CN116514537A - 一种高透光性镁铝尖晶石透明陶瓷的制备方法 - Google Patents

一种高透光性镁铝尖晶石透明陶瓷的制备方法 Download PDF

Info

Publication number
CN116514537A
CN116514537A CN202211364895.8A CN202211364895A CN116514537A CN 116514537 A CN116514537 A CN 116514537A CN 202211364895 A CN202211364895 A CN 202211364895A CN 116514537 A CN116514537 A CN 116514537A
Authority
CN
China
Prior art keywords
sintering
magnesia
calcium fluoride
alumina spinel
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211364895.8A
Other languages
English (en)
Inventor
章健
李逸
韩丹
赵瑾
王士维
李贵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202211364895.8A priority Critical patent/CN116514537A/zh
Publication of CN116514537A publication Critical patent/CN116514537A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种高透光性镁铝尖晶石透明陶瓷的制备方法。所述高透光性镁铝尖晶石透明陶瓷的制备方法包括:采用铝源和Mg源作为原料,按照铝镁比称取原料,加入氟化钙作为烧结助剂并混合,再经成型得到素坯,最后经过烧结,制备高透光性镁铝尖晶石透明陶瓷;所述氟化钙选自氟化钙粉体和氟化钙单晶颗粒中至少一种;所述镁铝尖晶石透明陶瓷的化学式为MgO﹒nAl2O3,1≤n≤2.5。

Description

一种高透光性镁铝尖晶石透明陶瓷的制备方法
技术领域
本发明涉及一种镁铝尖晶石透明陶瓷的制备方法,属于透明陶瓷领域。
背景技术
镁铝尖晶石透明陶瓷自问世以来因其具有优异的光学和力学性能而受到广泛关注。镁铝尖晶石属于立方晶系,具有光学各向同性,其透光范围覆盖紫外至中红外波段,并且具有优异的力学性能,如:高硬度、高抗弯强度等。此外,镁铝尖晶石还具有低密度、耐磨损、耐化学腐蚀、耐砂蚀雨蚀等特点,在透明装甲、红外引导头整流罩、高温观察窗、精密仪器窗口等军民两用领域广泛应用。
镁铝尖晶石透明陶瓷的制备难点主要集中于由密堆积氧离子扩散速度慢导致的难烧结致密,然而制备具有高光学质量的镁铝尖晶石陶瓷要求样品中气孔率低于100ppm,气孔尺寸低于40nm,因此通常采用高温结合高压等极端方式制备镁铝尖晶石透明陶瓷,这对烧结设备提出了巨大的挑战。为了降低烧结温度,目前主要通过添加合适的烧结助剂,如LiF、CaO、B2O3、Y2O3等。其中,LiF是目前最为成熟的烧结助剂,已应用于大尺寸镁铝尖晶石透明陶瓷制备中。LiF的优点在于兼具液相烧结和增加缺陷浓度的作用,通过这两种方式共同促进致密化过程。此外LiF还具有清除原料粉体中杂质的作用。然而,LiF烧结助剂导致的晶粒异常长大、与MgAl2O4反应生产的LiAlO2第二相导致晶界微裂纹等降低了陶瓷的力学性能,这严重限制了镁铝尖晶石透明陶瓷作为防护材料的应用。此外,LiF因具有低熔点、低沸点的特点,通常需要结合热压烧结,然而热压烧结使用的石墨模具会污染样品,虽然LiF的加入能够起到除碳的作用,但并不能根除,导致最终样品仍会发黑。此外,LiF的不均匀挥发会导致差分烧结,烧结后样品出现雾心,影响样品的光学质量,这严重限制了大尺寸镁铝尖晶石透明陶瓷样品的制备。
CaO是另一种常用于制备镁铝尖晶石透明陶瓷的烧结助剂,其优点在于CaO能够与MgAl2O4反应生成具有低熔点的铝酸钙,在升温过程中,铝酸钙熔融形成液相促进烧结,能够显著降低烧结温度约100℃,提高样品在紫外波段的透过率。然而,使用CaO做烧结助剂需要严格控制热等静压烧结的温度,过高的温度会降低陶瓷样品的光学质量。此外,在高温下会导致放射型铝酸钙第二相沉积,影响微观结构的均匀性。
目前,几种常用的烧结助剂都不能满足制备大尺寸、高光学质量镁铝尖晶石透明陶瓷上的应用,为摆脱对LiF烧结助剂的依赖,探索新的烧结助剂体系对其实际应用至关重要。
发明内容
为此,本发明的目的是提供一种流程简单的镁铝尖晶石透明陶瓷的制备方法,所述的镁铝尖晶石透明陶瓷的化学式为MgO﹒nAl2O3,1≤n≤2.5。本发明选用来源广泛的高纯镁、铝源(镁、铝的氧化物或镁、铝的氢氧化物)或镁铝尖晶石商业粉体为原料,采用添加能够在高温下熔融成液相的烧结助剂氟化钙,通过在烧结升温过程形成的液相充分润湿颗粒表面,促进颗粒重排,降低烧结温度,促进纳米气孔的排出,并防止晶粒异常长大,制备出具有高光学质量镁铝尖晶石透明陶瓷。
一方面,本发明提供了一种高透光性镁铝尖晶石透明陶瓷的制备方法,所述镁铝尖晶石透明陶瓷的化学式为MgO﹒nAl2O3,1≤n≤2.5;
所述高透光性镁铝尖晶石透明陶瓷的制备方法包括:采用铝源和Mg源作为原料,按照铝镁比称取原料,加入氟化钙作为烧结助剂并混合,再经成型得到素坯,最后经过烧结,制备高透光性镁铝尖晶石透明陶瓷;所述氟化钙选自氟化钙粉体和氟化钙单晶颗粒中至少一种。本发明的发明点在于:利用CaF2助剂能够在高温下熔融成液相,通过在烧结升温过程形成的液相充分润湿颗粒表面,促进颗粒重排,降低烧结温度,促进纳米气孔的排出,并防止晶粒异常长大,制备出具有高光学质量镁铝尖晶石透明陶瓷,属于透明陶瓷领域。
较佳的,所述铝源、镁源为铝、镁的氧化物/氢氧化物或镁铝尖晶石粉体的至少一种。本发明中,铝源为铝的氧化物/氢氧化物。所述镁源为镁的氧化物/氢氧化物。所述铝源、镁源也可以选择镁铝尖晶石粉体。
较佳的,铝的氧化物Al2O3粉体的纯度≥99.9%、粒径为50~1000nm;镁的氧化物MgO粉体的纯度≥99.9%、粒径为100~1000nm。
较佳的,铝的氢氧化物Al(OH)3的纯度≥99.9%,粒径为10~20μm;镁的氢氧化物Mg(OH)2粉体的纯度≥99.9%,粒径为5~7μm。
另一方面,本发明提供了一种高透光性镁铝尖晶石透明陶瓷的制备方法,所述镁铝尖晶石透明陶瓷的化学式为MgO﹒nAl2O3,1≤n≤2.5;
所述高透光性镁铝尖晶石透明陶瓷的制备方法包括:采用镁铝尖晶石MgO﹒nAl2O3粉体作为原料,加入氟化钙作为烧结助剂并混合,再经成型得到素坯,最后经过烧结,制备高透光性镁铝尖晶石透明陶瓷;所述氟化钙选自氟化钙粉体和氟化钙单晶颗粒中至少一种。
较佳的,所述镁铝尖晶石粉体的纯度≥99.9%,粒径为50~500nm。
较佳的,所述氟化钙粉体的粒径为100~1000nm,所述氟化钙单晶颗粒的粒径为100μm~300μm。
较佳的,所述烧结助剂的质量浓度为100~5000ppm,优选为100~3000ppm;
优选地,当所述烧结助剂为氟化钙粉体时,质量浓度为500~2000ppm;
优选地,当烧结助剂为氟化钙单晶颗粒时,质量浓度为500~3000ppm。本发明中若无特殊说明,氟化钙粉体一般指的是氟化钙多晶粉体。
较佳的,成型的方式为干法成型或湿法成型,干法成型包括干压成型或/和冷等静压成型,湿法成型包括注浆成型、注凝成型。
较佳的,在烧结之前,将成型后的素坯进行预烧结;
所述预烧结为无压烧结,包括:无压烧结的温度为1400~1700℃,烧结气氛为空气或真空中的一种;
优选地,在空气气氛下,采用无压烧结工艺,烧结温度为1400~1600℃,保温时间为3~6小时;
优选地,真空气氛下,无压烧结工艺烧结温度为1500~1700℃,保温4~6小时。
较佳的,当所述素坯中含有粘结剂时,将素坯先进行排胶处理,再进行预烧结;所述排胶处理的温度为600~800℃、保温时间为3~6小时,以排出有机物质。
较佳的,所述烧结的方式为热等静压烧结;所述热等静压烧结的工艺参数为:烧结温度为1500~1700℃;保温时间为1~6小时;加压介质为氩气或氮气,压力为120~200MPa。
有益效果:
本发明提供的制备方法可以实现镁铝尖晶石透明陶瓷的低温烧结,制备出具有高光学质量的镁铝尖晶石透明陶瓷,经过双面抛光后的样品(5mm厚)在近红外区域(760~1100nm)的透过率可以达到87%,实现镁铝尖晶石的理论透过率,可见光波段400nm处透过率可以达到82%以上,可满足镁铝尖晶石透明陶瓷在光学引导头整流罩及透明装甲等领域的应用中对光学及力学性能的要求。此外,与现有技术相比,本发明的制备方法具有流程简单、材料成分易于控制和成本低等优点。
附图说明
图1为实施例1制备的样品经研磨、双面抛光后厚度为5mm的镁铝尖晶石透明陶瓷样品的实物照;
图2为实施例1制备的样品经研磨、双面抛光后厚度为5mm的镁铝尖晶石透明陶瓷样品的透过率曲线;
图3为实施例2制备的样品经研磨、双面抛光后厚度为5mm的镁铝尖晶石透明陶瓷样品的透过率曲线;
图4为实施例3制备的样品经研磨、双面抛光后厚度为5mm的镁铝尖晶石透明陶瓷样品的透过率曲线;
图5为实施例4制备的样品经研磨、双面抛光后厚度为5mm的镁铝尖晶石透明陶瓷样品的照片;
图6为实施例5制备的样品经研磨、双面抛光后厚度为5mm的镁铝尖晶石透明陶瓷样品的透过率曲线;
图7为对比例1制备的样品经研磨、双面抛光后厚度为5mm的镁铝尖晶石透明陶瓷样品的透过率曲线。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本发明中,以商业高纯镁源和铝源(包括但不限于镁、铝的氧化物或氢氧化物)或高纯镁铝尖晶石商业粉体为原料,通过加入烧结助剂氟化钙(包括但不限于氟化钙粉体或氟化钙单晶颗粒)制备不同铝镁比的镁铝尖晶石透明陶瓷。该方法的主要工艺流程包括原料粉体混合、粉体成型、致密化三个步骤。先按照所需样品的配比称取镁源、铝源或镁铝尖晶石商业粉体及烧结助剂,通过湿法球磨对粉体进行均匀混合并解团聚,通过干/湿法成型(包括但不限于干压成型、注浆成型、注凝成型等)得到陶瓷素坯,然后对陶瓷素坯进行预烧结排除开口气孔,结合热等静压烧结排除残余闭口气孔,从而获得具有光学透过性的陶瓷样品。
以下示例性地说明本发明中镁铝尖晶石透明陶瓷的制备方法。
粉体混合和解团聚:将镁源、铝源或镁铝尖晶石商业粉体和烧结助剂按比例称量(若采用湿法成型工艺,在配置浆料时还需加入适量分散剂及固化剂等),采用去离子水/无水乙醇作为分散介质,高纯氧化铝球磨珠为球磨介质进行均匀混合。所述的混料方式为行星球磨时,球磨工艺为200~300转/分钟,球磨10~12小时。其中混合方式包括但不限于行星式球磨混料,凡是能够实现原料均匀混合的方式,均适用于本发明。若粉体处理量过大,凡能够实现粉体解团聚和混合均匀的设备(如:搅拌磨、砂磨机等)均适用于本发明。采用高纯铝、镁的氧化物为原料,Al2O3粉体的纯度≥99.9%、粒径为50~1000nm,MgO粉体纯度≥99.9%、粒径为100~1000nm。采用高纯铝、镁的氢氧化物为原料,Al(OH)3的纯度≥99.9%,粒径为10~20μm。Mg(OH)2粉体纯度≥99.9%,粒径为5~7μm。采用高纯镁铝尖晶石商业粉体,粉体纯度≥99.9%,粒径为20~500nm。所添加的氟化钙烧结助剂的质量浓度为100~5000ppm,优选为100~3000ppm。优选地,当所述烧结助剂为氟化钙粉体时,质量浓度为500~2000ppm,氟化钙粉体粒径为100~500nm。若氟化钙粉体添加量越高,在烧结过程中越容易产生第二相,进而影响透明陶瓷样品的光学质量。优选地,当烧结助剂为氟化钙单晶颗粒时,质量浓度为500~3000ppm,单晶氟化钙粒径为0.1~0.3mm。若氟化钙单晶颗粒添加量过高,则与添加氟化钙粉体情况类似,易产生第二相,从而影响透明陶瓷样品的光学质量。
成型:采用干/湿法成型工艺获得陶瓷素坯。成型工艺为干法成型时,需将上述浆料干燥,干燥条件为50~60℃干燥8~12小时,并过100目筛。采用干压成型或/和冷等静压成型方式将粉体压制成型。采用干压成型结合冷等静压成型,将处理好的浆料烘干并过100目筛,在600~800℃下煅烧4~6小时除去残余有机物杂质,将处理好的原料粉体装入模具中,在10~20MPa压力下保压1~3分钟干压成型。将干压后的素坯进行冷等静压处理,压力为200MPa,保压时间为5~10分钟。成型工艺为湿法成型时,包括但不限于注凝成型、注浆成型等。采用注凝成型工艺,需在制备浆料时加入0.3~2.0wt%分散剂(CE64或Dolapix)及0.2~0.3wt%凝胶固化剂(ISOBAM AF600或ISOBAM 104),浆料固含量为35~56vol%,在室温下使其固化并干燥,在600~800℃下保温3~6小时排出有机物质,得到具有较高强度的素坯。
将陶瓷素坯进行预烧结,完全排出开口气孔,得到预烧结体。所述的预烧结工艺为:1400~1700℃无压烧结,烧结气氛为空气或真空中的一种。优选地,空气气氛下,无压烧结工艺烧结温度为1400~1600℃,保温时间为3-6小时,所获烧结体相对密度不低于96%。优选地,真空气氛下,无压烧结工艺烧结温度为1500~1700℃,保温4~6小时。
热等静压烧结。将预烧结体经热等静压烧结处理。热等静压烧结工艺为:烧结温度为1500-1700℃,保温时间为1~6小时,加压介质为氩气或氮气,压力为120~200MPa。
将热等静压烧结后的样品优选进行退火处理。再经抛光处理后得到镁铝尖晶石透明陶瓷。其中,退火处理的温度可为1100~1350℃,时间为6~30小时,气氛为空气或氧气气氛。
本发明制备的双面抛光5mm厚的镁铝尖晶石透明陶瓷在近红外区域(760~1100nm)的透过率可以达到87%,达到理论透过率,可见光波段400nm处透过率可达82%以上。此外,该方法制作流程简单,可实现复杂形状镁铝尖晶石透明陶瓷的制备,满足该材料在透明装甲、航天器光学引导头整流罩和光学窗口等领域的应用要求。此外,本发明的制备方法选用的烧结助剂体系可显著的降低镁铝尖晶石透明陶瓷的烧结温度,降低生产成本。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1:
(1)按照MgO:Al2O3的摩尔比为1:1分别称取MgO和Al2O3粉体,再称取质量浓度为500ppm氟化钙粉体置于球磨罐中,以无水乙醇为分散介质,以高纯氧化铝球磨珠为球磨介质,以200~300rpm/min的转速球磨12小时,球磨后的浆料置于60℃的烘箱中干燥12小时,干燥后的粉体过100目筛,过筛后的粉体置于马弗炉中与800℃煅烧6小时除去残余酒精和有机物杂质;
(2)称取上述煅烧后的粉体3g于直径为20mm的模具中,采用双面加压的方式于20MPa将粉体干压成型并保压1分钟。将预成型的素坯采用冷等静压在200MPa,保压5分钟下得到密度大于40%的素坯;
(3)将上述素坯置于马弗炉中于1500℃预烧3小时,空气气氛,除去开口气孔后,得到相对密度大于96%的预烧样品;
(4)将所得预烧样品进行热等静压烧结,烧结气氛为氩气,压力为200MPa,烧结温度为1550℃,保温时间为3小时;
(5)将上述热等静压烧结后的样品研磨、双面抛光至厚度为5mm。
图1是本实施例1所述方法制得样品的实物图,样品经过双面抛光处理,厚度为5mm,样品在可见光范围透光良好,无肉眼可见缺陷。图2是本实施例1所述方法制得的5mm厚透明陶瓷的直线透过率曲线,样品在近红外波段(760~1100nm)的透过率可达到87%以上,实现理论透过率,在可见光波段400nm处直线透过率可达82%以上,具有较高的透过率。
实施例2:
本实施例2中高透光性镁铝尖晶石透明陶瓷的制备流程与实施例1类似,不同点在于:纳米氟化钙粉体的添加量2000ppm,预烧的温度为1455℃。
图3是本实施例2所述方法制得的5mm厚透明陶瓷的直线透过率曲线,样品在近红外波段(760~1100nm)的透过率可达到87%,实现理论透过率,在可见光波段400nm处直线透过率可达78%以上。
实施例3:
制备流程与实施例1类似,不同点在于:MgO:Al2O3的摩尔比为1:1.5,烧结助剂添加量为2000ppm,预烧的温度为1485℃。
图4是本实施例3所述方法制得的5mm厚透明陶瓷的直线透过率曲线,样品在近红外波段(760~1100nm)的透过率可达到85%以上,接近理论透过率,在可见光波段400nm处直线透过率可达76%。
实施例4:
制备流程与实施例1类似,不同点在于:真空气氛预烧,预烧温度为1550℃;热等静压烧结温度为1600℃;将热等静压后样品在空气气氛中于1300℃退火处理10小时。
图5是本实施例4所述方法制得的5mm厚透明陶瓷的照片,样品中无肉眼可见的缺陷,其在近红外波段透过率(760~1100nm)可达84%,可见波段400nm处透过率可达75.2%。
实施例5:
(1)按照比例称取0.5wt%分散剂(CE64)和0.3wt%凝胶固化剂(ISOBAM 600AF)溶于去离子水中,称取镁铝尖晶石商业粉体,再称取质量浓度为500ppm氟化钙粉体置于球磨罐中,以去离子水为分散介质,以高纯氧化铝球磨珠为球磨介质,配置固含量为45Vol%的浆料。以200~300rpm/min的转速球磨12小时,混合均匀后将浆料倒入模具,发生交联反应原位固化,脱模,室温干燥,置于马弗炉中与800℃煅烧6小时除去残余酒精和有机物杂质;
(2)将上述素坯置于马弗炉中于1475℃预烧3小时,空气气氛,除去开口气孔后,热等静压烧结制度与实施例1类似。
图6是本实施例5所述方法制得的5mm厚透明陶瓷的直线透过率曲线,样品在近红外波段的透过率(760~1100nm)可达到85%以上,接近理论透过率,在可见光波段400nm处直线透过率可达75%。
对比例1:
制备流程与实施例1类似,不同点在于:不添加烧结助剂;。图7是对比例1制得的5mm厚透明陶瓷的直线透过率曲线,样品在近红外波段(760~1100nm)的透过率可达到84%以上,在可见光波段400nm处直线透过率可达75%,透过率较低。

Claims (11)

1.一种高透光性镁铝尖晶石透明陶瓷的制备方法,其特征在于,所述镁铝尖晶石透明陶瓷的化学式为MgO﹒nAl2O3,1≤n≤2.5;
所述高透光性镁铝尖晶石透明陶瓷的制备方法包括:采用铝源和Mg源作为原料,按照铝镁比称取原料,加入氟化钙作为烧结助剂并混合,再经成型得到素坯,最后经过烧结,制备高透光性镁铝尖晶石透明陶瓷;所述氟化钙选自氟化钙粉体和氟化钙单晶颗粒中至少一种。
2.根据权利要求1所述的制备方法,其特征在于,所述铝源、镁源为铝、镁的氧化物/氢氧化物或镁铝尖晶石粉体的至少一种。
3.根据权利要求2所述的制备方法,其特征在于,铝的氧化物Al2O3粉体的纯度≥99.9%、粒径为50~1000nm;镁的氧化物MgO粉体的纯度≥99.9%、粒径为100~1000nm;
铝的氢氧化物Al(OH)3的纯度≥99.9%,粒径为10~20μm;镁的氢氧化物Mg(OH)2粉体的纯度≥99.9%,粒径为5~7μm。
4.一种高透光性镁铝尖晶石透明陶瓷的制备方法,其特征在于,所述镁铝尖晶石透明陶瓷的化学式为MgO﹒nAl2O3,1≤n≤2.5;
所述高透光性镁铝尖晶石透明陶瓷的制备方法包括:采用镁铝尖晶石MgO﹒nAl2O3粉体作为原料,加入氟化钙作为烧结助剂并混合,再经成型得到素坯,最后经过烧结,制备高透光性镁铝尖晶石透明陶瓷;所述氟化钙选自氟化钙粉体和氟化钙单晶颗粒中至少一种。
5.根据权利要求4所述的制备方法,其特征在于,所述镁铝尖晶石粉体的纯度≥99.9%,粒径为20~500nm。
6.根据权利要求1-5中任一项所述的制备方法,其特征在于,所述氟化钙粉体的粒径为100~1000nm,所述氟化钙单晶颗粒的粒径为100μm~300μm。
7.根据权利要求1-6中任一项所述的制备方法,其特征在于,所述氟化钙烧的质量浓度为100~5000ppm,优选为100~3000ppm;
优选地,当所述烧结助剂为氟化钙粉体时,质量浓度为500~2000ppm;
优选地,当烧结助剂为氟化钙单晶颗粒时,质量浓度为500~3000ppm。
8.根据权利要求1-7中所述的制备方法,其特征在于,成型的方式为干法成型或湿法成型,干法成型包括干压成型或/和冷等静压成型,湿法成型包括注浆成型、注凝成型。
9.根据权利要求1-8中所述的制备方法,其特征在于,在烧结之前,将成型后的素坯进行预烧结;
所述预烧结为无压烧结,包括:无压烧结的温度为1400~1700℃,烧结气氛为空气或真空中的一种;
优选地,在空气气氛下,采用无压烧结工艺,烧结温度为1400~1600℃,保温时间为3~6小时,控制所得烧结体的相对密度不低于96%;
优选地,真空气氛下,无压烧结工艺烧结温度为1500~1700℃,保温4~6小时,控制所得烧结体的相对密度不低于96%。
10.根据权利要求9所述的制备方法,其特征在于,当所述素坯中含有粘结剂时,将素坯先进行排胶处理,再进行预烧结;
所述排胶处理的温度为600~800℃、保温时间为3~6小时,以排出有机物质。
11.根据权利要求1-10中任一项所述的制备方法,其特征在于,所述烧结的方式为热等静压烧结;所述热等静压烧结的工艺参数为:烧结温度为1500~1700℃;保温时间为1~6小时;加压介质为氩气或氮气,压力为120~200MPa。
CN202211364895.8A 2022-11-02 2022-11-02 一种高透光性镁铝尖晶石透明陶瓷的制备方法 Pending CN116514537A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211364895.8A CN116514537A (zh) 2022-11-02 2022-11-02 一种高透光性镁铝尖晶石透明陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211364895.8A CN116514537A (zh) 2022-11-02 2022-11-02 一种高透光性镁铝尖晶石透明陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN116514537A true CN116514537A (zh) 2023-08-01

Family

ID=87403508

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211364895.8A Pending CN116514537A (zh) 2022-11-02 2022-11-02 一种高透光性镁铝尖晶石透明陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN116514537A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244849A (en) * 1987-05-06 1993-09-14 Coors Porcelain Company Method for producing transparent polycrystalline body with high ultraviolet transmittance
CN101269951A (zh) * 2008-04-15 2008-09-24 清华大学 氧化铝基透明陶瓷材料的超重力辅助非平衡制备方法
CN105377792A (zh) * 2013-05-13 2016-03-02 凯得力法国公司 形成尖晶石的耐火组合物、它们的制造方法及其应用
CN105801092A (zh) * 2016-03-04 2016-07-27 广东工业大学 一种透明陶瓷的原料、制备方法及应用
CN107721406A (zh) * 2017-10-12 2018-02-23 中国科学院上海硅酸盐研究所 一种制备高透光性镁铝尖晶石透明陶瓷的方法
CN109790075A (zh) * 2016-10-05 2019-05-21 信越化学工业株式会社 透明尖晶石烧结体、光学构件以及透明尖晶石烧结体的制造方法
CN110240468A (zh) * 2018-03-09 2019-09-17 深圳光峰科技股份有限公司 荧光陶瓷及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244849A (en) * 1987-05-06 1993-09-14 Coors Porcelain Company Method for producing transparent polycrystalline body with high ultraviolet transmittance
CN101269951A (zh) * 2008-04-15 2008-09-24 清华大学 氧化铝基透明陶瓷材料的超重力辅助非平衡制备方法
CN105377792A (zh) * 2013-05-13 2016-03-02 凯得力法国公司 形成尖晶石的耐火组合物、它们的制造方法及其应用
CN105801092A (zh) * 2016-03-04 2016-07-27 广东工业大学 一种透明陶瓷的原料、制备方法及应用
CN109790075A (zh) * 2016-10-05 2019-05-21 信越化学工业株式会社 透明尖晶石烧结体、光学构件以及透明尖晶石烧结体的制造方法
CN107721406A (zh) * 2017-10-12 2018-02-23 中国科学院上海硅酸盐研究所 一种制备高透光性镁铝尖晶石透明陶瓷的方法
CN110240468A (zh) * 2018-03-09 2019-09-17 深圳光峰科技股份有限公司 荧光陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN107721406B (zh) 一种制备高透光性镁铝尖晶石透明陶瓷的方法
CN107352994B (zh) 一种镁铝尖晶石透明陶瓷的制备方法
KR101502601B1 (ko) 입방 구조를 가진 소결 제품
Mizuta et al. Preparation of high‐strength and translucent alumina by hot isostatic pressing
KR101122929B1 (ko) 투명한 다결정 산질화알루미늄의 제조방법
CN110272282B (zh) AlON透明陶瓷的低温制备方法
CN101468915A (zh) 一种具有择优取向的多晶氧化铝透明陶瓷及其制备方法
JP4878343B2 (ja) 透光性希土類ガリウムガーネット焼結体及びその製造方法と磁気光学デバイス
CN109095916B (zh) 一种sps烧结制备yag透明陶瓷的方法
CN108640672A (zh) 一种镁铝尖晶石透明陶瓷的制备方法
KR102134054B1 (ko) 투광성 금속 산화물 소결체의 제조 방법 및 투광성 금속 산화물 소결체
WO2016084721A1 (ja) 透明アルミナ焼結体の製法
JP5000934B2 (ja) 透光性希土類ガリウムガーネット焼結体及びその製造方法と光学デバイス
US20090137380A1 (en) Sintered alumina product transparent to infrared radiation and in the visible region
Fang et al. Effect of heat treatment of green bodies on the sintering and optical properties of large-size and thick transparent YAG ceramics
CN107473730B (zh) 一种制备细晶、高强镁铝尖晶石透明陶瓷的方法
US20030209541A1 (en) Method and apparatus for the preparation of transparent alumina ceramics by microwave sintering
JP3000685B2 (ja) 透光性イットリア焼結体及びその製造方法
CN116514537A (zh) 一种高透光性镁铝尖晶石透明陶瓷的制备方法
CN114477990B (zh) 一种低温无压烧结制备高致密镁铝尖晶石陶瓷的方法
WO2018117162A1 (ja) 透明AlN焼結体及びその製法
CN112225564B (zh) 一种氮氧化铝透明陶瓷及其制备方法
JP2566737B2 (ja) 透光性酸窒化アルミニウムマグネシウム焼結体の製造方法
CN115433006B (zh) 一种铽基磁光陶瓷及其制备方法
CN115010172B (zh) 一种抗热冲击镁锆陶瓷粉体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination