CN116444266B - 一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法 - Google Patents

一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法 Download PDF

Info

Publication number
CN116444266B
CN116444266B CN202310345013.1A CN202310345013A CN116444266B CN 116444266 B CN116444266 B CN 116444266B CN 202310345013 A CN202310345013 A CN 202310345013A CN 116444266 B CN116444266 B CN 116444266B
Authority
CN
China
Prior art keywords
ball milling
powder
dielectric ceramic
preparation
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310345013.1A
Other languages
English (en)
Other versions
CN116444266A (zh
Inventor
孟彬
夏海俊
林武
李蕊
房聪聪
平鑫宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202310345013.1A priority Critical patent/CN116444266B/zh
Publication of CN116444266A publication Critical patent/CN116444266A/zh
Application granted granted Critical
Publication of CN116444266B publication Critical patent/CN116444266B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法,属于介电陶瓷制备技术领域。本发明所述方法按照设计的化学计量比分别称量BaCO3、SrCO3、TiO2、ZrO2、Bi2O3、ZnO;采用湿法球磨混合均匀,经过干燥、预烧、二次球磨、研磨、过筛得到均匀的粉体;将粉末压制成型,然后进行烧结得到介电陶瓷。本发明所述方法在锆钛酸锶钡(Ba0.6Sr0.4(Ti0.7Zr0.3)O3,BSTZ)中加入锌锆酸铋(Bi(Zr0.5Zn0.5)O3,BZZ),可以将BSTZ陶瓷的烧结温度从1500℃降低至0.85BSTZ‑0.15BZZ陶瓷的1250℃,有利于节约烧结成本;随着BZZ的加入,样品的介电常数在‑100~350℃温度范围内保持稳定,容温系数(ΔC/C25℃)满足≤±15%,拓宽了该无铅介电陶瓷的使用温度范围。

Description

一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法
技术领域
本发明涉及一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法,属于介电陶瓷材料制备技术领域。
背景技术
电容器是电子电路的重要器件,近年来电子工业的快速发展对电容器材料提出了更高的要求。目前,陶瓷类电介质电容器材料,由于其具有高的介电常数和温度稳定性,被广泛应用于高温高压环境下的陶瓷电容器等领域。在汽车电子、油井勘探等环境中使用的高温陶瓷电容器,要求陶瓷电容器具有稳定的介电常数和低的介电损耗。美国电子陶瓷协会制定的EIAX9R型高温陶瓷电容器最高使用温度为200℃;然而,这个使用温度还是不能够满足油井勘探等极端环境下使用,所以开发出工作温度超过200℃的陶瓷电容器材料是非常必要的。
锆钛酸锶钡(Ba0.6Sr0.4(Ti0.7Zr0.3)O3,BSTZ)是一种优质的介电陶瓷材料,具有介电常数高、介电损耗小等优势,但其烧结温度达到1500℃,烧结难度大;同时其使用温度也在较窄的温度区间(11~44℃)。因此,在BSTZ中加入低熔点组分Bi(Zn0.5Zr0.5)O3(BZZ),有助于降低BSTZ的烧结温度,降低烧结成本;此外,加入BZZ还有助于提高BSTZ基陶瓷的介电常数温度稳定性,拓展其使用温度范围,扩宽BSTZ陶瓷的应用领域。
发明内容
本发明的目的在于提供一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法,在锆钛酸锶钡(Ba0.6Sr0.4(Ti0.7Zr0.3)O3,BSTZ)基体中添加锌锆酸铋(Bi(Zr0.5Zn0.5)O3,BZZ),其化学组成为:(1-x)Ba0.6Sr0.4(Ti0.7Zr0.3)O3-xBi(Zr0.5Zn0.5)O3,其中x=0.05~0.15,加入锌锆酸铋后可显著降低锆钛酸锶钡基陶瓷的烧结温度,具体包括以下步骤:
(1)按照Ba0.6Sr0.4(Ti0.7Zr0.3)O3化学计量比称取BaCO3、SrCO3、TiO2、ZrO2,然后进行一次球磨,烘干后于1300~1350℃煅烧3~4小时合成得到BSTZ粉体。
(2)按照Bi(Zn0.5Zr0.5)O3化学计量比称量Bi2O3、ZrO2、ZnO,然后进行球磨,烘干后于750~850℃煅烧3~4小时,合成得到BZZ粉体。
(4)将步骤(1)和步骤(2)得到的粉体分别研磨、过筛;按照(1-x)Ba0.6Sr0.4(Ti0.7Zr0.3)O3-xBi(Zn0.5Zr0.5)O3的化学计量比分别称量BSTZ粉体和BZZ粉体,再进行二次球磨;球磨参数与一次球磨参数相同。
(4)将混合的粉末烘干后加入5wt%的聚乙烯醇(PVA)并分散均匀,之后将粉末在模具中进行压制,于1250~1400℃烧结得到添加Bi(Zr0.5Zn0.5)O3的Ba0.6Sr0.4(Ti0.7Zr0.3)O3介电陶瓷材料。
优选的,本发明步骤(1)和(2)中混合球磨中以无水乙醇和氧化锆小球作为球磨介质,无水乙醇、氧化锆小球和原料的质量比为(4~5):(4~5):1,其中,球磨转速为300~400转/分钟,球磨时间为16~18小时。
优选的,本发明所述球磨完成后烘干条件为:将湿料取出在80~100℃烘干10~12小时。
优选的,本发明步骤(3)中所述的过筛是过60~120目筛。
优选的,本发明步骤(4)中压制成型的条件为:150~200MPa单轴压力下保压6~10min。
优选的,本发明步骤(4)中烧结条件为:采用埋粉烧的方式,在试样周围敷设一层与样品相同成分的陶瓷前驱体粉末,以5~6℃/min的升温速率加热至600℃,除去样品中的PVA,接着升温至各组样品的烧结温度1250~1400℃保温3~4小时,冷却降温后得到该(1-x)Ba0.6Sr0.4(Ti0.7Zr0.3)O3-xBi(Zn0.5Zr0.5)O3介电陶瓷。
本发明的原理:锆钛酸锶钡(BSTZ)的烧结温度达到1500℃,烧结难度大;因此,在Ba0.6Sr0.4(Ti0.7Zr0.3)O3中加入Bi(Zn0.5Zr0.5)O3(BZZ),将Ba0.6Sr0.4(Ti0.7Zr0.3)O3的烧结温度降低到1250℃左右,同时,BSTZ的介电常数仅在11~44℃范围保持稳定,加入BZZ后,制备的(1-x)BSTZ-xBZZ陶瓷的介电常数在-100~350℃温度内表现出温度稳定性,满足容温变化率(∣ΔC/C25℃∣≤15%);本发明通过加入BZZ来改善Ba0.6Sr0.4(Ti0.7Zr0.3)O3的烧结性能与介电性能。
本发明的有益效果:
(1)本发明制备的(1-x)Ba0.6Sr0.4(Ti0.7Zr0.3)O3-xBi(Zn0.5Zr0.5)O3(x=0.05,0.10,0.15)介电陶瓷,随着Bi(Zn0.5Zr0.5)O3的加入,样品的烧结温度从0.95Ba0.6Sr0.4(Ti0.7Zr0.3)O3-0.05Bi(Zn0.5Zr0.5)O3样品的1400℃下降至0.85Ba0.6Sr0.4(Ti0.7Zr0.3)O3-0.15Bi(Zn0.5Zr0.5)O3样品的1250℃,和锆钛酸锶钡(BSTZ)的烧结温度达到1500℃相比,降低了烧结问题,烧结温度的降低可以节约烧结成本。
(2)本发明制备的添加锌锆酸铋的锆钛酸锶钡基((1-x)Ba0.6Sr0.4(Ti0.7Zr0.3)O3-xBi(Zn0.5Zr0.5)O3)陶瓷,其介电常数在(-100~350℃)范围内保持稳定,满足容温变化率≤±15%(∣ΔC/C25℃∣≤15%);(1-x)BSTZ-xBZZ(x≤0.15)陶瓷有望应用于高温陶瓷电容器领域。
附图说明
图1为添加锌锆酸铋的锆钛酸锶钡基介电陶瓷烧结后的XRD图谱。
图2为添加锌锆酸铋的锆钛酸锶钡基介电陶瓷烧结后表面形貌图,其中,a、b、c分别对应实施例1、实施例2和实施例3。
图3为添加锌锆酸铋的锆钛酸锶钡基介电陶瓷的电滞回线,其中,a、b、c分别对应实施例1、实施例2和实施例3。
图4为添加锌锆酸铋的锆钛酸锶钡基介电陶瓷的介电温谱,其中,a、b、c分别对应实施例1、实施例2和实施例3。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1
一种添加锌锆酸铋的锆钛酸锶钡基介电陶瓷0.95Ba0.6Sr0.4(Ti0.7Zr0.3)O3-0.05Bi(Zn0.5Zr0.5)O3(简写0.95BSTZ-0.05BZZ)的制备方法,具体步骤如下:
(1)按照Ba0.6Sr0.4(Ti0.7Zr0.3)O3的化学计量比称取BaCO3、SrCO3、TiO2、ZrO2,然后进行球磨,以无水乙醇和氧化锆小球作为球磨介质,无水乙醇、氧化锆小球和原料的质量比为4:4:1,球磨转速为300转/分钟,球磨时间为16小时,球磨完成后将湿料取出在80℃烘干10小时,烘干后于1300℃煅烧4小时,合成得到BSTZ粉体。
(2)按照Bi(Zr0.5Zn0.5)O3的化学计量比称量Bi2O3、ZrO2、ZnO,然后进行球磨,以无水乙醇和氧化锆小球作为球磨介质,无水乙醇、氧化锆小球和原料的质量比为4:4:1,球磨转速为300转/分钟,球磨时间为16小时,球磨完成后将湿料取出在80℃烘干10小时,烘干后于800℃煅烧3.5小时,合成得到BZZ粉体。
(3)将步骤(1)和步骤(2)得到的粉体分别研磨、过60目筛;按0.95Ba0.6Sr0.4(Ti0.7Zr0.3)O3-0.05Bi(Zn0.5Zr0.5)O3化学计量比分别称量BSTZ、BZZ,加入无水乙醇和氧化锆小球进行二次球磨;无水乙醇、氧化锆小球和混料的质量比为4:4:1,在行星式球磨机中球磨16小时得到混合均匀的湿料,将湿料取出后在80℃干燥箱烘干16小时。
(4)将混合均匀的干粉研磨后,过120目筛,加入5wt%PVA,接着在150MPa单轴压力下保压6min将粉末压成直径16mm、厚度1.6mm的陶瓷圆片。
(5)将陶瓷圆片置于刚玉坩埚后,四周敷设一层成分相同的干粉,在空气气氛下,以5°/分钟升温到600℃保温2小时,排去样品中PVA,接着升温至1400℃保温4小时,后随炉冷却,得到0.95BSTZ-0.05BZZ陶瓷。
实施例2
一种添加锌锆酸铋的锆钛酸锶钡基介电陶瓷0.90Ba0.6Sr0.4(Ti0.7Zr0.3)O3-0.10Bi(Zn0.5Zr0.5)O3(0.90BSTZ-0.10BZZ)的制备方法,具体步骤如下:
(1)按照Ba0.6Sr0.4(Ti0.7Zr0.3)O3的化学计量比称取BaCO3、SrCO3、TiO2、ZrO2,然后进行球磨,以无水乙醇和氧化锆小球作为球磨介质,无水乙醇、氧化锆小球和原料的质量比为4:5:1,球磨转速为400转/分钟,球磨时间为12小时,球磨完成后将湿料取出在100℃烘干10小时,烘干后于1350℃煅烧3小时,合成得到BSTZ粉体。
(2)按照Bi(Zr0.5Zn0.5)O3的化学计量比称量Bi2O3、ZrO2、ZnO,然后进行球磨,以无水乙醇和氧化锆小球作为球磨介质,无水乙醇、氧化锆小球和原料的质量比为4:5:1,球磨转速为400转/分钟,球磨时间为12小时,球磨完成后将湿料取出在100℃烘干10小时,烘干后于750℃煅烧4小时,合成得到BZZ粉体。
(3)将步骤(1)和步骤(2)得到的粉体分别研磨、过120目筛;按0.90Ba0.6Sr0.4(Ti0.7Zr0.3)O3-0.10Bi(Zn0.5Zr0.5)O3化学式计量比分别称量BSTZ、BLT,加入无水乙醇和氧化锆小球进行二次球磨;无水乙醇、氧化锆小球和混料的质量比为4:5:1,在行星式球磨机中球磨12小时得到混合均匀的湿料;将湿料取出后在90℃干燥箱烘干12小时。
(4)将混合均匀的干粉研磨后,过120目筛,加入5wt%PVA,接着在200MPa单轴压力下保压10min将粉末压成直径16mm、厚度1.6mm的陶瓷圆片。
(5)将陶瓷圆片置于刚玉坩埚后,四周敷设一层成分相同的干粉,在空气气氛下,以5°/分钟升温到600℃保温2小时,排去样品中PVA,接着升温至1340℃保温4小时,后随炉冷却,得到0.90BSTZ-0.10BZZ陶瓷。
实施例3
一种添加锌锆酸铋的锆钛酸锶钡基介电陶瓷0.85Ba0.6Sr0.4(Ti0.7Zr0.3)O3-0.15Bi(Zn0.5Zr0.5)O3(0.85BSTZ-0.15BZZ)的制备方法,具体步骤如下:
(1)按照Ba0.6Sr0.4(Ti0.7Zr0.3)O3的化学计量比称取BaCO3、SrCO3、TiO2、ZrO2,然后进行球磨,以无水乙醇和氧化锆小球作为球磨介质,无水乙醇、氧化锆小球和原料的质量比为5:4:1,球磨转速为350转/分钟,球磨时间为14小时,球磨完成后将湿料取出在90℃烘干11小时,烘干后于1350℃煅烧3.5小时,合成得到BSTZ粉体。
(2)按照Bi(Zr0.5Zn0.5)O3的化学计量比称量Bi2O3、ZrO2、ZnO,然后进行球磨,以无水乙醇和氧化锆小球作为球磨介质,无水乙醇、氧化锆小球和原料的质量比为5:4:1,球磨转速为350转/分钟,球磨时间为14小时,球磨完成后将湿料取出在90℃烘干11小时,球磨完成后将湿料取出在100℃烘干10小时,烘干后于850℃煅烧3小时,合成得到BZZ粉体。
(3)将步骤(1)和步骤(2)得到的粉体分别研磨、过60~120目筛;按0.85Ba0.6Sr0.4(Ti0.7Zr0.3)O3-0.15Bi(Zn0.5Zr0.5)O3化学式计量比分别称量Ba0.6Sr0.4(Ti0.7Zr0.3)O3和Bi(Zn0.5Zr0.5)O3,加入无水乙醇和氧化锆小球进行二次球磨;无水乙醇、氧化锆小球和混料的质量比为4:4:1,在行星式球磨机中球磨16小时得到混合均匀的湿料;湿料取出后在90℃干燥箱烘干12小时。
(4)将混合均匀的干粉研磨后,过120目筛,加入5wt%PVA,接着在180MPa单轴压力下保压8min将粉末压成直径16mm,厚度1.6mm的陶瓷圆片。
(5)将陶瓷圆片置于刚玉坩埚后,四周敷设一层成分相同的干粉,在空气气氛下,以5°/分钟升温到600℃保温2小时,排去样品中PVA,接着升温至1250℃保温4小时,后随炉冷却,得到0.85BSTZ-0.15BZZ陶瓷。
结果分析:
图1为实施例1~3三组样品常规烧结后的XRD图谱;由图1可以看出,所有实施例均为赝立方相钙钛矿结构。
图2(a~c)分别为实施例1~3三组样品常规烧结后的表面形貌图;由图2可以看出,四组样品的晶粒晶界清晰明显,表面存在少量的气孔。
图3(a~c)分别为实施例1~3三组样品在常温下、10Hz条件下测试的电滞回线图;由图3可以看出,三组实施例的饱和极化对应的电场强度均超过120kV/cm,其中,0.95BSTZ-0.05BZZ的电场强度达到150kV/cm。
图4(a~c)分别为实施例1~3三组样品在对样品表面进行打磨,涂敷银浆烧制成银电极后测试的介电温谱图;其中,图4(c)中,0.85BSTZ-0.15BZZ样品的介电常数在测试温度内、100kHz下表现出较好的稳定性,介电常数在176~199范围波动。
表1三组样品在100kHz下以25℃和150℃为基准温度时的容温变化率
化学组成 |ΔC/C25℃|≤15% |ΔC/C150℃|≤15%
BSTZ 11~44℃ 120~192℃
0.95BSTZ-0.05BZZ -87~190℃ -66~207℃
0.90BSTZ-0.10BZZ -100~150℃ -14~350℃
0.85BSTZ-0.15BZZ -100~253℃ -100~350℃
计算公式为:
式子中,CT表示样品在温度T时的电容量,C25℃为样品在25℃时的电容量,单位为F,C150℃为样品在150℃时的电容量。
由表1可以看出,以25℃为基准工作温度时,BSTZ样品仅在11~44℃温度范围内的容温变化率满足TCC25℃≤±15%,当加入BZZ后样品的使用温度区间得到极大提升。0.95BSTZ-0.05BZZ样品在-87~190℃温度范围内的容温变化率满足TCC25℃≤±15%,当x=0.15时,0.85BSTZ-0.15BZZ样品的容温系数在-87~190℃温度满足TCC25℃≤±15%,这个温度范围满足电子工业联盟(EIA)X9R的陶瓷电容器标准(-55℃至200℃)。
以150℃为基准工作温度时,BSTZ样品在较窄的温度范围内(120~192℃)的容温变化率满足TCC25℃≤±15%;而0.95BSTZ-0.05BZZ样品在-66~207℃温度范围内的容温变化率满足TCC25℃≤±15%,当BZZ含量继续增加,样品的工作温度可以达到最高测试温度350℃,具体是,0.90BSTZ-0.10BZZ和0.85BSTZ-0.15BZZ样品分别在-14~350℃与-100~350℃温度范围内的容温变化率满足TCC150℃≤±15%,超过了X9R型陶瓷电容器的使用温度,表现出优异的高温介电常数稳定性。

Claims (9)

1.一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法,其特征在于:在Ba0.6Sr0.4(Ti0.7Zr0.3)O3基体中添加Bi(Zr0.5Zn0.5)O3,其化学组成为:(1-x)Ba0.6Sr0.4(Ti0.7Zr0.3)O3-xBi(Zr0.5Zn0.5)O3,其中x=0.05~0.15,具体包括以下步骤:
(1)按照Ba0.6Sr0.4(Ti0.7Zr0.3)O3的化学计量比称取BaCO3、SrCO3、TiO2、ZrO2,然后进行球磨,烘干后进行煅烧得到BSTZ粉体;
(2)按照Bi(Zr0.5Zn0.5)O3的化学计量比称量Bi2O3、ZrO2、ZnO,然后进行球磨,烘干后烘干进行煅烧得到BZZ粉体;
(3)将步骤(1)和步骤(2)得到的粉体分别研磨、过筛;按照(1-x)Ba0.6Sr0.4(Ti0.7Zr0.3)O3-xBi(Zr0.5Zn0.5)O3的化学计量比分别称量BSTZ粉体和BZZ粉体,再进行二次球磨;球磨参数与第一次球磨相同;
(4)将混合的粉末烘干后加入聚乙烯醇并分散均匀,之后将粉末在模具中进行压制,于1250~1400℃烧结得到添加Bi(Zr0.5Zn0.5)O3的Ba0.6Sr0.4(Ti0.7Zr0.3)O3介电陶瓷材料。
2.根据权利要求1所述Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法,其特征在于:步骤(1)中煅烧条件为:1300~1350℃煅烧3~4小时。
3.根据权利要求1所述Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法,其特征在于:步骤(2)中煅烧条件为:750~850℃煅烧3~4小时。
4.根据权利要求1所述Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法,其特征在于:步骤(4)中聚乙烯醇的质量百分比为5wt%。
5.根据权利要求1所述Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法,其特征在于:步骤(1)和(2)中混合球磨中以无水乙醇和氧化锆小球作为球磨介质,无水乙醇、氧化锆小球和原料的质量比为(4~5):(4~5):1,球磨转速为300~400转/分钟,球磨时间为12~16小时。
6.根据权利要求1所述Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法,其特征在于:步骤(1)和(2)中球磨完成后烘干条件为:将湿料取出在80~100℃烘干10~12小时。
7.根据权利要求1所述Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法,其特征在于:步骤(3)中所述的过筛是过60~120目筛。
8.根据权利要求1所述Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法,其特征在于:步骤(4)中压制成型的条件为:150~200MPa单轴压力下保压6~10min。
9.根据权利要求1所述Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法,其特征在于:步骤(4)中烧结条件为:采用埋粉烧的方式,在试样周围敷设一层与样品成分相同的陶瓷前驱体粉末,以5~6℃/min的升温速率加热至烧结温度1250~1400℃,保温3~5小时,冷却降温后得到(1-x)BSTZ-xBZZ介电陶瓷。
CN202310345013.1A 2023-04-03 2023-04-03 一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法 Active CN116444266B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310345013.1A CN116444266B (zh) 2023-04-03 2023-04-03 一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310345013.1A CN116444266B (zh) 2023-04-03 2023-04-03 一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN116444266A CN116444266A (zh) 2023-07-18
CN116444266B true CN116444266B (zh) 2023-11-21

Family

ID=87129574

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310345013.1A Active CN116444266B (zh) 2023-04-03 2023-04-03 一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN116444266B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137873A (ja) * 2006-12-05 2008-06-19 Ngk Spark Plug Co Ltd 誘電体磁気組成物及びセラミック電子部品
CN101844919A (zh) * 2010-06-03 2010-09-29 西北工业大学 一种复合钛酸锶钡陶瓷及其制备方法
CN101863658A (zh) * 2010-06-17 2010-10-20 西北工业大学 钛酸锶钡陶瓷的制备方法
CN104310996A (zh) * 2014-09-26 2015-01-28 天津大学 一种多层陶瓷电容器用弛豫铁电材料的制备方法
CN104446443A (zh) * 2014-11-21 2015-03-25 天津大学 宽工作温度范围多层陶瓷电容器介质材料及其制备方法
CN106542821A (zh) * 2016-10-18 2017-03-29 陕西科技大学 一种Bi2O3‑B2O3‑ZnO玻璃添加Ba0.4Sr0.6TiO3基储能陶瓷及其制备方法
CN114163231A (zh) * 2021-11-29 2022-03-11 华中科技大学 无铅脉冲电介质储能复合陶瓷材料及其制备方法和应用
CN115093211A (zh) * 2022-07-19 2022-09-23 陕西科技大学 一种高储能高击穿的铁酸铋-钛酸锶基陶瓷材料及其制备方法
CN115385688A (zh) * 2022-09-22 2022-11-25 昆明理工大学 一种锆钛酸锶钡基介电陶瓷材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111763082B (zh) * 2019-04-01 2021-08-31 中国科学院上海硅酸盐研究所 一种钛酸锶钡基介质陶瓷材料及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137873A (ja) * 2006-12-05 2008-06-19 Ngk Spark Plug Co Ltd 誘電体磁気組成物及びセラミック電子部品
CN101844919A (zh) * 2010-06-03 2010-09-29 西北工业大学 一种复合钛酸锶钡陶瓷及其制备方法
CN101863658A (zh) * 2010-06-17 2010-10-20 西北工业大学 钛酸锶钡陶瓷的制备方法
CN104310996A (zh) * 2014-09-26 2015-01-28 天津大学 一种多层陶瓷电容器用弛豫铁电材料的制备方法
CN104446443A (zh) * 2014-11-21 2015-03-25 天津大学 宽工作温度范围多层陶瓷电容器介质材料及其制备方法
CN106542821A (zh) * 2016-10-18 2017-03-29 陕西科技大学 一种Bi2O3‑B2O3‑ZnO玻璃添加Ba0.4Sr0.6TiO3基储能陶瓷及其制备方法
CN114163231A (zh) * 2021-11-29 2022-03-11 华中科技大学 无铅脉冲电介质储能复合陶瓷材料及其制备方法和应用
CN115093211A (zh) * 2022-07-19 2022-09-23 陕西科技大学 一种高储能高击穿的铁酸铋-钛酸锶基陶瓷材料及其制备方法
CN115385688A (zh) * 2022-09-22 2022-11-25 昆明理工大学 一种锆钛酸锶钡基介电陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Bi(Zr_(0.5)Zn_(0.5))O_3-PbTiO_3高温压电陶瓷的结构与相变温度研究;石维;冯云光;秦伟;李兢;肖定全;朱建国;;硅酸盐通报(第03期);全文 *
Dielectric, ferroelectric and energy storage properties of lead-free (1-x) Ba0.9Sr0.1TiO3-xBi(Zn0.5Zr0.5)O3 ferroelectric ceramics sintered at lower temperature;Gang Liu等;《Ceramics International》;全文 *

Also Published As

Publication number Publication date
CN116444266A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
CN110015894B (zh) 一种高温下介电稳定的钛酸铋钠基陶瓷及其制备方法和应用
US10562819B2 (en) Ceramic material for multilayer ceramic capacitor and method of making the same
CN103214238A (zh) 一种钛酸锶钡基介电温度稳定型陶瓷电容器材料的制备方法
CN103011805B (zh) 一种BaTiO3 基无铅X8R 型陶瓷电容器介质材料及其制备方法
CN106588006A (zh) 一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷
CN115385688B (zh) 一种锆钛酸锶钡基介电陶瓷材料及其制备方法
CN107285760B (zh) 一种低损耗巨介电常数陶瓷材料的制备方法
CN108585837A (zh) 一种钛酸铋钠基高温电容器介质陶瓷的制备方法
CN116444266B (zh) 一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
CN108585834A (zh) 高介电常数陶瓷粉料及所制得的陶瓷电容器及制造方法
CN113045307A (zh) 一种高介电低损耗钛酸钡基陶瓷及其制备方法
KR20040038747A (ko) 유전체 세라믹용 원료 분말의 제조 방법, 유전체 세라믹및 적층 세라믹 커패시터
CN115536388B (zh) 一种高熵陶瓷电介质材料及其制备方法
CN110511026B (zh) 一种x8r型陶瓷电容器介质材料及其制备方法
CN105384436B (zh) 一种富钛型钛酸锶钡基电介质陶瓷材料及其制备方法
CN106145932B (zh) 一种高介电常数的多层陶瓷电容器介质材料及其制备方法
CN110304916B (zh) 一种抗还原BaTiO3基介质陶瓷及制备方法
CN111960817A (zh) 高介低损耗耐高压电容器用陶瓷介质材料及其制备方法
CN115159977B (zh) 一种宽温低损耗介质陶瓷材料及其制备方法
KR100875288B1 (ko) Y5v 특성이 우수한 mlcc용 유전체 조성물 및 그의제조방법
CN116477938B (zh) 钛酸钡基无铅压电陶瓷及其制备方法
CN114823140B (zh) 一种中温烧结x7r型陶瓷电容器介质材料及其制备方法
CN103864415A (zh) 一种锡酸锌掺杂的钛酸钡高介电陶瓷及其制备方法
CN116768626B (zh) 一种PbNb2O6基压电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant