CN117026257B - 一种基于高熵氧化物的锌-硝酸根电池的制备方法 - Google Patents

一种基于高熵氧化物的锌-硝酸根电池的制备方法 Download PDF

Info

Publication number
CN117026257B
CN117026257B CN202311300298.3A CN202311300298A CN117026257B CN 117026257 B CN117026257 B CN 117026257B CN 202311300298 A CN202311300298 A CN 202311300298A CN 117026257 B CN117026257 B CN 117026257B
Authority
CN
China
Prior art keywords
nitrate
soluble
zinc
salt
entropy oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311300298.3A
Other languages
English (en)
Other versions
CN117026257A (zh
Inventor
齐静
李雪
陈明星
王政杰
吴呈珂
李晶
上官恩波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN202311300298.3A priority Critical patent/CN117026257B/zh
Publication of CN117026257A publication Critical patent/CN117026257A/zh
Application granted granted Critical
Publication of CN117026257B publication Critical patent/CN117026257B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B5/00Electrogenerative processes, i.e. processes for producing compounds in which electricity is generated simultaneously
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/27Ammonia
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/056Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of textile or non-woven fabric
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/065Carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种基于高熵氧化物的锌‑硝酸根电池的制备方法,其具体步骤为:配制金属前驱体溶液,该金属前驱体溶液中含有可溶性铁盐、可溶性钴盐、可溶性镍盐、可溶性铜盐、可溶性锰盐、可溶性锡盐和可溶性柠檬酸盐,采用三电极体系,将预处理后的碳布作为工作电极浸于金属前驱体溶液中,再通过恒电压电解法一步合成碳布负载的具有均匀纳米颗粒结构的高熵氧化物催化剂,以负载高熵氧化物催化剂的碳布为正极,锌片为负极,组装成锌‑硝酸根电池。基于该高熵氧化物HEO组装的锌‑硝酸根电池具有较高的功率密度和产氨速率以及法拉第效率。

Description

一种基于高熵氧化物的锌-硝酸根电池的制备方法
技术领域
本发明属于锌-硝酸根电池的制备技术领域,具体涉及一种基于高熵氧化物的锌-硝酸根电池的制备方法。
背景技术
氨不仅是一种绿色的储氢能源,也是现代化肥的重要化学原料。传统制备氨的工艺(即哈伯-博施工艺)是在较为苛刻的操作条件下完成的,耗能大,并且也会导致大量的二氧化碳排放。而硝酸盐广泛存在于工业废水、地下污水和水径流中,对环境和人类健康等都有严重影响。通过电化学催化将硝酸盐还原为氨,既可促进废水反硝化,又可得到附加值较高的氨,实现“变废为宝”。考虑到硝酸根还原为氨的标准电极电势为0.69V,高于氧气还原反应的标准电极电势(0.4V)。所以将催化硝酸根还原作为正极反应,金属(如锌)作为负极而结合起来的锌-硝酸根电池,能够比锌-空气电池提供更高的放电电压,是一种十分有应用前景的生产绿色能源的方式。锌-硝酸根电池在放电时,正极发生硝酸根还原为氨,负极发生锌的氧化;在充电时,阳极发生析氧反应,阴极发生锌离子的还原。然而,由于硝酸盐还原为氨,析氧反应均涉及到多个电子的转移,具有较大的动力学能垒。因此,人们迫切需要一种具有优异硝酸根还原和析氧反应活性的双功能催化剂,以组装可充电锌-硝酸根电池进而实现高效的能量供应。
高熵氧化物(HEO)通常包含五种及以上的金属元素,并通过相互固溶的方法得到具有单一结构的氧化物。由于其丰富灵活的组分和可调的电子结构,以及在腐蚀性介质中显著的稳定性,HEO在许多领域都显示出了重要的应用潜力,近年来获得了越来越多的关注。此外,高熵纳米颗粒的多元素协同作用提供了多种吸附位点,是多步串联反应的理想选择,有望成为高效的硝酸根还原和析氧催化剂。因此,开发合成方法简单,成本低廉且结构稳定的HEO材料,对于可充电锌-硝酸根电化学电池的研究具有重要意义。目前,合成HEO的传统策略主要是在高温条件下,且尺寸无法控制。因此,本发明提出一种基于电化学方法在常温下制备均匀分布HEO纳米颗粒的方法,该HEO具有优异的硝酸根还原为氨和析氧活性,并且组装的可充电锌-硝酸根电化学电池具有较大的功率密度,目前尚没有该方面的相关报道。
发明内容
本发明解决的技术问题是提供了一种合成步骤简单、成本低廉且易于控制的基于高熵氧化物的锌-硝酸根电池的制备方法。
本发明为解决上述技术问题采用如下技术方案,一种基于高熵氧化物的锌-硝酸根电池的制备方法,其特征在于具体步骤为:配制金属前驱体溶液,该金属前驱体溶液中含有可溶性铁盐、可溶性钴盐、可溶性镍盐、可溶性铜盐、可溶性锰盐、可溶性锡盐和可溶性柠檬酸盐,采用三电极体系,将预处理后的碳布作为工作电极浸于金属前驱体溶液中,再通过恒电压电解法一步合成碳布负载的具有均匀纳米颗粒结构的高熵氧化物催化剂,以负载高熵氧化物催化剂的碳布为正极,锌片为负极,组装成锌-硝酸根电池。
进一步限定,所述碳布的预处理过程为依次用水和乙醇进行超声处理,并重复3~6次,每次清洗5~30min。
进一步限定,所述可溶性铁盐为硝酸铁、硫酸铁或氯化铁中的一种或多种;所述可溶性钴盐为硝酸钴、硫酸钴或氯化钴中的一种或多种;所述可溶性镍盐为硝酸镍、硫酸镍或氯化镍中的一种或多种;所述可溶性铜盐为硝酸铜、硫酸铜或氯化铜中的一种或多种;所述可溶性锰盐为硝酸锰、硫酸锰或氯化锰中的一种或多种;所述可溶性锡盐为硝酸锡、硫酸锡或氯化锡中的一种或多种;所述可溶性柠檬酸盐为柠檬酸钠或柠檬酸钾中的一种或多种。
进一步限定,所述金属前驱体溶液中Fe3+、Co2+、Ni2+、Cu2+、Mn2+、Sn4+与C6H5O7 3-的浓度均为0.01~0.05mol L−1
进一步限定,所述金属前驱体溶液中Fe3+、Co2+、Ni2+、Cu2+、Mn2+、Sn4+与C6H5O7 3-的摩尔比为1:1:1:1:1:0.4:1。
进一步限定,所述锌-硝酸根电池为两室电解池,中间由质子交换膜隔开,该质子交换膜为Nafion N115或Nafion N117,负极为锌片,电解液为KOH溶液,正极为负载高熵氧化物催化剂的碳布,电解液为KOH+KNO3溶液,组装的锌-硝酸根电池在放电过程中表现出优异的硝酸根转氨活性及稳定性,功率密度高达3.45mW cm−2,法拉第效率高达84%,氨产率为6.57mg h−1cm−2
进一步限定,所述恒电压电解法合成高熵氧化物催化剂过程中电压设置为−1V~−1.5V vs Ag/AgCl,沉积的电荷量控制为0.5~2C。
本发明与现有技术相比具有以下优点和有益效果:
1、本发明选用的金属前驱体盐廉价易得,无毒无害;涉及的电化学沉积法制备过程简便、省时、高效、易于调控,避免了常规制备高熵氧化物HEO通常涉及的高温热解、水热反应等复杂苛刻的过程,具有大规模生产的潜力。
2、本发明所制备的高熵氧化物HEO的形貌为尺寸均匀的纳米颗粒,保证了材料的高活性和稳定性;HEO结构高度无序,具有丰富的缺陷。
3、本发明所制备的高熵氧化物HEO与基底碳布呈一体化结构,保证了载流子的快速传递。
4、本发明所制备的高熵氧化物HEO可作为具有硝酸根还原为氨和析氧反应的双功能电催化剂,其独特的组成和结构极大地提升了催化性能。例如,该催化剂仅需−0.047V和1.567V即可达到100mA cm−2的硝酸根还原和析氧反应的电流密度。
5、本发明所制备的基于高熵氧化物HEO的锌-硝酸根电池,可实现较大的功率密度以及较高的产氨速率和法拉第效率。例如,该锌-硝酸根电池的最高功率密度可达到3.45mWcm−2,法拉第效率为84%,氨产率为6.57mg h−1cm−2
本发明所提出的以高熵氧化物HEO作为硝酸根还原和析氧反应的催化剂,由于其独特的结构和组成,以及一体化自支撑电极的快速电子转移,有效地降低反应过程中的能垒,能够在较低的过电势下达到较大的电流密度,具有优异的硝酸根还原活性和析氧活性。基于该高熵氧化物HEO组装的锌-硝酸根电池具有较高的功率密度和产氨速率以及法拉第效率。
附图说明
图1为实施例1制备的HEO的扫描电镜图。
图2为实施例1制备的HEO的X射线衍射图。
图3为实施例1制备的HEO的X射线光电子能谱全谱图(a)及高分辨Fe 2p (b)、Co2p (c)、Ni 2p (d)、Cu 2p (e)和Mn 2p (f)图谱。
图4为实施例1和对比例1制备的HEO的电化学测试图,其中,图4(a)为硝酸根还原的线性扫描伏安曲线,图4(b)为析氧反应的线性扫描伏安曲线,图4(c)为电化学阻抗(EIS)图,图4(d)为硝酸根还原的塔菲尔(Tafel)曲线,图4(e)为实施例1制备的HEO在不同反应电位下获得的硝酸根转氨的法拉第效率和氨产率,图4(f)为实施例1制备的HEO在14/15N硝酸根溶液中反应后获得的核磁共振(1H NMR)图谱。
图5为实施例1制备的HEO与锌片组装的锌-硝酸根电池的电化学测试图,图5(a)为锌-硝酸根电化学电池的放电极化曲线和功率密度图,图5(b)为锌-硝酸根电化学电池放电时的氨的法拉第效率和氨产率。
图6为实施例1~3制备的HEO的硝酸根还原线性扫描伏安曲线。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
基于电化学沉积法进行HEO的制备:
配制总金属原子摩尔浓度为0.32mol L−1的含有Fe(NO3)3·9H2O、Co(NO3)2·6H2O、Ni(NO3)2·6H2O、CuCl2·2H2O、MnCl2·6H2O、SnCl4·5H2O和Na3C6H5O7·2H2O的水溶液即金属前驱体溶液备用,其中Fe(NO3)3·9H2O、Co(NO3)2·6H2O、Ni(NO3)2·6H2O、CuCl2·2H2O、MnCl2·6H2O、SnCl4·5H2O和Na3C6H5O7·2H2O的摩尔比为0.05:0.05:0.05:0.05:0.05:0.02:0.05。
将预处理后的碳布浸渍于金属前驱体溶液中,采用三电极体系并通过电化学沉积法碳布上一步合成碳布负载的高熵氧化物催化剂HEO。其中以金属前驱体溶液作为电解液,预处理过的碳布作为工作电极,石墨棒作为对电极,银/氯化银电极作为参比电极,采用恒电压法进行高熵氧化物材料的制备,电压为−1.2V vs Ag/AgCl,当电量达到1C时停止电解,并用去离子水冲洗碳布电极,在60℃烘干后,即可得到电化学沉积法制备的高熵氧化物催化剂HEO。
对比例1
基于传统热处理法进行HEO的制备:
配制总金属原子摩尔浓度为0.32mol L−1的含有Fe(NO3)3·9H2O、Co(NO3)2·6H2O、Ni(NO3)2·6H2O、CuCl2·2H2O、MnCl2·6H2O、SnCl4·5H2O和Na3C6H5O7·2H2O的水溶液即金属前驱体溶液备用,其中Fe(NO3)3·9H2O、Co(NO3)2·6H2O、Ni(NO3)2·6H2O、CuCl2·2H2O、MnCl2·6H2O、SnCl4·5H2O和Na3C6H5O7·2H2O的摩尔比为0.05:0.05:0.05:0.05:0.05:0.02:0.05。
在超声条件下,向该金属前驱体溶液快速滴加1M KOH溶液,收集沉淀并用去离子水洗至中性,在60℃烘干后研磨成细粉状,随后在马弗炉中加热至500℃并保持1h,即可得到传统热处理法制备的高熵氧化物催化剂HEO。
性能表征测试:
(1)形貌结构表征:采用扫描电镜对实施例1制备的HEO的形貌进行观察,所得结果如图1所示,HEO形貌呈现均匀的纳米颗粒结构;HEO的X射线衍射图如附图2所示,由于HEO的负载量较少,结晶性较差,故X射线衍射图仅显示基底碳布的信号;HEO的X射线光电子能谱如附图3所示,其中,图3(a)的全谱证明HEO中包含Fe、Co、Ni、Cu、Mn、Sn、O等元素,高分辨Fe2p、Co 2p、Ni 2p、Cu 2p和Mn 2p图谱分别如附图3(b)~(f)所示,证明相应金属元素均是以氧化物的形式存在。
(2)硝酸根还原和析氧性能测试:分别采用实施例1制备的HEO催化剂和对比例1制备的HEO催化剂进行电化学测试,具体操作方法如下:采用三电极体系进行测试,Ag/AgCl作参比电极,碳棒作对电极,负载有HEO的碳布电极作为工作电极,并分别在1M KOH溶液和1MKOH+0.1M KNO3溶液中测试线性扫描伏安曲线,对于硝酸根还原而言,其电压扫描范围0.2~−0.2V vs RHE,对于析氧反应而言,其电压扫描范围为1.2~1.6V vs RHE。测试结果显示,电沉积法制备的HEO样品仅需0.049V和1.567V vs RHE的电位即可达到100mA cm−2的硝酸根还原和析氧的电流密度,如图4(a)和图4(b)所示,并且电荷转移电阻和Tafel斜率更小,如图4(c)和图4(d)所示,其催化性能要明显优于传统热处理法制备的HEO催化剂,说明本发明制备的高熵氧化物催化剂HEO具有更优异的催化活性。
图4(e)表示电沉积法制备的HEO样品在−0.3V vs RHE的电位下表现出最佳的氨法拉第效率,可接近100%;氨产率在−0.2V vs RHE的反应电位下达到峰值,为1.22g h−1cm−2,充分证明了电沉积法制备的HEO样品能够既快又多地将硝酸根还原为氨;如附图4(f)所示,当分别使用14NKNO315NKNO3作为反应氮源,然后将反应后的电解液进行核磁共振测试得到1H NMR光谱,结果表明反应后得到氨产品确实来自于KNO3反应物。
(3)锌-硝酸根电池性能测试:当将电沉积法制备的HEO组装成锌-硝酸根电池时,基于的两室电解池中间由质子交换膜N117隔开,负极为锌片,电解液为1M KOH溶液,正极为HEO,电解液为1M KOH+0.1M KNO3溶液,组装的锌-硝酸根电池在放电过程中仍然表现出优异的硝酸根转氨活性及稳定性,最高功率密度可达到3.45mW cm−2,法拉第效率可达84%,氨产率为6.57mg h−1cm−2,如图5(a)和图5(b)所示。
实施例2
配制总金属原子摩尔浓度为0.32mol L−1的含有Fe(NO3)3·9H2O、Co(NO3)2·6H2O、Ni(NO3)2·6H2O、CuCl2·2H2O、MnCl2·6H2O、SnCl4·5H2O和Na3C6H5O7·2H2O的水溶液即金属前驱体溶液备用,其中Fe(NO3)3·9H2O、Co(NO3)2·6H2O、Ni(NO3)2·6H2O、CuCl2·2H2O、MnCl2·6H2O、SnCl4·5H2O和Na3C6H5O7·2H2O的摩尔比为0.05:0.05:0.05:0.05:0.05:0.02:0.05。
将预处理后的碳布浸渍于金属前驱体溶液中,采用三电极体系并通过电化学沉积法一步合成碳布负载的高熵氧化物催化剂。其中以金属前驱体溶液作为电解液,预处理过的碳布作为工作电极,石墨棒作为对电极,银/氯化银电极作为参比电极,采用恒电压法进行高熵氧化物材料的制备,电压为−1.2V vs Ag/AgCl,当电量达到2C时停止电解,并用去离子水冲洗碳布电极,在60℃烘干后,将其命名为HEO-2。
实施例3
配制总金属原子摩尔浓度为0.32mol L−1的含有Fe(NO3)3·9H2O、Co(NO3)2·6H2O、Ni(NO3)2·6H2O、CuCl2·2H2O、MnCl2·6H2O、SnCl4·5H2O和Na3C6H5O7·2H2O的水溶液即金属前驱体溶液备用,其中Fe(NO3)3·9H2O、Co(NO3)2·6H2O、Ni(NO3)2·6H2O、CuCl2·2H2O、MnCl2·6H2O、SnCl4·5H2O和Na3C6H5O7·2H2O的摩尔比为0.05:0.05:0.05:0.05:0.05:0.02:0.05。
将预处理后的碳布浸渍于金属前驱体溶液中,采用三电极体系并通过电化学沉积法一步合成碳布负载的高熵氧化物催化剂。其中以金属前驱体溶液作为电解液,预处理过的碳布作为工作电极,石墨棒作为对电极,银/氯化银电极作为参比电极,采用恒电压法进行高熵氧化物材料的制备,电压为−1V vs Ag/AgCl,当电量达到1C时停止电解,并用去离子水冲洗碳布电极,在60℃烘干后,将其命名为HEO-3。
图6表明HEO-2和HEO-3对应组装成锌-硝酸根电池对于硝酸根还原的催化活性与实施例1中的HEO类似。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (4)

1.一种基于高熵氧化物的锌-硝酸根电池的制备方法,其特征在于具体步骤为:配制金属前驱体溶液,该金属前驱体溶液中含有可溶性铁盐、可溶性钴盐、可溶性镍盐、可溶性铜盐、可溶性锰盐、可溶性锡盐和可溶性柠檬酸盐,采用三电极体系,将预处理后的碳布作为工作电极浸于金属前驱体溶液中,再通过恒电压电解法一步合成碳布负载的具有均匀纳米颗粒结构的高熵氧化物催化剂,以负载高熵氧化物催化剂的碳布为正极,锌片为负极,组装成锌-硝酸根电池;
所述可溶性铁盐为硝酸铁、硫酸铁或氯化铁中的一种或多种;所述可溶性钴盐为硝酸钴、硫酸钴或氯化钴中的一种或多种;所述可溶性镍盐为硝酸镍、硫酸镍或氯化镍中的一种或多种;所述可溶性铜盐为硝酸铜、硫酸铜或氯化铜中的一种或多种;所述可溶性锰盐为硝酸锰、硫酸锰或氯化锰中的一种或多种;所述可溶性锡盐为硝酸锡、硫酸锡或氯化锡中的一种或多种;所述可溶性柠檬酸盐为柠檬酸钠或柠檬酸钾中的一种或多种;
所述恒电压电解法合成高熵氧化物催化剂过程中电压设置为−1V~−1.5V vs Ag/AgCl,沉积的电荷量控制为0.5~2C;
所述金属前驱体溶液中Fe3+、Co2+、Ni2+、Cu2+、Mn2+、Sn4+与C6H5O7 3-的摩尔比为1:1:1:1:1:0.4:1。
2.根据权利要求1所述的一种基于高熵氧化物的锌-硝酸根电池的制备方法,其特征在于:所述碳布的预处理过程为依次用水和乙醇进行超声处理,并重复3~6次,每次清洗5~30min。
3. 根据权利要求1所述的一种基于高熵氧化物的锌-硝酸根电池的制备方法,其特征在于:所述金属前驱体溶液中Fe3+、Co2+、Ni2+、Cu2+、Mn2+、Sn4+与C6H5O7 3-的浓度均为0.01~0.05mol L−1
4. 根据权利要求1所述的一种基于高熵氧化物的锌-硝酸根电池的制备方法,其特征在于:所述锌-硝酸根电池为两室电解池,中间由质子交换膜隔开,该质子交换膜为NafionN115或Nafion N117,负极为锌片,电解液为KOH溶液,正极为负载高熵氧化物催化剂的碳布,电解液为KOH+KNO3溶液,组装的锌-硝酸根电池在放电过程中表现出优异的硝酸根转氨活性及稳定性,功率密度高达3.45mW cm−2,法拉第效率高达84%,氨产率为6.57mg h−1 cm−2
CN202311300298.3A 2023-10-10 2023-10-10 一种基于高熵氧化物的锌-硝酸根电池的制备方法 Active CN117026257B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311300298.3A CN117026257B (zh) 2023-10-10 2023-10-10 一种基于高熵氧化物的锌-硝酸根电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311300298.3A CN117026257B (zh) 2023-10-10 2023-10-10 一种基于高熵氧化物的锌-硝酸根电池的制备方法

Publications (2)

Publication Number Publication Date
CN117026257A CN117026257A (zh) 2023-11-10
CN117026257B true CN117026257B (zh) 2024-01-09

Family

ID=88643488

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311300298.3A Active CN117026257B (zh) 2023-10-10 2023-10-10 一种基于高熵氧化物的锌-硝酸根电池的制备方法

Country Status (1)

Country Link
CN (1) CN117026257B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107994228A (zh) * 2017-12-25 2018-05-04 中国工程物理研究院电子工程研究所 一种锂离子电池五元高熵氧化物纳米薄膜及其制备和应用
CN110773192A (zh) * 2019-11-06 2020-02-11 天津理工大学 一种碳负载高熵单原子催化剂的制备方法
CN113149086A (zh) * 2021-04-01 2021-07-23 南京理工大学 二维高熵氢氧化物阵列催化剂及其电催化固氮合成氨方法
KR20220094046A (ko) * 2020-12-28 2022-07-05 전남대학교산학협력단 전기화학적 질소 환원 반응 향상을 위한 전기화학 기반 고엔트로피 합금 촉매 및 이의 제조방법
CN114988496A (zh) * 2022-07-21 2022-09-02 吉林大学 一种高熵金属氧化物材料的制备方法
CN115074757A (zh) * 2022-05-23 2022-09-20 河南师范大学 一种碳纤维负载的铜钴纳米合金硝酸根转氨催化剂的制备方法
CN115142073A (zh) * 2022-08-10 2022-10-04 天津理工大学 一种FeCoNiCuMn纳米高熵合金电催化剂的制备及应用
CN115261921A (zh) * 2022-07-20 2022-11-01 昆明理工大学 FeCoNiMnCr高熵合金/高熵氧化物异质相催化剂及其制备方法和应用
CN115961305A (zh) * 2023-01-31 2023-04-14 东北大学秦皇岛分校 一种(FeCoNiCuZn)F高熵氟化物电催化剂及其制备方法
CN116288477A (zh) * 2023-02-07 2023-06-23 东北大学秦皇岛分校 一种双功能高熵纳米合金电催化剂及其制备方法
CN116581314A (zh) * 2023-07-07 2023-08-11 华北电力大学 一种燃料电池用的高熵氧化物催化剂及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220081794A1 (en) * 2020-09-11 2022-03-17 University Of Cincinnati Electrochemical deposition of functionalized high entropy alloys

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107994228A (zh) * 2017-12-25 2018-05-04 中国工程物理研究院电子工程研究所 一种锂离子电池五元高熵氧化物纳米薄膜及其制备和应用
CN110773192A (zh) * 2019-11-06 2020-02-11 天津理工大学 一种碳负载高熵单原子催化剂的制备方法
KR20220094046A (ko) * 2020-12-28 2022-07-05 전남대학교산학협력단 전기화학적 질소 환원 반응 향상을 위한 전기화학 기반 고엔트로피 합금 촉매 및 이의 제조방법
CN113149086A (zh) * 2021-04-01 2021-07-23 南京理工大学 二维高熵氢氧化物阵列催化剂及其电催化固氮合成氨方法
CN115074757A (zh) * 2022-05-23 2022-09-20 河南师范大学 一种碳纤维负载的铜钴纳米合金硝酸根转氨催化剂的制备方法
CN115261921A (zh) * 2022-07-20 2022-11-01 昆明理工大学 FeCoNiMnCr高熵合金/高熵氧化物异质相催化剂及其制备方法和应用
CN114988496A (zh) * 2022-07-21 2022-09-02 吉林大学 一种高熵金属氧化物材料的制备方法
CN115142073A (zh) * 2022-08-10 2022-10-04 天津理工大学 一种FeCoNiCuMn纳米高熵合金电催化剂的制备及应用
CN115961305A (zh) * 2023-01-31 2023-04-14 东北大学秦皇岛分校 一种(FeCoNiCuZn)F高熵氟化物电催化剂及其制备方法
CN116288477A (zh) * 2023-02-07 2023-06-23 东北大学秦皇岛分校 一种双功能高熵纳米合金电催化剂及其制备方法
CN116581314A (zh) * 2023-07-07 2023-08-11 华北电力大学 一种燃料电池用的高熵氧化物催化剂及制备方法

Also Published As

Publication number Publication date
CN117026257A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
CN110838588B (zh) 一种可充式锌空电池双功能催化剂及其制备方法与应用
CN109680299B (zh) 一种三维自支撑γ-Fe2O3-NC/CF电极及其制备方法和应用
Chaurasia et al. Hydrogen gas production with Ni, Ni–Co and Ni–Co–P electrodeposits as potential cathode catalyst by microbial electrolysis cells
CN103952720A (zh) 金属基底/含钴类水滑石纳米膜电极及其制备方法
CN111933961B (zh) 双元CoFe合金负载g-C3N4催化剂及其制备方法
Li et al. Se-induced underpotential deposition of amorphous CoSe2 ultrathin nanosheet arrays as high-efficiency oxygen evolution electrocatalysts for zinc–air batteries
CN112080759A (zh) 一种用于电催化氧化尿素的铋掺杂双金属硫化物电极的制备方法
CN113529120B (zh) 过渡金属硫化物复合电极、其制备方法及其应用
CN111530474A (zh) 一种贵金属单原子调控尖晶石阵列催化剂及其制备方法和应用
CN110828834A (zh) 一种一锅法合成非贵金属氧还原、氧解析双效电催化剂
CN110721749A (zh) 金属有机骨架结构衍生碳复合物包覆的NiCo2S4纳米线阵列状电催化剂及其制备方法
Wang et al. Electrochemical fabrication of FeS x films with high catalytic activity for oxygen evolution
CN116426963B (zh) 基于pom/mof衍生的镍铁钨纳米材料及其制备方法和应用
CN112909271A (zh) 一种具有海胆状形貌的整体式过渡金属磷化物电催化剂及其制备方法与应用
CN111640953A (zh) 一种铝-空气电池的空气电极催化剂及其制备方法
CN117026257B (zh) 一种基于高熵氧化物的锌-硝酸根电池的制备方法
CN113437312A (zh) 一种应用于锌空气电池的普鲁士蓝衍生物催化剂的制备
CN116219473B (zh) 一种原位自优化原子级铜催化剂的制备及应用方法
CN115323392B (zh) 高效Co/NiCoP/CC异质纳米颗粒析氢反应电催化剂的制备
CN114990619B (zh) 一种非晶态NiOOH/Ni3S2异质结构型镍基复合物催化剂及其制备方法和应用
CN111215074B (zh) 一种镍载体支撑的NiFeS水氧化电催化剂及其制备方法
CN114291798B (zh) 微波法合成碲化钴纳米棒电催化剂及其应用
CN113005468B (zh) 一种碱性水电解用双功能电极及其制备方法与应用
CN113943950B (zh) 一种多金属氢氧化物预催化剂及其制备方法和应用
CN114678539A (zh) 一种n掺杂石墨烯包覆金属核壳结构电催化材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant