CN117024170A - 一种超高温多孔陶瓷及其液相自发泡合成方法和应用 - Google Patents

一种超高温多孔陶瓷及其液相自发泡合成方法和应用 Download PDF

Info

Publication number
CN117024170A
CN117024170A CN202310988921.2A CN202310988921A CN117024170A CN 117024170 A CN117024170 A CN 117024170A CN 202310988921 A CN202310988921 A CN 202310988921A CN 117024170 A CN117024170 A CN 117024170A
Authority
CN
China
Prior art keywords
porous ceramic
high temperature
ultra
temperature porous
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310988921.2A
Other languages
English (en)
Inventor
欧阳海波
高瑞楠
李翠艳
王莉
李彦磊
宝乐儿
李雯璐
刘吉勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202310988921.2A priority Critical patent/CN117024170A/zh
Publication of CN117024170A publication Critical patent/CN117024170A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • C04B38/0032Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors one of the precursor materials being a monolithic element having approximately the same dimensions as the final article, e.g. a paper sheet which after carbonisation will react with silicon to form a porous silicon carbide porous body
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

本发明提供一种超高温多孔陶瓷及其液相自发泡合成方法和应用,包括以下步骤:1)将一种或多种金属氯化物溶于乙醇中,配制成金属盐醇溶液;2)将金属盐醇溶液与碳源试剂置于密封加压装置中,在预设温度和预设压力下进行反应,得到固相产物;所述碳源试剂为五元醇至十元醇中任意一种;3)将固相产物干燥,再高温碳化,得到超高温多孔陶瓷。该方法无需另外加入发泡剂,不仅简化了现有制备超高温多孔陶瓷的工艺流程,节约时间成本,且材料孔隙易于控制,可重复性高,原料易得,工艺成本低,适合于大规模工业化生产。此方法还有望实现航空航天复杂异形件的近净制造。

Description

一种超高温多孔陶瓷及其液相自发泡合成方法和应用
技术领域
本发明涉及纳米复合材料领域,具体涉及一种超高温多孔陶瓷及其液相自发泡合成方法和应用。
背景技术
近年来,为拓展超高温陶瓷材料的应用领域,国内外学者开展了超高温陶瓷轻量化的研究工作,将气孔以可控方式引入到超高温陶瓷中制备超高温多孔陶瓷材料,使其具有超高温陶瓷和多孔陶瓷的综合性能,如小的体积密度、大的比表面积、良好的化学和高温稳定性等,这些独特性能使超高温多孔陶瓷成为极端高温下的隔热和腐蚀性气体的过滤等应用领域极具潜力的候选材料。
目前,制备多孔超高温陶瓷的方法按照成孔原理的不同,分为部分烧结法、模板复制法、牺牲模板法、冷冻浇注法、直接发泡法和溶胶-凝胶法。其中直接发泡法是将超高温陶瓷粉体与发泡剂等添加物均匀混合制备出料浆悬浮液,再经注浆成型或凝胶注模制备陶瓷生坯,最后采用无压烧结得到超高温多孔陶瓷。Li等人发表的论文《Preparation andcharacterization of stoichiometric zirconium carbide foams by direct foamingof zirconia sols》以正戊烷为发泡剂,将其与氧化锆溶胶均匀混合经直接发泡法制备了具有开口/闭口结构的ZrC泡沫,其气孔率为85%,平均孔径为40μm,耐压强度和室温热导率分别为0.4MPa和0.94W/(m·K)。
中国发明专利申请20201164482.5报道了一种高温多孔陶瓷及其制备方法,以二氧化硅骨架材料、氧化铝晶须材料、纳米碳粉有机造孔剂、碳酸钙无机造孔剂和石蜡粘合剂为原料,依次进行混料、注塑、脱脂、排胶、烧结、清洁步骤制得的高温多孔陶瓷开口孔隙率为62%,热导率为7.7W/(m·K)。中国发明专利申请202010850393.0报道了一种ZrC/ZrB2复相多孔超高温陶瓷的制备方法,以PVA分散剂、碳化锆聚合物前驱体、硼酸盐为原料混合配制水性浆料,然后将水性浆料经过交联处理、冷冻干燥,最后高温裂解得到ZrC/ZrB2复相多孔超高温陶瓷,其孔隙率为96.5%,压缩强度为0.51MPa。直接发泡法制备的超高温多孔陶瓷材料闭口气孔率高,孔结构缺陷少,孔径分布范围较宽,但是发泡过程难以控制,工艺要求较高。
发明内容
针对现有技术中存在的问题,本发明提供一种超高温多孔陶瓷及其液相自发泡合成方法和应用,该制备方法操作过程简单,材料孔隙易于控制。
本发明通过以下技术方案实现:
一种超高温多孔陶瓷的液相自发泡合成方法,包括以下步骤:
1)将一种或多种金属氯化物溶于乙醇中,配制成金属盐醇溶液;
2)将金属盐醇溶液与碳源试剂置于密封加压装置中,在预设温度和预设压力下进行反应,得到固相产物;所述碳源试剂为五元醇至十元醇中任意一种;
3)将固相产物干燥,再高温碳化,得到超高温多孔陶瓷。
2.根据权利要求1所述的超高温多孔陶瓷的液相自发泡合成方法,其特征在于,步骤1)中,所述金属氯化物为TaCl5、NbCl5、TiCl4、ZrCl4和HfCl4;TaCl5、NbCl5、TiCl4、ZrCl4和HfCl4的摩尔比为1:1:1:1:1。
优选的,步骤1)中,所述金属氯化物为TiCl4、ZrCl4和HfCl4;TiCl4、ZrCl4和HfCl4的摩尔比为1:1:1。
优选的,步骤1)中,所述金属氯化物包括ZrCl4
优选的,步骤2)中,碳源试剂与金属氯化物的摩尔比为1:(1~5)。
优选的,步骤2)中,所述预设温度为35℃~75℃。
优选的,步骤2)中,所述预设压力为0.01MPa~0.06MPa。
优选的,步骤3)中,碳化温度为1400~1800℃,碳化时间为2~4h。
采用所述的合成方法得到的超高温多孔陶瓷。
所述的超高温多孔陶瓷在热防护领域中的应用。
与现有技术相比,本发明具有如下的有益效果:
本发明以多元醇为碳源,与金属盐醇溶液在密封加压装置中反应,多元醇缩聚放热溢出气体达到造孔目的,因此在材料内部产生气孔,形成超高温多孔陶瓷;仅需简单调控该体系的反应温度和反应压力,即可以控制材料内部生成气孔的数量和大小,达到调控材料孔隙变化的目的,有效改善超高温多孔材料的抗压强度及热传导特性。相比于自发泡工艺体系,该方法无需另外加入发泡剂,不仅简化了现有制备超高温多孔陶瓷的工艺流程,节约时间成本,且材料孔隙易于控制,可重复性高,原料易得,工艺成本低,适合于大规模工业化生产。此方法还有望实现航空航天复杂异形件的近净制造。
进一步的,本发明充分发挥高熵主元(Ta、Nb、Ti、Zr、Hf)的协同作用,使得制备得到的(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C超高温多孔陶瓷在抗压和热传导方面表现出优良性能。
进一步的,本发明选择了合适的反应温度和压力,从而得到的抗压强度优异的超高温多孔陶瓷。
本发明制备的超高温多孔陶瓷在抗压和热传导方面表现出优良性能,在超高温热防护领域中十分具有潜在应用价值。本发明所述方法仅需调控反应温度与反应压力便可调控其孔径结构,有效改善超高温多孔材料的抗压强度及热传导特性。
附图说明
图1是密封加压装置的简化示意图;
图2是本发明实施例4合成的(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C超高温多孔陶瓷材料的SEM图及EDS元素映射;
图3是本发明实施例4合成的(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C超高温多孔陶瓷材料的XRD图。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明进行描述,这些描述只是进一步解释本发明的特征和优点,并非用于限制本发明的权利要求。
本发明开发了一种制备工艺简单、易控制的由液相直接自发泡合成超高温多孔碳化物陶瓷的方法。同时,利用超高温多孔陶瓷的隔热特点,实现在超高温热防护领域中的应用。
实施例1:
①将ZrCl4加入乙醇溶剂中,在室温下搅拌至均匀,配制得到金属总浓度为0.3mol/L的金属盐醇溶液;其中,五种金属的摩尔比为1:1:1:1:1;选取五元醇戊醇作为碳源试剂;
②取24ml所述金属盐醇溶液和6ml碳源试剂置于密封加压装置(见图1)中控制反应温度为35℃,反应压力为0.01MPa得到固相产物ZrC-35-0.01;
③将固相产物ZrC-35-0.01置于恒温干燥箱中进行干燥,随后置于立式气氛高温炉中,在Ar气保护下,以2℃/min的速率升温至1800℃并保温4h,随炉冷却到室温,即得到ZrC超高温多孔陶瓷。
本实施例所制得的ZrC超高温多孔陶瓷的孔隙率为49.01%,抗压强度为110MPa。
实施例2:
①将TaCl5、NbCl5、TiCl4、ZrCl4和HfCl4加入乙醇溶剂中,在室温下搅拌至均匀,配制得到金属总浓度为1.5mol/L的金属盐醇溶液;其中,五种金属的摩尔比为1:1:1:1:1;选取七元醇庚醇作为碳源试剂;
②取24ml所述金属盐醇溶液和6ml碳源试剂置于密封加压装置中,控制反应温度为55℃,反应压力为0.03MPa,得到固相产物(Hf,Zr,Ti)C-55-0.03;
③将固相产物(Hf,Zr,Ti)C-55-0.03置于恒温干燥箱中进行干燥,随后置于立式气氛高温炉中,在Ar气保护下,以2℃/min的升温速率将炉温升至1800℃并保温4h,随炉冷却到室温,即得到(Hf,Zr,Ti)C超高温多孔陶瓷。
本实施例所制得的(Hf,Zr,Ti)C超高温多孔陶瓷的孔隙率为57.49%,抗压强度为103.97MPa。
实施例3:
①将TaCl5、NbCl5、TiCl4、ZrCl4和HfCl4加入乙醇溶剂中,在室温下搅拌至均匀,配制得到金属总浓度为1.5mol/L的金属盐醇溶液;其中,五种金属的摩尔比为1:1:1:1:1;选取六元醇糠醇作为碳源试剂;
②取24ml所述金属盐醇溶液和6ml碳源试剂置于密封加压装置中,控制反应温度为35℃,反应压力为0.05MPa得到固相产物(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C-35-0.05;
③将固相产物(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C-35-0.05置于恒温干燥箱中进行干燥,随后置于立式气氛高温炉中,在Ar气保护下,以2℃/min的升温速率将炉温升至1800℃并保温4h,随炉冷却到室温,即得到(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C超高温多孔陶瓷。
本实施例所制得的(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C超高温多孔陶瓷的孔隙率为35.39%,抗压强度为127.51MPa。
实施例4:
①将TaCl5、NbCl5、TiCl4、ZrCl4和HfCl4加入乙醇溶剂中,在室温下搅拌至均匀,配制得到金属总浓度为1.5mol/L的金属盐醇溶液;其中,五种金属的摩尔比为1:1:1:1:1;选取六元醇糠醇作为碳源试剂;
②取24ml所述金属盐醇溶液和6ml碳源试剂置于密封加压装置中,控制反应温度为55℃,反应压力为0.03MPa得到固相产物(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C-55-0.03;
③将固相产物(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C-55-0.03置于恒温干燥箱中进行干燥,随后置于立式气氛高温炉中,在Ar气保护下,以2℃/min的升温速率将炉温升至1800℃并保温4h,随炉冷却到室温,即得到(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C超高温多孔陶瓷。
本实施例所制得的(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C超高温多孔陶瓷的孔隙率为52.76%,抗压强度为140.05MPa。
实施例5:
①将TaCl5、NbCl5、TiCl4、ZrCl4和HfCl4加入乙醇溶剂中,在室温下搅拌至均匀,配制得到金属总浓度为1.5mol/L的金属盐醇溶液;其中,五种金属的摩尔比为1:1:1:1:1;选取六元醇糠醇作为碳源试剂;
②取24ml所述金属盐醇溶液和6ml碳源试剂置于密封加压装置(见图1)中,控制反应温度为75℃,反应压力为0.06MPa得到固相产物(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C-75-0.06;
③将固相产物(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C-75-0.06置于恒温干燥箱中进行干燥,随后置于立式气氛高温炉中,在Ar气保护下,以2℃/min的升温速率将炉温升至1800℃并保温4h,随炉冷却到室温,即得到(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C超高温多孔陶瓷。
本实施例所制得的(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C超高温多孔陶瓷的孔隙率为62.03%,抗压强度为90.52MPa。
实施例6:
①将TaCl5、NbCl5、TiCl4、ZrCl4和HfCl4加入乙醇溶剂中,在室温下搅拌至均匀,配制得到金属总浓度为1.5mol/L的金属盐醇溶液;其中,五种金属的摩尔比为1:1:1:1:1;选取六元醇糠醇作为碳源试剂;
②取24ml所述金属盐醇溶液和6ml碳源试剂置于密封加压装置(见图1)中,控制反应温度为75℃,反应压力为0.03MPa得到固相产物(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C-75-0.03;
③将固相产物(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C-75-0.03置于恒温干燥箱中进行干燥,随后置于立式气氛高温炉中,在Ar气保护下,以2℃/min的升温速率将炉温升至1800℃并保温4h,随炉冷却到室温,即得到(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C超高温多孔陶瓷。
本实施例所制得的(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C超高温多孔陶瓷的孔隙率为42.75%,抗压强度为100.36MPa。
图2为实施例4合成的(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C超高温多孔陶瓷材料SEM图。通过SEM表征,观察到材料内部存有多孔结构,说明此方法成功制备了多孔陶瓷,且孔径分布较为均匀,为之后的热防护应用打下良好结构基础;再通过EDS元素映射结果可以证明所合成的(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C超高温多孔陶瓷各元素分布均匀,无明显偏析。
图3是实施例4合成的(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C超高温多孔陶瓷材料的XRD图,该图谱表明所合成的超高温多孔陶瓷材料由单一的(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C相组成,结晶度良好未发现其他杂相,因此证明该方法制备的(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C超高温多孔陶瓷的纯度较高。
实施例1-6制备的(Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C超高温多孔陶瓷的孔隙率及抗压强度如表1所示。
表1实施例1-6的性能数据
其中,所述密度按照《GB/T 1966-1996多孔陶瓷显气孔率、容重试验方法》进行测试,孔隙率采用美国Micromeritics AutoPoreⅣ9500高性能全自动压汞仪进行测试,所述抗压强度按照《GB/T 4740-1999陶瓷材料抗压强度试验方法》进行测试。
由表1可知,本发明采用的通过调控反应温度与反应压力的方法可以调控多孔陶瓷的孔隙结构,进而表现出不同的力学性能。且有如下规律:在相同反应温度下,孔隙率与反应压力成正比,抗压强度与反应压力成反比;在相同反应压力下,孔隙率与反应压力成反比,抗压强度与反应压力成正比。整体上,通过本发明方法制备出来的多孔陶瓷均具有轻质、多孔和较高的抗压强度特性。
本发明所制备的超高温多孔陶瓷至少具备以下优点:本发明选多元醇作为碳源试剂,不仅提供了反应所需碳源,还利用其在前驱液中自发缩聚特点,无需另外加入发泡剂,大大简化制备工艺,节约时间成本,同时可重复性高,原料易得,工艺成本低,适合于大规模工业化生产并有望实现航空航天复杂异形件的近净制造,对超高温多孔陶瓷材料在航空航天热防护领域内的扩大化应用起到关键作用。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所做的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明保护范围之内。

Claims (10)

1.一种超高温多孔陶瓷的液相自发泡合成方法,其特征在于,包括以下步骤:
1)将一种或多种金属氯化物溶于乙醇中,配制成金属盐醇溶液;
2)将金属盐醇溶液与碳源试剂置于密封加压装置中,在预设温度和预设压力下进行反应,得到固相产物;所述碳源试剂为五元醇至十元醇中任意一种;
3)将固相产物干燥,再高温碳化,得到超高温多孔陶瓷。
2.根据权利要求1所述的超高温多孔陶瓷的液相自发泡合成方法,其特征在于,步骤1)中,所述金属氯化物为TaCl5、NbCl5、TiCl4、ZrCl4和HfCl4;TaCl5、NbCl5、TiCl4、ZrCl4和HfCl4的摩尔比为1:1:1:1:1。
3.根据权利要求1所述的超高温多孔陶瓷的液相自发泡合成方法,其特征在于,步骤1)中,所述金属氯化物为TiCl4、ZrCl4和HfCl4;TiCl4、ZrCl4和HfCl4的摩尔比为1:1:1。
4.根据权利要求1所述的超高温多孔陶瓷的液相自发泡合成方法,其特征在于,步骤1)中,所述金属氯化物包括ZrCl4
5.根据权利要求1所述的超高温多孔陶瓷的液相自发泡合成方法,其特征在于,步骤2)中,碳源试剂与金属氯化物的摩尔比为1:(1~5)。
6.根据权利要求1所述的超高温多孔陶瓷的液相自发泡合成方法,其特征在于,步骤2)中,所述预设温度为35℃~75℃。
7.根据权利要求1所述的超高温多孔陶瓷的液相自发泡合成方法,其特征在于,步骤2)中,所述预设压力为0.01MPa~0.06MPa。
8.根据权利要求1所述的超高温多孔陶瓷的液相自发泡合成方法,其特征在于,步骤3)中,碳化温度为1400~1800℃,碳化时间为2~4h。
9.采用权利要求1~8任一项所述的合成方法得到的超高温多孔陶瓷。
10.权利要求9所述的超高温多孔陶瓷在热防护领域中的应用。
CN202310988921.2A 2023-08-07 2023-08-07 一种超高温多孔陶瓷及其液相自发泡合成方法和应用 Pending CN117024170A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310988921.2A CN117024170A (zh) 2023-08-07 2023-08-07 一种超高温多孔陶瓷及其液相自发泡合成方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310988921.2A CN117024170A (zh) 2023-08-07 2023-08-07 一种超高温多孔陶瓷及其液相自发泡合成方法和应用

Publications (1)

Publication Number Publication Date
CN117024170A true CN117024170A (zh) 2023-11-10

Family

ID=88631065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310988921.2A Pending CN117024170A (zh) 2023-08-07 2023-08-07 一种超高温多孔陶瓷及其液相自发泡合成方法和应用

Country Status (1)

Country Link
CN (1) CN117024170A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109485452A (zh) * 2018-12-24 2019-03-19 西北工业大学 一种孔隙尺寸可控的超高温多孔陶瓷骨架的制备方法
CN111363190A (zh) * 2020-04-08 2020-07-03 辽宁大学 一种利用离子液体体系中微区调控mof材料孔性质的方法
CN112976458A (zh) * 2021-03-11 2021-06-18 山东大学 带有温度与压力调控***的发泡装置及其发泡方法和应用
CN116514553A (zh) * 2023-05-09 2023-08-01 武汉科技大学 一种复合碳化物陶瓷粉体材料及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109485452A (zh) * 2018-12-24 2019-03-19 西北工业大学 一种孔隙尺寸可控的超高温多孔陶瓷骨架的制备方法
CN111363190A (zh) * 2020-04-08 2020-07-03 辽宁大学 一种利用离子液体体系中微区调控mof材料孔性质的方法
CN112976458A (zh) * 2021-03-11 2021-06-18 山东大学 带有温度与压力调控***的发泡装置及其发泡方法和应用
CN116514553A (zh) * 2023-05-09 2023-08-01 武汉科技大学 一种复合碳化物陶瓷粉体材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
Mao et al. Gelcasting of alumina foams consolidated by epoxy resin
CN106565245B (zh) 一种微波原位烧结技术制备碳化硅多孔陶瓷的方法
CN105541306B (zh) 一种氧化铝纤维增强的氧化铝闭孔泡沫陶瓷及其制备方法
CN108264338A (zh) 一种高孔隙率莫来石晶须多孔陶瓷管及制备方法
CN107285806B (zh) 纳米孔径的多孔刚玉-镁铝尖晶石陶瓷及其制备方法
CN101293783A (zh) 冷冻干燥法制备无机多孔复合材料的方法
CN114671674B (zh) 一种二氧化硅泡沫陶瓷及其制备方法
Ma et al. Direct ink writing of porous SiC ceramics with geopolymer as binder
CN111925229A (zh) 一种模板法结合化学气相渗透法制备高性能泡沫陶瓷的方法
CN113860272A (zh) 一种富介孔的六方氮化硼多孔材料的制备方法
CN111807843A (zh) 一种轻质高强碳化硅泡沫陶瓷及其制备方法
Li et al. Preparation and characterization of stoichiometric zirconium carbide foams by direct foaming of zirconia sols
Dilsiz et al. Study of sol–gel processing for fabrication of low density alumina microspheres
Dong et al. Ice-templated porous silicate cement with hierarchical porosity
CN111056846B (zh) 一种采用冷冻干燥和燃烧合成法快速制备的定向多孔氮化铝蜂窝陶瓷及其方法
Luo et al. Novel method of fabricating ultra-light aluminum borate foams with hierarchical pore structure
CN109574680A (zh) 一种气固反应结合液相烧结法制备多孔氮化硅陶瓷的方法
CN101817693A (zh) 一种基于纳米氧化铝的泡沫陶瓷制备方法
CN111548183B (zh) 通过凝胶注模和碳热还原制备分级多孔碳化硅陶瓷的方法
CN109665810A (zh) 一种分子筛膜支撑体及其制备方法和分子筛膜
CN117024170A (zh) 一种超高温多孔陶瓷及其液相自发泡合成方法和应用
CN112266241A (zh) 镁铝尖晶石多孔陶瓷及其制备方法
CN104086183B (zh) 一种气孔率可控多孔Si3N4的制备方法
CN114874026B (zh) 一种高强度纤维复合氧化锆泡沫陶瓷的制备方法
Li et al. Fabrication of ultra-high-porosity cordierite foams by the thermo-foaming of powder dispersions in molten D-glucose anhydrous

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination