CN 202311321402A CN 117069817 B CN117069817 B CN 117069817B
Authority
CN
China
Prior art keywords
slnac3
gene
tomato
low temperature
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311321402.7A
Other languages
English (en)
Other versions
CN117069817A (zh
Inventor
张文娜
王涛
马学敏
陈颖
夏振潇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN202311321402.7A priority Critical patent/CN117069817B/zh
Publication of CN117069817A publication Critical patent/CN117069817A/zh
Application granted granted Critical
Publication of CN117069817B publication Critical patent/CN117069817B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Virology (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及植物分子低温胁迫领域,具体涉及一种通过过表达SlNAC3基因预报低温胁迫提早番茄耐低温方法;本方案通过过表达和野生型植株的低温处理,得到SlNAC3的过表达植株响应低温时间显著提前,对SlNAC3基因进行基因沉默,发现沉默植株具备耐冷性,并对以上植株进行了相对电导率、丙二醛含量和Fv/Fm等生理指标的测定,本方案所涉及的SlNAC3新功能具有较好的应用潜力,为生产中预报低温胁迫、提早番茄冷响应,进而培育耐低温植物提供了基因资源和新思路,具有广泛的应用前景和较高的使用价值。

Description

一种通过过表达SlNAC3基因预报低温胁迫提早番茄耐低温 方法
技术领域
本发明涉及植物分子低温胁迫领域,具体涉及通过过表达SlNAC3基因预报低温胁迫提早番茄耐低温方法。
背景技术
番茄(Solanum lycopersicum L.)是全球最重要的园艺作物之一。栽培番茄属非冷驯化植物,对低温敏感,在生产上常受到低温冷害而影响植株的生长发育和果实品质。目前有多种方法可以提高番茄的耐低温,比如传统的杂交育种,将耐低温番茄品种与栽培种杂交,选育出耐低温的新品种,但该方法周期长,且缺乏对耐低温深层机制的探究,因此从分子水平探究番茄低温胁迫下的应答机制,并通过转基因和基因敲除手段培育耐低温番茄为培育抗低温番茄品种提供了新的思路。
NAC转录因子是植物特有的一类转录因子家族,研究发现其在植物生长发育、果实成熟和侧根发育等方面发挥着重要的作用。大量的NAC转录因子也参与了植物的生物和非生物胁迫,包括干旱、低温、高温和高盐等,NAC转录因子在复杂多变的逆境胁迫中扮演着重要的角色。目前对NAC转录因子的研究主要集中于模式植物拟南芥和水稻,在番茄中的研究还较少,尤其是如何参与植株的低温胁迫以及相应的调控网络研究仍处于起步阶段。作物生产中目前也缺乏低温胁迫的预报和应对策略,过表达NAC3可以将低温预警提早到2 h,通过基因表达和生理性状分析准确判断作物是否遭受低温胁迫。
发明内容
针对现有技术中存在的不足,本发明目的是提供一种通过过表达SlNAC3基因预报低温胁迫、提早番茄耐低温的方法。
为解决上述技术问题,本发明提供的技术方案是:所述的通过过表达SlNAC3基因预报低温胁迫提早番茄耐低温方法,包括番茄SlNAC3基因,该基因的核苷酸序列如SEQIDNO:1所示。
进一步地,该方法包括番茄SlNAC3基因编码的蛋白质,该蛋白质的氨基酸序列如SEQID NO:2所示。
进一步地,该方法包括番茄SlNAC3基因在常温和冷处理条件下的表达方法,该表达方法包括以下步骤:
(3.1)合成番茄SINCA3基因的qRT-PCR引物序列:
上游引物5‘- TGCCTCTGTTCCTCTTCCTG -3’;
下游引物5‘- TCTTGTTCTCCAAATGTCGC -3’;
(3.2)使用qRT-PCR法检测SlNAC3基因在番茄常温和冷处理条件下的相对表达量。
进一步地,该方法包括用于扩增番茄SlNAC3基因全长的引物,该引物为:
上游引物5‘- ATGGAGAGTACCGATTCATCAA -3’
下游引物5‘- TTAAGAGTACCAATTCATGCCT -3’。
进一步地,该方法包括番茄SlNAC3过表达植株获得方法,采用如上述的引物扩增,该获得方法包括以下步骤:
(5.1)利用RT-PCR将SlNAC3基因990bp的全长扩增,得到扩增产物;
(5.2)确定酶切位点为Xho Ⅰ,随后将扩增产物连接到载体pENTR4上,在测序正确后提取质粒;
(5.3)将质粒连接到CaMV 35S启动子的载体pK7FWG2-eGFP上,在测序正确后提取质粒;
(5.4)将连有SlNAC3的质粒pK7FWG2-eGFP通过化学转化法转入农杆菌GV3101感受态中,通过浸染番茄子叶的方法进行番茄的遗传转化;
(5.5)通过对过表达载体上的GFP序列扩增以及植株SlNAC3的qRT-PCR检测获得三个SlNAC3基因的过表达株系OE#4、OE#5和OE#7。
进一步地,该方法包括番茄SlNAC3基因VIGS基因沉默植株获得方法,该获得方法包括以下步骤:
(6.1)构建pTRV2-SlNAC3载体,利用SGN数据库的VIGS Tool功能筛选SlNAC3基因的400bp特异序列,以该序列为模板,设计引物序列:
上游引物5‘- gtgagtaaggttaccgaattcACCAAATTCAATGTCAATGCCA -3’;
下游引物5‘- cgtgagctcggtaccggatccTGCCTGAATAAGGTTGTCGAAA -3’;
在扩增后对目的条带切胶,随后进行胶回收处理,将胶回收产物与酶切过的pTRV2载体进行同源重组;
(6.2)番茄VIGS注射;
(6.3)取叶片提取RNA进行RT-PCR筛选阳性植株,检测阳性植株的沉默效率,选取沉默效率大于50%的植株进行实验。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为番茄中SlNAC3基因在冷处理(4℃)下的表达量检测;
图2为SlNAC3氨基酸进化树分析;
图3为番茄SlNAC3过表达植株的PCR鉴定;
图4为番茄SlNAC3过表达植株的RT-qPCR检测;
图5为SlNAC3基因沉默效率检测;
图6为SlNAC3过表达和野生型植株低温处理表型和生理指标;
图7为VIGS植株低温处理表型和生理指标。
具体实施方式
以下结合附图对本发明的优选实例进行说明,应当理解,此处所描述的优选实例仅用于说明和解释本发明,并不用于限定本发明。
实施例1:番茄培养方法及冷处理方法
(1)番茄的培育:将“Micro-Tom”番茄于恒温培养箱中培养至六叶一心时期,培养箱光照强度:600 μmolm-2s-1,光周期:16h光照/8h黑暗,温度:白天26℃/夜晚18℃。
(2)番茄冷处理方法:将用于冷处理长势一致的六叶一心番茄材料,放入降温至4℃的光照培养箱,于设置的处理时间对植物材料进行测定或取样,每个试验组至少设置3个技术重复。
实施例2:植物RNA提取
取适量植物于2mL无酶离心管,加入火烧灭菌后的钢珠,用植物磨样器研磨成粉末;
TRizol法提取RNA:
(1)向样品管中加入1mL TRizol提取液,涡旋振荡混匀,室温下静置5min;
(2)将离心机于4℃预冷,12000rpm离心5min,取上清800μL加入无RNase酶的1.5mL离心管中;
(3)向1.5mL离心管中加入160μL氯仿,颠倒混匀,室温静置5min;
(4)4℃、12000rpm离心15min,取上清液300μL于新的1.5mL离心管;
(5)向上清液中加入300μL异丙醇充分颠倒混匀,在-20℃下静置20min;
(6)4℃,12000rpm离心15min,弃上清;
(7)用1 mL预冷的75%乙醇清洗RNA沉淀,12000 rpm 4℃离心 5 min后弃上清;
(8)离心管开盖室温干燥约5 min使剩余乙醇蒸发干燥;
(9)向离心管中加入40-60 μL RNA-free水溶解RNA沉淀,用NanoDrop 测定RNA浓度后放入-80℃冰箱保存。
实施例3:RNA反转录为cDNA
按诺唯赞生物HiScript® II Q RT SuperMix for qPCR(+gDNA wiper)(R223-01)试剂盒步骤进行。
基因组DNA去除:
在无RNA酶的离心管中进行溶液配制如下:
在42℃下,用移液器轻轻吹打混匀2min;
进行逆转录反应体系配制如下:
在上一步的反应管中直接加入5×HiScript Ⅱ qRT SuperMix Ⅱ;
在50℃下,用移液器吸打混匀15min,在85℃下5s。
实施例4:WT番茄中SlNAC3基因在常温(25℃)和冷处理(4℃)下的表达检测
根据番茄SlNAC3基因序列设计的qRT-PCR引物序列如下:
SlNAC3基因:
上游引物5‘- TGCCTCTGTTCCTCTTCCTG -3’;
下游引物5‘- TCTTGTTCTCCAAATGTCGC -3’;
将cDNA产物稀释5倍,按诺唯赞生物荧光定量试剂盒(Q711-02)步骤进行,qRT-PCR反应体系如下:
充分混合后放入QuantStudio TM 6 Flex 实时PCR仪中进行PCR扩增,qPCR程序如下:
用∆∆CT法将测量的CT值转换为相对拷贝数,并与内参的拷贝数进行比较。其结果如图1所示,结果表明冷处理2 h时,SlNAC3基因相对表达量显著上升,之后随着时间推移相对表达量下调,证明SlNAC3基因响应4℃低温胁迫。
实施例5:SlNAC3基因全长克隆
根据番茄SlNAC3基因片段设计克隆引物。
设计的引物序列如下:
上游引物5‘- ATGGAGAGTACCGATTCATCAA -3’;
下游引物5‘- TTAAGAGTACCAATTCATGCCT -3’;
PCR反应体系:PrimeSTAR® Max DNA Polymerase;
以番茄cDNA为模板PCR反应程序如下:
PCR产物检测:根据目标片段大小制作1%琼脂糖凝胶,加入核酸染料(万分之一),0.1%TAE电泳缓冲液,130 v电压电泳约25 min,紫外灯下检测PCR产物片段大小,对目的条带切胶回收处理。
实施例6:SlNAC3氨基酸进化树分析
将SlNAC3氨基酸序列在http://www.ncbi.nlm.nih.gov网站上提供的软件中进行同源性分析,并在TAIR(https://www.arabidopsis.org/)、Sol Genomics Network(https://solgenomics.net/)、CuGenDB(http://www.cucurbitgenomics.org/)、Phytozome(https://phytozome-next.jgi.doe.gov/)等数据库对搜索结果进一步鉴定;将整理好的物种氨基酸数据用MEGA-X等软件进行蛋白序列比对分析和进化树绘制分析。其结果如图2所示,发现SlNAC3和NOR的序列进化距离最近,表明SlNAC3可能具有和NOR类似的功能。
实施例7:SlNAC3 过表达载体和pTRV2载体的构建
(1)构建过表达载体
在番茄数据库(Sol Genomics Network)中查找SlNAC3基因的CDS序列并设计引物,利用RT-PCR将SlNAC3基因990bp的全长扩增。
设计的引物序列如下:
上游引物5‘- ATGGAGAGTACCGATTCATCAA -3’;
下游引物5‘- TTAAGAGTACCAATTCATGCCT -3’;
酶切位点为Xho I,然后将扩增产物连接到载体pENTR4上,测序正确后提取质粒;质粒连接到CaMV 35S启动子的载体pK7FWG2-eGFP上,测序正确后提取质粒。
(2)pTRV2载体双酶切
选择EcoR Ⅰ和BamH Ⅰ 作为pTRV2的酶切位点,酶切体系如下:
酶切体系(50 μL):
混匀体系后,在37℃金属浴中酶切30 min,再于80℃ 5min后保存于-20℃备用。
(3)pTRV2-SlNAC3载体构建
在番茄数据库(Sol Genomics Network)的SGN-VIGS Tool中输入SlNAC3的CDS序列,获得400b的特异序列,设计带有酶切位点的引物进行PCR扩增。
设计的引物序列如下:
上游引物5‘- gtgagtaaggttaccgaattcACCAAATTCAATGTCAATGCCA -3’
下游引物5‘- cgtgagctcggtaccggatccTGCCTGAATAAGGTTGTCGAAA -3’
扩增体系(50 μL):
混合好体系后离心,进行PCR,PCR程序如下:
将PCR产物使用1%的琼脂糖凝胶电泳检测,对目的条带切胶以后进行胶回收处理。
连接体系(10 μL):
将体系混匀后,于50℃金属浴中连接10 min。
实施例8:番茄遗传转化
播种和萌发T0
取一定数量的番茄种子,加入2.5%的NaClO,混合摇匀10 min。消毒后用灭菌水洗涤5-8次,将种子倒入种子萌发T0培养基,每瓶30-40粒。将培养基放入黑暗培养室中5天,光下培养2天后进行组织培养。
预培养阶段T1
将生长8-9天的番茄小苗剪去根部、茎部和子叶叶尖,将其余子叶剪成小段。将处理好的外植体置于预培养培养基上,培养基放置事先灭菌干燥后的滤纸,子叶背面朝上放置,光下培养2天。
共培养阶段T1
使用MS溶液重悬农杆菌至OD600值0.15-0.2。将重悬液倒入灭菌烘干的100ml烧杯中,将外植体浸泡在浸染液中,侵染5 min后将外植体捞出置于滤纸上,吸干侵染液。将外植体置于预培养培养基上,叶背面朝上,暗培养2天。
芽诱导阶段T21
将共培养2天后的外植体从黑暗中取出,全部置于芽诱导培养基T21,叶正面朝上。光下培养7天后转入新的T21培养基中继续继代培养,之后每14天进行下一次继代,直到外植体分化为有正常生长点的一簇芽。
芽伸长期T22
待外植体芽长到约2 cm时转入芽伸长培养基T22中,培养2周。
生根期Tr
当芽长到4-5 cm时,剪掉愈伤组织并将芽转移到生根培养基Tr,培养1个月左右。
驯化期
将生长到一定高度的苗取出,用纸擦去根上的培养基,种到基质中正常培养。
实施例9:SlNAC3 过表达植株的鉴定
用CTAB法提取驯化期番茄叶片的DNA,以过表达载体上GFP序列为模板设计引物,
设计的引物序列如下:
上游引物5‘- ATGGTGAGCAAGGGCGAGGAG -3’
下游引物5‘- TTACTTGTACAGCTCGTCCATG -3’
扩增体系(20 μL):
混合好体系后离心,进行PCR,PCR程序如下:
将PCR产物使用1%的琼脂糖凝胶电泳检测。通过对过表达载体上的GFP序列扩增检测获得3个NAC3的过表达株系OE#4、OE#5和OE#7,结果如图3,并对这三个株系的植株进行SlNAC3基因表达量的检测,结果如图4。
实施例10:VIGS注射及沉默植株的获得
(1)挑取目的载体的单克隆菌落于10 mL离心管中,加入2 mL含有相应抗性的LB液体培养基,28℃ 200rpm过夜培养;
(2)将菌液和含有相应抗性的LB液体培养基按1:200的比例加入100 mL锥形瓶28℃ 200 rpm摇至菌液OD600为0.8-1.5,其中pTRV1的培养基体积应是pTRV2和pTRV2-目标基因之和;
(3)4000 rpm离心8 min,弃上清;
(4)用重悬液将菌液重悬至OD600为1.0左右,将pTRV1和pTRV2重悬液、pTRV1和pTRV2-目标基因分别1:1混合,室温静置2-3 h;
(5)选取二叶一心苗龄的番茄,用1 mL的无针头注射器吸取侵染液,在两片子叶和第一片真叶的背面进行注射;
(6)在植物培养箱中26℃/18℃暗培养2天后正常光照培养至五叶一心时,取叶片提取RNA进行沉默效率检测,选取沉默效率大于50%的植株进行试验,所选植株基因沉默效率平均值如图5所示。
实施例11:过表达植株响应低温的表型和生理分析
将SlNAC3的过表达植株和野生型植株同时进行4℃低温处理,观察其生理表型并测定相关生理数据。冷处理结果发现,SlNAC3的过表达植株更不耐冷,3个过表达株系植株的Fv/Fm、相对电导率和丙二醛含量显著高于野生型植株,并且3个过表达株系植株叶片DAB和NBT的染色程度显著高于野生型植株。相关表型和生理指标如图6所示。
实施例12:VIGS沉默植株响应低温的表型和生理分析
将pTRV2-SlNAC3和pTRV2植株同时进行4℃低温处理,观察其生理表型并测定相关生理数据。冷处理结果发现,pTRV2-SlNAC3沉默植株相对于pTRV2对照植株在低温处理下表现出较强的耐冷性,同时在低温处理下第5d时,相对电导率、丙二醛含量和Fv/Fm值显著低于对照植株,证明了SlNAC3的沉默植株对低温处理更具有耐受性。相关表型和生理指标如图7所示。
实施例13:DAB和NBT染色
DAB染色
(1) 准备一个50ml离心管,把50mgDAB加入到45ml无菌水
中,多次震荡混匀,直至DAB完全溶解,用NaOH调PH到3.0,用锡箔纸包住离心管避光保存(DAB见光分解),加25μl吐温-20 和2.5ml 200mM的Na2HPO4到离心管中,制成10mM的Na2HPO4-DAB溶液;
(2)取5叶一心时期的番茄叶片,用DAB溶液浸泡准备的植物材料,抽真空半小时,抽完真空暗处避光放置4h;
(3)用漂白液(乙醇:乙酸:甘油=3:1:1)替换DAB染液,然后95℃水浴15min,水浴结束后,用新的漂白液室温漂白30min;
(4)小心取出植物材料,拍照观察。
NBT染色
(1)把0.1g NBT溶解在50ml 50mM的磷酸盐溶液中,制成0.2%的NBT染色液,用锡箔纸包住离心管;
(2)取番茄植株第5真叶,用配置好的NBT染色液在离心管中
避光浸泡植物材料,抽真空半小时,抽完真空暗处避光放置4h;
(3)4h后倒掉NBT染液,用无水乙醇浸泡并沸水浴10min,期间震荡几次;
(4)小心取出植物材料,拍照观察。
实施例14:相对电导率的检测
(1)用打孔器取番茄植株第4真叶,每棵植株打9片,将其置于装有20 ml去离子水的离心管中;
(2)测定无叶片的去离子水的电导率,记为S0,水平摇床震荡装有叶片的离心管2h,测定溶液的电导率,记为S1;
(3)将装有叶片的离心管沸水浴15 min,冷却至室温后测量溶液的电导率,记为S2,根据下式计算REL:
实施例15:丙二醛(MDA)含量检测
(1)取番茄植株第3真叶0.5g于研钵中,加入石英砂与10%TCA溶液2 mL,研末至匀浆,再加8 mL10%TCA,制成10 mL体系,匀浆以4000 rpm离心10 min后取上清液;
(2)将上清2 mL转移至新的10ml离心管中,对照组加入蒸馏水2 mL,然后各管加入2 mL 0.6% TBA,沸水浴15 min,迅速冷却,4000rpm离心10min;
(3)取上清液200 μL测量在450 nm、532 nm、600 nm波长下的吸光值,采用下式计算MDA含量(μmol/g):
在上式中,V为反应体系总体积,Vs为测定时提取液量,S为提取液总量,W为材料质量。
最后应说明的是:以上所述仅为本发明的优选实例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种通过过表达SlNAC3基因预报低温胁迫提早番茄耐低温方法,其特征在于,所述番茄SlNAC3基因的核苷酸序列如SEQID NO:1所示;
该方法包括以下步骤:
(1.1)合成番茄SINCA3基因的qRT-PCR引物序列:
上游引物5‘- TGCCTCTGTTCCTCTTCCTG -3’;
下游引物5‘- TCTTGTTCTCCAAATGTCGC -3’;
(1.2)使用qRT-PCR法检测SlNAC3基因在番茄常温和冷处理条件下的相对表达量;
该方法还包括番茄SlNAC3基因VIGS基因沉默植株获得方法,所述获得方法包括以下步骤:
(2.1)构建pTRV2-SlNAC3载体,利用SGN数据库的VIGS Tool功能筛选SlNAC3基因的400bp特异序列,以该序列为模板,设计引物序列:
上游引物5‘- gtgagtaaggttaccgaattcACCAAATTCAATGTCAATGCCA -3’;
下游引物5‘- cgtgagctcggtaccggatccTGCCTGAATAAGGTTGTCGAAA -3’;
在扩增后对目的条带切胶,随后进行胶回收处理,将胶回收产物与酶切过的pTRV2载体进行同源重组;
(2.2)番茄VIGS注射;
(2.3)取叶片提取RNA进行RT-PCR筛选阳性植株,检测阳性植株的沉默效率,选取沉默效率大于50%的植株进行实验;
随后分别进行过表达植株响应低温以及VIGS沉默植株响应低温的表型和生理分析;
该方法还包括用于扩增番茄SlNAC3基因全长的引物,该引物为:
上游引物5‘- ATGGAGAGTACCGATTCATCAA -3’;
下游引物5‘- TTAAGAGTACCAATTCATGCCT -3’;
该方法还包括番茄SlNAC3过表达植株获得方法,采用上述的引物扩增,所述番茄SlNAC3过表达植株获得方法包括以下步骤:
(4.1)利用RT-PCR将SlNAC3基因990bp的全长扩增,得到扩增产物;
(4.2)确定酶切位点为Xho Ⅰ,随后将扩增产物连接到载体pENTR4上,在测序正确后提取质粒;
(4.3)将质粒连接到CaMV 35S启动子的载体pK7FWG2-eGFP上,在测序正确后提取质粒;
(4.4)将连有SlNAC3的质粒pK7FWG2-eGFP通过化学转化法转入农杆菌GV3101感受态中,通过浸染番茄子叶的方法进行番茄的遗传转化;
(4.5)通过对过表达载体上的GFP序列扩增以及植株SlNAC3的qRT-PCR检测获得三个SlNAC3基因的过表达株系OE#4、OE#5和OE#7。
2.根据权利要求1所述的通过过表达SlNAC3基因预报低温胁迫提早番茄耐低温方法,其特征在于,所述番茄SlNAC3基因编码的蛋白质的氨基酸序列如SEQID NO:2所示。
CN202311321402.7A 2023-10-13 2023-10-13 一种通过过表达SlNAC3基因预报低温胁迫提早番茄耐低温方法 Active CN117069817B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311321402.7A CN117069817B (zh) 2023-10-13 2023-10-13 一种通过过表达SlNAC3基因预报低温胁迫提早番茄耐低温方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311321402.7A CN117069817B (zh) 2023-10-13 2023-10-13 一种通过过表达SlNAC3基因预报低温胁迫提早番茄耐低温方法

Publications (2)

Publication Number Publication Date
CN117069817A CN117069817A (zh) 2023-11-17
CN117069817B true CN117069817B (zh) 2024-03-15

Family

ID=88702781

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311321402.7A Active CN117069817B (zh) 2023-10-13 2023-10-13 一种通过过表达SlNAC3基因预报低温胁迫提早番茄耐低温方法

Country Status (1)

Country Link
CN (1) CN117069817B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102399268A (zh) * 2010-09-10 2012-04-04 中国科学院遗传与发育生物学研究所 植物耐逆性相关转录因子GmNAC11及其编码基因与应用
CN102787124A (zh) * 2012-08-21 2012-11-21 昆明理工大学 一个番茄果实成熟基因SlNAC3及其应用
WO2016000236A1 (en) * 2014-07-03 2016-01-07 Pioneer Overseas Corporation Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding nac3/onac067 polypeptides
CN113308479A (zh) * 2021-07-15 2021-08-27 浙江大学 SlNAC100基因在提高番茄低温抗性中的应用
WO2023065966A1 (zh) * 2021-10-22 2023-04-27 新疆农业科学院园艺作物研究所 Bfne基因在番茄株型改良和生物产量提高中的应用
CN116120413A (zh) * 2022-09-02 2023-05-16 西南大学 SlHAT5基因及其在番茄抗高温胁迫中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102399268A (zh) * 2010-09-10 2012-04-04 中国科学院遗传与发育生物学研究所 植物耐逆性相关转录因子GmNAC11及其编码基因与应用
CN102787124A (zh) * 2012-08-21 2012-11-21 昆明理工大学 一个番茄果实成熟基因SlNAC3及其应用
WO2016000236A1 (en) * 2014-07-03 2016-01-07 Pioneer Overseas Corporation Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding nac3/onac067 polypeptides
CN113308479A (zh) * 2021-07-15 2021-08-27 浙江大学 SlNAC100基因在提高番茄低温抗性中的应用
WO2023065966A1 (zh) * 2021-10-22 2023-04-27 新疆农业科学院园艺作物研究所 Bfne基因在番茄株型改良和生物产量提高中的应用
CN116120413A (zh) * 2022-09-02 2023-05-16 西南大学 SlHAT5基因及其在番茄抗高温胁迫中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Characterization of a potential ripening regulator, SlNAC3, from Solanum lycopersicum";Le Jing等;《Open Life Sci》;第13卷;第518-526页 *
"Identification and expression pattern of one stress-responsive NAC gene from Solanum lycopersicum";Qinqin Han等;《 Mol Biol Rep》;第39卷;第1713–1720页 *

Also Published As

Publication number Publication date
CN117069817A (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
CN108841841B (zh) 一种番茄转录因子SlbZIP6的克隆及其在抗高温胁迫中的应用
CN109797157B (zh) 一种抗非生物逆境转录因子PbrbHLH92及其引物、编码的蛋白和应用
CN108660140B (zh) SlSL4基因在调控番茄果实成熟中的应用
CN108486149B (zh) 一种黄瓜CsWRKY50基因在增强黄瓜霜霉病抗性中的应用
CN107630022B (zh) 番茄SlMYB75基因在增强番茄果实抗腐烂、延长货架期中的应用
CN117070536A (zh) 拟南芥hos1基因在调控叶片衰老中的应用
CN110106194B (zh) Pod p7基因的orf片段及其在提高植物镉胁迫耐受性、降低镉积累中的应用
CN109628475B (zh) 油菜素内酯合成基因PaCYP724B1在调控植物分枝中的用途
CN117069817B (zh) 一种通过过表达SlNAC3基因预报低温胁迫提早番茄耐低温方法
CN114277041B (zh) 大豆赤霉素3β-羟化酶编码基因GmGA3ox1的应用
CN113462706B (zh) 一种增加番茄果实重量及心室数目的基因及其调控方法
CN111423500B (zh) SiMYB56蛋白及其编码基因在调控植物耐干旱能力中的应用
CN103602688A (zh) 菊芋Na+/H+逆向转运蛋白基因HtNHX1和HtNHX2及其应用
CN109694874B (zh) 小麦基因TaCPSF30编码序列的克隆及应用
CN116621959B (zh) 大豆GmMADS5基因及其在植物花期调控中的应用
CN113652434B (zh) 一种具有促进水稻籽粒增大作用的芡实dna分子及其应用
CN113604475B (zh) 棉花gh_d03g1517基因在促进抗旱和耐盐中的应用
CN116479007B (zh) 一种芹菜AgDREBA6a基因及其在提高植物耐高温胁迫中的应用
CN114875044B (zh) 野葡萄VyVTE1基因及其编码的蛋白和应用
CN111500624B (zh) CrSMT基因在提高植物对于生物胁迫以及非生物胁迫抗性中的用途
CN108795973B (zh) 拟南芥糖基转移酶基因ugt79b8在提高植物光合效率中的应用
CN116970638A (zh) 敲除番茄SlZF3基因在提高番茄产量中的应用
CN116355870A (zh) 玉米核糖核苷酸还原酶大亚基ZmLSC1基因在植物品种育种中的应用
CN118207251A (zh) 一种镉极低锰适量积累水稻的创制方法
CN117025668A (zh) 水稻OsMGD1基因在光能高效利用方面的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant